Introduction to Nuclear Fusion as An Energy Source

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 2

2025 spring semester

Tuesday 9:00-12:00

Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

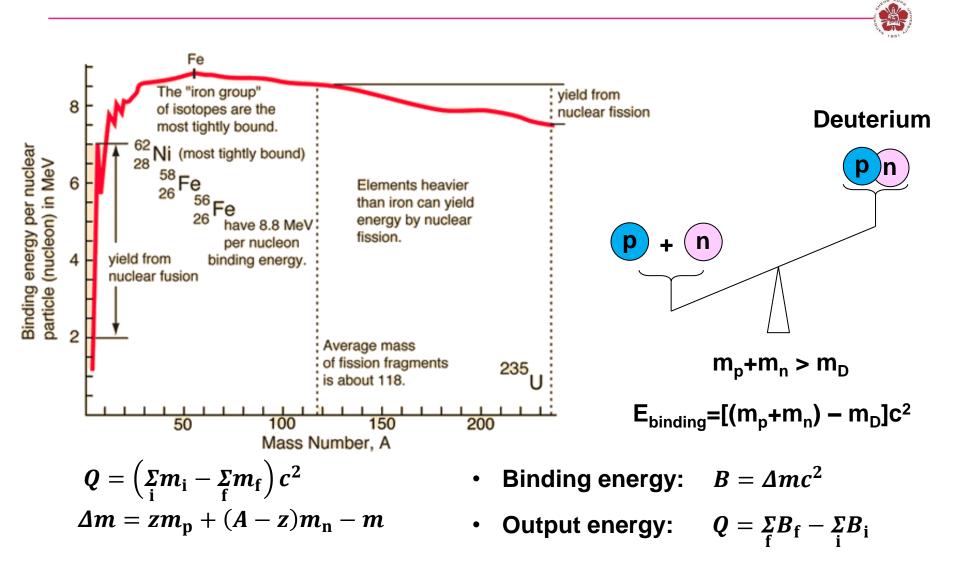
https://nckucc.webex.com/nckucc/j.php?MTID=mf1a33a5dab5eb71de9da43 80ae888592

2025/2/25 updated 1

Course Outline

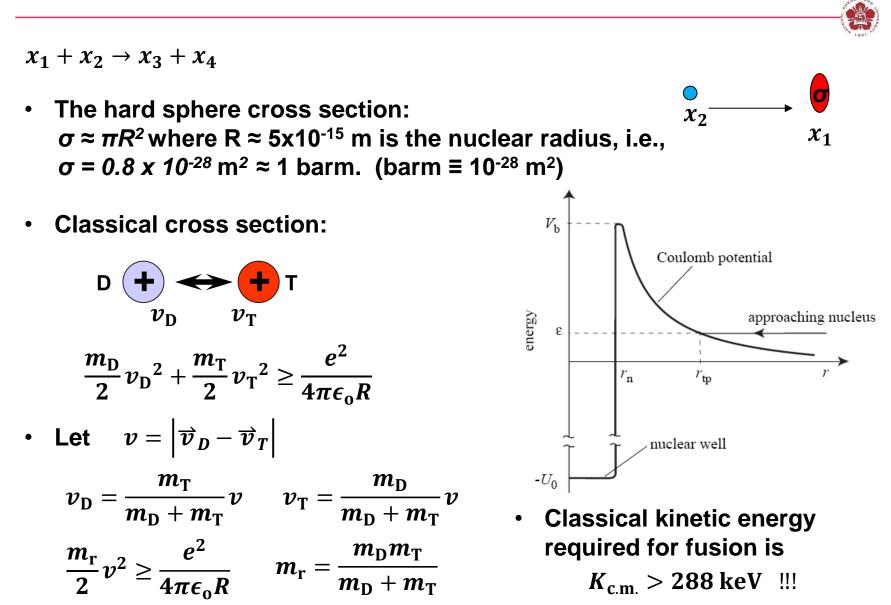
- Brief background reviews
 - Electromagnetics
 - Plasma physics
- Introduction to nuclear fusion
 - Nuclear binding energy (Fission vs Fusion)
 - Fusion reaction physics
 - Some important fusion reactions (Cross section)
 - Main controlled fusion fuels
 - Advanced fusion fuels
 - Maxwell-averaged fusion reactivities

The "iron group" of isotopes are the most tightly bound

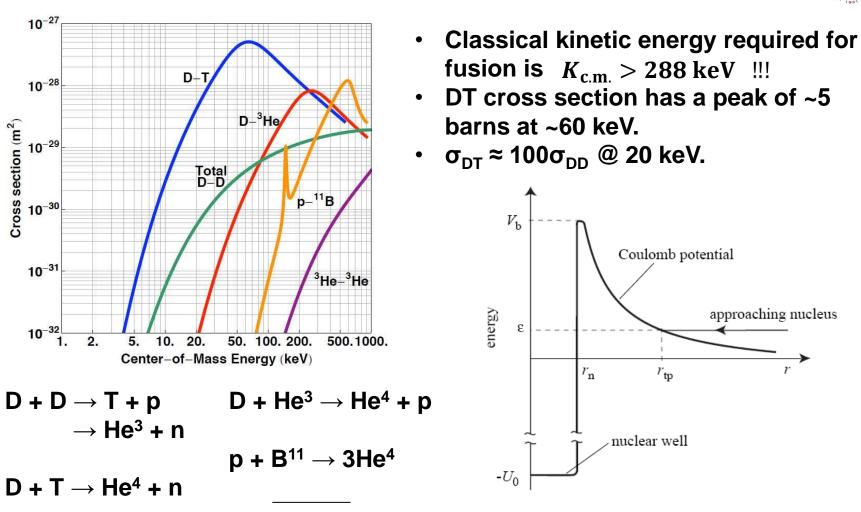


http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html

Cross section measures the probability per pair of particles for the occurrence of the reaction



Cross section of fusion reaction is much larger than the classical approach



https://i.stack.imgur.com/wXQD5.jpg

Santarius, J. F., "Fusion Space Propulsion – A Shorter Time Frame Than You Think", JANNAF, Monterey, 5-8 December 2005.

Flux of incident particles reduces after collisions

 $x_1 + x_2 \rightarrow x_3 + x_4$

• Cross section: $\sigma \approx \pi R^2$ where R is the nuclear radius.

V = Adx

 $N_1 = n_1 V = n_1 A dx$ $A_{\text{Target}} = N_1 \sigma = \sigma n_1 A dx$

• Fraction of total area blocked by targets is:

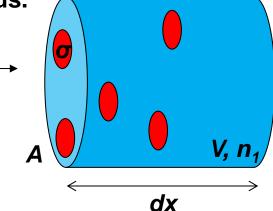
$$dF = \frac{\sigma N_1}{A} = \frac{\sigma n_1 A dx}{A} = \sigma n_1 dx$$
$$\frac{dF}{dx} = \sigma n_1$$

• Flux of incident particles (x₁) is Γ_0

$$-d\Gamma = dF\Gamma = \sigma n_1 \Gamma dx$$

$$\frac{-d\Gamma}{\Gamma} = \sigma n_1 dx$$

$$\Gamma = \Gamma_o \exp\left(-\frac{x}{\lambda_{\rm mfp}}\right)$$



 Γ_{0}

 x_2^{-}

• Mean free path:

$$\lambda_{mfp} = \frac{1}{n_1 \sigma}$$
• Collision frequency:

$$\nu = \frac{1}{\tau}, \tau = \frac{\lambda_{mfp}}{v} = \frac{1}{n_1 \sigma}$$

Reactions happen when collision happen

- Reaction rate R₁₂: number of fusion collisions/reactions per unit volume per unit time.
- In the time dt=dx/v, n₂Adx incident particles will pass through the target volume.
- The number having a collisions is: $dF(n_2Adx)$
- The volumetric reaction rate R_{12} , i.e., the number of reaction per unit time and per unit volume is:

$$R_{12} = \frac{dF(n_2Adx)}{Adxdt} = \sigma n_1 n_2 \frac{dx}{dt} = n_1 n_2 \sigma v$$

- The fusion power density (W/m³) is: $S_f = E_f n_1 n_2 \sigma v (W/m^3)$
- For DT fusion, $E_{\rm f}$ =17.6 MeV.
- For a particle population with a distribution function in velocity space:

$$n = \int d \, \vec{v} \, f(\vec{r}, \vec{v}, t)$$

• Therefore, $n_1 \to d \, \vec{v}_1 f_1(\vec{r}, \vec{v}_1, t) \quad n_2 \to d \, \vec{v}_2 f_2(\vec{r}, \vec{v}_2, t) \quad v \to \left| \vec{v}_1 - \vec{v}_2 \right|$ $R_{12} = \int f_1(\vec{v}_1) f_1(\vec{v}_2) \sigma \left(\left| \vec{v}_1 - \vec{v}_2 \right| \right) \left| \vec{v}_1 - \vec{v}_2 \right| d \, \vec{v}_1 d \, \vec{v}_2$

The fusion power density needs to consider the distribution function of particles

$$R_{12} = \int f_1(\vec{v}_1) f_1(\vec{v}_2) \sigma\left(\left|\vec{v}_1 - \vec{v}_2\right|\right) \left|\vec{v}_1 - \vec{v}_2\right| d\vec{v}_1 d\vec{v}_2 = n_1 n_2 \langle \sigma v \rangle$$

$$\begin{aligned} \langle \sigma \mathbf{v} \rangle &\equiv \frac{\int f_1(\vec{v}_1) f_1(\vec{v}_2) \sigma(|\vec{v}_1 - \vec{v}_2|) |\vec{v}_1 - \vec{v}_2| d \vec{v}_1 d \vec{v}_2}{\int f_1(\vec{v}_1) f_1(\vec{v}_2) d \vec{v}_1 d \vec{v}_2} \\ &= \frac{\int f_1(\vec{v}_1) f_1(\vec{v}_2) \sigma(|\vec{v}_1 - \vec{v}_2|) |\vec{v}_1 - \vec{v}_2| d \vec{v}_1 d \vec{v}_2}{n_1 n_2} \end{aligned}$$

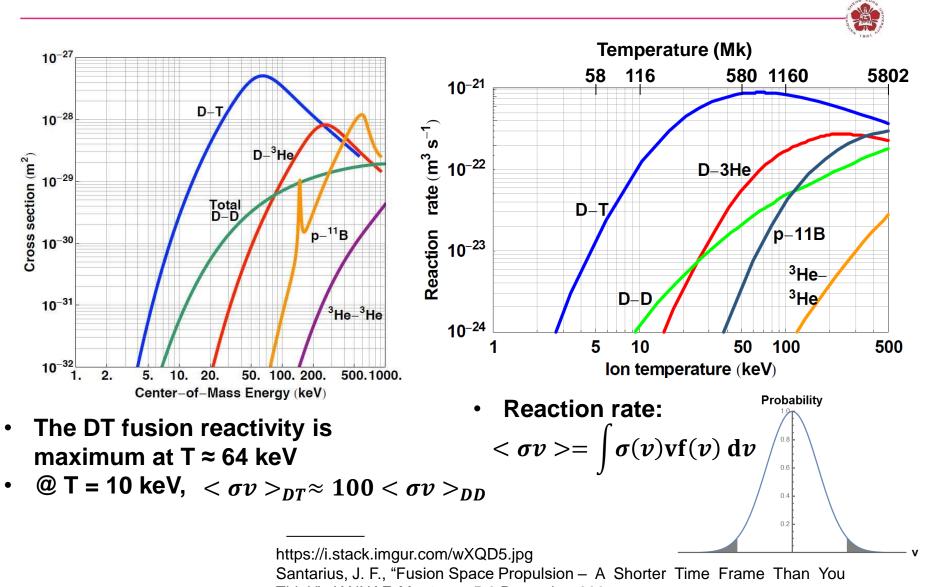
• The fusion power density (W/m³) is:

 $S_{\rm f} = E_{\rm f} n_1 n_2 \langle \sigma v \rangle \left(W/m^3 \right)$

• Optimum concentration of DT fusion is 50-50.

$$S_{\rm f} = E_{\rm f} n_{\rm D} n_{\rm T} \langle \sigma v \rangle$$
 $n_D = k n_o$ $n_T = (1 - k) n_o$
 $S_{\rm f} = E_{\rm f} k (1 - k) n_o^2$ which peak at $k = 0.5$.

Fusion doesn't come easy



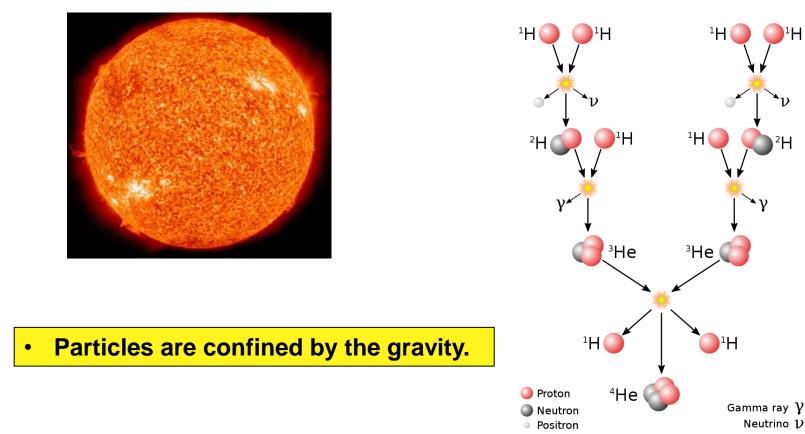
Think", JANNAF, Monterey, 5-8 December 2005.

Fusion in the sun provides the energy

 $^{1}\mathsf{H}$

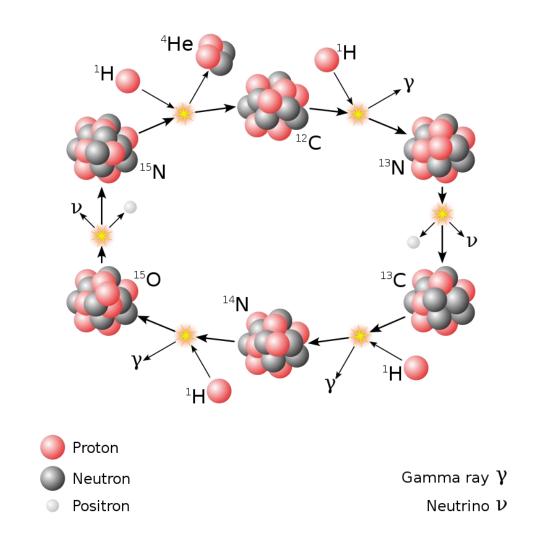
 ^{2}H

Proton-proton chain in sun or smaller •



10

In heavy sun, the fusion reaction is the CNO cycle



https://en.wikipedia.org/wiki/Nuclear_fusion

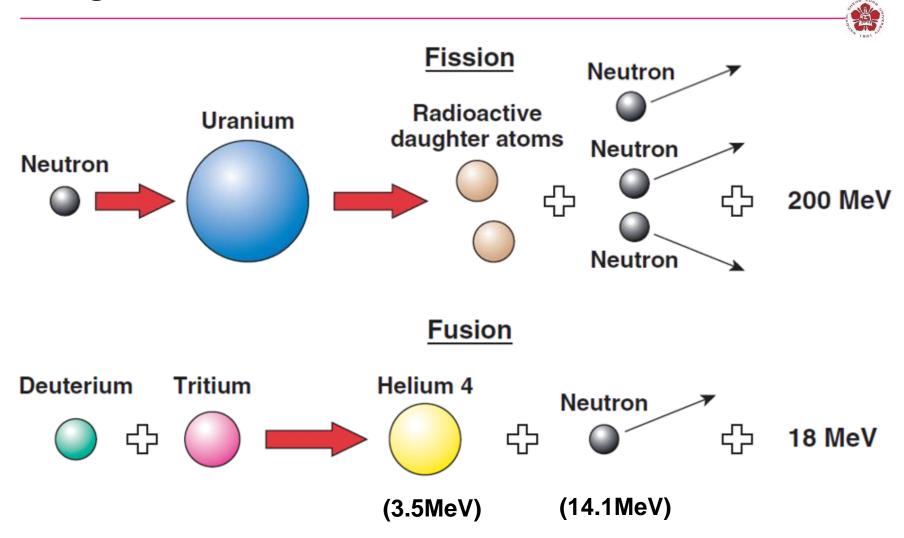
The cross section of proton-proton chain is much smaller than D T fusion

Reaction	σ _{10 keV} (barn)	σ _{100 keV} (barn)	σ _{max} (barn)	ε _{max} (keV)
D+T→α+n	2.72x10 ⁻²	3.43	5.0	64
D+D→T+p	2.81x10 ⁻⁴	3.3x10 ⁻²	0.06	1250
D+D→ ³ He+n	2.78x10 ⁻⁴	3.7x10 ⁻²	0.11	1750
T+T→α+2n	7.90x10 ⁻⁴	3.4x10 ⁻²	0.16	1000
D+³He→α+p	2.2x10 ⁻⁷	0.1	0.9	250
p+ ⁶ Li→α+³He	6x10 ⁻¹⁰	7x10 ⁻³	0.22	1500
p + ¹¹ B→3α	(4.6x10 ⁻¹⁷)	3x10 ⁻⁴	1.2	550
p+p→D+e⁺+v	(3.6x10 ⁻²⁶)	(4.4x10 ⁻²⁵)		
$p+^{12}C \rightarrow ^{13}N+\gamma$	(1.9x10 ⁻²⁶)	2.0x10 ⁻¹⁰	1.0x10.4	400
¹² C+ ¹² C (all branches)		(5.0x10 ⁻¹⁰³)		

• "()" are theoretical values while others are measured values.

The Physics of Inertial Fusion, by Stefano Atzeni and Jürgen Meyer-Ter-Vehn

Nuclear fusion and fission release energy through energetic neutrons



Nuclear fusion provides more energy per atomic mass unit (amu) than nuclear fission

- Fusion of D+T:
- Fission of ²³⁵U+n:

$$\frac{Q}{A} = \frac{17.6 \text{MeV}}{(3+2)\text{amu}} = 3.5 \frac{\text{MeV}}{\text{amu}}$$
$$\frac{Q}{A} = \frac{200 \text{MeV}}{(235+1)\text{amu}} = 0.85 \frac{\text{MeV}}{\text{amu}}$$

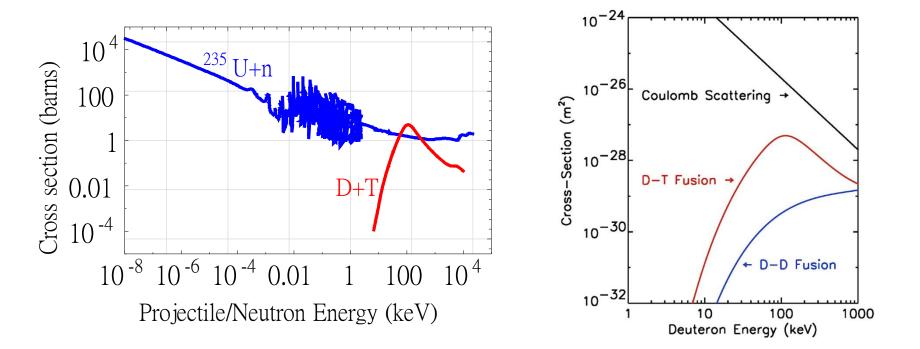
	Half-life (years)	
U235	7.04x10 ⁸	
U238	4.47x10 ⁹	
Tritium	12.3	

$$n + Li^6 \rightarrow He^4 + T$$

Fusion is much harder than fission

- Fission: $n + {}^{235}_{92} U \rightarrow {}^{236}_{92} U \rightarrow {}^{144}_{56} Ba + {}^{89}_{36} Kr + 3n + 177 \text{ MeV}$
- **Fusion:** $D + T \to He^4 (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$

15



Fast neutrons are slowed down due to the collisions

- A moderator is used to slow down fast neutrons but not to absorb neutrons.
- For $m_M \sim m_N$, the energy decrement is higher. Therefore, H slows down neutron most efficiently.

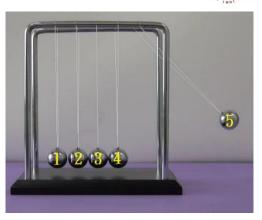
m_N

• However, $H + n \rightarrow D$, i.e., H absorbs neutrons.

Neutron (

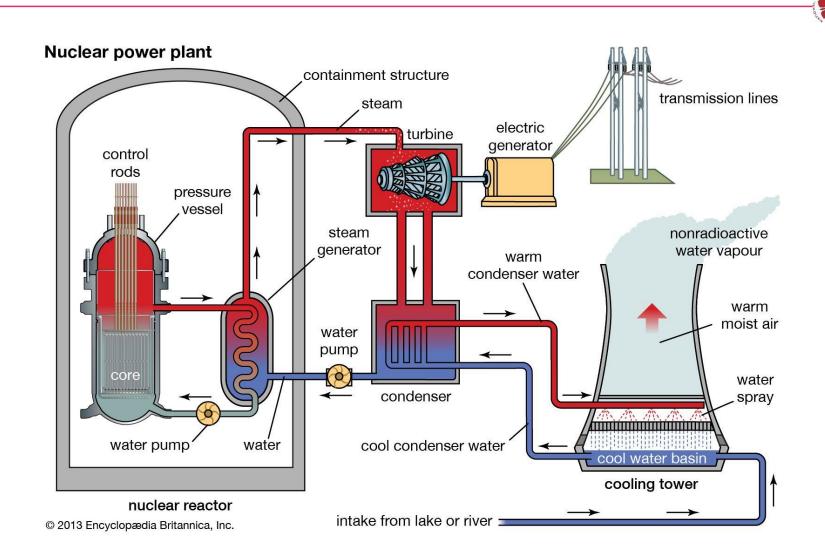
	Energy decrement	Neutron scattering cross section (σ _s) (Barns)	Neutron absorption cross section (σ_a) (Barns)	
Н	1	49 (H ₂ O)	0.66 (H ₂ O)	
D	0.7261	10.6 (D ₂ O)	0.0013 (D ₂ O)	
С	0.1589	4.7 (Graphite)	0.0035 (Graphite)	
	https://op.wikipodia.org/wiki/Noutrop.moderator#cito.poto.Wostop.4			

https://en.wikipedia.org/wiki/Neutron_moderator#cite_note-Weston-4 https://energyeducation.ca/encyclopedia/Neutron_moderator#cite_note-3



mм

Nuclear power plant



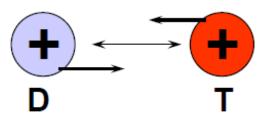
https://www.britannica.com/technology/nuclear-power

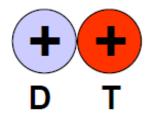
Comparison between nuclear fission and nuclear fusion

	Nuclear Fission	Nuclear Fusion
Chain reaction	Yes	No
Melt down	Possible	Impossible
Nuclear waste	High radiative	Low radiative / None

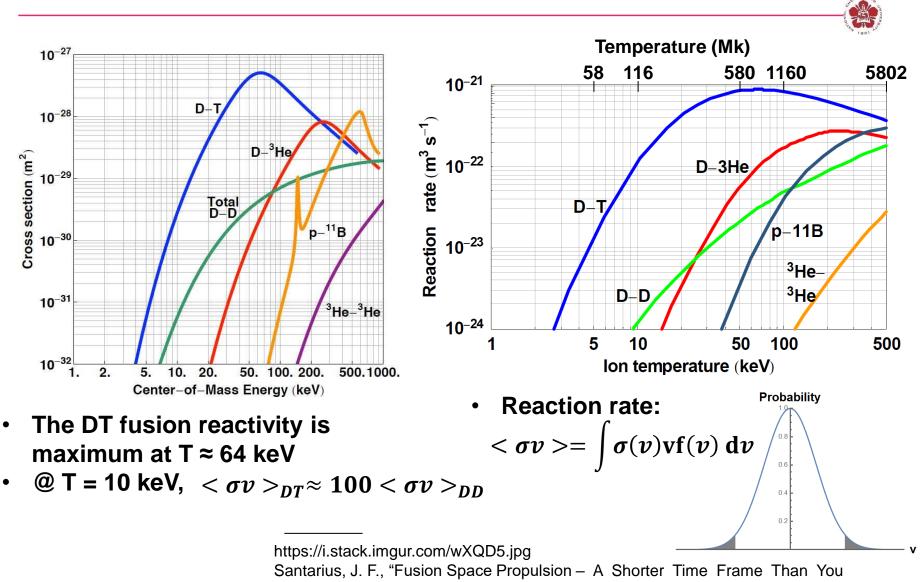
• Probability for fusion reactions to occur is low at low temperatures due to the coulomb repulsion force.

 If the ions are sufficiently hot, i.e., large random velocity, they can collide by overcoming coulomb repulsion





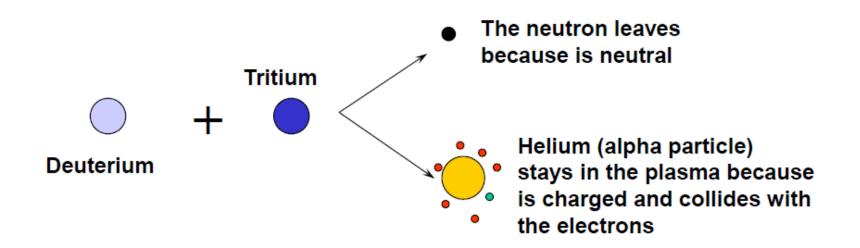
Fusion doesn't come easy



Think", JANNAF, Monterey, 5-8 December 2005.

It takes a lot of energy or power to keep the plasma at 100M °C

• Let the plasma do it itself!



• The α-particles heat the plasma.

Under what conditions the plasma keeps itself hot?

THE REAL PROPERTY OF THE REAL

• Steady state 0-D power balance:

 $S_{\alpha}+S_{h}=S_{B}+S_{k}$

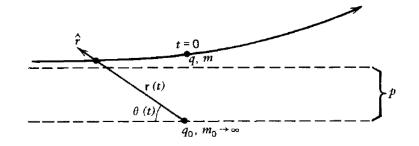
- S_{α} : α particle heating
- S_h: external heating
- **S**_B: Bremsstrahlung radiation
- S_k: heat conduction lost

Ignition condition: Pτ > 10 atm-s = 10 Gbar - ns

- P: pressure, or called energy density
- т is confinement time

- Introduction to nuclear fusion (cont.)
 - Collisions (Bremsstrahlung radiation)
 - Columb scattering. Cross section of the Columb scattering
 - Beam-target fusion vs thermonuclear fusion
 - Lawson criteria, ignition conditions
 - Magnetic confinement fusion (MCF) vs Inertial confinement fusion (ICF)

Charged particles collide with each other through collisions



$$\mathbf{m}\boldsymbol{v}_{\perp} = \int_{-\infty}^{\infty} dt \, \mathbf{F}_{\perp}(t)$$

Coulomb force:

$$m\,\frac{\ddot{r}}{r}=\frac{qq_0}{r^2}\hat{r}$$

$$F_{\perp}=\frac{qq_0}{p^2}\sin^3\theta$$

• Relation between θ and t is

$$x = -r\cos\theta = -\frac{b\cos\theta}{\sin\theta} = v_0 t$$

• Therefore,

$$v_{\perp} = \frac{qq_0}{mv_0p} \int_0^{\pi} d\theta \sin\theta = \frac{2qq_0}{mv_0p} \equiv \frac{v_0p_0}{p}$$

where
$$p_0 \equiv \frac{2qq_0}{m{v_0}^2}$$

• Note that this is valid only when $v_{\perp} << v_0$, i.e., $p >> p_0$.

Cumulative effect of many small angle collisions is more important than large angle collisions

• Consider a variable Δx that is the sum of many small random variables Δx_i , i=1,2,3,...,N,

$$\Delta x = \Delta x_1 + \Delta x_2 + \Delta x_3 + \dots + \Delta x_N = \sum_{i=1}^{N} \Delta x_i$$

< $\Delta x_i \ge < \Delta x_i \Delta x_i \ge \ldots = 0$

• Suppose $<\Delta x_i>=<\Delta x_i\Delta x_j>_{i\neq j}=0$

$$\langle (\Delta x)^2 \rangle = \left| \left(\sum_{i=1}^N \Delta x_i \right)^2 \right| = \sum_{i=1}^N \langle (\Delta x_i)^2 \rangle = N \langle (\Delta x_i)^2 \rangle$$

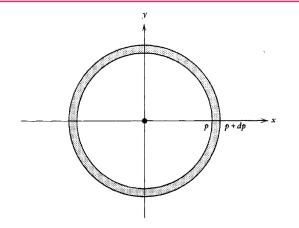
• For one collision:

$$\left\langle \boldsymbol{v}_{\perp}^{2} \right\rangle = \left\langle (\boldsymbol{\Delta}\boldsymbol{v}_{\mathrm{x}})^{2} \right\rangle + \left\langle \left(\boldsymbol{\Delta}\boldsymbol{v}_{\mathrm{y}} \right)^{2} \right\rangle = \frac{\boldsymbol{v}_{0}^{2} \boldsymbol{p}_{0}^{2}}{\boldsymbol{p}^{2}} \qquad \left\langle (\boldsymbol{\Delta}\boldsymbol{v}_{\mathrm{x}})^{2} \right\rangle = \left\langle \left(\boldsymbol{\Delta}\boldsymbol{v}_{\mathrm{y}} \right)^{2} \right\rangle = \frac{1}{2} \frac{\boldsymbol{v}_{0}^{2} \boldsymbol{p}_{0}^{2}}{\boldsymbol{p}^{2}}$$

• The total velocity in \hat{x}

$$\left\langle \left(\Delta v_{\mathrm{x}}^{\mathrm{tot}} \right)^{2} \right\rangle = N \left\langle (\Delta v_{\mathrm{x}})^{2} \right\rangle = \frac{N}{2} \frac{v_{0}^{2} p_{0}^{2}}{p^{2}}$$

The collision frequency can be obtained by integrating all the possible impact parameter



• Number of collisions in a time interval:

$$dN = n_0 2\pi p \, dp \, v_0 \, dt$$

.e., $\frac{dN}{dt} = 2\pi p \, dp \, n_0 v_0$

• Therefore

$$\frac{d}{dt}\left\langle \left(\Delta v_{x}^{\text{tot}}\right)^{2}\right\rangle = \frac{1}{2}\frac{v_{0}^{2}p_{0}^{2}}{p^{2}}\frac{dN}{dt}$$
$$= \pi n_{0}v_{0}^{3}p_{0}^{2}\frac{dp}{p}$$

$$\frac{d}{dt} \left\langle \left(\Delta_{\perp}^{\text{tot}} \right)^2 \right\rangle = 2 \frac{d}{dt} \left\langle \left(\Delta v_x^{\text{tot}} \right)^2 \right\rangle$$
$$= 2 \pi n_0 v_0^3 p_0^2 \int_{p_{\min}}^{p_{\max}} \frac{dp}{p}$$
$$= 2 \pi n_0 v_0^3 p_0^2 \ln \left(\frac{p_{\max}}{p_{\min}} \right)$$
$$\approx 2 \pi n_0 v_0^3 p_0^2 \ln \left(\frac{\lambda_D}{|p_0|} \right)$$
$$\approx 2 \pi n_0 v_0^3 p_0^2 \ln \Lambda$$

• Note that $\lambda_{\rm D} \approx \left(\frac{KT_{\rm e}}{4\pi n_0 e^2}\right)^{1/2}$ $\frac{\lambda_{\rm D}}{|p_0|} \approx \frac{\lambda_{\rm D} m_{\rm e} v_{\rm e}^2}{2e^2} \approx \frac{\lambda_{\rm D} KT_{\rm e}}{e^2} \approx 4\pi n_0 \lambda_{\rm D}^3$ $\approx \Lambda$

Comparison between the mean free path and the system size L determines the regime of the plasma

• A reasonable definition for the scattering time due to small angle collisions is the time it takes $\langle (\Delta v_{\perp}^{tot})^2 \rangle$ to equal v_0^2 . The collision frequency v_c due to small-angle collisions:

$$\frac{d}{dt}\left\langle \left(\Delta_{\perp}^{\text{tot}}\right)^{2}\right\rangle \approx 2\pi n_{0} v_{0}^{3} p_{0}^{2} \ln \Lambda \approx v_{0}^{2} v_{c}, \quad p_{0} \equiv \frac{2qq_{0}}{m_{e} v_{0}^{2}} \Rightarrow v_{c} = \frac{8\pi n_{0} e^{4} \ln \Lambda}{m_{e}^{2} v_{0}^{3}}$$

• With more careful derivation, the collisional time is obtained:

$$\tau_{\rm e}^{-1} = \nu_{\rm c} = \frac{4\sqrt{2\pi}ne^4 \ln\Lambda}{3\sqrt{m_{\rm e}}(KT_{\rm e})^{3/2}}$$

Mean free path:

$$l_{\rm mfp} = v_{\rm e} \tau_{\rm e}$$

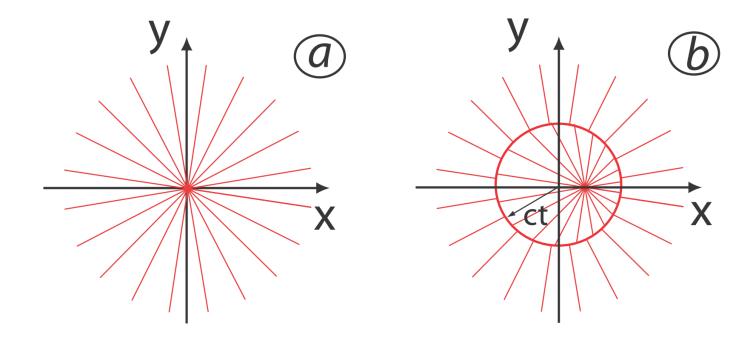
 $\left\{ \begin{array}{ll} l_{\rm mfp} < L & {\sf Fluid Theory} \\ l_{\rm mfp} > L & {\sf Kinetic Theory} \end{array} \right.$

 v_0

Electromagnetic wave is radiated when a charge particle is accelerated

28

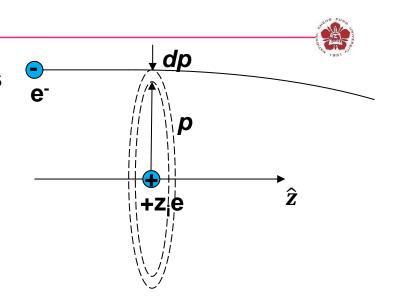
 The retarded potentials are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past.



- When an electron collides with a nucleus via coulomb interaction, the electron is accelerated and thus radiates, called Bremsstrahlung radiation.
- In the non-relativistic limit, the Bremsstrahlung radiation power is:

=>

$$P_{\rm B,e1,i1} = \frac{e^2}{6\pi\epsilon_0} \frac{\dot{v}^2}{c^3}$$



p: Impact parameter

• The coulomb force experienced by the electron is:

$$\dot{v} = \frac{F}{m_{\rm e}} = \frac{ze^2}{4\pi\epsilon_{\rm o}m_{\rm e}r^2} = \frac{ze^2}{4\pi\epsilon_{\rm o}m_{\rm e}[p^2 + (vt)^2]} \approx \frac{ze^2}{4\pi\epsilon_{\rm o}m_{\rm e}p^2}$$
$$P_{\rm B,e1,i1} = \frac{z^2e^6}{96\pi^3\epsilon_{\rm o}{}^3c^3m_{\rm e}{}^2}\frac{1}{p^4} \quad (W)$$

• The electron begins to accelerate when it is about a distance *b* from the ion. It continuous to accelerate until it travels a distance *p* away from the ion.

$$\Delta t = \frac{2p}{v}$$

- Therefore, the energy loss by one electron is: $E_{\rm B,e1,i1} \approx P_{\rm B,e1,i1} \Delta t = \frac{z^2 e^6}{48\pi^3 \epsilon_0{}^3 c^3 m_{\rm e}{}^2} \frac{1}{v p^3} \ ({\rm J})$
- With careful integration:

$$E_{B,e1,i1} = \int_{-\infty}^{\infty} P_{B,e1,i1} dt = \frac{2z^2 e^6}{3(4\pi\epsilon_0)^3 m_e^2 c^3} \int_{-\infty}^{\infty} \frac{1}{[p^2 + (\nu t)^2]^2} dt$$
$$= \frac{\pi z^2 e^6}{3(4\pi\epsilon_0)^3 m_e^2 c^3} \frac{1}{\nu p^3}$$

<u>e</u>

р

dp

р

â

 To consider the electron colliding with all ions with impact parameter *p* from 0 to ∞ and include the distribution function of ions f_i(v_i).

$$\overline{P}_{B,e1} = \int d\overline{v}_{i} \int_{0}^{\infty} \overline{E}_{B,e1,i1} |\overline{v}_{e} - \overline{v}_{i}| f_{i}(\overline{v}_{i}) 2\pi p \, dp$$

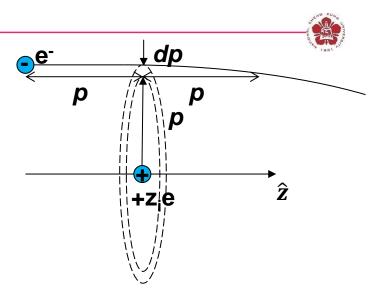
• In addition, we need to consider the distribution function of electrons $f_e(v_e)$. The total power loss is:

$$\overline{P}_{B} = \int d\overline{v}_{i} \int d\overline{v}_{e} \int_{0}^{\infty} \overline{E}_{B,e1,i1} |\overline{v}_{e} - \overline{v}_{i}| f_{i}(\overline{v}_{i}) f_{e}(\overline{v}_{e}) 2\pi p \, dp$$

$$|\overline{v}_{e} - \overline{v}_{i}| \approx v_{e} \, .$$

- Since $|v_e| >> |v_i|$, $|\vec{v}_e \vec{v}_i| \approx v_e$.
- In addition:

$$\int f_i(\vec{v}_i) \, \mathrm{d} \, \vec{v}_i \equiv n_i$$
$$d \, \vec{v}_e = dv_x dv_y dv_z = v_e^2 \sin \theta \, dv d\theta d\phi \to 4\pi v_e^2 dv_e$$
$$f_e = n_e \left(\frac{m_e}{2\pi T_e}\right)^{3/2} \exp\left(-\frac{m_e v_e^2}{2T_e}\right)$$



31

• Notice that we are using classical physics. We are not taking account of quantum effects which happen on a length scale of deBroglie wavelength $\Delta x = \hbar/(m_e v)$. Therefore, we have $p_{min} = \hbar/(m_e v)$.

$$\begin{split} &\int_{0}^{\infty} \frac{dp}{p^{2}} \to \int_{p_{\min}}^{\infty} \frac{dp}{p^{2}} = \frac{1}{p_{\min}} = \frac{m_{e}v_{e}}{h} = \frac{2\pi m_{e}v_{e}}{h} \\ &\overline{P}_{B} = 8\pi^{2}n_{i}n_{e} \left(\frac{z^{2}e^{6}}{48\pi^{3}\epsilon_{0}{}^{3}c^{3}m_{e}{}^{2}}\right) \left(\frac{m_{e}}{2\pi T_{e}}\right)^{3/2} \int_{0}^{\infty} v_{e}{}^{2}\exp\left(-\frac{m_{e}v_{e}{}^{2}}{2T_{e}}\right) dv_{e} \int_{0}^{\infty} \frac{dp}{p^{2}} \\ &= 8\pi^{2}n_{i}n_{e} \left(\frac{z^{2}e^{6}}{48\pi^{3}\epsilon_{0}{}^{3}c^{3}m_{e}{}^{2}}\right) \left(\frac{m_{e}}{2\pi T_{e}}\right)^{3/2} \frac{2\pi m_{e}}{h} \int_{0}^{\infty} v_{e}{}^{3}\exp\left(-\frac{m_{e}v_{e}{}^{2}}{2T_{e}}\right) dv_{e} \\ &\cdot \text{ With } \int_{0}^{\infty} x^{3}e^{-x^{2}} dx = \frac{1}{2} , \qquad \text{ a better value: } \left(\frac{2^{1/2}}{3\pi^{5/2}}\right) \\ &\overline{P}_{B} = \left(\frac{2^{1/2}}{6\pi^{3/2}}\right) \left(\frac{e^{6}}{\epsilon_{0}{}^{3}c^{3}hm_{e}{}^{3/2}}\right) z^{2}n_{i}n_{e}T_{e}{}^{1/2} \quad \left(\frac{W}{m^{3}}\right) \end{split}$$

• For multiple ion species: n_j, z_j

$$\overline{P}_{B} = \left(\frac{2^{1/2}}{3\pi^{5/2}}\right) \left(\frac{e^{6}}{\epsilon_{0}^{3}c^{3}hm_{e}^{3/2}}\right) n_{e} T_{e}^{1/2} \sum_{j} z_{j}^{2} n_{i,j} \left(\frac{W}{m^{3}}\right)$$
$$= \left(\frac{2^{1/2}}{3\pi^{5/2}}\right) \left(\frac{e^{6}}{\epsilon_{0}^{3}c^{3}hm_{e}^{3/2}}\right) z_{eff}^{2} n_{e}^{2} T_{e}^{1/2} \left(\frac{W}{m^{3}}\right)$$

where
$$Z_{eff} \equiv \frac{\sum_{j} z_j^2 n_j}{n_e} = \frac{\sum_{j} z_j^2 n_j}{\sum_{j} z_j n_j}$$
 $n_e = \sum_{j} z_j n_j$

$$\overline{P}_{B} = 5.35 \times 10^{-37} Z_{\text{eff}} n_{e\,(\text{m}^{-3})}^{2} T_{e\,(\text{keV})}^{1/2} \left(\frac{W}{m^{3}}\right)$$
$$\overline{P}_{B} \equiv C_{\text{B}} Z_{\text{eff}} n_{e\,(\text{m}^{-3})}^{2} T_{e\,(\text{keV})}^{1/2} \left(\frac{W}{m^{3}}\right)$$

Ignition condition (Lawson criterion) revision

Steady state 0-D power balance:

 $S_{\alpha}+S_{h}=S_{B}+S_{k}$ S_{h} : external heating S_{α} : α particle heating $D + T \rightarrow He^{4}(3.5 \text{ MeV}) + n(14.1 \text{ MeV})$ **S**_B: Bremsstrahlung radiation

$$S_B = C_B Z_{eff} n_{e(m^{-3})}^2 T_{e(keV)}^{1/2} \left(\frac{W}{m^3}\right)$$
$$= \frac{1}{4} C_B \frac{p^2}{T^{3/2}}$$

S_k: heat conduction lost

$$S_{\alpha} = \frac{1}{4} E_{\alpha} n^{2} \langle \sigma v \rangle = \frac{1}{16} E_{\alpha} \frac{p^{2} \langle \sigma v \rangle}{T^{2}} \qquad S_{\kappa} = \frac{3}{2} \frac{p}{\tau}$$
$$E_{\alpha} = 3.5 \text{ MeV}$$
$$p = p_{e} + p_{i} = 2p_{e} = 2n_{e}T \equiv 2nT$$

2

$$\frac{1}{16}E_{\alpha}\frac{p^2\langle\sigma v\rangle}{T^2} \ge \frac{1}{4}C_{\rm B}\frac{p^2}{T^{3/2}} + \frac{3}{2}\frac{p}{\tau}$$

Ignition condition (Lawson criterion) revision

• Steady state 0-D power balance:

$$S_{\alpha}+S_{h}=S_{B}+S_{k}$$

$$\frac{1}{16}E_{\alpha}\frac{p^{2}\langle\sigma v\rangle}{T^{2}} \ge \frac{1}{4}C_{B}\frac{p^{2}}{T^{3/2}} + \frac{3}{2}\frac{p}{\tau}$$

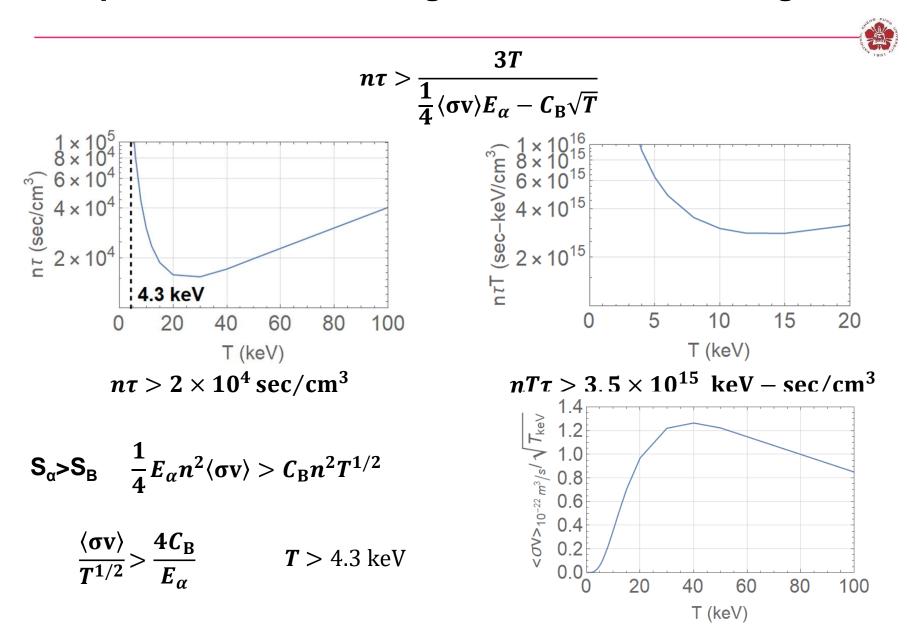
$$p\tau \ge \frac{6}{\frac{1}{4}E_{\alpha}\frac{\langle\sigma v\rangle}{T^{2}} - C_{B}\frac{1}{T^{3/2}}}$$

$$nT\tau \ge \frac{3T^{2}}{\frac{1}{4}\langle\sigma v\rangle E_{\alpha} - C_{B}\sqrt{T}}$$

$$n\tau \ge \frac{3T}{\frac{1}{4}\langle\sigma v\rangle E_{\alpha} - C_{B}\sqrt{T}}$$

$$p = p_{\mathrm{e}} + p_{\mathrm{i}} = 2p_{\mathrm{e}} = 2n_{e}T \equiv 2nT$$

Temperature needs to be greater than ~5 keV to ignite



Under what conditions the plasma keeps itself hot?

Water Bart

• Steady state 0-D power balance:

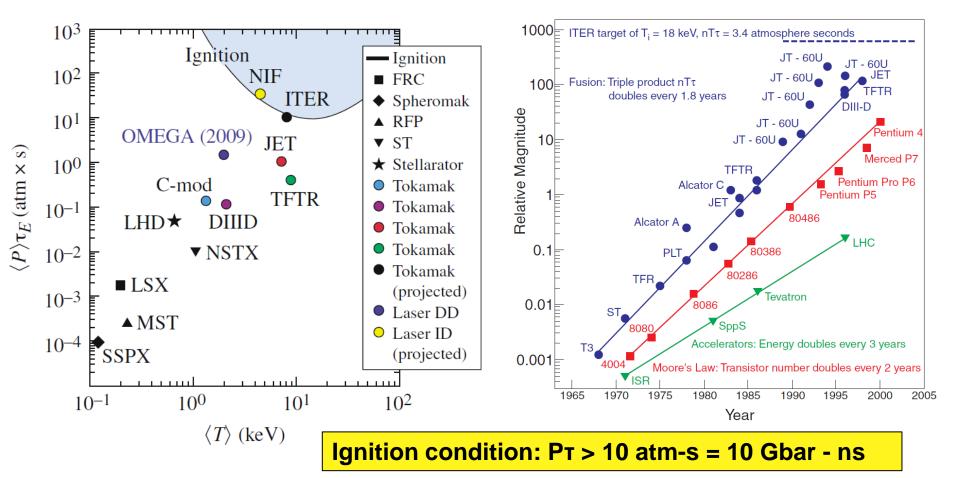
 $S_{\alpha}+S_{h}=S_{B}+S_{k}$

- S_{α} : α particle heating
- S_h: external heating
- **S**_B: Bremsstrahlung radiation
- S_k: heat conduction lost

Ignition condition: Pτ > 10 atm-s = 10 Gbar - ns

- P: pressure, or called energy density
- т is confinement time

We are closed to ignition!

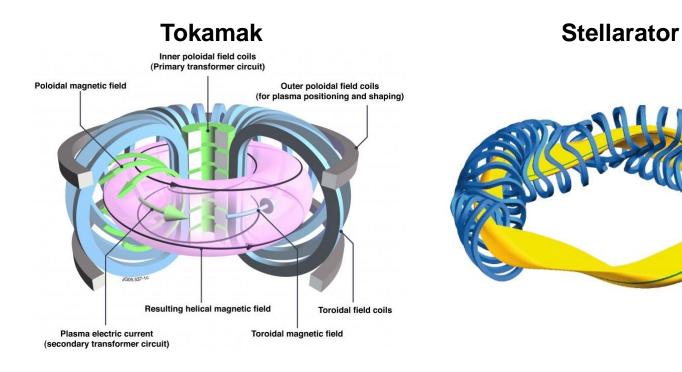


A. J. Webster, Phys. Educ. 38, 135 (2003)

R. Betti, etc., Phys. Plasmas, 17, 058102 (2010)

The plasma is too hot to be contained

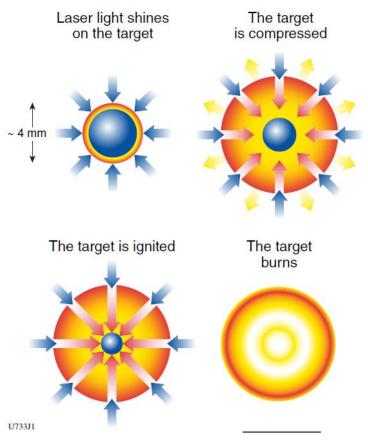
 Solution 1: Magnetic confinement fusion (MCF), use a magnetic field to contain it. P~atm, τ~sec, T~10 keV (10⁸ °C)



https://www.euro-fusion.org/2011/09/tokamak-principle-2/ https://en.wikipedia.org/wiki/Stellarator

Don't confine it!

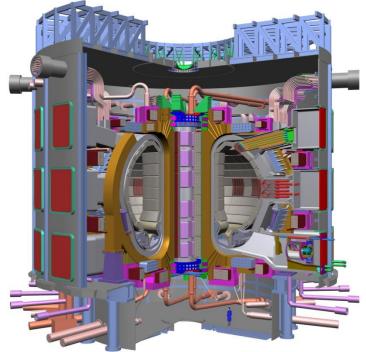
 Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined by its own inertia: P~Gigabar, τ~nsec, T~10 keV (10⁸ °C)



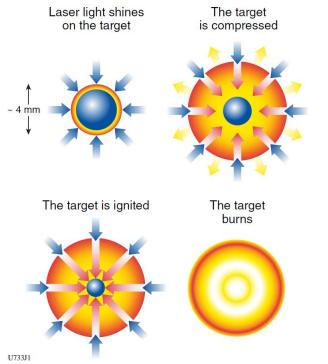
Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

To control? Or not to control?

Magnetic confinement fusion (MCF)



 Plasma is confined by toroidal magnetic field. Inertial confinement fusion (ICF)



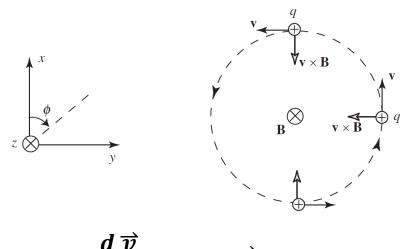
 A DT ice capsule filled with DT gas is imploded by laser.

Laboratory for Laser Energetics, University of Rochester is a pioneer in laser fusion

Course Outline

- Magnetic confinement fusion (MCF)
 - Gyro motion, MHD
 - 1D equilibrium (z pinch, theta pinch)
 - Drift: ExB drift, grad B drift, and curvature B drift
 - Tokamak, Stellarator (toroidal field, poloidal field)
 - Magnetic flux surface
 - 2D axisymmetric equilibrium of a torus plasma: Grad-Shafranov equation.
 - Stability (Kink instability, sausage instability, Safety factor Q)
 - Central-solenoid (CS) start-up (discharge) and current drive
 - CS-free current drive: electron cyclotron current drive, bootstrap current.
 - Auxiliary Heating: ECRH, Ohmic heating, Neutral beam injection.

Charged particles gyro around the magnetic field line



$$m\frac{d\,\overline{v}}{dt} = q\,\overline{v}\times\overline{B}$$

• Assuming $\overrightarrow{B} = B\widehat{z}$ and the electron oscillates in x-y plane

$$mv_{\rm x} = qBv_{\rm y}$$

 $\dot{mv_{\rm y}} = -qBv_{\rm x}$

 $\dot{mv_z} = 0$ $v_z = v_{||} = \text{constant}$

$$\ddot{\boldsymbol{v}}_{\mathbf{x}} = -\frac{qB}{m} \dot{\boldsymbol{v}}_{\mathbf{y}} = -\left(\frac{qB}{m}\right)^2 \boldsymbol{v}_{\mathbf{x}}$$
$$\ddot{\boldsymbol{v}}_{\mathbf{y}} = -\frac{qB}{m} \dot{\boldsymbol{v}}_{\mathbf{x}} = -\left(\frac{qB}{m}\right)^2 \boldsymbol{v}_{\mathbf{y}}$$

 $\omega_{\rm c} \equiv rac{|q|B}{m}$ Cyclotron frequency or gyrofrequency

$$\ddot{v}_{x} + \omega_{c}^{2} v_{x} = 0$$

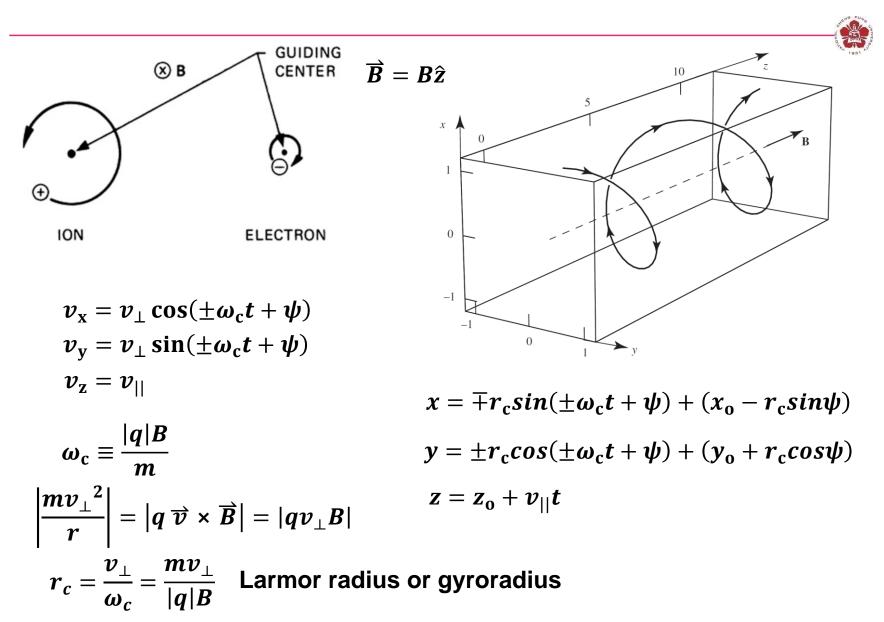
$$\ddot{v}_{y} + \omega_{c}^{2} v_{y} = 0$$

$$v_{x} = v_{\perp} \cos(\pm \omega_{c} t + \psi)$$

$$v_{y} = -v_{\perp} \sin(\pm \omega_{c} t + \psi)$$

$$v_{z} = v_{||}$$

Charged particles spiral around the magnetic field line



ExB drift

Charge particles drift across magnetic field lines when an electric field not parallel to the magnetic field occurs

$$\widehat{\boldsymbol{w}}_{E} = \widehat{\boldsymbol{x}}_{\perp} + \widehat{\boldsymbol{z}}_{E||} = \widehat{\boldsymbol{x}}_{E_{\perp}} + \widehat{\boldsymbol{z}}_{E||}$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{w}}_{\perp} + \widehat{\boldsymbol{z}}_{E||} = \widehat{\boldsymbol{x}}_{E_{\perp}} + \widehat{\boldsymbol{z}}_{E||}$$

$$\widehat{\boldsymbol{w}}_{d} = \widehat{\boldsymbol{w}}_{ac}(t) = \widehat{\boldsymbol{x}}_{E_{\perp}} + \widehat{\boldsymbol{v}}_{e} \times \widehat{\boldsymbol{z}}_{B} + \widehat{\boldsymbol{v}}_{ac}(t) \times \widehat{\boldsymbol{z}}_{B}]$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{\perp} + \widehat{\boldsymbol{z}}_{E_{\perp}} + \widehat{\boldsymbol{z}}_{E_{\parallel}} = \widehat{\boldsymbol{x}}_{E_{\perp}} + \widehat{\boldsymbol{z}}_{E_{\parallel}}$$

$$\widehat{\boldsymbol{w}}_{d} = \widehat{\boldsymbol{w}}_{e} \times \widehat{\boldsymbol{z}}_{B} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{x}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{z}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

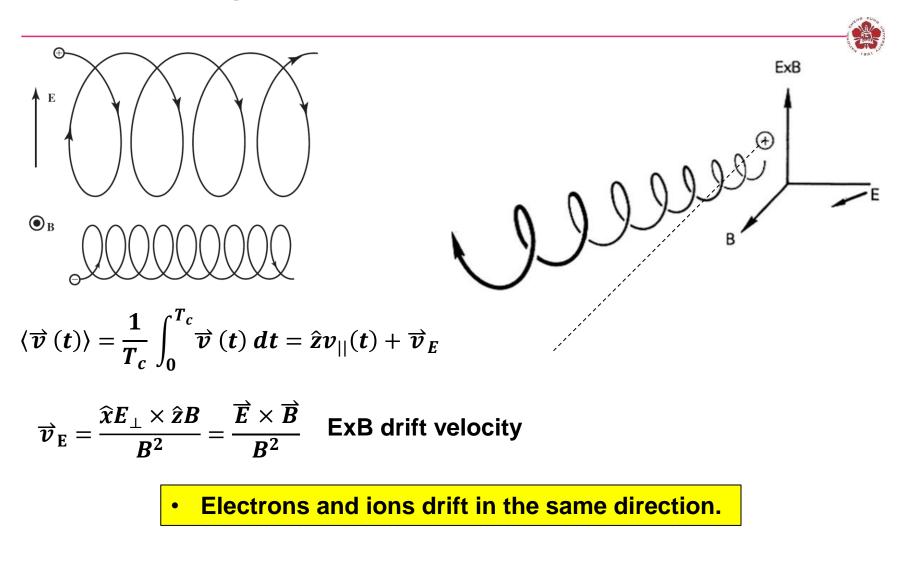
$$\widehat{\boldsymbol{w}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{z}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{z}}_{e} \times \widehat{\boldsymbol{z}}_{e} = 0$$

$$\widehat{\boldsymbol{w}}_{e} \times \widehat{\boldsymbol{z}}_{e} = \widehat{\boldsymbol{z}}_{e} \times \widehat{\boldsymbol{z}}_{e} \times \widehat{\boldsymbol{z}}_{e}$$

No current is generated in ExB drift



Gravitational drift

Charge particles drift across magnetic field lines when an external field not parallel to the magnetic field occurs

$$\vec{E} = \vec{E}_{\perp} + \hat{z}E_{||} = \hat{x}E_{\perp} + \hat{z}E_{||} \qquad \vec{F} = \vec{F}_{\perp} + \hat{z}F_{||} = \hat{x}F_{\perp} + \hat{z}F_{||}
m\frac{dv_{||}}{dt} = qE_{||}
m\frac{d\vec{v}_{\perp}}{dt} = q(\hat{x}E_{\perp} + \vec{v}_{\perp} \times \hat{z}B)
\langle \vec{v}(t) \rangle = \frac{1}{T_c} \int_0^{T_c} \vec{v}(t) dt = \hat{z}v_{||}(t) + \vec{v}_E
\vec{v}_E = \frac{\hat{x}E_{\perp} \times \hat{z}B}{B^2} = \frac{\vec{E} \times \vec{B}}{B^2}
ExB drift velocity
$$\vec{F} = \vec{F}_{\perp} + \hat{z}F_{||} = \hat{x}F_{\perp} + \hat{z}F_{||}
m\frac{dv_{||}}{dt} = F_{||}
m\frac{dv_{||}}{dt} = q\left(\hat{x}\frac{F_{\perp}}{q} + \vec{v}_{\perp} \times \hat{z}B\right)
\langle \vec{v}(t) \rangle = \frac{1}{T_c} \int_0^{T_c} \vec{v}(t) dt = \hat{z}v_{||}(t) + \vec{v}_F
\vec{v}_F = \frac{\hat{x}E_{\perp} \times \hat{z}B}{B^2} = \frac{1}{q}\frac{\vec{F} \times \vec{B}}{B^2}
Gravitational drift velocity$$$$

 Electrons and ions drift in the opposite directions in the gravitational drift. Therefore, currents are generated.

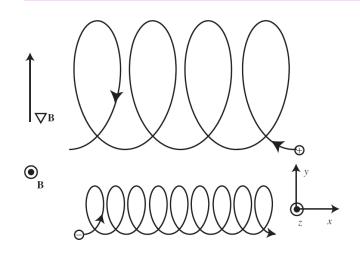
Drift in non-uniform B fields

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

Curvature drift Gradient-B drift ∇B R $\vec{v}_{\nabla} = \frac{m v_{\perp}^2}{2a} \frac{\vec{B} \times \nabla B}{B^3}$ $\vec{v}_R = \frac{mv_{||}^2}{2a} \frac{\vec{R}_c \times \vec{B}}{R_c B^2}$ $\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{a} \frac{\vec{R}_{\text{c}} \times \vec{B}}{R^2 R^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$

Gradient-B drift

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved



$$\vec{F} = q(\vec{v} \times \vec{B}) = \hat{x}qv_{y}B_{z} - \hat{y}qv_{x}B_{z}$$

$$\simeq \hat{x}qv_{y}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right) - \hat{y}qv_{x}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

$$B_{z}(y) = B_{o} + y\frac{\partial B_{z}}{\partial y} + y^{2}\frac{1}{2}\frac{\partial^{2}B_{z}}{\partial y^{2}} + \dots$$

$$F_{x} = qv_{y}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

$$F_{y} = -qv_{x}\left(B_{o} + y\frac{\partial B_{z}}{\partial y}\right)$$

In the case with no gradient B

$$x_{\rm c} = \mp r_{\rm c} \sin(\pm \omega_{\rm c} t + \psi)$$

$$y_{\rm c} = \pm r_{\rm c} \cos(\pm \omega_{\rm c} t + \psi)$$

$$v_{\rm x} = v_{\perp} \cos(\pm \omega_{\rm c} t + \psi)$$

$$v_{\rm y} = -v_{\perp}\sin(\pm\omega_{\rm c}t + \psi)$$

$$F_{x} \simeq -qv_{\perp}\sin(\pm\omega_{c}t + \psi) \times$$

$$\left(B_{o} \pm r_{c}\cos(\pm\omega_{c}t + \psi)\frac{\partial B_{z}}{\partial y}\right)$$

$$F_{y} = -qv_{\perp}\cos(\pm\omega_{c}t + \psi) \times$$

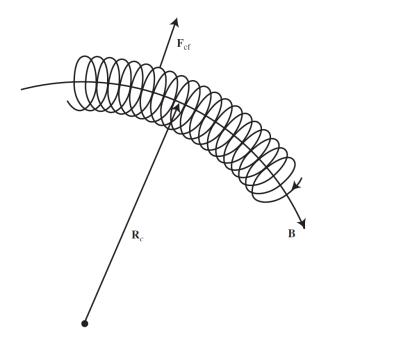
$$\left(B_{o} \pm r_{c}\cos(\pm\omega_{c}t + \psi)\frac{\partial B_{z}}{\partial y}\right)$$

Charge particles drift across magnetic field lines when the magnetic field is not uniform

$$\begin{array}{c} & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Curvature drift

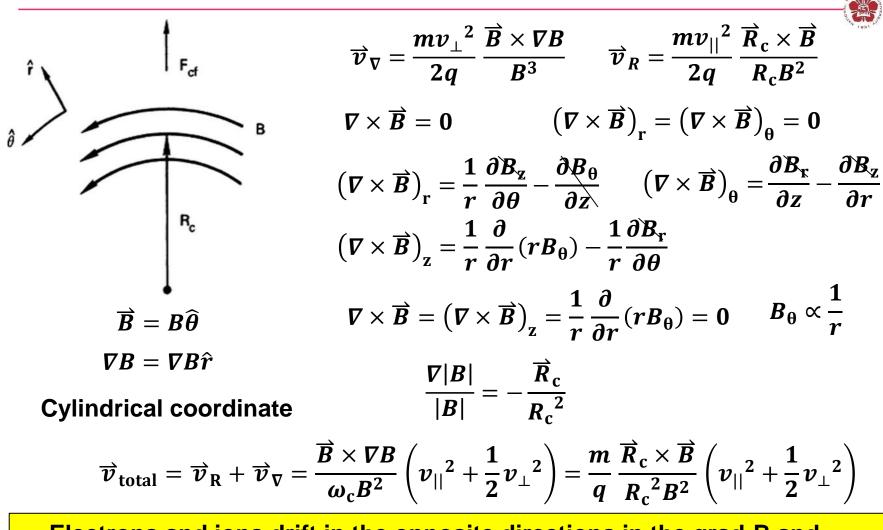
Charge particles drift across magnetic field lines when the magnetic field line is curved



$$\vec{F}_{cf} = mv_{||}^{2} \frac{\vec{R}_{c}}{R_{c}^{2}}$$
$$\vec{v}_{F} = \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^{2}}$$
$$\vec{v}_{R} = \frac{1}{q} \frac{\vec{F}_{cf} \times \vec{B}}{B^{2}} = \frac{mv_{||}^{2}}{2q} \frac{\vec{R}_{c} \times \vec{B}}{R_{c}B^{2}}$$

Drift in non-uniform B fields

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved



 Electrons and ions drift in the opposite directions in the grad-B and curvature drifts. Therefore, currents are generated.

Quick summary of different drifts

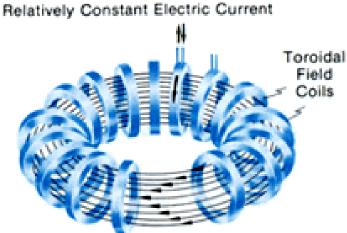
ExB drift:
$$\overrightarrow{v}_{E} = \frac{\overrightarrow{E} \times \overrightarrow{B}}{B^{2}}$$
 Independent to charge
Gravitational drift: $\overrightarrow{v}_{F} = \frac{1}{q} \frac{\overrightarrow{F} \times \overrightarrow{B}}{B^{2}}$ Depended on charge
Grad-B drift: $\overrightarrow{v}_{\nabla} = \frac{mv_{\perp}^{2}}{2q} \frac{\overrightarrow{B} \times \nabla B}{B^{3}}$ Depended on charge
Curvature drift: $\overrightarrow{v}_{R} = \frac{mv_{\parallel}^{2}}{2q} \frac{\overrightarrow{R}_{c} \times \overrightarrow{B}}{R_{c}B^{2}}$ Depended on charge

• Non-uniform B drift:

$$\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{q} \frac{\vec{R}_{\text{c}} \times \vec{B}}{R_{\text{c}}^2 B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$$

Plasma can be confined in a doughnut-shaped chamber with toroidal magnetic field

Tokamak - "toroidal chamber with magnetic coils" (тороидальная камера с магнитными катушками)



Constant Toroidal Field

Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3

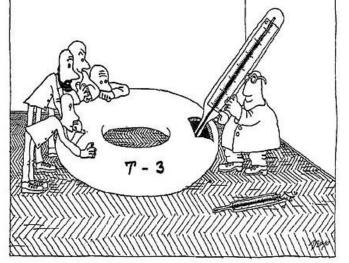
Ьу

N. J. PEACOCK D. C. ROBINSON M. J. FORREST P. D. WILCOCK UKAEA Research Group, Culham Laboratory, Abingdon, Berkshire

V. V. SANNIKOV

I. V. Kurchatov Institute, Moscow Electron temperatures of 100 eV up to 1 keV and densities in the range I–3 \times 10¹³ cm⁻³ have been measured by Thomson scattering on Tokamak T3. These results agree with those obtained by other techniques where direct comparison has been possible.

https://www.iter.org/mach/tokamak https://en.wikipedia.org/wiki/Tokamak#cite_ref-4 Drawing from the talk "Evolution of the Tokamak" given in 1988 by B.B. Kadomtsev at Culham. N. J. Peacock,et al., Nature **224**, 488 (1969)



 $T_{\rm e} = 100 \sim 1 \; {\rm keV}$

 $n_{\rm e} = 1-3 \text{ x} 10^{13} \text{ cm}^{-3}$

Quick summary of different drifts

• ExB drift:
$$\vec{v}_{\rm E} = \frac{\vec{E} \times \vec{B}}{B^2}$$

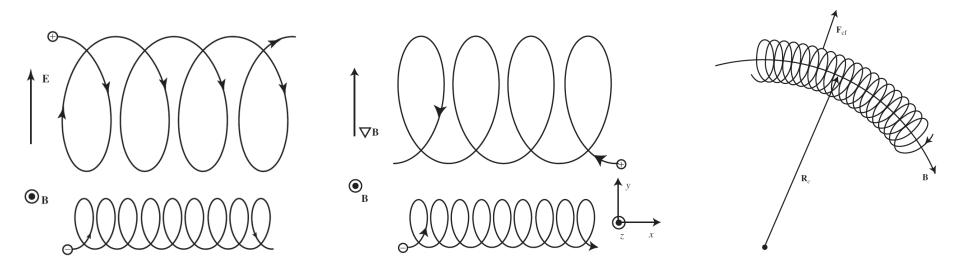
Independent to charge

• Grad-B drift:
$$\vec{v}_{\nabla} = \frac{m v_{\perp}^2}{2q} \frac{\vec{B} \times \nabla B}{B^3}$$
 Depended on charge

Curvature drift:

$$\overrightarrow{v}_{R} = \frac{m v_{||}^{2}}{q} \frac{\overrightarrow{R}_{c} \times \overrightarrow{B}}{R_{c}^{2} B^{2}}$$

Depended on charge



Charged particles drift across field lines

