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Note!

• Midterm 4/15 (One double-sided A4 cheating sheet is allowed.)
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• Final exam 6/  3



Charged particles drift across field lines
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• ExB drift

• Grad-B drift

J. P. Freidberg, Ideal Magnetohydrodynamics

𝜵𝑩



The particle drifts back to the original position if a small 
poloidal field is superimposed on the toroidal field
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Upward drift

Points with no drift



Stellarator uses twisted coil to generate poloidal 
magnetic field
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Tokamak Stellarator

https://www.euro-fusion.org/2011/09/tokamak-principle-2/

https://en.wikipedia.org/wiki/Stellarator



A figure-8 stellarator solved the drift issues 

6Introduction to Plasma Physics and Controlled Fusion 3rd Edition, by Francis F. Chen
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Concept of figure-8 stellarator

7T. Coor, et al., Phys. Fluids 1, 411 (1958)



Model A stellarator
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https://www.autoevolution.com/news/stellarator-reactors-the-once-

forgotten-all-american-approach-to-nuclear-fusion-209478.html#agal_2



Different types of stellarators
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• Original Stellarator:

• Heliotron:

• Torsatron:

• Helias:

Field cancels 

out on axis



Helical coils with toroidal field coils can be replaced by 
smoothed twisting coils

10Fusion Physics, by IAEA

• Superposition of helical windings 

(blue) and the TF-coils (black) 

and mapped into the θ-Φ plane.

• Realization of the smoothed 

twisting coils



Wendelstein 7-X is a (Helias) stellarator built by Max 
Planck Institute for Plasma Physics (IPP)
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• Wemdelstein 7-x is now 

installing new diverters.



Advantages of Stellarator

• No need to drive plasma current. It is intrinsically steady state.

• With zero net current, one potentially dangerous class of MHD 

instabilities, the current-driven kink modes, is eliminated.

• Magnetic configuration is set by external coils, not by currents in the 

plasma. Stellarators do not suffer violent disruptions.

• Potential for greater range of designs and optimization of fusion 

performance.
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Disadvantages of Stellarator

• Complicated coil configurations. It’s difficult to design. The precision 

requirement is high. It is expensive to build coils for stellarators.

• Achieving good particle confinement in stellarators is more difficult than 

that in tokamaks.

• Divertors and heat load geometry in stellarators is more complicated than 

those in tokamaks.
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Course Outline

• Magnetic confinement fusion (MCF)

– Gyro motion, MHD

– 1D equilibrium (z pinch, theta pinch)

– Drift: ExB drift, grad B drift, and curvature B drift

– Tokamak, Stellarator (toroidal field, poloidal field)

– Magnetic flux surface

– 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov 

equation.

– Stability (Kink instability, sausage instability, Safety factor Q)

– Central-solenoid (CS) start-up (discharge) and current drive

– CS-free current drive: electron cyclotron current drive, bootstrap 

current.

– Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.
14



General screw pinch is flexible with varies range of β
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֊𝑩 = 𝑩𝛉
𝛉 + 𝑩𝐳 ො𝐳

֊𝒋 = 𝒋𝛉
𝛉 + 𝒋𝐳 ො𝐳

𝒅

𝒅𝒓
𝒑 +

𝑩𝛉
𝟐 + 𝑩𝒛

𝟐

𝟐𝝁𝐨
+

𝑩𝛉
𝟐

𝝁𝐨𝒓
= 𝟎

𝒅

𝒅𝒓
𝒑 +

𝑩𝛉
𝟐

𝟐𝝁𝐨
+

𝑩𝛉
𝟐

𝝁𝐨𝒓
= 𝟎𝑷 +

𝑩𝐳
𝟐

𝟐𝝁𝐨
=

𝑩𝐨
𝟐

𝟐𝝁𝐨

Icoil

֊𝑩 = 𝑩𝒛ො𝒛
֊𝒋 = 𝒋𝛉

𝛉

֊𝑩 = 𝑩𝛉
𝛉

֊𝒋 = 𝒋𝒛ො𝒛

න
𝟎

𝒂

𝝅𝒓𝟐𝒅𝒓
𝒅

𝒅𝒓
𝒑 +

𝑩𝛉
𝟐 + 𝑩𝒛

𝟐

𝟐𝝁𝐨
+

𝑩𝛉
𝟐

𝝁𝐨𝒓
= 𝟎 𝒑 =

𝑩𝛉𝒂
𝟐

𝟐𝝁𝐨
+

𝟏

𝟐𝝁𝐨
𝑩𝒐

𝟐 − 𝑩𝒛
𝟐

𝜷𝐩 =
𝟐𝝁𝒐 𝒑

𝑩𝜽𝒂
𝟐𝜷𝐭 =

𝟐𝝁𝒐 𝒑

𝑩𝐨
𝟐

𝜷 =
𝜷𝐭𝜷𝐩

𝜷𝐭 +𝜷𝐩
=

𝟐𝝁𝒐 𝒑

𝑩𝒐
𝟐 + 𝑩𝜽𝒂

𝟐
𝟎 ≤ 𝜷 ≤ 𝟏

• Screw pinch • Theta pinch • Z pinch



An equilibrium state may not be stable

16



A cylindrical plasma column may not be stable
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• Instabilities of theta pinch • Instabilities of z pinch

Sausage 

instability 

(m=0)

Kink 

instability 

(m=1)

(a) Unperturbed

(b) m=2, k=0

(c) m=3, k=0

(d) m=0, k≠0

(e) m=1, k≠0 𝜻 ֊𝒓 = 𝜻 𝒓 𝒆𝒙𝒑 𝒊𝒎𝜽 + 𝒊𝒌𝒛

m=1 m=2

m=3 m=4



A cylindrical plasma column is stable when the safety 
factor is greater than unity
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• MHD Safety factor: 𝒒 𝒓 =
𝒓𝑩𝒛 𝒓

𝑹𝒐𝑩𝜽 𝒓

• Sausage instability (m=0) • Kink instability

Kruskal–Shafranov limit



Theta pinch is stable while z pinch is unstable
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Icoil

֊𝑩 = 𝑩𝒛ො𝒛
֊𝑩 = 𝑩𝛉

𝛉

• Theta pinch • Z pinch

𝒒 𝒓 =
𝒓𝑩𝒛 𝒓

𝑹𝒐𝑩𝜽 𝒓

𝒒𝜽= ∞ 𝒒𝒛= 𝟎

Stable Unstable

֊𝑩 = 𝑩𝛉
𝛉 + 𝑩𝐳 ො𝐳

֊𝒋 = 𝒋𝛉
𝛉 + 𝒋𝐳 ො𝐳

• Screw pinch

𝒒 𝐜𝐚𝐧 𝐛𝐞 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐝.

Stable/Unstable



Course Outline

• Magnetic confinement fusion (MCF)

– Gyro motion, MHD

– 1D equilibrium (z pinch, theta pinch)

– Drift: ExB drift, grad B drift, and curvature B drift

– Tokamak, Stellarator (toroidal field, poloidal field)

– Magnetic flux surface

– 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov 

equation.

– Stability (Kink instability, sausage instability, Safety factor Q)

– Central-solenoid (CS) start-up (discharge) and current drive

– CS-free current drive: electron cyclotron current drive, bootstrap 

current.

– Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.
20



Ideal MHD

21

𝝏𝝆𝐦

𝝏𝒕
+ 𝜵 · 𝝆𝒎

֊𝒗 = 𝟎

𝝆𝐦

𝝏 ֊𝒗

𝝏𝒕
+ ֊𝒗 · 𝜵 ֊𝒗 = ֊𝒋 × ֊𝑩 − 𝜵𝒑

֊𝑬 + ֊𝒗 × ֊𝑩 ≈ 𝟎

𝜵 · ֊𝑬 ≈ 𝟎

𝛁 · ֊𝑩 = 𝟎

𝛁 × ֊𝑬 = −
𝛛 ֊𝑩

𝛛𝒕

𝛁 × ֊𝑩 = 𝝁𝐨
֊𝒋

• Continuity eq:

• Ohm’s law:

• Equation of state:

• Momentum eq:

• Maxwell’s eqs:

𝒅

𝒅𝒕

𝑷

𝝆𝐦
𝜸

= 𝟎

𝛁 · ֊𝒋 = 𝟎

• Requirement:

• High collisionality – fluid model

• Small gyro radius – low frequency

• Small resistivity – a perfect conductor 

J. P. Freidberg, Ideal Magnetohydrodynamics



When forces are balances, the system is in the 
equilibrium state, or called “Magnetohydrostatics”

22

𝝆𝐦

𝝏 ֊𝒗

𝝏𝒕
+ ֊𝒗 · 𝜵 ֊𝒗 = ֊𝒋 × ֊𝑩 − 𝜵𝒑 ≡ 𝟎

• Equilibrium state:

֊𝒋 × ֊𝑩 = 𝜵𝒑

𝛁 × ֊𝑩 = 𝝁𝐨
֊𝒋

֊𝒋 ⨯ ֊𝑩 =
𝟏

𝝁𝐨

֊𝜵 ⨯ ֊𝑩 ⨯ ֊𝑩 =
𝟏

𝝁𝐨

֊𝑩 · ֊𝜵 ֊𝑩 −
𝟏

𝟐
֊𝜵 𝑩𝟐 = 𝜵𝒑

𝜵 𝑷 +
𝑩𝟐

𝟐𝝁𝐨
=

𝟏

𝝁𝒐

֊𝑩 · ֊𝜵 ֊𝑩

Magnetic 

pressure

Magnetic 

tension

Forces caused by 

curvature of the field lines

֊𝒋 ⊥ 𝜵𝒑 ֊𝑩 ⊥ 𝜵𝒑
֊𝒋 · 𝜵𝒑 = 𝟎 ֊𝑩 · 𝜵𝒑 = 𝟎

• The surfaces with p = constant are both magnetic surfaces (i.e., they 

are made up of magnetic field lines) and current surfaces (i.e., they are 

made of current flow lines).



2D axisymmetric equilibrium of a torus plasma: 
Grad-Shafranov equation

23https://www.euro-fusion.org/2011/09/tokamak-principle-2/

֊𝒋 × ֊𝑩 = 𝜵𝒑

֊𝒋 ⊥ 𝜵𝒑 ֊𝑩 ⊥ 𝜵𝒑

֊𝒋 · 𝜵𝒑 = 𝟎 ֊𝑩 · 𝜵𝒑 = 𝟎

𝛁 × ֊𝑩 = 𝝁𝐨
֊𝒋 𝜵 · ֊𝒋 = 𝟎

𝜵 · ֊𝑩 = 𝟎

• The surfaces with p = constant are both magnetic surfaces (i.e., they 

are made up of magnetic field lines) and current surfaces (i.e., they are 

made of current flow lines).



Magnetic lines lying on pressure contour

24

֊𝒋 · 𝜵𝒑 = 𝟎

֊𝑩 · 𝜵𝒑 = 𝟎

• Contours of constant pressure • Magnetic lines lying on pressure contour 

֊𝑩 · 𝜵𝒑 = 𝟎֊𝒋 × ֊𝑩 = 𝜵𝒑

• Pressure gradient is balanced by the j x B force

• A magnetic (or flux) surface is one that is everywhere tangential to the 

field, i.e., the normal to the surface is everywhere perpendicular to B.

֊𝑩 · 𝜵𝜳 = 𝟎



Derivation of Grad-Shafranov equation
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֊𝑩 = 𝑩𝐑, 𝑩𝛟, 𝑩𝐳

֊𝒋 × ֊𝑩 = 𝜵𝒑 𝛁 × ֊𝑩 = 𝝁𝐨
֊𝒋

𝜵 · ֊𝒋 = 𝟎 𝜵 · ֊𝑩 = 𝟎

𝐀𝐱𝐢𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐢𝐜:
𝝏

𝝏𝝓
= 𝟎

𝜵 · ֊𝑩 = 𝟎

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝐑 +

𝟏

𝑹

𝝏𝑩𝛟

𝝏𝝓
+

𝝏𝑩𝐳

𝝏𝒛
= 𝟎

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝐑 +

𝝏𝑩𝐳

𝝏𝒛
= 𝟎

• Represent the magnetic field using a 

vector potential A:

֊𝑩 = 𝜵 × ֊𝑨 = 𝑹
𝟏

𝑹

𝝏𝑨𝐳

𝝏𝝓
−

𝝏𝑨𝛟

𝝏𝒛
+ 𝝓

𝝏𝑨𝐑

𝝏𝒛
−

𝝏𝑨𝐳

𝝏𝑹
+ ො𝒛

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑨𝛟 −

𝟏

𝑹

𝝏𝑨𝐑

𝝏𝝓

= 𝑹 −
𝝏𝑨𝛟

𝝏𝒛
+ 𝝓

𝝏𝑨𝐑

𝝏𝒛
−

𝝏𝑨𝒛

𝝏𝑹
+ ො𝒛

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑨𝛟

≡ 𝑹𝑩𝐑 + 𝝓𝑩𝛟 + ො𝒛𝑩𝐳
𝑩𝐑 = −

𝝏𝑨𝛟

𝝏𝒛
𝑩𝐳 =

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑨𝛟



Pressure can be written as a function of flux
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𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝐑 +

𝝏𝑩𝐳

𝝏𝒛
= 𝟎

֊𝑺 = 𝑺ො𝒛

𝒅
֊
𝒍 = 𝒅𝒍 𝝓

𝝍 ≡
𝟏

𝟐𝝅
න֊𝑩 · 𝒅 ֊𝑺 =

𝟏

𝟐𝝅
න 𝜵 × ֊𝑨 · 𝒅 ֊𝑺

𝑩𝐑 = −
𝝏𝑨𝛟

𝝏𝒛

𝑩𝐳 =
𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑨𝛟

=
𝟏

𝟐𝝅
න֊𝑨 𝟐𝝅𝑹 · 𝒅

֊
𝒍 = න֊𝑨 · 𝝓𝑹𝒅𝒍 = 𝑹𝑨𝛟

𝑩𝐑 = −
𝟏

𝑹

𝝏𝝍

𝝏𝒛
𝑩𝐳 =

𝟏

𝑹

𝝏𝝍

𝝏𝑹

֊𝑩 · 𝜵𝝍 = 𝑩𝐑

𝝏𝝍

𝝏𝑹
+ 𝑩𝛟

𝟏

𝑹

𝝏𝝍

𝝏𝝓
+ 𝑩𝐳

𝝏𝝍

𝝏𝒛
= 𝑩𝐑

𝝏𝝍

𝝏𝑹
+ 𝑩𝐳

𝝏𝝍

𝝏𝒛

= −
𝟏

𝑹

𝝏𝝍

𝝏𝒛

𝝏𝝍

𝝏𝑹
+

𝟏

𝑹

𝝏𝝍

𝝏𝑹

𝝏𝝍

𝝏𝒛
= 𝟎

֊𝑩 · 𝜵𝒑 = 𝟎

𝒑 = 𝒑 𝝍

𝐟𝐨𝐫 𝜵𝒑 ≠ 𝟎:

֊𝑩 · 𝜵𝝍 = 𝟎



Pressure can be written as a function of flux

27

֊𝑩 · 𝜵𝒑 = 𝟎

𝒑 = 𝒑 𝝍

𝐟𝐨𝐫 𝜵𝒑 ≠ 𝟎:

֊𝑩 · 𝜵𝝍 = 𝟎

𝒑𝟐
𝒑𝟏

𝒑𝟑

𝝍𝟐
𝝍𝟏

𝝍𝟑

𝜵𝝍

𝜵𝒑

𝜵𝝍

𝜵𝒑 𝜵𝝍

𝜵𝒑

֊𝑩

֊𝑩
֊𝑩



Derivation of Grad-Shafranov equation
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֊𝒋 × ֊𝑩 = 𝜵𝒑
𝛟

• Let’s see the 𝝓 component of the force-balance equation:

𝒋𝐳𝑩𝐑 − 𝒋𝐑𝑩𝐳 =
𝟏

𝑹

𝝏𝒑

𝝏𝝓
≡ 𝟎

𝛁 × ֊𝑩 = 𝝁𝐨
֊𝒋

• Ampére’s law:

𝜵 × ֊𝑩 = 𝑹
𝟏

𝑹

𝝏𝑩𝐳

𝝏𝝓
−

𝝏𝑩𝛟

𝝏𝒛
+ 𝝓

𝝏𝑩𝐑

𝝏𝒛
−

𝝏𝑩𝐳

𝝏𝑹
+ ො𝒛

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝛟 −

𝟏

𝑹

𝝏𝑩𝐑

𝝏𝝓

= 𝑹 −
𝝏𝑩𝛟

𝝏𝒛
+ 𝝓

𝝏𝑩𝐑

𝝏𝒛
−

𝝏𝑩𝐳

𝝏𝑹
+ ො𝒛

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝛟

= 𝑹𝝁𝐨𝒋𝐑 + 𝝓𝝁𝐨𝒋𝛟 + ො𝒛𝝁𝐨𝒋𝐳

𝒋𝐳 =
𝟏

𝝁𝐨

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝛟𝒋𝐑 = −

𝟏

𝝁𝐨

𝝏𝑩𝛟

𝝏𝒛

𝑩𝐑

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝛟 +𝑩𝐳

𝝏𝑩𝛟

𝝏𝒛
= 𝟎



Magnetic field can be decomposed into the poloidal 
component and the toroidal component

29

𝑩𝐑

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝛟 +𝑩𝐳

𝝏𝑩𝛟

𝝏𝒛
= 𝟎 𝑩𝐑

𝝏

𝝏𝑹
𝑹𝑩𝛟 +𝑩𝐳

𝝏

𝝏𝒛
𝑹𝑩𝛟 = 𝟎

𝑭 ≡ 𝑹𝑩𝛟 𝑩𝐑

𝝏𝑭

𝝏𝑹
+𝑩𝐳

𝝏𝑭

𝝏𝒛
= 𝟎 ֊𝑩 · 𝜵𝑭 = 𝟎

𝝏

𝝏𝝓
= 𝟎

֊𝑩 · 𝜵𝒑 = 𝟎

𝒑 = 𝒑 𝝍

𝑭 = 𝑭 𝝍
𝑩𝐑 = −

𝝏𝑨𝛟

𝝏𝒛
= −

𝟏

𝑹

𝝏𝝍

𝝏𝒛

𝑩𝐳 =
𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑨𝛟 =

𝟏

𝑹

𝝏𝝍

𝝏𝑹

𝑩𝛟 =
𝑭 𝝍

𝑹

𝝍 = 𝑹𝑨𝛟

֊𝑩 = 𝑹𝑩𝐑 + 𝝓𝑩𝛟 + ො𝒛𝑩𝐳 = 𝑹 −
𝟏

𝑹

𝝏𝝍

𝝏𝒛
+ 𝝓

𝑭 𝝍

𝑹
+ ො𝒛

𝟏

𝑹

𝝏𝝍

𝝏𝑹

≡
𝜵𝝍

𝑹
× 𝝓 +

𝑭 𝝍

𝑹
𝝓

Poloidal 

component

Toroidal 

component֊𝑩𝐏
֊𝑩𝐓

֊𝑩𝐓

֊𝑩𝐏



Arbitrary integration constant associated with flux can 
be chosen such that flux equals to zero on the field axis

30

𝝍 ≡
𝟏

𝟐𝝅
න֊𝑩 · 𝒅 ֊𝑺

𝝍𝐏 ≡
𝟏

𝟐𝝅
න֊𝑩𝐏 · 𝒅 ֊𝑺

• The poloidal flux of the area of a washer-

shaped surface lying in the z = 0 plane 

from R = Ra to an arbitrary 𝝍 contour 

defined by 𝝍 = 𝝍 𝑹𝐛, 𝟎 :

=
𝟏

𝟐𝝅
න

𝟎

𝟐𝝅

𝒅𝝓 න
𝑹𝐚

𝑹𝐛

𝒅𝑹𝑹𝑩𝒛 𝑹, 𝟎

= 𝝍 𝑹𝐛, 𝟎 − 𝝍 𝑹𝐚, 𝟎

≡ 𝝍 𝑹𝐛, 𝟎

𝐰𝐡𝐞𝐫𝐞 𝝍 𝑹𝐚, 𝟎 ≡ 𝟎 𝐢𝐬 𝐜𝐡𝐨𝐬𝐞𝐧.



Derivation of Grad-Shafranov equation
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֊𝒋 × ֊𝑩 = 𝜵𝒑
𝐑

• Let’s see the 𝑹 component of the force-balance equation:

𝒋𝛟𝑩𝐳 − 𝒋𝐳𝑩𝛟 =
𝝏𝒑

𝝏𝑹

𝛁 × ֊𝑩 = 𝝁𝐨
֊𝒋

• Ampére’s law:

𝜵 × ֊𝑩 = 𝑹 −
𝝏𝑩𝛟

𝝏𝒛
+ 𝝓

𝝏𝑩𝐑

𝝏𝒛
−

𝝏𝑩𝐳

𝝏𝑹
+ ො𝒛

𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝛟 = 𝑹𝝁𝐨𝒋𝐑 + 𝝓𝝁𝐨𝒋𝛟 + ො𝒛𝝁𝐨𝒋𝒛

𝝁𝐨𝒋𝐳 =
𝟏

𝑹

𝝏

𝝏𝑹
𝑹𝑩𝛟 =

𝟏

𝑹

𝝏𝑭

𝝏𝑹
=

𝟏

𝑹

𝒅𝑭

𝒅𝝍

𝝏𝝍

𝝏𝑹

𝝁𝐨𝒋𝛟 =
𝝏𝑩𝐑

𝝏𝒛
−

𝝏𝑩𝐳

𝝏𝑹
=

𝝏

𝝏𝒛
−

𝟏

𝑹

𝝏𝝍

𝝏𝒛
−

𝝏

𝝏𝑹

𝟏

𝑹

𝝏𝝍

𝝏𝑹
= −

𝟏

𝑹

𝝏𝟐𝝍

𝝏𝒛𝟐
−

𝟏

𝑹

𝝏𝟐𝝍

𝝏𝑹𝟐
+

𝟏

𝑹𝟐

𝝏𝝍

𝝏𝑹

𝑩𝐑 = −
𝟏

𝑹

𝝏𝝍

𝝏𝒛

𝑩𝐳 =
𝟏

𝑹

𝝏𝝍

𝝏𝑹

𝑩𝛟 =
𝑭 𝝍

𝑹

≡ −
𝟏

𝑹
𝚫∗𝝍 𝐰𝐡𝐞𝐫𝐞 𝚫∗𝝍 ≡

𝝏𝟐𝝍

𝝏𝒛𝟐 + 𝑹
𝝏

𝝏𝑹

𝟏

𝑹

𝝏𝝍

𝝏𝑹
= 𝑹𝟐𝜵 ·

𝜵𝝍

𝑹𝟐



Derivation of Grad-Shafranov equation
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𝒋𝛟𝑩𝐳 − 𝒋𝐳𝑩𝛟 =
𝝏𝒑

𝝏𝑹

𝑩𝛟 =
𝑭

𝑹 𝝏𝒑

𝝏𝑹
=

𝒅𝒑

𝒅𝝍

𝝏𝝍

𝝏𝑹
𝑩𝐳 =

𝟏

𝑹

𝝏𝝍

𝝏𝑹

𝒋𝛟 = −
𝟏

𝝁𝐨𝑹
𝚫∗𝝍

𝒋𝐳 =
𝟏

𝝁𝐨𝑹

𝒅𝑭

𝒅𝝍

𝝏𝝍

𝝏𝑹

−
𝟏

𝝁𝐨𝑹
𝚫∗𝝍

𝟏

𝑹

𝝏𝝍

𝝏𝑹
−

𝟏

𝝁𝐨𝑹

𝒅𝑭

𝒅𝝍

𝝏𝝍

𝝏𝑹

𝑭

𝑹
=

𝒅𝒑

𝒅𝝍

𝝏𝝍

𝝏𝑹

−𝚫∗𝝍
𝟏

𝝁𝐨

𝟏

𝑹𝟐 −
𝟏

𝝁𝐨

𝑭

𝑹𝟐

𝒅𝑭

𝒅𝝍
=

𝒅𝒑

𝒅𝝍

𝐆𝐫𝐚𝐝 − 𝐒𝐡𝐚𝐟𝐫𝐚𝐧𝐨𝐯 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧: 𝚫∗𝝍=−𝝁𝐨𝑹𝟐
𝒅𝒑

𝒅𝝍
−

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍

𝐰𝐡𝐞𝐫𝐞 𝚫∗𝝍 = 𝑹𝟐𝜵 ·
𝜵𝝍

𝑹𝟐
֊𝑩 =

𝜵𝝍

𝑹
× 𝝓 +

𝑭 𝝍

𝑹
𝝓



Derivation of Grad-Shafranov equation
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𝚫∗𝝍=−𝝁𝐨𝑹𝟐
𝒅𝒑

𝒅𝝍
−

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍
𝐰𝐡𝐞𝐫𝐞 𝚫∗𝝍 = 𝑹𝟐𝜵 ·

𝜵𝝍

𝑹𝟐
֊𝑩 =

𝜵𝝍

𝑹
× 𝝓 +

𝑭 𝝍

𝑹
𝝓

𝝁𝐨𝒋𝐑 = −
𝝏𝑩𝛟

𝝏𝒛
= −

𝟏

𝑹

𝝏

𝝏𝒛
𝑹𝑩𝛟 = −

𝟏

𝑹

𝝏𝑭

𝝏𝒛

𝝁𝐨𝒋𝐳 =
𝟏

𝑹

𝝏𝑭

𝝏𝑹
𝝁𝐨𝒋𝛟 = −

𝟏

𝑹
𝚫∗𝝍

𝑭 ≡ 𝑹𝑩𝛟

𝝁𝐨
֊𝒋 = 𝑹𝝁𝐨𝒋𝐑 + 𝝓𝝁𝐨𝒋𝛟 + ො𝒛𝝁𝐨𝒋𝐳 = 𝑹 −

𝟏

𝑹

𝝏𝑭

𝝏𝒛
+ 𝝓 −

𝟏

𝑹
𝚫∗𝝍 + ො𝒛

𝟏

𝑹

𝝏𝑭

𝝏𝑹

≡
𝜵𝑭

𝑹
× 𝝓 + −

𝟏

𝑹
𝚫∗𝝍 𝝓

𝑰𝐏 = න֊𝒋
𝐏

· 𝒅 ֊𝑺 = − න
𝟎

𝟐𝝅

𝒅𝝓 න
𝟎

𝑹𝐛

𝒅𝑹𝑹𝒋𝒛 𝑹, 𝟎

= −𝟐𝝅 න
𝟎

𝑹𝐛

𝒅𝑹𝑹
𝟏

𝑹

𝝏𝑭 𝑹, 𝟎

𝝏𝑹
= −𝟐𝝅𝑭 𝝍



Plasma condition can be obtained by solving 
Grad-Shafranov equation

34

• The usual strategy to solve the Grad-Shafranov equation:

1. Specify two free functions, the plasma pressure 𝒑 = 𝒑 𝝍  and the 

toroidal field function 𝑭 = 𝑭 𝝍 . 

2. Solve the equation with specified boundary conditions to 

determine the flux function 𝝍 𝑹, 𝒛 .

3. Calculation the magnetic field using the following equations:

4. The pressure profile can then be obtained from 𝒑 = 𝒑 𝝍 𝑹, 𝒛 . 

𝚫∗𝝍=−𝝁𝐨𝑹𝟐
𝒅𝒑

𝒅𝝍
−

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍
𝐰𝐡𝐞𝐫𝐞 𝚫∗𝝍 = 𝑹𝟐𝜵 ·

𝜵𝝍

𝑹𝟐

𝑩𝐑 = −
𝟏

𝑹

𝝏𝝍

𝝏𝒛
𝑩𝐳 =

𝟏

𝑹

𝝏𝝍

𝝏𝑹
𝑩𝛟 =

𝑭 𝝍

𝑹

𝑭 = 𝑹𝑩𝛟 = −
𝑰𝐏

𝟐𝝅



Example of the analytical solution of the 
Grad-Shafranov equation

35

𝚫∗𝝍=−𝝁𝐨𝑹𝟐
𝒅𝒑

𝒅𝝍
−

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍

𝝁𝐨

𝒅𝒑

𝒅𝝍
= −𝑪𝟐

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍
= 𝑪𝟏• For

𝝍 𝑹, 𝒛 = −
𝑪𝟏

𝟐
𝒛𝟐 +

𝑪𝟐

𝟖
𝑹𝟒 + 𝑪𝟑 + 𝑪𝟒𝑹𝟐 + 𝑪𝟓 𝑹𝟒 − 𝟒𝑹𝟐𝒛𝟐

𝑩𝐑 𝑹, 𝒛 = −
𝟏

𝑹
−𝑪𝟏𝒛 − 𝟖𝑪𝟓𝑹𝟐𝒛 𝑩𝒛 𝑹, 𝒛 =

𝟏

𝑹

𝑪𝟐

𝟐
𝑹𝟑 + 𝟐𝑪𝟒𝑹 + 𝑪𝟓 𝟒𝑹𝟑 − 𝟖𝑹𝒛𝟐

𝑪𝟏 = 1

𝑪𝟐 = −𝟖

𝑪𝟑 = −𝟐𝟎

𝑪𝟒 = 𝟐𝟎

𝑪𝟓 = 𝟎. 𝟐

𝑹 𝑹𝑹

𝒛 0

2

4

-4

-2

0 2 4 6 8

֊𝑩𝐏



Magnetically confined toroidal equilibrium

1. Radial pressure balance in the poloidal plan needs to be provided so 

that the pressure contours form closed nested surfaces. Both toroidal 

and poloidal fields can readily accomplish this task.

2. The radially outward expansion force inherent in all toroidal geometries 

needs to be balanced without sacrificing stability.

• Forces associated with toroidal force balance are usually than those 

corresponding to radial pressure balance. However, they are more 

difficult to compensate.

36



Toroidal configuration with a purely poloidal magnetic field

37

𝝍𝟏 = 𝝍𝟐 ≡ 𝝍

𝑺𝟏 < 𝑺𝟐 𝑩𝟏 > 𝑩𝟐

֊𝑭 𝐇,𝐑 ∝ ො𝒆𝐑

𝑩𝟏
𝟐𝑺𝟏 − 𝑩𝟐

𝟐𝑺𝟐

𝟐𝝁𝐨
> 𝟎

• Hoop force: • Tire tube force

𝒑𝟏 = 𝒑𝟐 ≡ 𝒑

֊𝑭 𝐓,𝐑 ∝ −ො𝒆𝐑 𝒑𝑺𝟏 − 𝐩𝑺𝟐 > 𝟎

𝑺𝟏 < 𝑺𝟐



The outward force can be compensated by either a 
perfectly conducting shell or externally applied vertical field

38

• Perfectly conducting shell • Externally applied vertical field

• With a finite conductivity wall, flux can only remain compressed for 

about a skin time.

• This configuration develops disastrous MHD instabilities (z pinch).

֊𝒋
֊𝑩𝐯𝐞𝐫𝐭

֊𝒋 × ֊𝑩𝐯𝐞𝐫𝐭

𝑭𝐑 = 𝟐𝝅𝑹𝐨𝑰𝐨𝑩𝐯𝐞𝐫𝐭

֊𝒋

֊𝑩𝐯𝐞𝐫𝐭

֊𝒋 × ֊𝑩𝐯𝐞𝐫𝐭



Toroidal configuration with a purely toroidal magnetic 
field, stable but NOT balanced

39

Plasma is 

diamagnetic

֊𝑩 = 𝑩𝛟 ො𝒆𝛟 𝑩𝛟 = 𝑩𝐨

𝑹𝐨

𝑹
𝑩𝐨 =

𝝁𝐨𝑰𝐜

𝟐𝝅𝑹𝐨

֊𝑭 𝐑 ∝ ො𝒆𝐑

𝑩𝐚𝟏
𝟐 − 𝑩𝐢𝟏

𝟐 𝑺𝟏 − 𝑩𝐚𝟐
𝟐 − 𝑩𝐢𝟐

𝟐 𝑺𝟐

𝟐𝝁𝐨
> 𝟎

֊𝒋 × ֊𝑩𝐯𝐞𝐫𝐭

֊𝒋

֊𝑩𝐯𝐞𝐫𝐭

֊𝒋 × ֊𝑩𝐯𝐞𝐫𝐭

֊𝒋 × ֊𝑩𝐯𝐞𝐫𝐭

𝐢𝐬 𝐧𝐨𝐭 𝐩𝐨𝐢𝐧𝐭𝐞𝐝 𝐚𝐥𝐨𝐧𝐠 ො𝒆𝐑



Coils in a tokamak

40https://www.euro-fusion.org/2011/09/tokamak-principle-2/

֊𝑩𝐯𝐞𝐫𝐭

• Toroidal field coils (in poloidal direction) – generate toroidal field for 

confinement.

• Poloidal field coils – generate vertical field for plasma positioning and 

shaping.

• Central solenoid – for breakdown and generating plasma current (in 

toroidal direction) and thus generating poloidal field for confinement.



Plasma condition can be obtained by solving 
Grad-Shafranov equation

41

• The usual strategy to solve the Grad-Shafranov equation:

1. Specify two free functions, the plasma pressure 𝒑 = 𝒑 𝝍  and the 

toroidal field function 𝑭 = 𝑭 𝝍 . 

2. Solve the equation with specified boundary conditions to 

determine the flux function 𝝍 𝑹, 𝒛 .

3. Calculation the magnetic field using the following equations:

4. The pressure profile can then be obtained from 𝒑 = 𝒑 𝝍 𝑹, 𝒛 . 

𝚫∗𝝍=−𝝁𝐨𝑹𝟐
𝒅𝒑

𝒅𝝍
−

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍
𝐰𝐡𝐞𝐫𝐞 𝚫∗𝝍 = 𝑹𝟐𝜵 ·

𝜵𝝍

𝑹𝟐

𝑩𝐑 = −
𝟏

𝑹

𝝏𝝍

𝝏𝒛
𝑩𝐳 =

𝟏

𝑹

𝝏𝝍

𝝏𝑹
𝑩𝛟 =

𝑭 𝝍

𝑹

𝑭 = 𝑹𝑩𝛟 = −
𝑰𝐏

𝟐𝝅



Application of solving Grad-Shafranov equation for 
designing a tokamak

• Given Iplasma, p(ψ), I(ψ), Icoils, free boundary of plasma, perfect conductor 

as the chamber.

• Given Iplasma, p(ψ), I(ψ), Icoils, free boundary of plasma, insulator chamber.

• Given Iplasma, p(ψ), I(ψ), Icoils, free boundary of plasma, chamber with eddy 

current.

• Given Iplasma, p(ψ), I(ψ), fixed boundary of plasma. Then, use Icoils, free 

boundary of plasma and match the plasma shape calculated in the fixed 

boundary condition.

42

𝚫∗𝝍=−𝝁𝐨𝑹𝟐
𝒅𝒑

𝒅𝝍
−

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍
𝐰𝐡𝐞𝐫𝐞 𝚫∗𝝍 = 𝑹𝟐𝜵 ·

𝜵𝝍

𝑹𝟐

𝑰𝐏 = −𝟐𝝅𝑭 𝝍

֊𝑩 =
𝜵𝝍

𝑹
× 𝝓 +

𝑭 𝝍

𝑹
𝝓𝝁𝐨

֊𝒋 =
𝜵𝑭

𝑹
× 𝝓 + −

𝟏

𝑹
𝚫∗𝝍 𝝓



Application of solving Grad-Shafranov equation for 
reconstructing a tokamak equilibrium state

• Measure 

– boundary conditions, including ψ, B, etc., on the wall (using flux loop 

and B-dot probe).

– Pressure.

– Plasma current (using Rogowski coil).

• Reconstruct ψ(r,z), j, p(ψ), I(ψ), etc.

43

𝚫∗𝝍=−𝝁𝐨𝑹𝟐
𝒅𝒑

𝒅𝝍
−

𝟏

𝟐

𝒅𝑭𝟐

𝒅𝝍
𝐰𝐡𝐞𝐫𝐞 𝚫∗𝝍 = 𝑹𝟐𝜵 ·

𝜵𝝍

𝑹𝟐

𝑰𝐏 = −𝟐𝝅𝑭 𝝍

֊𝑩 =
𝜵𝝍

𝑹
× 𝝓 +

𝑭 𝝍

𝑹
𝝓𝝁𝐨

֊𝒋 =
𝜵𝑭

𝑹
× 𝝓 + −

𝟏

𝑹
𝚫∗𝝍 𝝓



Fluxes and currents

44

𝝍𝐩 = න֊𝑩 · 𝒅 ֊𝑺 𝐩• Poloidal flux:

𝝍𝐩 = 𝝍𝐩 𝒑

𝝍𝐭 = න֊𝑩 · 𝒅 ֊𝑺 𝐭• Toroidal flux:

𝑰𝐩 = න֊𝒋 · 𝒅 ֊𝑺 𝐩• Poloidal current:

𝑰𝐭 = න֊𝒋 · 𝒅 ֊𝑺 𝐭• Toroidal current:



Normalized plasma pressure, β

45

• Magnetic pressure:

𝜷 =
𝐩𝐥𝐚𝐬𝐦𝐚 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞

𝐦𝐚𝐠𝐧𝐞𝐭𝐢𝐜 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞
=

𝟐𝝁𝐨 𝒑

𝑩𝟐

𝑷𝐁 =
𝑩𝟐

𝟐𝝁𝒐

𝒑 =
𝟏

𝑽𝒑
න𝒑𝒅 ֊𝒓• Plasma pressure:

𝑩𝟐 = 𝑩𝐭
𝟐 + 𝑩𝐩

𝟐 = 𝑩𝐨
𝟐 +

𝝁𝐨𝑰𝐩

𝟐𝝅𝒂

𝟐
𝟐

𝟏 + 𝜿𝟐

𝑩𝐭
𝟐 = 𝑩𝐨

𝟐 𝑩𝐨 = 𝑩 @𝑹 = 𝑹𝐨

𝑩𝐩
𝟐 =

𝝁𝐨𝑰𝐩

𝟐𝝅𝒂

𝟐

=
𝝁𝐨𝑰𝐩

𝑪𝐩

𝟐

𝑰𝐩

𝒂

𝑪𝐩 ≈ 𝟐𝝅𝒂
𝟏 + 𝜿𝟐

𝟐

𝜿• Elongation:

𝜷𝐭 =
𝟐𝝁𝐨 𝒑

𝑩𝐨
𝟐 𝜷𝐩 =

𝟒𝝅𝟐𝒂𝟐 𝟏 + 𝜿𝟐 𝒑

𝝁𝐨𝑰𝐩
𝟐

𝟏

𝜷
=

𝟏

𝜷𝐭
+

𝟏

𝜷𝐩



Different poloidal shapes
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𝒓 = 𝑹 + 𝒂𝐂𝐨𝐬 𝜽 + 𝜹𝐒𝐢𝐧 𝜽

𝒛 = 𝒂𝜿𝐒𝐢𝐧 𝜽

𝑹

𝒂
• Aspect ratio:

𝜿• Elongation:

• Triangularity: 𝜹

𝜿 = 𝟏

𝜿 = 𝟐

𝜹 = 𝟎𝜹 = 𝟎. 𝟓 𝜹 = −𝟎. 𝟓

Rmin Rmax

Rtop

Rgeo

δR

a

𝜹 ≡
𝛅𝐑

𝒂

ො𝒛

ො𝒛ො𝒛 ො𝒛



Safety factor
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• Kink Safety Factor:

𝒒 𝒓 =
𝒓𝑩𝒛 𝒓

𝑹𝒐𝑩𝜽 𝒓

𝒒∗ 𝒓 =
𝒂𝑩𝐨

𝑹𝒐𝑩𝐩
=

𝟐𝝅𝒂𝟐𝜿𝑩𝐨

𝝁𝐨𝑹𝐨𝑰𝐨



Safety factor
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• Rotational transform: 𝜾 ≡ lim
𝑵→∞

𝟏

𝑵


𝟏

𝑵

𝜟𝜽𝐧

• MHD safety factor: 𝝍𝐭 = 𝝍𝐭 𝑽 𝝍𝐩 = 𝝍𝐩 𝑽

𝜾 𝑽 ≡ 𝟐𝝅
Τ𝒅𝝍𝒑 𝒅𝑽

Τ𝒅𝝍𝒕 𝒅𝑽

𝒒 𝑽 ≡
𝟐𝝅

𝜾 𝑽
=

Τ𝒅𝝍𝒕 𝒅𝑽

Τ𝒅𝝍𝒑 𝒅𝑽

• Shear: 𝒔 𝑽 ≡ 𝟐
𝑽

𝒒

𝒅𝒒

𝒅𝑽

• Shear:



Volume of the constant flux
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𝑹 = 𝑹𝒐 + 𝒓𝐜𝐨𝐬𝜽

𝒁 = 𝒓𝐬𝐢𝐧𝜽

𝝍 = 𝝍 𝒓, 𝜽

𝒓 = ො𝒓 𝜽, 𝝍

𝑽 𝝍 = න
𝟎

𝟐𝝅

න
𝟎

𝟐𝝅

න
𝟎

ො𝒓

𝑹𝒓𝒅𝒓𝒅𝜽𝒅𝝓

𝑽 𝝍 = 𝝅𝑹𝐨 න
𝟎

𝟐𝝅

𝒅𝜽ො𝒓 𝟏 +
𝟐

𝟑

ො𝒓

𝑹𝐨
𝒄𝒐𝒔𝜽



Magnetic well
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𝑾 = 𝟐
𝑽

𝑩𝟐

𝒅

𝒅𝑽

𝑩𝟐

𝟐

= 𝟐
𝑽

𝑩𝟐

𝒅

𝒅𝑽
𝝁𝒐𝒑 +

𝑩𝟐

𝟐

• A magnetic well is a quantity 

that measures plasma stability 

against short perpendicular 

wavelength modes driven by 

the plasma pressure gradient.



The Spherical tokamak

• Aspect ratio Ro/a ~ 1.6

51

𝑹

Zhe Gao, Matter and Radia. Extrem., 1, 153 (2016)

Y-k. M.Peng and D. J. Strickler, Nucl. Fusion 26, 769 (1986)

𝑩𝒕

−𝛁𝒑 −𝛁𝒑

−𝛁
𝑩𝒕

𝟐

𝟐𝝁𝒐

ො𝒛



The Spherical tokamak

• Aspect ratio Ro/a ~ 1.6

• Advantages:

– Higher βt limit.

– A compact design almost spherical in appearance.

• Challenges:

– Minimum space is given in the center of the torus to accommodate 

the toroidal field coils.

– With a very compact design the technology associated with the 

construction and maintenance of the device may be more difficult 

than for a “normal” tokamak.

– Large currents will have to be driven noninductively, a costly and 

physically difficult requirement.
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Limiter protects the vacuum chamber from plasma 
bombardment and defines the edge of the plasma
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• Vertical field 

is correct.
• Vertical field 

is too small.

• Vertical field 

is too large.



Limiter protects the vacuum chamber from plasma 
bombardment and defines the edge of the plasma
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• A mechanical limiter is a robust piece of material, often made of 

tungsten, molybdenum, or graphite placed inside the vacuum chamber.

• Some of the particles of the limiter surface may escape. Neutral 

particles can penetrate some distance into the plasma before being 

ionized.

• The high-z impurities can lead to significant additional energy loss in 

the plasma through radiation.

• In ignition experiments and fusion reactors, the bombardment is more 

intense and extends over longer periods of time. In addition, if the 

impurity level is too high, it may not be possible to achieve a high 

enough temperature to ignite.



The magnetic divertor – guide a narrower layer of 
magnetic lines away from the edge of the plasma
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• Single-null 

poloidal-field 

divertors for 

tokamak

• Double-null 

poloidal-field 

divertors for 

tokamak

• Island 

divertor for 

stellerators

• Standard • Snowflake

Y. Feng, Nucl. Fusion, 46, 807 (2006)

L Xue et al, Plasma Phys. Control. Fusion  

58, 055005 (2016)



Pros and cons of a divertor

• Advantages:

– The collector plate is remote from the plasma. There is space 

available to spread out the magnetic lines. 

– A lower intensity of particles and energy bombard the collector plate 

leading to a longer replacement time.

– It is more difficult for impurities to migrate into the plasma.

– There are longer distance distances to travel and if a neutral particle 

becomes ionized before or during the time it crosses the divertor 

layer on its way toward the plasma, its parallel motion then carries it 

back to the collector plate.

– The larger divertor chamber provides more access to pump out 

impurities.

– The plasma edge is not in direct contact with a solid material such as 

a limiter.

• Disadvantages: larger and more complex system and more expensive.
56
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