Introduction to Nuclear Fusion as An Energy Source

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 4

2024 spring semester

Wednesday 9:10-12:00

Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

https://nckucc.webex.com/nckucc/j.php?MTID=ma76b50f97b1c6d72db61de 9eaa9f0b27

2024/3/27 updated 1

Electromagnetic wave is radiated when a charge particle is accelerated

 The retarded potentials are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past.

Bremsstrahlung emission

- When an electron collides with a nucleus via coulomb interaction, the electron is accelerated and thus radiates, called Bremsstrahlung radiation.
- In the non-relativistic limit, the Bremsstrahlung radiation power is:

=>

$$P_{\rm B,e1,i1} = \frac{e^2}{6\pi\epsilon_0} \frac{\dot{v}^2}{c^3}$$

p: Impact parameter

• The coulomb force experienced by the electron is:

$$\dot{v} = \frac{F}{m_{\rm e}} = \frac{ze^2}{4\pi\epsilon_0 m_{\rm e}r^2} = \frac{ze^2}{4\pi\epsilon_0 m_{\rm e}[p^2 + (vt)^2]} \approx \frac{ze^2}{4\pi\epsilon_0 m_{\rm e}p^2}$$
$$P_{\rm B,e1,i1} = \frac{z^2e^6}{96\pi^3\epsilon_0{}^3c^3m_{\rm e}{}^2}\frac{1}{p^4} \quad (W)$$

Bremsstrahlung emission

• For multiple ion species: n_j, z_j

$$\overline{P}_{B} = \left(\frac{2^{1/2}}{3\pi^{5/2}}\right) \left(\frac{e^{6}}{\epsilon_{0}{}^{3}c^{3}hm_{e}{}^{3/2}}\right) n_{e} T_{e}{}^{1/2} \sum_{j} z_{j}^{2} n_{i,j} \left(\frac{W}{m^{3}}\right)$$
$$= \left(\frac{2^{1/2}}{3\pi^{5/2}}\right) \left(\frac{e^{6}}{\epsilon_{0}{}^{3}c^{3}hm_{e}{}^{3/2}}\right) Z_{eff} n_{e}^{2} T_{e}{}^{1/2} \left(\frac{W}{m^{3}}\right)$$

where
$$Z_{eff} \equiv \frac{\sum_{j} z_j^2 n_j}{n_e} = \frac{\sum_{j} z_j^2 n_j}{\sum_{j} z_j n_j}$$
 $n_e = \sum_{j} z_j n_j$

$$\overline{P}_{B} = 5.35 \times 10^{-37} Z_{\text{eff}} n_{e\,(\text{m}^{-3})}^{2} T_{e\,(\text{keV})}^{1/2} \left(\frac{W}{m^{3}}\right)$$
$$\overline{P}_{B} \equiv C_{\text{B}} Z_{\text{eff}} n_{e\,(\text{m}^{-3})}^{2} T_{e\,(\text{keV})}^{1/2} \left(\frac{W}{m^{3}}\right)$$

Ignition condition (Lawson criterion) revision

Steady state 0-D power balance:

 $S_{\alpha}+S_{b}=S_{B}+S_{k}$ S_h: external heating S_{α} : α particle heating $D + T \rightarrow He^4 (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$ $S_{\rm f} = E_{\rm f} n_1 n_2 \langle \sigma v \rangle (W/m^3)$ $S_{\alpha} = \frac{1}{4} E_{\alpha} n^2 \langle \sigma v \rangle = \frac{1}{16} E_{\alpha} \frac{p^2 \langle \sigma v \rangle}{T^2}$ $E_{\alpha} = 3.5 \text{ MeV}$ $p = p_e + p_i = 2p_e = 2n_eT \equiv 2nT$

$$\frac{1}{16}E_{\alpha}\frac{p^2\langle\sigma v\rangle}{T^2} \ge \frac{1}{4}C_{\rm B}\frac{p^2}{T^{3/2}} + \frac{3}{2}\frac{p}{\tau}$$

S_B: Bremsstrahlung radiation

$$S_B = C_B Z_{eff} n_{e(m^{-3})}^2 T_{e(keV)}^{1/2} \left(\frac{W}{m^3}\right)$$
$$= \frac{1}{4} C_B \frac{p^2}{T^{3/2}}$$

S_k: heat conduction lost

$$S_{\kappa} = \frac{3}{2} \frac{p}{\tau}$$

Ignition condition (Lawson criterion) revision

Steady state 0-D power balance:

$$S_{\alpha}+S_{h}=S_{B}+S_{k}$$

$$\frac{1}{16}E_{\alpha}\frac{p^{2}\langle\sigma v\rangle}{T^{2}} \ge \frac{1}{4}C_{B}\frac{p^{2}}{T^{3/2}} + \frac{3}{2}\frac{p}{\tau}$$

$$p\tau \ge \frac{6}{\frac{1}{4}E_{\alpha}\frac{\langle\sigma v\rangle}{T^{2}} - C_{B}\frac{1}{T^{3/2}}}$$

$$n\tau \ge \frac{3T}{\frac{1}{4}\langle\sigma v\rangle\epsilon_{\alpha} - C_{B}\sqrt{T}}$$

$$nT\tau \ge \frac{3T^{2}}{\frac{1}{4}\langle\sigma v\rangle\epsilon_{\alpha} - C_{B}\sqrt{T}}$$

$$p = p_{\mathrm{e}} + p_{\mathrm{i}} = 2p_{\mathrm{e}} = 2n_{e}T \equiv 2nT$$

Temperature needs to be greater than ~5 keV to ignite

We are closed to ignition!

A. J. Webster, Phys. Educ. 38, 135 (2003)

R. Betti, etc., Phys. Plasmas, 17, 058102 (2010)

Under what conditions the plasma keeps itself hot?

THE REAL PROPERTY OF THE PROPE

• Steady state 0-D power balance:

 $S_{\alpha}+S_{h}=S_{B}+S_{k}$

- S_{α} : α particle heating
- S_h: external heating
- **S_B: Bremsstrahlung radiation**
- S_k: heat conduction lost

Ignition condition: Pτ > 10 atm-s = 10 Gbar - ns

- P: pressure, or called energy density
- т is confinement time

The plasma is too hot to be contained

 Solution 1: Magnetic confinement fusion (MCF), use a magnetic field to contain it. P~atm, τ~sec, T~10 keV (10⁸ °C)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/ https://en.wikipedia.org/wiki/Stellarator

Don't confine it!

 Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined by its own inertia: P~Gigabar, τ~nsec, T~10 keV (10⁸ °C)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

To control? Or not to control?

- Magnetic confinement fusion (MCF)
 - Plasma is confined by toroidal magnetic field.

Inertial confinement fusion (ICF)
 Laser light shines
 on the target
 is compressed

• A DT ice capsule filled with DT gas is imploded by laser.

Course Outline

- Magnetic confinement fusion (MCF)
 - Gyro motion, MHD
 - 1D equilibrium (z pinch, theta pinch)
 - Drift: ExB drift, grad B drift, and curvature B drift
 - Tokamak, Stellarator (toroidal field, poloidal field)
 - Magnetic flux surface
 - 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov equation.
 - Stability (Kink instability, sausage instability, Safety factor Q)
 - Central-solenoid (CS) start-up (discharge) and current drive
 - CS-free current drive: electron cyclotron current drive, bootstrap current.
 - Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.

Charged particles gyro around the magnetic field line

$$m\frac{d\,\overline{v}}{dt}=q\,\overline{v}\times\overline{B}$$

• Assuming $\overrightarrow{B} = B\widehat{z}$ and the electron oscillates in x-y plane

$$mv_{\rm x} = qBv_{\rm y}$$
$$\dot{mv_{\rm y}} = -qBv_{\rm x}$$

 $\dot{mv_z} = 0$ $v_z = v_{||} = \text{constant}$

$$\ddot{\boldsymbol{v}}_{\mathbf{x}} = -\frac{\boldsymbol{q}\boldsymbol{B}}{\boldsymbol{m}} \cdot \boldsymbol{v}_{\mathbf{y}} = -\left(\frac{\boldsymbol{q}\boldsymbol{B}}{\boldsymbol{m}}\right)^{2} \boldsymbol{v}_{\mathbf{x}}$$
$$\ddot{\boldsymbol{v}}_{\mathbf{y}} = -\frac{\boldsymbol{q}\boldsymbol{B}}{\boldsymbol{m}} \cdot \boldsymbol{v}_{\mathbf{x}} = -\left(\frac{\boldsymbol{q}\boldsymbol{B}}{\boldsymbol{m}}\right)^{2} \boldsymbol{v}_{\mathbf{y}}$$

 $\omega_{\rm c} \equiv \frac{|q|B}{m}$ Cyclotron frequency or gyrofrequency

$$\ddot{v}_{x} + \omega_{c}^{2} v_{x} = 0$$

$$\ddot{v}_{y} + \omega_{c}^{2} v_{y} = 0$$

$$v_{x} = v_{\perp} \cos(\pm \omega_{c} t + \psi)$$

$$v_{y} = -v_{\perp} \sin(\pm \omega_{c} t + \psi)$$

$$v_{z} = v_{||}$$

Charged particles spiral around the magnetic field line

ExB drift

Charge particles drift across magnetic field lines when an electric field not parallel to the magnetic field occurs

$$\vec{w}_{L} = \vec{v}_{L} + \vec{v}_{L}$$

No current is generated in ExB drift

Gravitational drift

Charge particles drift across magnetic field lines when an external field not parallel to the magnetic field occurs

$$\vec{E} = \vec{E}_{\perp} + \hat{z}E_{||} = \hat{x}E_{\perp} + \hat{z}E_{||}$$

$$m\frac{dv_{||}}{dt} = qE_{||}$$

$$m\frac{d\vec{v}_{\perp}}{dt} = q(\hat{x}E_{\perp} + \vec{v}_{\perp} \times \hat{z}B)$$

$$\langle \vec{v}(t) \rangle = \frac{1}{T_c} \int_0^{T_c} \vec{v}(t) dt = \hat{z}v_{||}(t) + \vec{v}_E$$

$$\vec{v}_E = \frac{\hat{x}E_{\perp} \times \hat{z}B}{B^2} = \frac{\vec{E} \times \vec{B}}{B^2}$$
ExB drift velocity
$$\vec{F} = \vec{F}_{\perp} + \hat{z}F_{||} = \hat{x}F_{\perp} + \hat{z}F_{||}$$

$$m\frac{dv_{||}}{dt} = F_{||}$$

$$m\frac{dv_{||}}{dt} = q\left(\hat{x}\frac{F_{\perp}}{q} + \vec{v}_{\perp} \times \hat{z}B\right)$$

$$\langle \vec{v}(t) \rangle = \frac{1}{T_c} \int_0^{T_c} \vec{v}(t) dt = \hat{z}v_{||}(t) + \vec{v}_E$$

$$\vec{v}_F = \frac{\hat{x}(F_{\perp}/q) \times \hat{z}B}{B^2} = \frac{1}{q}\frac{\vec{F} \times \vec{B}}{B^2}$$
Gravitational drift velocity

 Electrons and ions drift in the opposite directions in the gravitational drift. Therefore, currents are generated.

Drift in non-uniform B fields

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

Curvature drift Gradient-B drift ∇B R $\vec{v}_{\nabla} = \frac{m v_{\perp}^2}{2a} \frac{\vec{B} \times \nabla B}{B^3}$ $\vec{v}_R = \frac{mv_{||}^2}{2a} \frac{\vec{R}_c \times \vec{B}}{R_c B^2}$ $\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{a} \frac{\vec{R}_{\text{c}} \times \vec{B}}{B^2 R^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$

Gradient-B drift

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

$$\vec{F} = q(\vec{v} \times \vec{B}) = \hat{x}qv_{y}B_{z} - \hat{y}qv_{x}B_{z}$$

$$\simeq \hat{x}qv_{y}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right) - \hat{y}qv_{x}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

$$B_{z}(y) = B_{o} + y\frac{\partial B_{z}}{\partial y} + y^{2}\frac{1}{2}\frac{\partial^{2}B_{z}}{\partial y^{2}} + \dots$$

$$F_{x} = qv_{y}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

$$F_{y} = -qv_{x}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

In the case with no gradient B

$$x_{\rm c} = \mp r_{\rm c} \sin(\pm \omega_{\rm c} t + \psi)$$

$$y_{\rm c} = \pm r_{\rm c} \cos(\pm \omega_{\rm c} t + \psi)$$

$$v_{\rm x} = v_{\perp} \cos(\pm \omega_{\rm c} t + \psi)$$

$$v_{\rm y} = -v_{\perp}\sin(\pm\omega_{\rm c}t + \psi)$$

$$F_{x} \simeq -qv_{\perp}\sin(\pm\omega_{c}t + \psi) \times$$

$$\left(B_{o} \pm r_{c}\cos(\pm\omega_{c}t + \psi)\frac{\partial B_{z}}{\partial y}\right)$$

$$F_{y} = -qv_{\perp}\cos(\pm\omega_{c}t + \psi) \times$$

$$\left(B_{o} \pm r_{c}\cos(\pm\omega_{c}t + \psi)\frac{\partial B_{z}}{\partial y}\right)$$

Charge particles drift across magnetic field lines when the magnetic field is not uniform

$$\vec{v}_{F} = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2} \quad \vec{v}_{\nabla} = \frac{1}{q} \frac{\langle F_y \rangle \hat{y} \times \hat{z}B_z}{B_z^2} = -\frac{mv_{\perp}^2}{2qB_z^2} \frac{\partial B_z}{\partial y} \quad r_c = \frac{v_{\perp}}{\omega_c} \quad \omega_c \equiv \frac{|q|B}{m}$$

$$\vec{v}_F = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2} \quad \vec{v}_{\nabla} = \frac{1}{q} \frac{\langle F_y \rangle \hat{y} \times \hat{z}B_z}{B_z^2} = -\frac{mv_{\perp}^2}{2qB_z^2} \frac{\partial B_z}{\partial y} \hat{x}$$

$$\cdot \text{ More general:} \quad \vec{v}_{\nabla} = \frac{mv_{\perp}^2}{2q} \frac{\vec{B} \times \nabla B}{B^3}$$

Curvature drift

Charge particles drift across magnetic field lines when the magnetic field line is curved

$$\vec{F}_{cf} = mv_{||}^{2} \frac{\vec{R}_{c}}{R_{c}^{2}}$$
$$\vec{v}_{F} = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^{2}}$$
$$\vec{v}_{R} = \frac{1}{q} \frac{\vec{F}_{cf} \times \vec{B}}{B^{2}} = \frac{mv_{||}^{2}}{q} \frac{\vec{R}_{c} \times \vec{B}}{R_{c}^{2}B^{2}}$$

Drift in non-uniform B fields

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

Cylindrical coordinate

$$\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{q} \frac{\vec{R}_{\text{c}} \times \vec{B}}{R_{\text{c}}^2 B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$$

 Electrons and ions drift in the opposite directions in the grad-B and curvature drifts. Therefore, currents are generated.

Quick summary of different drifts

ExB drift:
$$\vec{v}_E = \frac{\vec{E} \times \vec{B}}{B^2}$$
 Independent to charge
Gravitational drift: $\vec{v}_F = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2}$ Depended on charge
Grad-B drift: $\vec{v}_{\nabla} = \frac{mv_{\perp}^2}{2q} \frac{\vec{B} \times \nabla B}{B^3}$ Depended on charge
Curvature drift: $\vec{v}_R = \frac{mv_{||}^2}{q} \frac{\vec{R}_c \times \vec{B}}{R_c^2 B^2}$ Depended on charge

• Non-uniform B drift:

$$\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{q} \frac{\vec{R}_{\text{c}} \times \vec{B}}{R_{\text{c}}^2 B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$$

Magnetohydrodynamics description of plasma

chapter/conservation-of-mass-continuity-equation/ https://www.youtube.com/watch?v=lu0Ep8_Gp8U

Magnetohydrodynamics (MHD) description of plasma w/ low-freq. and long-wavelength approximation

- Continuity eq: $\frac{\partial \rho_{\rm m}}{\partial t} + \nabla \cdot (\rho_{\rm m} \, \vec{v}) = 0$ w/ long wavelength ($\lambda >> \lambda_d$) • Momentum eq: $\rho_{\rm m} \left[\frac{\partial \, \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \, \vec{v} \right] = \rho_{\rm q} \, \vec{E} + \vec{j} \times \vec{B} - \nabla \cdot \vec{P}$
 - Ohm's law: $\vec{j} = \sigma(\vec{E} + \vec{v} \times \vec{B})$
 - Equation of state: $\frac{d}{dt}$

$$\frac{d}{dt}\left(\frac{P}{\rho_{\rm m}\gamma}\right)=0$$

Maxwell's eqs:

 $\nabla \cdot \vec{E} = \frac{\rho_{q}}{\epsilon_{o}} \approx 0 \quad \text{w/ long wavelength (} \lambda >> \lambda_{d} \text{) => quasi neutral}$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_{o} \vec{j} + \epsilon_{o} \mu_{o} \frac{\partial \vec{E}}{\partial t}$ w/ low freq. ($\omega << \omega_{pe}$)

Ideal MHD

- Continuity eq: $\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \, \vec{v}) = 0$ • Momentum eq: $\rho_m \left[\frac{\partial \, \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \, \vec{v} \right] = \vec{j} \times \vec{B} - \nabla \cdot \overleftrightarrow{P}$
- Ohm's law: $\vec{E} + \vec{v} \times \vec{B} \approx 0$
- Equation of state:

$$\frac{d}{dt}\left(\frac{P}{\rho_{\rm m}\gamma}\right)=0$$

- Maxwell's eqs:
 - $\nabla \cdot \vec{E} \approx 0$
 - $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \vec{j}$ $\nabla \cdot \vec{j} = 0$

- Requirement: Conflict!
 High collisionality fluid model
 Small gyro radius low frequency
 - Small gyro radius low frequency
 - Small resistivity a perfect conductor

$$\omega \sim \frac{\partial}{\partial t} \sim \frac{v_{Ti}}{a} \qquad \omega_{ci} = \frac{v_{Ti}}{r_{Li}} \qquad \frac{\omega}{\omega_{ci}} \sim \frac{v_{Ti}}{a} \frac{r_{Li}}{v_{Ti}} = \frac{r_{Li}}{a} << 1$$

Region of validity for ideal MHD

Low resistivity requirement

$$\vec{j} = \sigma \left(\vec{E} + \vec{v} \times \vec{B} \right) \qquad \eta \ \vec{j} = \vec{E} + \vec{v} \times \vec{B} \qquad \qquad \frac{|\eta j|}{|v \times B|} \sim ?$$

$$|j \times B| \sim |\nabla p| \qquad j \sim \frac{|\nabla p|}{B} \sim \frac{1}{a} \frac{nT}{B} \sim \frac{1}{a} \frac{nm_{i}v_{Ti}^{2}}{B} \qquad \omega \sim \frac{\partial}{\partial t} \sim \frac{v_{Ti}}{a} \qquad \omega_{ci} = \frac{v_{Ti}}{r_{Li}}$$
$$\eta \sim \frac{m_{e}}{ne^{2}\tau_{ei}} \quad \tau_{ei} \sim \tau_{ee} \sim \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \tau_{ii} \qquad k \sim \nabla \sim \frac{1}{a}$$

$$\frac{|\eta j|}{|v \times B|} \sim \frac{\eta j}{v_{Ti}B} \sim \frac{m_{e}}{ne^{2}\tau_{ei}} \frac{1}{a} \frac{nm_{i}v_{Ti}^{2}}{B} \frac{1}{v_{Ti}B} = \frac{m_{e}}{\tau_{ei}} \frac{v_{Ti}}{a} \frac{m_{i}}{e^{2}B^{2}} = \frac{m_{e}}{m_{i}\tau_{ei}} \frac{v_{Ti}}{a} \frac{m_{i}^{2}}{e^{2}B^{2}} = \frac{m_{e}}{m_{i}\tau_{ei}} \frac{v_{Ti}}{a \omega_{ci}^{2}}$$
$$\sim \frac{m_{e}}{m_{i}\tau_{ii}} \left(\frac{m_{i}}{m_{e}}\right)^{1/2} \frac{v_{Ti}}{a \omega_{ci}^{2}} = \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \frac{v_{Ti}}{\tau_{ii}a} \frac{r_{Li}^{2}}{v_{Ti}^{2}} = \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \frac{1}{\tau_{ii}a} \frac{r_{Li}^{2}}{v_{Ti}} \sim \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \frac{1}{\omega \tau_{ii}} \left(\frac{r_{Li}}{a}\right)^{2}$$
$$= \frac{y^{2}}{x} \ll 1$$

Fusion plasma is not in the ideal MHD region!

With strong B, the gyromotion mimic the collisional characteristics.

Ideal MHD

- Continuity eq: $\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \, \vec{v}) = 0$ • Momentum eq: $\rho_m \left[\frac{\partial \, \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \, \vec{v} \right] = \vec{j} \times \vec{B} - \nabla \cdot \overleftarrow{P}$
- Ohm's law: $\vec{E} + \vec{v} \times \vec{B} \approx 0$
- Equation of state:

$$\frac{d}{dt}\left(\frac{P}{\rho_{\rm m}\gamma}\right)=0$$

- Maxwell's eqs:
 - $\nabla \cdot \overrightarrow{E} \approx 0$

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{B} = \mu_0 \vec{j}$$
$$\nabla \cdot \vec{j} = 0$$

- Requirement:
 - High collisionality fluid model
 - Small gyro radius low frequency
 - Small resistivity a perfect conductor