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Charged particles drift across field lines
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J. P. Freidberg, Ideal Magnetohydrodynamics



The particle drifts back to the original position if a small
poloidal field is superimposed on the toroidal field

Guiding center
trajectory

Magnetic line
Pressure

Nested
surfaces

contour

Magnetic axis

e Points with no drift



Stellarator uses twisted coil to generate poloidal
magnetic field

Tokamak Stellarator

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/
https://en.wikipedia.org/wiki/Stellarator



A figure-8 stellarator solved the drift issues

Introduction to Plasma Physics and Controlled Fusion 3" Edition, by Francis F. Chen 6



Concept of figure-8 stellarator
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Model A stellarator

https://www.autoevolution.com/news/stellarator-reactors-the-once-
forgotten-all-american-approach-to-nuclear-fusion-209478.html#agal_2
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Different types of stellarators

* Original Stellarator: — « Torsatron:

Field cancels
out on axis




Helical coils with toroidal field coils can be replaced by
smoothed twisting coils

« Superposition of helical windings * Realization of the smoothed

(blue) and the TF-coils (black) twisting coils
and mapped into the 68-® plane.
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Wendelstein 7-X is a (Helias) stellarator built by Max
Planck Institute for Plasma Physics (IPP)

outer vessel
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Advantages of Stellarator

 No need to drive plasma current. It is intrinsically steady state.

« With zero net current, one potentially dangerous class of MHD
Instabilities, the current-driven kink modes, is eliminated.

« Magnetic configuration is set by external coils, not by currents in the
plasma. Stellarators do not suffer violent disruptions.

« Potential for greater range of designs and optimization of fusion
performance.

12



Disadvantages of Stellarator
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« Complicated coil configurations. It’s difficult to design. The precision
requirement is high. It is expensive to build coils for stellarators.

* Achieving good particle confinement in stellarators is more difficult than
that in tokamaks.

« Divertors and heat load geometry in stellarators is more complicated than
those in tokamaks.

13



Course Qutline

« Magnetic confinement fusion (MCF)
— Gyro motion, MHD
— 1D equilibrium (z pinch, theta pinch)
— Drift: ExB drift, grad B drift, and curvature B drift
— Tokamak, Stellarator (toroidal field, poloidal field)
— Magnetic flux surface

— 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov
equation.

— Stability (Kink instability, sausage instability, Safety factor Q)
— Central-solenoid (CS) start-up (discharge) and current drive

— CS-free current drive: electron cyclotron current drive, bootstrap
current.

— Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.

14



General screw pinch is flexible with varies range of 8
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An equilibrium state may not be stable

A B C
NO EQUILIBRIUM NEUTRALLY STABLE (METASTABLE)
EQUILIBRIUM
Y/
4 g
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V.

F G
EQUILIBRIUM WITH LINEAR EQUILIBRIUM WITH
STABILITY AND NONLINEAR LINEAR INSTABILITY
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STABILITY
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A cylindrical plasma column

may not be stable

* Instabilities of theta pinch

O D
= 'l _

(a) Unperturbed
(b) m=2, k=0
(c) m=3, k=0
(d) m=0, k#0
(e) m=1, k#0

* Instabilities of z pinch

Sausage Kink
instability instability
(m=0) (m=1)

{((T) ={(r)exp(im0 + ikz)
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A cylindrical plasma column is stable when the safety
factor is greater than unity

Sausage instability (m=0)

By small
plasma

surface

By large

Bg small

« MHD Safety factor:

« Kink instability

1

plasma
surface

A
rB,(r)
R,By(1)

q(r) = Kruskal-Shafranov limit
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Theta pinch is stable while z pinch is unstable

« Theta pinch

Plasma
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Course Qutline

« Magnetic confinement fusion (MCF)
— Gyro motion, MHD
— 1D equilibrium (z pinch, theta pinch)
— Drift: ExB drift, grad B drift, and curvature B drift
— Tokamak, Stellarator (toroidal field, poloidal field)
— Magnetic flux surface

— 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov
equation.

— Stability (Kink instability, sausage instability, Safety factor Q)
— Central-solenoid (CS) start-up (discharge) and current drive

— CS-free current drive: electron cyclotron current drive, bootstrap
current.

— Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.

20



ldeal MHD

« Continuityeq: —+4+V-(p,,?)=
« Momentum eq: pm [—t+(TJ‘~V)T7‘] =7 xB—-Vp
« Ohm’s law: E

« Equation of state:

 Maxwell’s egs:

V-E~0 « Requirement:
v.B=0 « High collisionality — fluid model
2T « Small gyro radius — low frequency
- o8B « Small resistivity — a perfect conductor
VXE =——
Jt
VX B = Ho T
V-] =0

J. P. Freidberg, Ideal Magnetohydrodynamics 21



When forces are balances, the system is in the
equilibrium state, or called “Magnetohydrostatics”

« Equilibrium state:
0D - =
pmlﬁ+(v VVo|(=jXxXB-Vp=0
T X B = Vp
VXB=p,j
7x§=l(“x§‘)x§=i[(§ P)B -2 7 82| = vp —
Ko Ko 2
V<P+ BZ>=i(§‘ V)B
21,/ Ho
Magnetic Magnetic . Forces caused by
pressure tension curvature of the field lines

— j1vp Bivp m) F-vp=0 B-vp=0

 The surfaces with p = constant are both magnetic surfaces (i.e., they
are made up of magnetic field lines) and current surfaces (i.e., they are
made of current flow lines).

22




2D axisymmetric equilibrium of a torus plasma:
Grad-Shafranov equation

Inner poloidal field coils j X B = Vp

(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

_
Resulting helical magnetic field Toroidal field coils V . B

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

« The surfaces with p = constant are both magnetic surfaces (i.e., they
are made up of magnetic field lines) and current surfaces (i.e., they are
made of current flow lines).

https://www.euro-fusion.org/2011/09/tokamak-principle-2/ 23



Magnetic lines lying on pressure contour
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« Contours of constant pressure + Magnetic lines lying on pressure contour

Magnetic line
Pressure

contour

Magnetic axis

 Pressure gradient is balanced by the | x B force

J-vp=0
B-/p=0
B-vw=0

magnetic axis

A magnetic (or flux) surface is one that is everywhere tangential to the
field, i.e., the normal to the surface is everywhere perpendicular to B.
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Derivation of Grad-Shafranov equation
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Pressure can be written as a function of flux

B
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Pressure can be written as a function of flux

VP =0
-Vp=20

W &l

for Vp + 0O:
p=r®)
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Derivation of Grad-Shafranov equation

. Let’s see the ¢ component of the force-balance equation:
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Magnetic field can be decomposed into the poloidal
component and the toroidal component
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Arbitrary integration constant associated with flux can
be chosen such that flux equals to zero on the field axis

« The poloidal flux of the area of a washer- 4,
shaped surface lying in the z = 0 plane
from R = R, to an arbitrary ¥ contour V cont
defined by ¥ = ¥(Ry, 0):
1 v =y (Ap,0)
o (A,
1 n b N R
— » e Polodial
27 ), do L a dRRB,(R,0) . N :! \':I\'flt?xow:,a
\\ I l'
= lI)(Rbr 0) - lI)(Rar O) \\ : 'l
\ I ]
= P (Ryp, 0) ' :'
]

where Y(R,,0) = 0 is chosen.
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Derivation of Grad-Shafranov equation

- Let’s see the R component of the force-balance equation: 1 al[)
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Derivation of Grad-Shafranov equation

. . dp
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Derivation of Grad-Shafranov equation

dp 1 dF? v\ . (vy\ .. F@).
kol 2 - - * — 2 N — |
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Plasma condition can be obtained by solving
Grad-Shafranov equation

dp 1 dF? vy I
AYP=—pu R>?— —— — where A*Y = R?V - | — — __ ‘P

« The usual strategy to solve the Grad-Shafranov equation:

1. Specify two free functions, the plasma pressure p = p(y) and the
toroidal field function F = F(y).

2. Solve the equation with specified boundary conditions to
determine the flux function ¥ (R, z).

3. Calculation the magnetic field using the following equations:

13y 5 _Fa g 10V

By = __-9¥
R R 0z ¢ R Z” R QR

4. The pressure profile can then be obtained from p = p(¥(R, 2)).
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Example of the analytical solution of the
Grad-Shafranov equation
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Magnetically confined toroidal equilibrium
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1. Radial pressure balance in the poloidal plan needs to be provided so
that the pressure contours form closed nested surfaces. Both toroidal
and poloidal fields can readily accomplish this task.

2. The radially outward expansion force inherent in all toroidal geometries
needs to be balanced without sacrificing stability.

« Forces associated with toroidal force balance are usually than those
corresponding to radial pressure balance. However, they are more

difficult to compensate.
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Toroidal configuration with a purely poloidal magnetic field
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 Hoop force: I » Tire tube force
Yi=9:=9 P1=P2=Pp
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Constant pressure
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The outward force can be compensated by either a

» Perfectly conducting shell

7 Perfectly conducting wall

Expanded flux
reduced B

Compressed flux

R

increased B Fp =

. Externally applied vertical field

V4

%ﬂd B

Vertical field

Finite conductivity

With a finite conductivity wall, flux can only remain compressed for

about a skin time.

This configuration develops disastrous MHD instabilities (z pinch).

perfectly conducting shell or externally applied vertical field
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Toroidal configuration with a purely toroidal magnetic
field, stable but NOT balanced

Plasma is
diamagnetic

Coil current

(B%—B%)Ss

(‘822 B?E)SZ

Net force

A~ Ro 24 I

B Bq)eq) B(I) = BO? o Z;Rc

o

(Ba1 i17)S1 — (Ba2* — Bi2”)S, >0

z 2p,
Perfectly conducting wall
Magnetic lines
R
J X B vert
B vert /_Q

j X Bvert

is not pointed along éy

M=
A 4 @ v

] X Bvert
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Colils in a tokamak

Inner poloidal field coils

(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

« Toroidal field coils (in poloidal direction) — generate toroidal field for
confinement.
« Poloidal field coils — generate vertical field for plasma positioning and
shaping.
« Central solenoid — for breakdown and generating plasma current (in
toroidal direction) and thus generating poloidal field for confinement.
https://www.euro-fusion.org/2011/09/tokamak-principle-2/
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Plasma condition can be obtained by solving
Grad-Shafranov equation

dp 1 dF? vy I
AYP=—pu R>?— —— — where A*Y = R?V - | — — __ ‘P

« The usual strategy to solve the Grad-Shafranov equation:

1. Specify two free functions, the plasma pressure p = p(y) and the
toroidal field function F = F(y).

2. Solve the equation with specified boundary conditions to
determine the flux function ¥ (R, z).

3. Calculation the magnetic field using the following equations:

13y 5 _Fa g 10V

By = __-9¥
R R 0z ¢ R Z” R QR

4. The pressure profile can then be obtained from p = p(¥(R, 2)).
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Application of solving Grad-Shafranov equation for
designing a tokamak
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* Given lyasma P(W), I(W), Iois, free boundary of plasma, perfect conductor
as the chamber.

* Given lyasma P(W), I(W), |.ois, free boundary of plasma, insulator chamber.

* Given lyasma P(W), I(W), l.ois, free boundary of plasma, chamber with eddy
current.

* Given lyasma P(W), (), fixed boundary of plasma. Then, use I s, free
boundary of plasma and match the plasma shape calculated in the fixed
boundary condition.

A Pp=—pu,R> dp _1dF* where A" = R?*V Yo
Ip = —2nF(Y)

R VF ~ 1 ~ - 74 .. F ~
B Ly PR VR PR AP
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Application of solving Grad-Shafranov equation for
reconstructing a tokamak equilibrium state

« Measure

— boundary conditions, including g, B, etc., on the wall (using flux loop
and B-dot probe).

— Pressure.
— Plasma current (using Rogowski coll).

* Reconstruct y(r,z), j, p(y), (), etc.

. dp 1 dF? . vy
Alp:_”°R2ﬁ_§W where A 1/J=R2|7-<F>
Ip = —2nF(Y)

R VF ~ 1 ~ - 74 .. F ~
B Ly PR VR PR AP
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Fluxes and currents

Two neighboring
flux surfaces

Poloidal flux: Yy
Yp
Toroidal flux: Py

Poloidal current: I,

Toroidal current: I
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Normalized plasma pressure, 8

_ plasma pressure  2uy(p)
"~ magnetic pressure  BZ \
1 N |
- Plasma pressure: (p) = v jpd T «a
p
B2 -
« Magnetic pressure: Pg = Ao
57 2,
2
Hol 2
£ T 5 o "\Zma) 1712
B> =B,” B,=B@R=R, « Elongation: k
TN S TN A B, - 2py(p) g - 4m2a?(1 + k%)p
Bp = = t B 2 P~ 2
2ma Cp 0 Koly
5 1 1 N 1
1+k = T
C, ~ 2ma B B: By
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6 =-0.5
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Different poloidal shapes
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Safety factor

Kink Safety Factor:

aB, 2ma’kB,

q (r) =

R,B,  moR,I,

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)
I

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)
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Safety factor
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PLASMA CQRRENT | MAGNETIC

MINOR
RADIUS r
TOROIDAL MAGNETIC
MAGNETIC FIELD B,
FIELD
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% ANGLE ¢
@

N
1
« Rotational transform: (= lim ZABn
1

Ry

N—)OON
2 d dVv
« MHD safety factor: q(V) = l([’:) = d:/I));;dV Ye=9P(V) Yy =9,()
. _ V dq _ di,/dv
Shear: g(y) = 25 v (V) = Zn<dtpt/dV

C. C. Baker, et al, Nuclear Technology/Fusion, 1, 5 (1981)



Volume of the constant flux

R =R, +rcosf

Z = rsinf

Y =Y(r,06)
A r=71(00,9)

V(y) = jozn jozn L?errdedqb

Do

A\

21 ~ 2 7
V(y) = nRojO dor [1 + 3 (R_> cosB]

o
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Magnetic well
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that measures plasma stability
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the plasma pressure gradient.
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The Spherical tokamak

4 I I I

Contours of
constant Y

« Aspect ratio R,/a ~ 1.6

(a) | Large aspect ratio Tk
‘ (Standard tokamak)

z OF -
Minor Minor
radius radius
{ L ooa R
Majqr : _2 — -
Low aspectradio |
(Spherical tokamak) _4 | : :
0 2 4 6 8
) (b) R
Wz , Good curvature I M—
Bt BAD
B _V 2 CURVATURE
t ” _—REGION ——
\‘4
p >/ = vp e
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The Spherical tokamak

« Aspect ratio R,/a~ 1.6
« Advantages:
— Higher B, limit.
— A compact design almost spherical in appearance.

« Challenges:

— Minimum space is given in the center of the torus to accommodate
the toroidal field coils.

— With a very compact design the technology associated with the
construction and maintenance of the device may be more difficult
than for a “normal” tokamak.

— Large currents will have to be driven noninductively, a costly and
physically difficult requirement.
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Limiter protects the vacuum chamber from plasma
bombardment and defines the edge of the plasma
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Limiter protects the vacuum chamber from plasma
bombardment and defines the edge of the plasma

A mechanical limiter is a robust piece of material, often made of
tungsten, molybdenum, or graphite placed inside the vacuum chamber.

Some of the particles of the limiter surface may escape. Neutral
particles can penetrate some distance into the plasma before being
lonized.

The high-z impurities can lead to significant additional energy loss in
the plasma through radiation.

In ignition experiments and fusion reactors, the bombardment is more
intense and extends over longer periods of time. In addition, if the
impurity level is too high, it may not be possible to achieve a high
enough temperature to ignite. Interior magnetic line

Plasma surface

Exterior magnetic line

Limiter
Shadow region
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The magnetic divertor — guide a narrower layer of
magnetic lines away from the edge of the plasma

« Single-null -

poloidal-field
divertors for
tokamak
#— Scrape-off layer
Separatrix
/ X-point
D
Diverter plates

 Standard « Snowflake

......
------

por "
.- o
. et
. %
- »
" o
.- *
.- %
.- »,

.~
.- J
.- - e =

7 ."
- ) = "
> »
- - .
.
.
.

Double-null « Island ™
poloidal-field divertor for
divertors for stellerators
tokamak

Y. Feng, Nucl. Fusion, 46, 807 (2006)
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L Xue et al, Plasma Phys. Control. Fusion
58, 055005 (2016)
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Pros and cons of a divertor

« Advantages:

— The collector plate is remote from the plasma. There is space
available to spread out the magnetic lines.

— A lower intensity of particles and energy bombard the collector plate
leading to a longer replacement time.

— It is more difficult for impurities to migrate into the plasma.

— There are longer distance distances to travel and if a neutral particle
becomes ionized before or during the time it crosses the divertor
layer on its way toward the plasma, its parallel motion then carries it
back to the collector plate.

— The larger divertor chamber provides more access to pump out
impurities.

— The plasma edge is not in direct contact with a solid material such as
a limiter.

« Disadvantages: larger and more complex system and more expensive.
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