Introduction to Nuclear Fusion as An Energy Source

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 12

2025 spring semester

Tuesday 9:00-12:00

Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

https://nckucc.webex.com/nckucc/j.php?MTID=mf1a33a5dab5eb71de9da43 80ae888592

- Final exam 6/3 (One double-sided A4 cheating sheet is allowed.)
 - Contents after the midterm, i.e, after (included) Lecture 8
- 6/10
 - Introduction to Formosa Integrated Research Spherical Tokamak (FIRST), First Tokamak being developed in Taiwan.
 - Alternative approaches to achieve nuclear fusion as an energy source.
- 6/17 Q&A

Course Outline

- Inertial confinement fusion (ICF)
 - Plasma frequency and critical density
 - Direct- and indirect- drive
 - Laser generated pressure (Inverse bremsstrahlung and Ablation pressure)
 - Burning fraction, why compressing a capsule?
 - Implosion dynamics
 - Shock (Compression with different adiabat)
 - Laser pulse shape
 - Rocket model, shell velocity
 - Laser-plasma interaction (Stimulated Raman Scattering, SRS; Stimulated Brillouin Scattering, SBS; Two-plasmon decay)
 - Instabilities (Rayleigh-taylor instability, Kelvin-Helmholtz instability, Richtmeyer-Meshkov instability)

Significant breakthrough was achieved in ICF recently

• Inertial confinement fusion (ICF)

 National Ignition Facility (NIF) demonstrated a gain grater than 1 for the first time on 2022/12/5. The yield of 3.15 MJ from the 2.05-MJ input laser energy, i.e., Q=1.5.

https://www.science.org/content/article/historic-explosion-long-sought-fusion-breakthrough

https://zh.wikipedia.org/wiki/國家點火設施

Don't confine it!

 Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined by its own inertia: P~Gigabar, τ~nsec, T~10 keV (10⁸ °C)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

Compression happens when outer layer of the target is heated by laser and ablated outward

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester R. Betti, HEDSA HEDP Summer School, 2015

Plasma is confined by its own inertia in inertial confinement fusion (ICF)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

A ball can not be compressed uniformly by being squeezed between several fingers

 ρ_2

P.-Y. Chang, PhD Thesis, U of Rochester (2013) R. S. Craxton, etc., *Phys. Plasmas* **22**, 110501 (2015)

A spherical capsule can be imploded through directly or indirectly laser illumination

Softer material can be compressed to higher density

Compression of a baseball

Compression of a tennis ball

10

https://www.youtube.com/watch?v=uxIIdMoAwbY https://newsghana.com.gh/wimbledon-slow-motion-video-of-how-a-tennis-ball-turns-to-goo-after-serve/

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis *R. Betti, HEDSA HEDP Summer School, 2015

External "spark" can be used for ignition

Shock ignition

Fast ignition

Ignition can happen by itself or being triggered externally

- Riccardo Betti, University of Rochester, HEDSA HEDP summer school, San Diego, CA, August 16-21, 2015
- ICF lectures for course PHY558/ME533
- The physics of inertial fusion, by S. Atzeni, J. Meyer-Ter-Vehn

Laser-driven imploding capsules are mm-size shells with hundreds of µm thick layers of cryogenic solid DT

Conservation equations of gas-dynamics and ideal gas EOS are used for DT plasma

 $\partial_{\mathrm{t}} \rho + \partial_{\mathrm{x}} (\rho \, \overline{v}) = 0$

 $\partial_{\mathrm{t}}(\rho \, \overline{v}) + \partial_{\mathrm{x}}(p + \rho v^2) = \overline{F}$

- Mass conservation:
- Momentum conservation:
- **Energy conservation:**
- Ideal gas EOS:

$$\partial_t \epsilon + \partial_x (\vec{v} (\epsilon + p) - \kappa \partial_x T) = \text{source} + \text{sinks}$$

$$p = (n_e T_e + n_i T_i) = 2nT = \frac{2}{m_i}\rho_i T = \frac{\rho T}{A}$$

Total energy per unit volume:

Mass density:

$$\epsilon = \frac{1}{2}p + p$$
$$\rho = n_{i}m_{i}$$

3

Plasma thermal conductivity: κ

The plasma thermal conductivity is written in a power law of T

$$n\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial T}{\partial x}\right) \to n\frac{T}{t} \sim \frac{\kappa T}{x^2} \Rightarrow \kappa \sim n\frac{x^2}{t}$$
$$x \Rightarrow \lambda_{\rm mfp} \sim v_{\rm th}\tau_{\rm coll} = \frac{v_{\rm th}}{\nu_{\rm coll}} \qquad t \Rightarrow \tau_{\rm coll} = \frac{1}{\nu_{\rm coll}} \qquad \Rightarrow \kappa \sim n\frac{v_{\rm th}^2}{\nu_{\rm coll}}$$
$$T \qquad \Rightarrow \kappa \sim T^{5/2}$$

$$v_{\rm th}^2 \sim \frac{T}{m_{\rm e}} \qquad \qquad \nu_{\rm coll} \sim \frac{n}{T^{3/2}}$$

v_{th}: thermal velocity
 v_{coll}: collision frequency
 τ_{coll}: collision time

Plasma thermal conductivity

$$\kappa \approx \kappa_0 T^{5/2}$$

Sound speed in an ideal DT gas/plasma

 Adiabatic sound speed when the entropy is conserved along the fluid motion

$$C_{\rm s}^{\rm adiabatic} = C_{\rm s} \left(\text{constant entropy} \right) = \sqrt{\frac{5}{3} \frac{p}{\rho}} = \sqrt{\frac{10}{3} \frac{T}{m_{\rm i}}}$$

 Isothermal sound speed when the temperature is constant along the fluid motion

$$C_{\rm s}^{\rm isothermal} = C_{\rm s} \left(\text{constant temperature} \right) = \sqrt{\frac{p}{\rho}} = \sqrt{\frac{2T}{m_{\rm i}}}$$

The laser light cannot propagate past a critical density

• Critical density is given by plasma frequency=laser frequency

The laser generates a pressure by depositing energy at the critical surface

20

Pressure generated by a laser is obtained using energy conservation equation

Laser produced ablation pressure

 $\partial_t \epsilon + \partial_x [\overrightarrow{v} (\epsilon + p) - \kappa \partial_x T] = \text{source} + \text{sinks} = I\delta(x - x_c) \quad I \approx \kappa^- \left(\frac{\partial T}{\partial x}\right)$

• Solving at steady state in the conduction zone (x<x_c) leads to $v_c = C_S$

$$v\left(\varepsilon+p\right)\sim\kappa\partial_{x}T$$
 for $x\leq x_{\mathrm{cr}}^{-}$

• At the sonic point (i.e., critical surface) $C_{\rm s} \sim \sqrt{p/
ho}$

$$I = \left[v\left(\varepsilon + p\right)\right]_{x_{\mathrm{cr}}} = C_{\mathrm{s}}\left(\frac{5}{2}p_{\mathrm{cr}} + \rho_{\mathrm{cr}}\frac{C_{\mathrm{s}}^2}{2}\right) \sim \frac{p_{\mathrm{cr}}^{3/2}}{\rho_{\mathrm{cr}}^{1/2}}$$

• The total pressure (static+dynamic) is the ablation pressure

$$p_{\rm A} = \left[p + \rho v^2\right]_{x=x_{\rm cr}} = 2p_{\rm cr} \sim \left(I\rho_{\rm cr}^{1/2}\right)^{2/3} \sim \left(\frac{I}{\lambda_{\rm L}}\right) \qquad \qquad n_{\rm e}^{\rm cr} = \frac{1.1 \times 10^{21}}{\lambda_{\rm L}^2} \,{\rm cm}^{-3}$$

• The laser-produced total (ablation) pressure on target:

$$p_{\rm A}({\rm Mbar}) \approx 83 \left(\frac{I_{15}}{\lambda_{{\rm L},\mu{\rm m}}/0.35}\right)^{2/3}$$

 I_{15} : laser intensity in 10¹⁵w/cm² $\lambda_{L,\mu m}$: laser wavelength in μm

-Corona

iser enerav

critical surface

2/3 (T > 2/3

eposited near

conduction zone

Ablated plasma

 $\epsilon = \frac{3}{2}p + \rho \frac{v^2}{2}$

Light Hot

Heat flows by

conduction

Targe

heavy

cold

Mass ablation rate induced by the laser

• At steady state, the mass flow across the critical surface must equal the mass flow off the shell (i.e., the mass ablation rate)

$$\dot{m}_{\rm a} = \rho v = \rho_{\rm cr} v_{\rm cr} = \rho_{\rm cr} C_{\rm s}^{\rm cr} = \rho_{\rm cr} \sqrt{\frac{p_{\rm cr}}{\rho_{\rm cr}}} = \sqrt{\rho_{\rm cr} p_{\rm cr}}$$

$$\rho_{\rm cr} \sim \frac{1}{\lambda_{\rm L}^2} \qquad p_{\rm cr} \sim \left(\frac{I}{\lambda}\right)^{2/3}$$

$$\Rightarrow \dot{m}_{\rm a} = \frac{I^{1/3}}{\lambda_{\rm L}^{4/3}}$$

$$\dot{m}_{\rm a} = 3.3 \times 10^5 \frac{I_{15}^{1/3}}{\lambda_{\rm L}^{4/3}} \,{\rm g/cm^2 \, s}$$

Most of the absorbed laser energy goes into the kinetic and thermal energy of the expanding blow-off plasma

• The rocket model:

Shell Newton's law

$$M\frac{du}{dt} = -4\pi R^2 p_{\rm a}$$

Shell mass decreases due to ablation

$$\frac{dM}{dt} = -4\pi R^2 \dot{m}_{\rm a}$$

p_a =ablation rate x exhaust velocity

 $p_{\rm a} = \dot{m}_{\rm a} u_{\rm exhaust}$

Shell velocity can be obtained by integrating the rocket equations

$$M\frac{du}{dt} = -4\pi R^2 p_a \qquad \frac{dM}{dt} = -4\pi R^2 \dot{m}_a \qquad p_a = \dot{m}_a u_{exhaust}$$

$$M\frac{du}{dt} = -4\pi R^2 p_a = -4\pi R^2 \dot{m}_a u_{exhaust}$$

$$= -4\pi R^2 u_{exhaust} \frac{1}{-4\pi R^2} \frac{dM}{dt}$$

$$= u_{exhaust} \frac{dM}{dt}$$

$$\int du = u_{exhaust} \int \frac{dM}{M}$$

$$u_{shell} = u_{exhaust} \ln\left(\frac{M_{initial}}{M_{final}}\right)$$

$$E_{kin}^{shell} = \frac{M_{final}}{2} u_{shell}^2 = \frac{M_{final}}{2} \left[u_{exhaust} \ln\left(\frac{M_{initial}}{M_{final}}\right)\right]^2$$

$$E_{exhaust} = (M_{initial} - M_{final}) \left(\frac{u_{exhaust}^2 + \frac{3}{2} \frac{p_{ex}}{p_{ex}}}{2}\right) \qquad (dynamic + static)$$

$$M_{exhaust} = M_{initial} - M_{final}$$

$$E_{\rm kin}^{\rm shell} = \frac{M_{\rm final}}{2} u_{\rm shell}^2 = \frac{M_{\rm final}}{2} \left[u_{\rm exhaust} \ln \left(\frac{M_{\rm initial}}{M_{\rm final}} \right) \right]^2$$

$$E_{\text{exhaust}} = \left(M_{\text{initial}} - M_{\text{final}}\right) \left(\frac{u_{\text{exhaust}}^2}{2} + \frac{3}{2} \frac{p_{\text{ex}}}{\rho_{\text{ex}}}\right)$$

Take
$$u_{\text{exhaust}}^2 \approx C_{\text{s}}^2 \approx \frac{p_{\text{ex}}}{\rho_{\text{ex}}}$$

 $\eta_{\text{h}} = \frac{E_{\text{kin}}^{\text{shell}}}{E_{\text{exhaust}}} = \frac{M_{\text{f}}/M_{\text{i}} \left[\ln \left(M_{\text{f}}/M_{\text{i}}\right)\right]^2}{4 \left(1 - M_{\text{f}}/M_{\text{i}}\right)}$
 (0.20)
 0.15
 0.15
 0.00
 0.05
 0.00
 0.05
 0.00
 0.02
 0.4
 0.6
 0.8
 1.0
 $M_{\text{f}}/M_{\text{i}}$

- The entropy S is a property of a gas just like p, T, and ρ

$$S = c_{\rm v} \ln \left[\frac{p}{\rho^{5/3}} {\rm const} \right] = c_{\rm v} \ln \alpha \qquad \qquad \alpha = {\rm const} \frac{p}{\rho^{5/3}}$$

- α is called the "adiabat"
- The entropy/adiabat S/α changes through dissipation or heat sources/sinks

$$\rho\left(\frac{\partial S}{\partial t} + \vec{u} \cdot \nabla S\right) = \frac{DS}{Dt} = \mu \frac{\left|\nabla \vec{u}\right|^2}{T} + \frac{\nabla \cdot \kappa \nabla T}{T} + \text{sources/sinks}$$

 In an ideal gas (no dissipation) and without sources and sinks, the entropy/adiabat is a constant of motion of each fluid element

$$\frac{DS}{dt} = 0 \Rightarrow S , \ \alpha = \text{const} \Rightarrow p \sim \alpha \rho^{5/3}$$

It is easier to compress a low adiabat (entropy) gas

$$W_{1\to 2} = -\int p dV \sim -\int_{\rho_1}^{\rho_2} \alpha \rho^{5/3} d\left(\frac{M}{\rho}\right) \sim \alpha M\left(\rho_2^{2/3} - \rho_1^{2/3}\right)$$

• Smaller α -> higher density for the same pressure

$$\alpha \sim \frac{p}{\rho^{5/3}} \Rightarrow \rho \sim \left(\frac{p}{\alpha}\right)^{3/5}$$

- In HEDP, the constant in adiabat definition comes from the normalization of the pressure against the Fermi pressure.
- When thermal effects are negligible at very high densities, the pressure is proportional to $\rho^{5/3}$ due to the quantum mechanical effects (degenerate electron gas) just like isentropic flow

$$\alpha \equiv \frac{p}{p_{\rm F}} \quad \Rightarrow \alpha_{\rm DT} = \frac{p_{\rm Mbar}}{2.2\rho_{\rm g/cc}^{5/3}}$$

Softer material can be compressed to higher density

Compression of a baseball

Compression of a tennis ball

https://www.youtube.com/watch?v=uxIIdMoAwbY https://newsghana.com.gh/wimbledon-slow-motion-video-of-how-a-tennis-ball-turns-to-goo-after-serve/

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis 30

Rankine-Hugoniot conditions are obtained using conservation of mass, momentum and energy across the shock front

$$\rho_1 u_1 = \rho_2 u_2$$

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

$$u_1 (\varepsilon_1 + p_1) = u_2 (\varepsilon_2 + p_2)$$

Ideal gas/plasma:

$$\varepsilon = \frac{3}{2}p + \rho \frac{u^2}{2}$$

For a strong shock where $p_2 >> p_1$, the R-H conditions are simplified

$$\begin{aligned} \frac{\rho_2}{\rho_1} &\approx 4 \\ U_{\rm shock} &= -u_1 \approx \sqrt{\frac{4p_2}{3\rho_1}} \\ u_2 &\approx \sqrt{\frac{p_2}{12\rho_1}} \\ \frac{\alpha_2}{\alpha_1} &= \frac{p_2/\rho_2^{5/3}}{p_1/\rho_1^{5/3}} \approx \frac{1}{4^{5/4}} \frac{p_2}{p_1} >> 1 \end{aligned}$$

The adiabat increases through the shock.

In an ideal gas/plasma, the adiabat α only raises when a shock is present

Post-shock density

 $\rho_2 \approx 4\rho_1$

• Adiabat set by the shock for DT:

$$\alpha_2 \approx \frac{p_{2,\text{Mbar}}}{2.2 \left(4\rho_{1,\text{g/cc}}\right)^{5/3}}$$

Time required for the shock to reach the rear target surface (shock break-out time, t_{sb})

$$t_{\rm sb} = \frac{\Delta_1}{u_{\rm shock}} = \Delta_1 \sqrt{\frac{3\rho_1}{4p_2}} \propto \sqrt{\frac{1}{\alpha_2 \rho_1^{2/3}}}$$

Higher laser intensity leads to higher adiabat

• For a cryogenic solid DT target at 18 k:

$$\rho_1 = 0.25 \text{ g/cc}$$
 $\alpha = \frac{p_{\text{Mbar}}}{2.2}$
 $p \approx 83 \left(\frac{I_{15}}{\lambda_{\mu\text{m}}/0.35}\right)^{2/3}$

$$I \approx 4.3 \times 10^{12} \text{ w/cm}^2 \implies p = 2.2 \text{ Mbar} \implies \alpha = 1$$
$$I \approx 1.2 \times 10^{13} \text{ w/cm}^2 \implies p = 4.4 \text{ Mbar} \implies \alpha = 2$$
$$I \approx 2.2 \times 10^{13} \text{ w/cm}^2 \implies p = 6.6 \text{ Mbar} \implies \alpha = 3$$

The pressure must be "slowly" increased after the first shock to avoid raising the adiabat

- After the foot of the laser pulse, the laser intensity must be raised starting at about 0.5t_{sb} and reach its peak at about t_{sb}
- Reaching I_{max} at t_{sb} prevents a rarefaction/decompression wave to propagate back from the rear target surface and decompress the target.

One dimensional implosion hydrodynamics

What are the stagnation values of the relevant hydrodynamic properties?

What variables can be controlled?

- Shell outer radius R₀ at time t=0
- Shell inner radius R₁ at time t=0
- The total laser energy on target
- Adiabat α through shocks
- Applied pressure p(t) through the pulse shape I(t)

$$\alpha \sim \frac{p}{\rho^{5/3}} \qquad p \sim I^{2/3} \qquad \qquad I(t)$$

There are three stages in the laser pulse: foot, ramp, and flat top

The adiabat is set by the shock launched by the foot of the laser pulse

Density and thickness at shock break out time are expressed in laser intensity

• Use $p \sim I^{2/3}$

Shell density
$$\rho_{\rm sb} \sim 4\rho_1 \left(\frac{p_{\rm max}}{p_{\rm foot}}\right)^{3/5} = 4\rho_1 \left(\frac{I_{\rm max}}{I_{\rm foot}}\right)^{2/5}$$

- Shell thickness $\Delta_{\rm sb} \sim \frac{\Delta_1}{4} \left(\frac{p_{\rm foot}}{p_{\rm max}}\right)^{3/5} = \frac{\Delta_1}{4} \left(\frac{I_{\rm foot}}{I_{\rm max}}\right)^{2/5}$
- Shell radius $R \approx R_1$

The aspect ratio is maximum at shock break out

Aspect ratio
$$\equiv \frac{R}{\Delta}$$

 $A_1 = \frac{R_1}{\Delta_1} = \text{initial aspect ratio}$
 $A_{\text{sb}} = IFAR = \frac{R_1}{\Delta_{\text{sb}}} = 4A_1 \left(\frac{I_{\text{max}}}{I_{\text{foot}}}\right)^{2/5}$
 $A_{\text{sb}} = A_{\text{max}}$

IFAR ≡ Maximum In-Flight-Aspect-Ratio = aspect ratio at shock break-out

The IFAR scales with the Mach number

• The shell kinetic energy = the work done on the shell

$$Mu_{\max}^{2} \sim \int_{R}^{R_{1}} pr^{2} dr \sim p \left(R_{1}^{3} - R^{3}\right) \approx pR_{1}^{3} \qquad R_{1}^{3} = \frac{Mu_{max}^{2}}{p}$$

$$M \sim \rho_{sb} \Delta_{sb} R_{1}^{2} \qquad \Delta_{sb} \sim \frac{M}{\rho_{sb} R_{1}^{2}} \qquad R_{1} >> R$$

$$IFAR = \frac{R_{1}}{\Delta_{sb}} = \frac{R_{1}}{\frac{M}{\rho_{sb} R_{1}^{2}}} = \frac{\rho_{sb} R_{1}^{3}}{M} = \frac{\rho_{sb}}{M} \frac{Mu_{max}^{2}}{p}$$

$$= \frac{u_{max}^{2}}{p/\rho_{sb}} \sim Mach_{max}^{2}$$

$$\rho \sim (p/\alpha)^{3/5} \qquad p \sim I^{2/3} \qquad IFAR \sim \frac{u_{max}^{2}}{\alpha^{3/5} I^{4/15}}$$

R

The final implosion velocity can be found using IFAR

$$u_{\text{max}}^{2} \sim IFAR \times \alpha^{3/5} I^{4/15}$$

$$IFAR = 4A_{1} \left(\frac{I_{\text{max}}}{I_{\text{foot}}}\right)^{2/5}$$

$$A_{1} = \frac{R_{1}}{\Delta_{1}}$$

$$u_{\text{max,cm/s}} \approx 10^{7} \sqrt{0.7A_{1}\alpha^{3/5} I_{15,\text{max}}^{4/15} \left(\frac{I_{\text{max}}}{I_{\text{foot}}}\right)^{2/5}}$$

There are three stages in the laser pulse: foot, ramp, and flat top

A simple implosion theory can be derived in the limit of infinite initial aspect ratio

- Start from a high aspect ratio shell (thin shell) at the beginning of the acceleration phase
 - Constant ablated pressure
 - The adiabat is set and kept fixed by the first and the only shock

$$IFAR = A_{\rm sb} = \frac{R_1}{\Delta_{\rm sb}} >> 1$$

The implosion are divided in 3 phases after the shock break out

- 1st phase: acceleration
- 2nd phase: coasting
- 3rd phase: stagnation

The shell density is constant

• Shell expansion/contraction:
$$t_{ex} \sim \frac{\Delta}{C_s}$$

• Implosion time: $t_i \sim \frac{R}{u_i}$

$$\frac{t_{\rm i}}{t_{\rm ex}} \sim \frac{R}{\Delta} \frac{C_{\rm s}}{u_{\rm i}} = \frac{A}{Mach} \qquad A = \frac{R}{\Delta} \qquad Mach = \frac{u}{C_{\rm s}}$$

• In the acceleration phase $A \sim Mach^2$ IFAR $\sim Mach_{max}^2$ (p29)

 $\frac{t_{\rm i}}{t_{\rm ex}} \sim \frac{A}{Mach} \sim Mach \sim \sqrt{A} \gg 1 \quad \Rightarrow \rho \approx {\rm const} \qquad \text{(Thin shell)}$ (implosion time >> expansion/contraction time)

• From mass conservation:

$$M \sim 4\pi R^2 \Delta \rho \quad \Rightarrow \quad \Delta \sim R^{-2} \qquad A = \frac{R}{\Delta} \sim R^3 \Rightarrow \quad A = A_{\rm sb} \left(\frac{R}{R_1}\right)^3$$

2

The shell density is constant

• The pressure and the density are constant while the shell becomes thick throughout the whole shell.

The shell density is constant

• In the shell frame of reference:

$$\rho(\partial_t \, \vec{w} + \vec{w} \cdot \nabla \, \vec{w}) = -\nabla p + \rho g \hat{r}$$

Neglect the first two term (check later) \Rightarrow

$$\frac{dp}{dr} = -\rho \ddot{R}$$

Use
$$p = \alpha_0 \rho^{5/3}$$
 and integrate along r:
 $\alpha_0 \frac{d\rho^{5/3}}{dr} = -\rho \ddot{R} \implies \alpha_0 \frac{d\rho^{5/3}}{\rho} = -\ddot{R} dr \implies \alpha_0 \frac{5}{3} \int_{@R_i}^{@R} \frac{\rho^{2/3}}{\rho} d\rho = -\ddot{R}(t) \int_{R_i}^{R} dr$
 $\rho = \rho_{sb} \left(\frac{R - R_i}{\Delta}\right)^{3/2}$
where $\Delta = -\frac{5}{2} \frac{\alpha_0 \rho_{sb}^{2/3}}{\ddot{R}} = -\frac{3}{2} \frac{5}{3} \frac{p_A}{\rho_{sb}} \frac{1}{\ddot{R}}$
 $= -\frac{3}{2} \frac{C_s}{\ddot{R}(t)}$

The requirement of the 1st phase is obtained using mass conservation

Mass conservation:

$$m = \int_{R_{i}}^{R_{i}+\Delta} \rho r^{2} dr = \rho_{sb} \int_{R_{i}}^{R_{i}+\Delta} \left(\frac{r-R_{i}}{\Delta}\right)^{3/2} r^{2} dr \qquad \rho = \rho_{sb} \left(\frac{R-R_{i}}{\Delta}\right)^{3/2}$$

$$\approx \rho_{sb} R_{i}^{2} \Delta \int_{R_{i}}^{R_{i}+\Delta} \left(\frac{r-R_{i}}{\Delta}\right)^{3/2} d\left(\frac{r-R_{i}}{\Delta}\right) = \frac{2}{5} \rho_{sb} R_{i}^{2} \Delta \sim \frac{2}{5} \rho_{sb} R^{2} \Delta$$

$$\Delta = \frac{5}{2} \frac{m}{\rho_{sb} R^{2}} \Rightarrow \Delta = \frac{5}{2} \frac{m}{\rho_{sb}} (-2) \frac{R}{R^{3}} = -2 \frac{R}{R} \Delta = -2 \frac{v}{A} \qquad \Delta = -2 \frac{v}{A} \qquad t_{imp} \sim \frac{R_{1}}{u_{i}}$$

$$\rho (\partial_{t} \vec{w} + \vec{w} \cdot \nabla \vec{w}) = -\nabla p + \rho g \hat{r} \qquad \vec{w} \sim \Delta \qquad \partial_{t} \sim 1/t_{imp} \qquad \nabla \sim 1/\Delta$$

$$\Rightarrow \rho \left(\frac{\Delta}{t_{imp}} + \frac{\Delta^{2}}{\Delta}\right) \sim -\frac{p}{\Delta} + \rho R \qquad \rho \frac{\Delta}{t_{imp}} \sim \rho \frac{v}{At_{imp}} \sim \rho \frac{v^{2}}{AR} \qquad \rho \frac{\Delta^{2}}{\Delta} \sim \rho \frac{v^{2}}{A^{2}\Delta} \sim \rho \frac{v^{2}}{AR}$$

$$\rho \frac{\Delta}{t_{imp}} / \frac{p}{\Delta} \sim \rho \frac{v^{2}}{AR} \frac{\Delta}{p} \sim \frac{v^{2}}{C_{s}^{2}} \frac{1}{A^{2}} = \frac{Mach^{2}}{A^{2}} \qquad \cdot Mach << A \text{ is the requirement for the 1st phase}$$

Aspect ratio and Mach number are functions of radius

$$A = \frac{R}{\Delta} = \frac{R^{3}\left(\frac{2}{5}\frac{\rho_{sb}}{m}\right) \propto R^{3} \Rightarrow \qquad A = A_{sb}\left(\frac{R}{R_{1}}\right)^{3} = \text{IFAR}\left(\frac{R}{R_{1}}\right)^{3}$$

$$\Delta = -\frac{3}{2}\frac{C_{s}^{2}}{R} \quad (p36) \Rightarrow \quad \ddot{R} = -\frac{3}{2}\frac{C_{s}^{2}}{\Delta} = -\frac{3}{2}\left(\frac{2}{5}\frac{\rho_{sb}R^{2}}{m}\right)\left(\frac{5}{3}\frac{p_{A}}{\rho_{sb}}\right)$$

$$\dot{R}\frac{d\dot{R}}{dt} = -\frac{p_{A}}{m}R^{2}\dot{R} \quad \frac{1}{2}\int d\dot{R}^{2} = -\frac{p_{A}}{m}\int R^{2}dR \qquad \dot{R}^{2} = \frac{2}{3}\frac{p_{A}R_{1}^{3}}{m}\left[1-\left(\frac{R}{R_{1}}\right)^{3}\right]$$

$$Mach^{2} = \frac{\dot{R}^{2}}{C_{s}^{2}} = \frac{2}{3}\frac{p_{A}R_{1}^{3}}{m}\frac{3}{5}\frac{\rho_{sb}}{p_{A}}\left[1-\left(\frac{R}{R_{1}}\right)^{3}\right] = \frac{2}{5}\frac{R_{1}^{3}\rho_{sb}}{m}\left[1-\left(\frac{R}{R_{1}}\right)^{3}\right]$$

$$Mach_{max}^{2} = \frac{2}{5}\frac{R_{1}^{3}\rho_{sb}}{m} = \frac{2}{5}\frac{5}{2}\frac{R_{1}^{3}\rho_{sb}}{\rho_{sb}R_{1}^{2}\Delta_{sb}}$$

$$= \frac{R_{1}}{\Delta_{sb}} = A_{sb}$$

$$A \sim \text{Mach} \qquad A_{\text{sb}} \left(\frac{R}{R_{1}}\right)^{3} \sim \text{Mach}_{\text{max}} \left[1 - \left(\frac{R}{R_{1}}\right)^{3}\right]^{1/2} = \sqrt{A_{\text{sb}}} \left[1 - \left(\frac{R}{R_{1}}\right)^{3}\right]^{1/2}$$
$$A_{\text{sb}} \left(\frac{R}{R_{1}}\right)^{6} \sim 1 - \left(\frac{R}{R_{1}}\right)^{3} \Rightarrow A_{\text{sb}} \left(\frac{R}{R_{1}}\right)^{6} + \left(\frac{R}{R_{1}}\right)^{3} - 1 \sim 0$$
$$\left(\frac{R}{R_{1}}\right)^{3} \sim \frac{-1 \pm \sqrt{1 + 4A_{\text{sb}}}}{2A_{\text{sb}}} \sim \frac{-1 \pm 2\sqrt{A_{\text{sb}}}}{2A_{\text{sb}}} \sim \frac{1}{\sqrt{A_{\text{sb}}}} \qquad \because \sqrt{A_{\text{sb}}} >> 1$$
$$\frac{R}{R_{1}} \sim \frac{1}{A_{\text{sb}}^{1/6}} \ll 1 \qquad A = A_{\text{sb}} \left(\frac{R}{R_{1}}\right)^{3} \sim \sqrt{A_{\text{sb}}} \gg 1$$

Summary of phase 1 (acceleration phase)

$$Mach_2 \simeq Mach_{max} \left(1 - \frac{1}{\sqrt{A_{sb}}}\right)^{1/2} \simeq Mach_{max} = \sqrt{A_{sb}} \qquad A_2 \sim \sqrt{A_{sb}}$$

There are three stages in the laser pulse: foot, ramp, and flat top

Summary of phase 1 (acceleration phase)

$$Mach_2 \simeq Mach_{max} \left(1 - \frac{1}{\sqrt{A_{sb}}}\right)^{1/2} \simeq Mach_{max} = \sqrt{A_{sb}} \qquad A_2 \sim \sqrt{A_{sb}}$$

In the coasting phase, the expansion time is of the same order of the implosion time

 $\frac{\text{Implosion time}}{\text{Expansion time}} = \frac{t_i}{t_{ex}} \sim 1$ => Shell thickness remains constant $\Delta \equiv \Delta_2 = \text{constant} = \Delta_2 \frac{R_2}{R_2} = \frac{R_2}{A_2} \frac{R_1}{R_1} = \frac{1}{A_{ch}^{1/6}} \frac{R_1}{\sqrt{A_{ch}}} \sim \frac{R_1}{A_{ch}^{2/3}}$ $A\frac{R}{\Lambda} \approx \frac{R}{\Lambda_2} \frac{R_2}{R_2} = A_2\left(\frac{R}{R_2}\right) \qquad Mach \sim \frac{u_i}{C_s} \sim \frac{u_i}{\sqrt{n/n}} \sim \frac{u_i}{\sqrt{n/n}} = \frac{u_i}{\alpha^{1/2}\rho^{1/3}}$ $m \sim \bar{\rho} R^2 \Delta \simeq \bar{\rho} R^2 \Delta_2 \simeq \rho_2 R_2^2 \Delta_2 \qquad \Rightarrow \bar{\rho} \simeq \frac{m}{R^2 \Lambda_2} \simeq \rho_2 \left(\frac{R_2}{R}\right)^2$ $Mach \sim \frac{u_{i}}{\alpha^{1/2}} \left(\frac{R^{2} \Delta_{2}}{m}\right)^{1/3} = \frac{u_{i}}{\alpha^{1/2}} \left(\frac{\Delta_{2} R_{2}^{2}}{m}\right)^{1/3} \left(\frac{R}{R_{2}}\right)^{2/3} = Mach_{2} \left(\frac{R}{R_{2}}\right)^{2/3}$ where Mach₂ = Mach($R = R_2$) = $\frac{u_i}{\alpha^{1/2}} \left(\frac{R_2^2 \Delta_2}{m}\right)^{1/3} \sim A_2 \sim \sqrt{A_{sb}}$

The 2^{nd} phase starts when R < R₂

- A decreases as R decreases. Eventually, A < Mach
- A >> 1 is required for thin shell model
- Assuming that the laser is off (coasting phase) when $R/R_1 \sim A_{sb}^{1/6}$ $\rho(\partial_t \vec{w} + \vec{w} \cdot \nabla \vec{w}) = -\nabla p$ $t_{imp2} \sim \frac{R_2}{u_i}$ $\Rightarrow \frac{\Delta}{t_{imp2}} + \frac{\Delta^2}{\Delta} \sim -\frac{p/\rho}{\Delta}$ $\frac{\Delta}{t_{imp2}} = \frac{\Delta}{\Delta} \frac{u_i}{R_2/\Delta} = \frac{\Delta}{\Delta} \frac{u_i}{A}$ $\frac{\Delta u_i}{\frac{A}{(1)}} + \frac{\Delta^2}{(2)} \sim \frac{C_s^2}{(3)}$
- There are two cases:
 - Case 1: (3) << (1) and/or (2)</p>
 - Case 2: (3) ~ (1) and/or (2)

The shell thickness does not change in the 2nd phase (coasting phase)

• Case 1: (3) << (1) and/or (2)

$$\Delta \left(\frac{u_i}{A} + \Delta\right) \sim 0$$
 $\Delta \sim 0$ or $\Delta \equiv \Delta_2 = \text{constant}$

 $\frac{\underline{\Delta u_i}}{\underbrace{\underline{A}}_{(1)}} + \underbrace{\underline{\dot{\Delta}}^2}_{(2)} \sim \underbrace{\underline{C_s}^2}_{(3)}$

• Case 2: (3) ~ (1) and/or (2) and A<< Mach

$$- (3) \sim (1) \qquad \frac{\Delta u_i}{A} \sim C_s^2 \Rightarrow \Delta \sim \frac{C_s A}{u_i/C_s} = \frac{C_s A}{\text{Mach}}$$

$$- (3) \sim (2) \qquad \frac{\delta \Delta}{\Delta} \sim \frac{\Delta t_{\text{imp2}}}{\Delta} \sim \frac{1}{\Delta} \frac{C_s A}{\text{Mach}} \frac{R_2}{u_i} \sim \frac{A^2}{\text{Mach}^2} << 1 \qquad \text{Change of shell thickness is small!}$$

$$- (3) \sim (2) \qquad \Delta^2 \sim C_s^2 \qquad \frac{\delta \Delta}{\Delta} \sim \frac{\Delta t_{\text{imp2}}}{\Delta} \sim \frac{C_s}{\Delta} \frac{R_2}{u_i} \sim \frac{A}{\text{Mach}^2} << 1 \qquad \frac{R_2}{R_1} \sim \frac{1}{A_{sb}^{1/6}}$$

$$\frac{R_2}{R_1} \sim \frac{1}{A_{sb}^{1/6}} \qquad \frac{R_2}{A_2} \sim \sqrt{A_{sb}}$$

 $\Lambda \equiv$

To verify that A << Mach

• Comparison of A and Mach:

$$A \approx \frac{R}{\Delta_2} \frac{R_2}{R_2} = A_2 \left(\frac{R}{R_2}\right) \qquad \qquad Mach \sim \frac{u_i}{C_s} \sim \frac{u_i}{\sqrt{p/\rho}} \sim \frac{u_i}{\sqrt{\alpha\rho^{2/3}}} = \frac{u_i}{\alpha^{1/2}\rho^{1/3}}$$

$$m \sim \bar{\rho} R^2 \Delta \simeq \bar{\rho} R^2 \Delta_2 \qquad \Rightarrow \bar{\rho} \simeq \frac{m}{R^2 \Delta_2}$$

$$Mach \sim \frac{u_{i}}{\alpha^{1/2}} \left(\frac{R^{2}\Delta_{2}}{m}\right)^{1/3} = \frac{u_{i}}{\alpha^{1/2}} \left(\frac{\Delta_{2}R_{2}^{2}}{m}\right)^{1/3} \left(\frac{R}{R_{2}}\right)^{2/3} = Mach_{2} \left(\frac{R}{R_{2}}\right)^{2/3}$$
where Mach_{2} = Mach(R = R_{2}) = $\frac{u_{i}}{\alpha^{1/2}} \left(\frac{R_{2}^{2}\Delta_{2}}{m}\right)^{1/3} \sim A_{2} \sim \sqrt{A_{sb}}$

$$\frac{A}{Mach} \sim \frac{A_{2} \left(\frac{R}{R_{2}}\right)}{Mach_{2} \left(\frac{R}{R_{2}}\right)^{2/3}} \sim \left(\frac{R}{R_{2}}\right)^{1/3} \ll 1$$

• Requirement for thin shell model: $A \gg 1 \Rightarrow A_2\left(\frac{R}{R_2}\right) \gg 1 \Rightarrow \frac{R}{R_2} \gg \frac{1}{A_2} \sim \frac{1}{\sqrt{A_{sb}}}$

Summary of phase 2 (coasting phase)

$$Mach_2 = Mach_{max} \simeq A_2 = \sqrt{A_{sb}}$$

$$\Delta \simeq \text{constant} = \Delta_2 \sim \frac{R_1}{A_{\text{sb}}^{2/3}} \qquad \bar{\rho} \simeq \rho_2 \left(\frac{R_2}{R}\right)^2 \sim \rho_{\text{sb}} \left(\frac{R_2}{R}\right)^2$$

There are three stages in the laser pulse: foot, ramp, and flat top

How about the 3rd phase where A~1?

- 1st phase: acceleration
- 2nd phase: coasting
- 3rd phase: stagnation

The thin shell model breaks down when A~1

- When A~1 => Δ~R, the "void" inside the shell closes and a "return shock" propagating outward is generated due to the collision of the shell with itself
- The density is compressed by a factor no more than 4 even if the strong shock is generated

 $\rho_{\rm st} \sim \rho_3$ where ρ_3 is the density right before the void closure

The stagnated density scales with square of the maximum Mach number

ρ_{sb}

$$\rho_{3} \sim \rho_{2} \left(\frac{R_{2}}{R_{3}}\right)^{2} \sim \rho_{sb} \left(\frac{R_{2}}{R_{3}}\right)^{2} \qquad \bar{\rho} \simeq \rho_{2} \left(\frac{R_{2}}{R}\right)^{2} \quad (p60)$$

$$A = A_{3} \sim 1 \Rightarrow \frac{R_{3}}{\Delta_{3}} \sim \frac{R_{3}}{\Delta_{2}} \sim 1 \Rightarrow R_{3} \sim \Delta_{2}$$

$$\rho_{st} \sim \rho_{sb} \left(\frac{R_{2}}{\Delta_{2}}\right)^{2} \sim \rho_{sb} A_{2}^{2} \sim \rho_{sb} Mach_{2}^{2} \sim \rho_{sb} Mach_{max}^{2}$$

$$\frac{\rho_{st}}{\Delta_{2}} \sim Mach_{max}^{2} \qquad \qquad \text{Density compression scaling law.}$$

The stagnated pressure scales to the 4th power of the maximum Mach number

 Conservation of energy at stagnation: shell kinetic energy is converted to internal energy.

Scaling of the areal density of the compressed core

$$\rho_{st}R_{st} \sim \rho_{st}\Delta_{2} \sim \left(\frac{p_{st}}{\alpha_{st}}\right)^{3/5} \frac{\Delta_{2}}{R_{2}} \frac{R_{2}}{R_{1}} R_{1} \sim \left(\frac{p_{A} \operatorname{Mach}_{\max}^{4}}{\alpha_{sb} \operatorname{Mach}_{\max}^{2/3}}\right)^{3/5} \frac{1}{A_{2}} \frac{1}{A_{sb}^{1/6}} R_{1}$$

$$A_{2} \sim \operatorname{Mach}_{\max} \qquad A_{sb} \sim \operatorname{Mach}_{\max}^{2}$$

$$\rho_{st}R_{st} \sim \left(\frac{p_{A}}{\alpha_{sb}}\right)^{3/5} \operatorname{Mach}_{\max}^{2} \frac{1}{\operatorname{Mach}_{\max}} \frac{1}{\operatorname{Mach}_{\max}^{1/3}} R_{1}$$

$$\sim \left(\frac{p_{A}}{\alpha_{sb}}\right)^{3/5} \operatorname{Mach}_{\max}^{2/3} R_{1} \sim \left(\frac{p_{A}}{\alpha_{sb}}\right)^{3/5} \frac{u_{\max}^{2/3}}{(p_{A}/\rho_{sb})^{1/3}} \frac{p_{0}^{1/3}R_{1}}{p_{0}^{1/3}}$$

$$\sim \left(\frac{p_{A}}{\alpha_{sb}}\right)^{3/5} \frac{u_{\max}^{2/3}R_{1}}{(p_{A}^{2/5}\alpha_{sb}^{3/5})^{1/3}} \frac{(p_{A}R_{1}^{3})^{1/3}}{p_{A}^{1/3}} \sim \frac{p_{A}^{2/15}}{\alpha_{sb}^{4/5}} u_{\max}^{2/3} E_{k}^{1/3}$$

$$E_{k} \sim E_{\text{las}} \Rightarrow \qquad \rho_{st}R_{st} \sim \frac{p_{A}^{2/15}u_{\max}^{2/3}E_{\text{las}}^{1/3}}{\alpha_{sb}^{4/5}}$$

Amplification of areal density

$$\rho_{\rm st}R_{\rm st} \sim \rho_{\rm st}^{2/3} (\rho_{\rm st}R_{\rm st}^3)^{1/3} \sim \rho_{\rm sb}^{2/3} Mach_{\rm max}^{4/3} Mass^{1/3}$$

$$\sim \frac{\rho_{\rm sb}^{2/3}}{\rho_1^{2/3}} Mach_{\rm max}^{4/3} \rho_1^{2/3} (\rho_1 R_1^2 \Delta_1)^{1/3}$$

$$\rho_{\rm st}R_{\rm st} \sim (\rho_1 \Delta_1) Mach_{\rm max}^{4/3} A_1^{2/3} \left(\frac{\rho_{\rm sb}}{\rho_1}\right)^{2/3}$$

$$\frac{\rho_{\rm sb}}{\rho_1} = 4 \left(\frac{I_{\rm max}}{I_{\rm foot}}\right)^{2/5}$$

$$(\rho R)_{\rm st} \sim (\rho_1 \Delta_1) \mathrm{IFAR}^{2/3} A_1^{2/3} \left(\frac{I_{\rm max}}{I_{\rm foot}}\right)^{4/15}$$

$$E_{\text{las}} = 4\pi R_1^2 I_{\text{max}} t_{\text{imp}} \approx 4\pi R_1^2 I_{\text{max}} \frac{R_1}{u_{\text{max}}}$$

$$E_{\rm las}\approx \frac{4\pi R_1^{3}I_{\rm max}}{u_{\rm max}}$$

Summary

 $A_{\rm sb} = \rm{IFAR} = 4A_1 \left(\frac{I_{\rm max}}{I_{\rm foot}}\right)^{2/5} \qquad u_{\rm max,cm/s} \approx 10^7 \sqrt{0.7A_1 \alpha^{3/5} I_{15,\rm max}^{4/15} \left(\frac{I_{\rm max}}{I_{\rm foot}}\right)^{2/5}}$

$$\rho_{\rm st} \sim \rho_{\rm sb} {\rm Mach_{max}}^2 \sim \rho_1 {\rm IFAR} \left(\frac{I_{\rm max}}{I_{\rm foot}} \right)^{2/5}$$

$$p_{\rm st} \sim p_A {\rm Mach_{max}}^4 \sim p_A {\rm IFAR}^2$$

$$\alpha_{\rm st} \sim \alpha_{\rm sb} \operatorname{Mach}_{\max}^{2/3} \sim \alpha_{\rm sb} \operatorname{IFAR}^{1/3}$$
$$(\rho R)_{\rm st} \sim (\rho_1 \Delta_1) \operatorname{IFAR}^{2/3} A_1^{2/3} \left(\frac{I_{\rm max}}{I_{\rm foot}}\right)^{4/15}$$

Calculation of the burn-up fraction

Fuel needs to be burned out before escaping from the system.

Calculation of the burn-up fraction - continue

$$4\pi \int_{0}^{R_{f}} r^{2} dr \left(\frac{\partial n_{i}}{\partial t} = -\nabla \cdot (n_{i}v) - \frac{n_{i}^{2}}{2} \langle \sigma v \rangle \right)$$

$$4\pi \int_{0}^{R_{f}} r^{2} \frac{\partial n_{i}}{\partial t} dr = 4\pi \partial_{t} \int_{0}^{R_{f}} r^{2} n_{i} dr - 4\pi R_{f} R_{f}^{2} n_{i}$$

$$= -n_{i}v 4\pi R_{f}^{2} - \frac{n_{i}^{2}}{2} \langle \sigma v \rangle V_{f}$$
(neglect)
$$N_{f} \equiv \frac{4\pi}{3} R_{f}^{3} n_{i} \equiv V_{f} n_{i}$$

$$d_{t} N_{f} - 3N_{f} \frac{R_{f}}{R_{f}} = -\frac{N_{f}^{2}}{V_{f}} \frac{\langle \sigma v \rangle}{2}$$

$$\frac{d_{t} N_{f}}{N_{f}^{2}} - \frac{3R_{f}}{N_{f} R_{f}} = -\frac{\langle \sigma v \rangle}{2V_{f}}$$

$$R_{f}^{3} d_{t} \frac{1}{N_{f}} + 3R_{f}^{2} \frac{R_{f}^{3}}{N_{f}} = \frac{\langle \sigma v \rangle}{2V_{f}}$$

$$R_{f}^{3} d_{t} \frac{1}{N_{f}} + 3R_{f}^{2} \frac{R_{f}^{3}}{N_{f}}$$

$$R_{f}^{3} d_{t} \frac{1}{N_{f}} + 3R_{f}^{2} \frac{R_{f}^{3}}{N_{f}}$$

Calculation of the burn-up fraction - continue

$$\frac{d}{dt} \left(\frac{R_{f}^{3}}{N_{f}}\right) = \frac{\langle \sigma v \rangle}{2V_{f}} R_{f}^{3} \qquad \frac{R_{f}^{3}}{N_{f}} = \int_{0}^{t} \frac{\langle \sigma v \rangle}{2V_{f}} R_{f}^{3} dt + \frac{R_{0}^{3}}{N_{0}}$$

$$R_{f} = R_{0} - C_{s}t \qquad dt = -\frac{dR_{f}}{C_{s}} \qquad V_{f} = \frac{4\pi}{3} R_{f}^{3}$$

$$\frac{R_{f}^{3}}{N_{f}} = -\int_{R_{0}}^{R_{f}} \frac{\langle \sigma v \rangle}{2 \times 4 \pi/3} \frac{dR_{f}}{C_{s}} + \frac{R_{0}^{3}}{N_{0}} \qquad \int_{V_{f}}^{V_{f}} = \frac{V_{0}}{N_{0}} \left[1 + \frac{\langle \sigma v \rangle}{2C_{s}} n_{0}^{0} R_{0} \left(1 - \frac{R_{f}}{R_{0}}\right)\right]$$

$$\frac{R_{f}^{3}}{N_{f}} = \frac{\langle \sigma v \rangle}{2C_{s}} \frac{3}{4\pi} (R_{0} - R_{f}) + \frac{R_{0}^{3}}{N_{0}} \qquad \xi \equiv \frac{\langle \sigma v \rangle}{2C_{s}} n_{0} R_{0}$$

$$\frac{V_{f}}{R_{f}} = \frac{1}{n_{0}} \left[1 + \xi \left(1 - \frac{R_{f}}{R_{0}}\right)\right]$$

Calculation of the burn-up fraction - continue

$$\begin{split} \frac{V_f}{N_f} &= \frac{1}{n_i} = \frac{1}{n_0} \bigg[1 + \xi \bigg(1 - \frac{R_f}{R_0} \bigg) \bigg] & n_i = \frac{N_f}{V_f} \end{split} \\ \text{#Burned ions} &= \int_0^t \frac{\langle \sigma v \rangle}{2} n_i^2 V_f dt = \int_0^t \frac{\langle \sigma v \rangle}{2} \frac{N_f^2}{V_f} dt = -\int_{R_0}^{R_f} \frac{\langle \sigma v \rangle}{2} \bigg(\frac{N_f}{V_f} \bigg)^2 V_f \frac{dR_f}{C_s} \\ &= \int_{R_f}^{R_0} \frac{\langle \sigma v \rangle}{2} \frac{n_0^2}{\bigg[1 + \xi \bigg(1 - \frac{R_f}{R_0} \bigg) \bigg]^2} \bigg(\frac{R_f}{R_0} \bigg)^3 V_0 R_0 \frac{dR_f/R_0}{C_s} \\ &= \int \frac{\langle \sigma v \rangle}{2} \frac{n_0^2}{[1 + \xi (1 - x)]^2} x^3 V_0 \frac{R_0}{C_s} dx = N_0 \xi \int_0^1 \frac{x^3 dx}{[1 + \xi (1 - x)]^2} \\ &= N_0 \frac{\xi [6 + \xi (9 + 2\xi)] - 6(1 + \xi)^2 Ln[1 + \xi]}{2\xi^3} \end{split}$$

#Burn-up Fraction

$$\Theta(\xi) = \frac{\#\text{Burned ions}}{N_0} = \frac{\xi[6 + \xi(9 + 2\xi)] - 6(1 + \xi)^2 \text{Ln}[1 + \xi]}{2\xi^3}$$
Calculation of the burn-up fraction - continue

$$C_{s} = \sqrt{\frac{T_{e} + T_{i}}{m_{i}}} = \sqrt{\frac{2T}{m_{i}}} \qquad \rho = n_{0}m_{i} \qquad m_{i} = \frac{m_{D} + m_{T}}{2} = 2.5 \times 1.67 \times 10^{-27} \text{kg}$$

$$\xi = \frac{\langle \sigma v \rangle}{\sqrt{T}} (\rho R_{0}) \frac{1}{2\sqrt{2m_{i}}} = \frac{\langle \sigma v \rangle_{m^{3}/s}}{\sqrt{T_{keV} \times 1.6 \times 10^{-16}}} \frac{(\rho R_{0})_{g/cm^{2}} \times 10}{2\sqrt{5 \times 1.67 \times 10^{-27}}}$$

$$\xi \approx \frac{1.25 \times 10^{-22}}{\sqrt{16 \times 10^{-16}}} \frac{10(\rho R_{0})_{g/cm^{2}}}{2\sqrt{5 \times 1.67 \times 10^{-27}}} = 0.54(\rho R_{0})_{g/cm^{2}}$$

$$\frac{\langle \sigma v \rangle}{\sqrt{T_{keV}}} = 1.25 \times 10^{-22} \qquad @ T = 40 \text{ keV}$$

H.-S. Bosch and G.M. HaleNucl. Fusion **32** (1992) 611

Smallest areal density (ρR)

Energy gain

Fusion energy
$$= \frac{M_0}{2m_i} \epsilon_f \theta$$

 $\epsilon_f = 17.6 \text{MeV}$
Energy gain $= \frac{\text{Fusion Energy}}{\text{Input Energy}}$
 \cdot Input energy: the sphere is heated to the temperature T
Thermal energy in sphere: $\frac{3}{2}(n_{i0}T_i + n_{e0}T_e)V_0$
 $n_{i0} = n_{e0} \equiv n_0$ $T_e = T_i \Rightarrow 3n_0 \text{TV}_0 = 3\frac{M_0}{m_i}T$
Set heating efficiency: $\eta = \frac{\text{Thermal Energy}}{\text{Input Energy}}$
 $Gain = \frac{\frac{M_0}{2m_i}\epsilon_f\theta}{3\frac{M_0}{m_i}T/\eta} = \eta \frac{M_0}{2m_i}\frac{\epsilon_f\theta}{3\frac{M_0}{m_i}T} = \frac{\eta}{6}\frac{\epsilon_f}{T}\theta$ $Gain = \eta 293\left(\frac{10}{T_{\text{keV}}}\right)\theta$

The power to heat the plasma is enormous

• Consider the small T limit:

$$\Theta(\xi) \approx \frac{\xi}{4+\xi} \qquad \xi \equiv \frac{\langle \sigma v \rangle}{2C_s} n_0 R_0 = \frac{\langle \sigma v \rangle}{\sqrt{T}} (\rho R_0) \frac{1}{2\sqrt{2m_i}}$$

 $\langle \sigma v \rangle {\sim} T^4$ for T
ightarrow 0 , then $\xi {\sim} T^{7/2}$ and $Gain {\sim} T^{5/2}
ightarrow 0$

Required input power:

$$P_{w} = \frac{E_{\text{input}}}{\tau_{\text{input}}} \quad \tau_{\text{input}} \ll \tau_{\text{burn}} = \frac{R}{C_{s}} \quad \text{(Heat out before it runs away)}$$

$$P_{w} = \frac{E_{\text{input}}}{\mu R/C_{s}} = \frac{E_{\text{thermal}}}{\eta \mu R/C_{s}} = 3\frac{M_{0}}{m_{i}}\frac{T}{R}\frac{C_{s}}{\eta \mu} \qquad \tau_{\text{input}} = \mu\frac{R}{C_{s}} \quad \text{Ex: } \mu \sim 0.1$$

$$\frac{P_{w}}{M_{0}} = \frac{3}{m_{i}}\frac{T}{R}\frac{C_{s}}{\eta \mu} = \frac{3}{m_{i}}\frac{T}{R}\sqrt{\frac{2T}{m_{i}}}\frac{1}{\eta \mu} \qquad \frac{P_{w}}{M_{0}} = 10^{18}\left(\frac{T_{\text{keV}}}{10}\right)^{3/2}\frac{0.1}{\mu}\frac{1}{R_{\text{cm}}}\frac{1}{\eta} \quad \text{Watts/g}$$

A clever way is needed to ignite a target

• For T = 10 keV

$$\xi \approx 0.18(\rho R)$$
 $Gain|_{10keV} \approx 293\eta \frac{0.18\rho R}{4+0.18\rho R} \approx 293\eta \frac{\rho R_{g/cm^2}}{22+\rho R_{g/cm^2}}$

• For T=40 keV

$$\xi \approx 0.54(\rho R)$$
 $Gain|_{40keV} \approx 73\eta \frac{\rho R_{g/cm^2}}{7 + \rho R_{g/cm^2}}$

• For Gains $\gtrsim 100$ 40 ρR (g/cm²) 0 -20 - T = 10 keV10 keV $ho R \gtrsim 22 g/\mathrm{cm}^2 \quad \eta > 1$ 40 keV - T = 40 keV-40 0.5 2.0 1.0 1.5 0.0 How do we get $\eta > 1$? $\eta > 1$ η

Requirement to ignite a target

+ For T=10 keV and $\rho R\gtrsim 22~g/cm^2$

$$\rho R = \frac{4\pi}{3} \frac{\rho R^3}{4\pi R^2/3} = \frac{M_0}{\frac{4\pi}{3}R^2} = \frac{3}{4\pi} \frac{M_0}{R^2} \gtrsim 22 \ g/cm^2$$

$$\frac{M_0}{R^2} \gtrsim 92 \ g/cm^2$$

$$P_w \Big|_{10keV} = 10^{18} \left(\frac{T_{keV}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{M_0}{R_{cm}} \frac{1}{\eta} = 10^{18} \frac{0.1}{\mu} \frac{1}{\eta} 92 R_{cm} \quad \text{Watts}$$

$$P_w \Big|_{10keV} \approx 10^{20} \frac{0.1}{\mu} \frac{R_{cm}}{\eta} \text{Watts}$$
• For T=40keV
$$\rho R \gtrsim 7 \implies \frac{M_0}{R^2} \gtrsim 30 \ g/cm^2$$
• Needed:
$$R_{cm} \ll 1$$

$$P_w\Big|_{40keV} \approx 2.4 \times 10^{20} \frac{0.1}{\mu} \frac{R_{\rm cm}}{\eta}$$
 Watts

skip

 $egin{array}{l} \eta \gg 1 \ \mu \gg 0.1 \end{array}$

Requirements to ignite a target

$$P_w\Big|_{10keV} \approx 10^{20} \frac{0.1}{\mu} \frac{R_{\rm cm}}{\eta}$$
 Watts

- $R_{\rm cm} \ll 1$: sphere size in the order of 100's um
- $\eta \gg 1$: input energy amplification
- $\mu \gg 0.1$: energy delivery time decoupled from burn time. Need longer energy delivery time. Need to bring down power to ~10¹⁵ W

Math....#!@%\$\$#&^%\$#

$$P_{w} = 10^{18} \frac{M_{0,g}}{\eta} \left(\frac{T_{\text{keV}}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{1}{R_{\text{cm}}} \text{ Watts}/g$$

$$\tau_{\text{input}} = \mu \frac{R}{C_{s}} \text{ Ex: } \mu \sim 0.1 \quad \eta = \frac{\text{Thermal Energy}}{\text{Input Energy}}$$

$$Gain = 293\eta \left(\frac{10}{T_{\text{keV}}}\right) \Theta(\xi) \qquad \Theta(\xi) \approx \frac{\xi}{4+\xi} \qquad \xi = \frac{\langle \sigma v \rangle}{2m_{i}C_{s}} (\rho R_{0})$$

$$G_{\text{max}} \equiv 293\eta \left(\frac{10}{T_{\text{keV}}}\right) \qquad G = G_{\text{max}} \frac{\xi}{4+\xi} \Longrightarrow \xi = \frac{4G}{G_{\text{max}}-G}$$

$$10^{18} (T_{\text{keV}})^{3/2} 0.14\pi \ \rho R_{0}^{3} \qquad 10^{18} (T_{\text{keV}})^{3/2} 0.14\pi$$

$$P_{w} = \frac{10^{18}}{\eta} \left(\frac{T_{\text{kev}}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{4\pi}{3} \frac{\rho R_{0}^{3}}{R_{0}} = \frac{10^{18}}{\eta} \left(\frac{T_{\text{kev}}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{4\pi}{3} (\rho R_{0}) R_{0}$$

More math...!#\$%%^&*&^(*&%)(#%!@\$#%%^*&*%(

$$P_{w} = \frac{10^{18}}{\eta} \left(\frac{T_{kev}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{4\pi}{3} \frac{\rho R_{0}^{3}}{R_{0}} = \frac{10^{18}}{\eta} \left(\frac{T_{kev}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{4\pi}{3} (\rho R_{0}) R_{0}$$

$$= \frac{10^{18}}{\eta} \left(\frac{T_{kev}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{4\pi}{3} R_{0} \frac{2m_{i}C_{s}}{\sigma v > \xi} \quad \text{where } \xi \equiv \frac{\langle \sigma v \rangle}{2m_{i}C_{s}} (\rho R)$$

$$= \frac{10^{18}}{\eta} \left(\frac{T_{kev}}{10}\right)^{3/2} \frac{0.1}{\mu} \frac{32\pi}{3} R_{0,cm} \frac{\sqrt{Tm_{i}}}{\sigma v > \sigma v > \sigma} \frac{G}{G_{max} - G} \quad \text{where } C_{s} = \sqrt{\frac{2T}{m_{i}}}$$

$$P_{w} = \frac{10^{18}}{\eta} \frac{T_{kev}^{2}}{\langle \sigma v \rangle_{cm^{2}/s}} \frac{0.1}{\mu} R_{0,cm} \frac{G}{G_{max} - G} \quad \text{Watts}$$

$$= \frac{10^{18}}{\langle \sigma v \rangle_{cm^{2}/s}} \left|_{min} = 8 \times 10^{23} \quad \text{for } T = 14 \text{keV}$$

$$\frac{G}{G_{max} - G} \approx \frac{G}{G_{max}} \qquad P_{w} \approx \frac{7 \times 10^{19}}{\eta} \frac{0.1}{\mu} R_{0,cm} \frac{G}{G_{max}} \text{Watts}$$

Need to lower the power by 5 orders of magnitude

$$P_{w} \approx \frac{7 \times 10^{19}}{\eta} \frac{0.1}{\mu} R_{0,cm} \frac{G}{G_{max}} \text{Watts}$$
• $\mu \uparrow$
: $\tau_{input} \ll \tau_{burn} = \frac{R}{C_{s}}$ $\tau_{input} = \mu \tau_{burn} = \mu \frac{R}{C_{s}}$ Ex: $\mu \sim 0.1$
: $\eta \uparrow$
: require the fuel ignition from a "spark." Ignite only a small portion of the DT plasma, i.e., $M_{h} << M_{0}$

$$\eta = \frac{\text{Thermal Energy}}{\text{Input Energy}}$$

•
$$R_0 \downarrow$$
 : smaller system size

$$P_{w} = P_{w}(M_{0})\frac{M_{h}}{M_{0}}$$

$$P_{w}^{\min} = \frac{7 \times 10^{15}}{\eta_{h}} \left(\frac{M_{h}/M_{0}}{0.01}\right) \left(\frac{R_{0,\mu m}}{100}\right) \left(\frac{0.1}{\mu}\right) \left(\frac{G}{G_{\max}}\right) Watts$$
Effective increase in η

• Approximate the power losses:

Plasma energy:
$$\epsilon = \frac{3}{2}PV = \frac{3}{2}(2nT)V = 3nTV$$

 $P_{\text{losses}}^{\text{total}} = P_{\text{losses}} + P_{\text{brem}} = \frac{3nTV}{\tau_E} + C_b n^2 \sqrt{T}V$
energy balance:

$$\frac{d\epsilon}{dt} = V\left\{ \langle \sigma v \rangle \frac{n^2}{4} \epsilon_{\alpha} - C_b n^2 \sqrt{T} - \frac{3nT}{\tau_E} \right\} > 0$$

$$n^2 \left[\frac{1}{4} \langle \sigma v \rangle \epsilon_{\alpha} - C_b \sqrt{T} \right] > \frac{3nT}{\tau_E} \qquad \qquad n\tau_E > \frac{3T}{\frac{1}{4} \langle \sigma v \rangle \epsilon_{\alpha} - C_b \sqrt{T}}$$

Temperature needs to be greater than ~5 keV to ignite

 $n\tau_E > 2 \times 10^4 \, \mathrm{sec/cm^3}$

 $nT\tau_E > 3.5 \times 10^{15} \text{ keV} - \text{sec/cm}^3$

$$P_w^{\min} = \frac{7 \times 10^{15}}{\eta_h} \left(\frac{M_h/M_0}{0.01}\right) \left(\frac{R_{0,\mu m}}{100}\right) \left(\frac{0.1}{\mu}\right) \left(\frac{G}{G_{\max}}\right) \text{Watts}$$

- For the case of using a huge laser, ex: 1MJ.
- The ignition requires temperatures $T \gtrsim 5 \text{keV}$, then the energy required for ignition is

$$E_{\text{ign}} \approx 3 \frac{M_h}{m_i} \frac{T}{\eta_h}$$
$$M_h \approx \frac{m_i}{3} \frac{\eta_h E_{\text{ign}}}{T}$$
$$M_{h,\mu g} \approx 17 \left(\frac{5}{T_{\text{keV}}}\right) E_{\text{igm,MJ}} \left(\frac{\eta_h}{0.01}\right) \qquad M_h \approx 20 \mu g$$

Target design using an 1MJ laser - continue

- For "inefficient" heating mechanism ($\eta_h \approx 1\%$), the mass that can be heated to $T \approx 5$ keV is in the order of $M_h \approx 20 \ \mu g$.
- If $M_{\rm h}/M_0 \approx 0.01$, then $M_0 \approx 2$ mg.
- Assuming that the burned-up fraction $\Theta \approx \frac{\rho R}{7 + \rho R}$ for $\Theta \approx 30\% \rightarrow \rho R \approx 3 g/cm^2$ $M_0 = \frac{4\pi}{3}\rho R^3 = \frac{4\pi}{3}R^2(\rho R)$ $R = \sqrt{\frac{4\pi}{3}\frac{M_0}{\rho R}} = 126\sqrt{\frac{M_{0,mg}}{2}}\sqrt{\frac{3}{\rho R}}\mu m$

$$\rho = \frac{3M_0}{4\pi R^3} = 240 \sqrt{\frac{M_{0,\text{mg}}}{2} \left(\frac{126}{R_{\mu\text{m}}}\right)^3} g/\text{cm}^3 \qquad \rho_{\text{DT}} = 0.25 g/\text{cm}^3$$

- DT must be compressed ~1000 times
- The initial radius of a 2 mg sphere of *DT* is $R_{init} \simeq 2.6$ mm while the final radius $R_{final} \simeq 100 \ \mu m$, the convergence ratios of 30 ~ 40 are required.

Requirements of the density and size of the ignition mass

 $M_h \approx 20 \mu g$

$$\rho_h R_h \approx 0.3 \, g/\mathrm{cm}^2$$
 - To stop 3.5 MeV α particles

$$R_h \simeq \sqrt{\frac{3}{4\pi} \frac{M_h}{\rho_h R_h}} \approx 40 \mu \mathrm{m}$$

$$\rho_h \approx \frac{(\rho_h R_h)}{R_h} = \frac{0.3}{40 * 10^{-4}} = 75 \, g/\mathrm{cm}^3$$

Summary

Possible fuel assembly for 1MJ ICF driver

There are three stages in the laser pulse: foot, ramp, and flat top

How about the 3rd phase where A~1?

- 1st phase: acceleration
- 2nd phase: coasting
- 3rd phase: stagnation

Calculation of the burn-up fraction

Fuel needs to be burned out before escaping from the system.

Summary

Possible fuel assembly for 1MJ ICF driver

