Introduction to Nuclear Fusion as An Energy Source

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 5

2024 spring semester

Wednesday 9:10-12:00

Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

https://nckucc.webex.com/nckucc/j.php?MTID=ma76b50f97b1c6d72db61de 9eaa9f0b27

2024/4/03 updated 1

Course Outline

- Magnetic confinement fusion (MCF)
 - Gyro motion, MHD
 - 1D equilibrium (z pinch, theta pinch)
 - Drift: ExB drift, grad B drift, and curvature B drift
 - Tokamak, Stellarator (toroidal field, poloidal field)
 - Magnetic flux surface
 - 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov equation.
 - Stability (Kink instability, sausage instability, Safety factor Q)
 - Central-solenoid (CS) start-up (discharge) and current drive
 - CS-free current drive: electron cyclotron current drive, bootstrap current.
 - Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.

Charged particles gyro around the magnetic field line

$$m\frac{d\,\overline{v}}{dt}=q\,\overline{v}\times\overline{B}$$

• Assuming $\overrightarrow{B} = B\widehat{z}$ and the electron oscillates in x-y plane

$$mv_{x} = qBv_{y}$$

 $m\dot{v}_{y} = -qBv_{x}$
 $\dot{mv}_{z} = 0$ $v_{z} = v_{||} = \text{constant}$

The second secon

$$\ddot{\boldsymbol{v}}_{\mathbf{X}} = -\frac{qB}{m} \dot{\boldsymbol{v}}_{\mathbf{y}} = -\left(\frac{qB}{m}\right)^2 \boldsymbol{v}_{\mathbf{X}}$$
$$\ddot{\boldsymbol{v}}_{\mathbf{y}} = -\frac{qB}{m} \dot{\boldsymbol{v}}_{\mathbf{X}} = -\left(\frac{qB}{m}\right)^2 \boldsymbol{v}_{\mathbf{y}}$$

 $\omega_{\rm c} \equiv rac{|q|B}{m}$ Cyclotron frequency or gyrofrequency

$$\ddot{v}_{x} + \omega_{c}^{2} v_{x} = 0$$

$$\ddot{v}_{y} + \omega_{c}^{2} v_{y} = 0$$

$$v_{x} = v_{\perp} \cos(\pm \omega_{c} t + \psi)$$

$$v_{y} = -v_{\perp} \sin(\pm \omega_{c} t + \psi)$$

$$v_{z} = v_{||}$$

Charged particles spiral around the magnetic field line

ExB drift

Charge particles drift across magnetic field lines when an electric field not parallel to the magnetic field occurs

$$\widehat{\mathbf{w}}_{\mathbf{k}} = \widehat{\mathbf{w}}_{\mathbf{k}} + \widehat{\mathbf{v}}_{\mathbf{k}} + \widehat{\mathbf{$$

No current is generated in ExB drift

Gravitational drift

Charge particles drift across magnetic field lines when an external field not parallel to the magnetic field occurs

$$\vec{E} = \vec{E}_{\perp} + \hat{z}E_{||} = \hat{x}E_{\perp} + \hat{z}E_{||}$$

$$m\frac{dv_{||}}{dt} = qE_{||}$$

$$m\frac{d\vec{v}_{\perp}}{dt} = q(\hat{x}E_{\perp} + \vec{v}_{\perp} \times \hat{z}B)$$

$$\langle \vec{v}(t) \rangle = \frac{1}{T_c} \int_0^{T_c} \vec{v}(t) dt = \hat{z}v_{||}(t) + \vec{v}_E$$

$$\vec{v}_E = \frac{\hat{x}E_{\perp} \times \hat{z}B}{B^2} = \frac{\vec{E} \times \vec{B}}{B^2}$$
ExB drift velocity
$$\vec{F} = \vec{F}_{\perp} + \hat{z}F_{||} = \hat{x}F_{\perp} + \hat{z}F_{||}$$

$$m\frac{dv_{||}}{dt} = F_{||}$$

$$m\frac{dv_{||}}{dt} = q\left(\hat{x}\frac{F_{\perp}}{q} + \vec{v}_{\perp} \times \hat{z}B\right)$$

$$\langle \vec{v}(t) \rangle = \frac{1}{T_c} \int_0^{T_c} \vec{v}(t) dt = \hat{z}v_{||}(t) + \vec{v}_E$$

$$\vec{v}_F = \frac{\hat{x}(F_{\perp}/q) \times \hat{z}B}{B^2} = \frac{1}{q}\frac{\vec{F} \times \vec{B}}{B^2}$$
Gravitational drift velocity

 Electrons and ions drift in the opposite directions in the gravitational drift. Therefore, currents are generated.

Drift in non-uniform B fields

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

Curvature drift Gradient-B drift ∇B R $\overrightarrow{v}_{\nabla} = \frac{m v_{\perp}^2}{2a} \frac{\overrightarrow{B} \times \nabla B}{B^3}$ $\vec{v}_R = \frac{mv_{||}^2}{2a} \frac{\vec{R}_c \times \vec{B}}{R_c B^2}$ $\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{a} \frac{\vec{R}_{\text{c}} \times \vec{B}}{B^2 R^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$

Gradient-B drift

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

$$\vec{F} = q(\vec{v} \times \vec{B}) = \hat{x}qv_{y}B_{z} - \hat{y}qv_{x}B_{z}$$

$$\simeq \hat{x}qv_{y}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right) - \hat{y}qv_{x}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

$$B_{z}(y) = B_{o} + y\frac{\partial B_{z}}{\partial y} + y^{2}\frac{1}{2}\frac{\partial^{2}B_{z}}{\partial y^{2}} + \dots$$

$$F_{x} = qv_{y}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

$$F_{y} = -qv_{x}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

In the case with no gradient B

$$x_{\rm c} = \mp r_{\rm c} \sin(\pm \omega_{\rm c} t + \psi)$$

$$y_{\rm c} = \pm r_{\rm c} \cos(\pm \omega_{\rm c} t + \psi)$$

$$v_{\rm x} = v_{\perp} \cos(\pm \omega_{\rm c} t + \psi)$$

$$v_{\rm y} = -v_{\perp}\sin(\pm\omega_{\rm c}t + \psi)$$

$$F_{x} \simeq -qv_{\perp}\sin(\pm\omega_{c}t + \psi) \times$$

$$\left(B_{0} \pm r_{c}\cos(\pm\omega_{c}t + \psi)\frac{\partial B_{z}}{\partial y}\right)$$

$$F_{y} = -qv_{\perp}\cos(\pm\omega_{c}t + \psi) \times$$

$$\left(B_{0} \pm r_{c}\cos(\pm\omega_{c}t + \psi)\frac{\partial B_{z}}{\partial y}\right)$$

Charge particles drift across magnetic field lines when the magnetic field is not uniform

$$\vec{v}_{F} = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2} \quad \vec{v}_{\nabla} = \frac{1}{q} \frac{(F_y)\hat{y} \times \hat{z}B_z}{B_z^2} = -\frac{mv_{\perp}^2}{2q} \frac{\partial B_z}{\partial y} \quad r_c = \frac{v_{\perp}}{\omega_c} \quad \omega_c = \frac{|q|B}{m}$$

$$\vec{v}_{F} = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2} \quad \vec{v}_{\nabla} = \frac{1}{q} \frac{(F_y)\hat{y} \times \hat{z}B_z}{B_z^2} = -\frac{mv_{\perp}^2}{2qB_z^2} \frac{\partial B_z}{\partial y} \hat{x}$$

$$\cdot \text{ More general:} \quad \vec{v}_{\nabla} = \frac{mv_{\perp}^2}{2q} \frac{\vec{B} \times \nabla B}{B^3}$$

Curvature drift

Charge particles drift across magnetic field lines when the magnetic field line is curved

$$\vec{F}_{cf} = mv_{||}^{2} \frac{\vec{R}_{c}}{R_{c}^{2}}$$
$$\vec{v}_{F} = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^{2}}$$
$$\vec{v}_{R} = \frac{1}{q} \frac{\vec{F}_{cf} \times \vec{B}}{B^{2}} = \frac{mv_{||}^{2}}{q} \frac{\vec{R}_{c} \times \vec{B}}{R_{c}^{2}B^{2}}$$

Drift in non-uniform B fields

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

curvature drifts. Therefore, currents are generated.

Quick summary of different drifts

ExB drift:
$$\vec{v}_E = \frac{\vec{E} \times \vec{B}}{B^2}$$
 Independent to charge
Gravitational drift: $\vec{v}_F = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2}$ Depended on charge
Grad-B drift: $\vec{v}_{\nabla} = \frac{mv_{\perp}^2}{2q} \frac{\vec{B} \times \nabla B}{B^3}$ Depended on charge
Curvature drift: $\vec{v}_R = \frac{mv_{||}^2}{q} \frac{\vec{R}_c \times \vec{B}}{R_c^2 B^2}$ Depended on charge

• Non-uniform B drift:

$$\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{q} \frac{\vec{R}_{\text{c}} \times \vec{B}}{R_{\text{c}}^2 B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$$

Magnetohydrodynamics description of plasma

chapter/conservation-of-mass-continuity-equation/ https://www.youtube.com/watch?v=lu0Ep8_Gp8U

Magnetohydrodynamics (MHD) description of plasma w/ low-freq. and long-wavelength approximation

- Continuity eq: $\frac{\partial \rho_{\rm m}}{\partial t} + \nabla \cdot (\rho_{\rm m} \, \vec{v}) = 0$ w/ long wavelength ($\lambda >> \lambda_d$) • Momentum eq: $\rho_{\rm m} \left[\frac{\partial \, \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \, \vec{v} \right] = \rho_{\rm q} \, \vec{E} + \vec{j} \times \vec{B} - \nabla \cdot \vec{P}$
 - Ohm's law: $\vec{j} = \sigma(\vec{E} + \vec{v} \times \vec{B})$
 - Equation of state: $\frac{d}{dt}\left(\frac{P}{\rho_{m}\gamma}\right) = 0$
 - Maxwell's eqs:

 $\nabla \cdot \vec{E} = \frac{\rho_{q}}{\epsilon_{o}} \approx 0 \quad \text{w/ long wavelength (} \lambda >> \lambda_{d} \text{) => quasi neutral}$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_{o} \vec{j} + \epsilon_{o} \mu_{o} \frac{\partial \vec{E}}{\partial t}$ w/ low freq. ($\omega << \omega_{pe}$)

Ideal MHD

- Continuity eq: $\frac{\partial \rho_{m}}{\partial t} + \nabla \cdot (\rho_{m} \, \vec{v}) = 0$ • Momentum eq: $\rho_{m} \left[\frac{\partial \, \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \, \vec{v} \right] = \vec{j} \times \vec{B} - \nabla \cdot \overleftrightarrow{P}$
- Ohm's law: $\vec{E} + \vec{v} \times \vec{B} \approx 0$
- Equation of state:

$$\frac{d}{dt}\left(\frac{P}{\rho_{\rm m}\gamma}\right)=0$$

- Maxwell's eqs:
 - $\nabla \cdot \vec{E} \approx 0$
 - $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \vec{j}$ $\nabla \cdot \vec{j} = 0$

- Requirement: Conflict!
 High collisionality fluid model
 - Small gyro radius low frequency
 - Small resistivity a perfect conductor

$$\omega \sim \frac{\partial}{\partial t} \sim \frac{v_{Ti}}{a} \qquad \omega_{ci} = \frac{v_{Ti}}{r_{Li}} \qquad \frac{\omega}{\omega_{ci}} \sim \frac{v_{Ti}}{a} \frac{r_{Li}}{v_{Ti}} = \frac{r_{Li}}{a} << 1$$

Region of validity for ideal MHD

Low resistivity requirement

$$\vec{j} = \sigma \left(\vec{E} + \vec{v} \times \vec{B} \right) \qquad \eta \ \vec{j} = \vec{E} + \vec{v} \times \vec{B} \qquad \qquad \frac{|\eta j|}{|v \times B|} \sim ?$$

$$|j \times B| \sim |\nabla p| \qquad j \sim \frac{|\nabla p|}{B} \sim \frac{1}{a} \frac{nT}{B} \sim \frac{1}{a} \frac{nm_{i}v_{Ti}^{2}}{B} \qquad \omega \sim \frac{\partial}{\partial t} \sim \frac{v_{Ti}}{a} \qquad \omega_{ci} = \frac{v_{Ti}}{r_{Li}}$$
$$\eta \sim \frac{m_{e}}{ne^{2}\tau_{ei}} \quad \tau_{ei} \sim \tau_{ee} \sim \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \tau_{ii} \qquad k \sim \nabla \sim \frac{1}{a}$$

$$\frac{|\eta j|}{|v \times B|} \sim \frac{\eta j}{v_{\text{Ti}}B} \sim \frac{m_{\text{e}}}{ne^{2}\tau_{\text{ei}}} \frac{1}{a} \frac{nm_{\text{i}}v_{\text{Ti}}^{2}}{B} \frac{1}{v_{\text{Ti}}B} = \frac{m_{\text{e}}}{\tau_{\text{ei}}} \frac{v_{Ti}}{a} \frac{m_{\text{i}}}{e^{2}B^{2}} = \frac{m_{\text{e}}}{m_{\text{i}}\tau_{\text{ei}}} \frac{v_{\text{Ti}}}{a} \frac{m_{\text{i}}^{2}}{e^{2}B^{2}} = \frac{m_{\text{e}}}{m_{\text{i}}\tau_{\text{ei}}} \frac{v_{\text{Ti}}}{a\omega_{\text{ci}}^{2}}$$
$$\sim \frac{m_{\text{e}}}{m_{\text{i}}\tau_{\text{ii}}} \left(\frac{m_{\text{i}}}{m_{\text{e}}}\right)^{1/2} \frac{v_{Ti}}{a\omega_{ci}^{2}} = \left(\frac{m_{\text{e}}}{m_{\text{i}}}\right)^{1/2} \frac{v_{\text{Ti}}}{\tau_{\text{ii}a}} \frac{r_{\text{Li}}^{2}}{v_{\text{Ti}}^{2}} = \left(\frac{m_{\text{e}}}{m_{\text{i}}}\right)^{1/2} \frac{1}{\tau_{\text{ii}a}} \frac{r_{\text{Li}}^{2}}{v_{\text{Ti}}} \sim \left(\frac{m_{\text{e}}}{m_{\text{i}}}\right)^{1/2} \frac{1}{\omega\tau_{\text{ii}}} \left(\frac{r_{\text{Li}}}{a}\right)^{2}$$
$$= \frac{y^{2}}{x} \ll 1$$

Fusion plasma is not in the ideal MHD region!

With strong B, the gyromotion mimic the collisional characteristics.

Ideal MHD

- Continuity eq: $\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \, \vec{v}) = 0$ • Momentum eq: $\rho_m \left[\frac{\partial \, \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \, \vec{v} \right] = \vec{j} \times \vec{B} - \nabla \cdot \overleftarrow{P}$
- Ohm's law: $\vec{E} + \vec{v} \times \vec{B} \approx 0$
- Equation of state:

$$\frac{d}{dt}\left(\frac{P}{\rho_{\rm m}\gamma}\right)=0$$

- Maxwell's eqs:
 - $\nabla \cdot \vec{E} \approx 0$

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_0 \vec{j}$$
$$\nabla \cdot \vec{j} = 0$$

- Requirement:
 - High collisionality fluid model
 - Small gyro radius low frequency
 - Small resistivity a perfect conductor

Additional simplification of the momentum equation

• Momentum eq:
$$\rho_{m} \begin{bmatrix} \partial \vec{v} \\ \partial t \end{bmatrix} + (\vec{v} \cdot \vec{v}) \vec{v} \end{bmatrix} = \vec{j} \times \vec{B} - \vec{v} \cdot \vec{P}$$

 $\vec{v} \cdot \vec{P} = \begin{pmatrix} \partial \\ \partial x \end{pmatrix} \begin{pmatrix} \partial \\ \partial y \end{pmatrix} \begin{pmatrix} p_{xx} & p_{xy} & p_{xz} \\ p_{yx} & p_{yy} & p_{yz} \\ p_{zx} & p_{zy} & p_{zz} \end{pmatrix} = \begin{pmatrix} \frac{\partial p_{xx}}{\partial x} + \frac{\partial p_{yx}}{\partial y} + \frac{\partial p_{zx}}{\partial z} \\ \frac{\partial p_{xy}}{\partial x} + \frac{\partial p_{yy}}{\partial y} + \frac{\partial p_{zz}}{\partial z} \\ \frac{\partial p_{xz}}{\partial x} + \frac{\partial p_{yz}}{\partial y} + \frac{\partial p_{zz}}{\partial z} \end{pmatrix}$
 $\vec{v} \cdot \vec{P} = \begin{pmatrix} \partial \\ \partial x \end{pmatrix} \begin{pmatrix} \partial \\ \partial y \end{pmatrix} \begin{pmatrix} p_{xx} & 0 & 0 \\ 0 & p_{yy} & 0 \\ 0 & 0 & p_{zz} \end{pmatrix} + \begin{pmatrix} \partial \\ \partial x \end{pmatrix} \begin{pmatrix} \partial \\ \partial y \end{pmatrix} \begin{pmatrix} 0 & p_{xy} & p_{xz} \\ p_{yx} & 0 & p_{yz} \\ p_{zx} & p_{zy} & 0 \end{pmatrix}$
 $= \begin{pmatrix} \frac{\partial p_{xx}}{\partial x} \\ \frac{\partial p_{yy}}{\partial y} \\ \frac{\partial p_{zz}}{\partial z} \end{pmatrix} + \begin{pmatrix} \frac{\partial p_{yx}}{\partial y} + \frac{\partial p_{zx}}{\partial z} \\ \frac{\partial p_{xy}}{\partial x} + \frac{\partial p_{yz}}{\partial z} \\ \frac{\partial p_{xy}}{\partial x} + \frac{\partial p_{yz}}{\partial y} \end{pmatrix}$

Additional simplification of the momentum equation

$$\nabla \cdot \overrightarrow{P} = \left(\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z}\right) \begin{pmatrix} p_{xx} & 0 & 0 \\ 0 & p_{yy} & 0 \\ 0 & 0 & p_{zz} \end{pmatrix} + \left(\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z}\right) \begin{pmatrix} 0 & p_{xy} & p_{xz} \\ p_{yx} & 0 & p_{yz} \\ p_{zx} & p_{zy} & 0 \end{pmatrix}$$

$$= \left(\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z}\right) \begin{pmatrix} p_{xx} & 0 & 0 \\ 0 & p_{yy} & 0 \\ 0 & 0 & p_{zz} \end{pmatrix} + \left(\frac{\frac{\partial p_{yx}}{\partial y} + \frac{\partial p_{zx}}{\partial z}}{\frac{\partial p_{xz}}{\partial x} + \frac{\partial p_{zy}}{\partial z}}\right) \begin{pmatrix} \frac{\partial p_{xy}}{\partial x} + \frac{\partial p_{zy}}{\partial z} \\ \frac{\partial p_{xz}}{\partial x} + \frac{\partial p_{yz}}{\partial y} \end{pmatrix}$$

$$Viscosity \quad \nabla \cdot \overrightarrow{H}$$

$$\Rightarrow Isotropic plasma: \quad p_{xx} = p_{yy} = p_{zz} \equiv p \qquad \begin{pmatrix} p_{xx} & 0 & 0 \\ 0 & p_{yy} & 0 \\ 0 & 0 & p_{zz} \end{pmatrix} \equiv \overrightarrow{P1}$$

•

$$\nabla \cdot \overleftrightarrow{P} = \nabla p + \nabla \cdot \overleftrightarrow{\Pi}$$

$$p_{\rm m} \left[\frac{\partial \overrightarrow{v}}{\partial t} + (\overrightarrow{v} \cdot \nabla) \overrightarrow{v} \right] = \overrightarrow{j} \times \overrightarrow{B} - \nabla p - \nabla \cdot \overleftrightarrow{\Pi}$$

INENE KUNO

Viscosity is negligible in a collision-dominated plasma

Ideal MHD

- Continuity eq: $\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \, \vec{v}) = 0$ • Momentum eq: $\rho_m \left[\frac{\partial \, \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \, \vec{v} \right] = \vec{j} \times \vec{B} - \nabla p$
- Ohm's law: $\vec{E} + \vec{v} \times \vec{B} \approx 0$
- Equation of state:

$$\frac{d}{dt}\left(\frac{P}{\rho_{\rm m}\gamma}\right)=0$$

- Maxwell's eqs:
 - $\nabla \cdot \vec{E} \approx 0$

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_0 \vec{j}$$
$$\nabla \cdot \vec{j} = 0$$

- Requirement:
 - High collisionality fluid model
 - Small gyro radius low frequency
 - Small resistivity a perfect conductor

When forces are balances, the system is in the equilibrium state, or called "Magnetohydrostatics"

• Equilibrium state:

$$\rho_{m}\left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v}\right] = \vec{j} \times \vec{B} - \nabla p \equiv 0$$

$$\vec{j} \times \vec{B} = \nabla p$$

$$\vec{j} \times \vec{B} = \frac{1}{\mu_{0}} (\vec{\nabla} \times \vec{B}) \times \vec{B} = \frac{1}{\mu_{0}} \left[(\vec{B} \cdot \vec{\nabla}) \vec{B} - \frac{1}{2} \vec{\nabla} B^{2} \right] = \nabla p \checkmark \vec{X} \times \vec{B} = \mu_{0} \vec{j}$$

$$\nabla \left(P + \frac{B^{2}}{2\mu_{0}} \right) = \frac{1}{\mu_{0}} (\vec{B} \cdot \vec{\nabla}) \vec{B}$$
Magnetic Magnetic \leftarrow Forces caused by pressure tension \leftarrow forces caused by curvature of the field lines
$$\vec{j} \perp \nabla p \qquad \vec{B} \perp \nabla p \qquad \vec{j} \cdot \nabla p = 0 \qquad \vec{B} \cdot \nabla p = 0$$

 The surfaces with p = constant are both magnetic surfaces (i.e., they are made up of magnetic field lines) and current surfaces (i.e., they are made of current flow lines).

Magnetic lines lying on pressure contour

Contours of constant pressure
 Magnetic lines lying on pressure contour

• A magnetic (or flux) surface is one that is everywhere tangential to the field, i.e., the normal to the surface is everywhere perpendicular to B.

Course Outline

- Magnetic confinement fusion (MCF)
 - Gyro motion, MHD
 - 1D equilibrium (z pinch, theta pinch)
 - Drift: ExB drift, grad B drift, and curvature B drift
 - Tokamak, Stellarator (toroidal field, poloidal field)
 - Magnetic flux surface
 - 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov equation.
 - Stability (Kink instability, sausage instability, Safety factor Q)
 - Central-solenoid (CS) start-up (discharge) and current drive
 - CS-free current drive: electron cyclotron current drive, bootstrap current.
 - Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.

Theta pinch – current in the azimuthal direction

ì

*I B*₀ *J*_θ *B*_Z *C*oil *C*oil *C*oil

• Symmetry: ∂

$$\partial_{\theta} = \partial_z = 0$$

 $\overrightarrow{B} = B_z \hat{z}$

• All quantities are only functions of the radius *r*.

$$\nabla \cdot \vec{B} = 0$$

$$\frac{1}{r} \frac{\partial}{\partial r} (rB_{\rm r}) + \frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta} + \frac{\partial B_{\rm z}}{\partial z} = 0$$

$$\frac{\partial B_{\rm z}}{\partial z} = 0$$

$$\nabla \times \vec{B} = \mu_0 \vec{j}$$

$$(\nabla \times \vec{B})_r = \frac{1}{r} \frac{\partial B_z}{\partial \theta} - \frac{\partial B_z}{\partial z} = 0$$

$$(\nabla \times \vec{B})_{\theta} = \frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r} = -\frac{\partial B_z}{\partial r}$$

$$(\nabla \times \vec{B})_z = \frac{1}{r} \frac{\partial}{\partial r} (rB_{\theta}) - \frac{1}{r} \frac{\partial B_r}{\partial \theta} = 0$$

$$j_{\theta} = -\frac{1}{\mu_0} \frac{\partial B_z}{\partial r}$$

$$\nabla \left(P + \frac{B^2}{2\mu_0} \right) = \frac{1}{\mu_0} \left(\vec{B} \cdot \vec{\nabla} \right) \vec{B} = 0$$

$$P + \frac{B_z^2}{2\mu_0} = \frac{B_0^2}{2\mu_0}$$

$$\times \vec{B} = \nabla p \qquad j_{\theta} B_z = \frac{dp}{dr}$$

Theta pinch is an excellent option for producing radial pressure balance in a fusion plasma

$$\beta \equiv \beta_{t} = \frac{2\mu_{o} \langle p \rangle}{B_{o}^{2}} = \frac{4\mu_{o}}{a^{2}B_{o}^{2}} \int_{0}^{a} prdr = 2 \int_{0}^{1} \left(1 - \frac{B_{z}^{2}}{B_{o}^{2}}\right) \rho d\rho = \hat{\beta} \left(\frac{2}{3} - \frac{\hat{\beta}}{5}\right)$$
$$\beta_{o} \rightarrow 0 \quad \Rightarrow \quad \hat{\beta} \approx \frac{\beta_{o}}{2} \quad , \beta \approx \frac{\beta_{o}}{3}$$
$$0 < \beta < 1$$
$$\beta_{o} \rightarrow 1 \quad \Rightarrow \quad \hat{\beta} \rightarrow 1, \beta \approx \frac{7}{15}$$

Theta pinches provide good radial confinement but NOT axially

- The gas is initially preionized.
- The coil current is provided by a capacitor bank. The typical pulse length is 10-50 us.
- The rapidly rising magnetic field acts like a piston, imparting a large impulse of momentum and energy to the particles as they are reflected.
- This energy is ultimately converted to heat after repeated reflections off the converging piston.
- $T_{\rm i} \sim 1-4$ keV, $n \sim 1-2 \ge 10^{22}$ m⁻³, $\beta o \sim 0.7-0.9$, $\beta \sim 0.05$.
- The plasma simply flowed out the end of the device along field lines in a characteristic time $\tau = L/V_{Ti} \sim 10 \mu s$ for L = 5 m.

Main issue: end loss.

Charged particles can be partially confined by a magnetic mirror machine

• Charged particles with small $v_{||}$ eventually stop and are reflected while those with large $v_{||}$ escape.

Z pinch – current in the axial direction. The radial confinement of the plasma is provided by the tension force

- Symmetry: $\partial_{\theta} = \partial_z = 0$ $\overrightarrow{B} = B_{\theta} \widehat{\theta}$
- All quantities are only functions of the radius *r*.

$$\nabla \cdot \vec{B} = 0$$

$$\frac{1}{r} \frac{\partial}{\partial r} (rB_{\rm r}) + \frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta} + \frac{\partial B_{\rm z}}{\partial z} = 0$$

$$\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta} = 0$$

$$\nabla \times \vec{B} = \mu_0 \vec{j}$$

$$(\nabla \times \vec{B})_r = \frac{1}{r} \frac{\partial B_z}{\partial \theta} - \frac{\partial B_z}{\partial z} = 0$$

$$(\nabla \times \vec{B})_{\theta} = \frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r} = 0$$

$$(\nabla \times \vec{B})_z = \frac{1}{r} \frac{\partial}{\partial r} (rB_{\theta}) - \frac{1}{r} \frac{\partial B_r}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial r} (rB_{\theta})$$

$$j_z = \frac{1}{\mu_0 r} \frac{\partial}{\partial r} (rB_{\theta})$$

$$\vec{j} \times \vec{B} = \nabla p \qquad j_z B_{\theta} = -\frac{dp}{dr}$$

$$\frac{dp}{dr} + \frac{B_{\theta}}{\mu_0 r} \frac{\partial}{\partial r} (rB_{\theta}) = 0$$

Magnetic pressure

Magnetic tension ₃₂

Z pinch – there is no flexibility in achieving small to moderate $\boldsymbol{\beta}$

Huge instabilities occur in a z pinch

- A capacitor bank is discharged across two electrodes located at each end of a cylindrical quartz or Pyrex tube.
- The gas is ionized by the high voltage and produces a z current flowing along the plasma.
- Disastrous instabilities occurs often leading to a complete quenching of the plasma after 1-2 us.

Main issue: unstable.

General screw pinch – linear superposition of the theta pinch and the z pinch

• Nonzero field: $\vec{B} = B_{\theta}\hat{\theta} + B_{z}\hat{z}$ $\vec{j} = j_{\theta}\hat{\theta} + j_{z}\hat{z}$ $\nabla \cdot \vec{B} = 0$

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{r}) + \frac{1}{r}\frac{\partial B_{\theta}}{\partial \theta} + \frac{\partial B_{z}}{\partial z} = 0$$
$$\frac{1}{r}\frac{\partial B_{\theta}}{\partial \theta} + \frac{\partial B_{z}}{\partial z} = 0$$

$$\nabla \times \vec{B} = \mu_0 \vec{j}$$

$$(\nabla \times \vec{B})_r = \frac{1}{r} \frac{\partial B_z}{\partial \theta} - \frac{\partial B_z}{\partial z} = 0$$

$$(\nabla \times \vec{B})_{\theta} = \frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r} = -\frac{\partial B_z}{\partial r}$$

$$\nabla \times \vec{B})_z = \frac{1}{r} \frac{\partial}{\partial r} (rB_{\theta}) - \frac{1}{r} \frac{\partial B_r}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial r} (rB_{\theta})$$

$$j_{\theta} = -\frac{1}{\mu_0} \frac{\partial B_z}{\partial r} \qquad j_z = \frac{1}{\mu_0 r} \frac{\partial}{\partial r} (rB_{\theta})$$

$$\vec{j} \times \vec{B} = \nabla p \qquad j_{\theta} B_z - j_z B_{\theta} = -\frac{dp}{dr}$$

$$-\frac{B_z}{\mu_0} \frac{\partial B_z}{\partial r} - \frac{B_{\theta}}{\mu_0 r} \frac{\partial}{\partial r} (rB_{\theta}) = -\frac{dp}{dr}$$

$$\frac{d}{dr} \left(p + \frac{B_{\theta}^2 + B_z^2}{2\mu_0} \right) + \frac{B_{\theta}^2}{\mu_0 r} = 0$$

General screw pinch – linear superposition of the theta pinch and the z pinch

• Nonzero field: $\vec{B} = B_{\theta}\hat{\theta} + B_{z}\hat{z}$ $\vec{j} = j_{\theta}\hat{\theta} + j_{z}\hat{z}$ $\nabla \cdot \vec{B} = 0$

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{r}) + \frac{1}{r}\frac{\partial B_{\theta}}{\partial \theta} + \frac{\partial B_{z}}{\partial z} = 0$$
$$\frac{1}{r}\frac{\partial B_{\theta}}{\partial \theta} + \frac{\partial B_{z}}{\partial z} = 0$$

$$\nabla \times \vec{B} = \mu_0 \vec{j}$$

$$(\nabla \times \vec{B})_r = \frac{1}{r} \frac{\partial B_z}{\partial \theta} - \frac{\partial B_z}{\partial z} = 0$$

$$(\nabla \times \vec{B})_{\theta} = \frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r} = -\frac{\partial B_z}{\partial r}$$

$$\nabla \times \vec{B})_z = \frac{1}{r} \frac{\partial}{\partial r} (rB_{\theta}) - \frac{1}{r} \frac{\partial B_r}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial r} (rB_{\theta})$$

$$j_{\theta} = -\frac{1}{\mu_0} \frac{\partial B_z}{\partial r} \qquad j_z = \frac{1}{\mu_0 r} \frac{\partial}{\partial r} (rB_{\theta})$$

$$\vec{j} \times \vec{B} = \nabla p \qquad j_{\theta} B_z - j_z B_{\theta} = -\frac{dp}{dr}$$

$$-\frac{B_z}{\mu_0} \frac{\partial B_z}{\partial r} - \frac{B_{\theta}}{\mu_0 r} \frac{\partial}{\partial r} (rB_{\theta}) = -\frac{dp}{dr}$$

$$\frac{d}{dr} \left(p + \frac{B_{\theta}^2 + B_z^2}{2\mu_0} \right) + \frac{B_{\theta}^2}{\mu_0 r} = 0$$

General screw pinch is flexible with varies range of β

An equilibrium state may not be stable

A cylindrical plasma column may not be stable

(a) Unperturbed
(b) m=2, k=0
(c) m=3, k=0
(d) m=0, k≠0
(e) m=1, k≠0

Instabilities of z pinch • B_{θ} small plasma plasma surface surface B_{θ} large B_{θ} small Kink Sausage instability instability (m=0) (m=1)

 $\zeta(\vec{r}) = \zeta(r)exp(im\theta + ikz)$

A cylindrical plasma column is stable when the safety factor is greater than unity

MHD Safety factor: •

Kruskal–Shafranov limit

Theta pinch is stable while z pinch is unstable

