Introduction to Nuclear Fusion as An Energy Source

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 12

2024 spring semester

Wednesday 9:10-12:00

Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

https://nckucc.webex.com/nckucc/j.php?MTID=ma76b50f97b1c6d72db61de 9eaa9f0b27

2024/5/29 updated 1

• Final exam 6/12 (One double-sided A4 cheating sheet is allowed.)

Last class 6/19

Course Outline

- Inertial confinement fusion (ICF)
 - Plasma frequency and critical density
 - Direct- and indirect- drive
 - Laser generated pressure (Inverse bremsstrahlung and Ablation pressure)
 - Burning fraction, why compressing a capsule?
 - Implosion dynamics
 - Shock (Compression with different adiabat)
 - Laser pulse shape
 - Rocket model, shell velocity
 - Laser-plasma interaction (Stimulated Raman Scattering, SRS; Stimulated Brillouin Scattering, SBS; Two-plasmon decay)
 - Instabilities (Rayleigh-taylor instability, Kelvin-Helmholtz instability, Richtmeyer-Meshkov instability)

Significant breakthrough was achieved in ICF recently

• Inertial confinement fusion (ICF)

 National Ignition Facility (NIF) demonstrated a gain grater than 1 for the first time on 2022/12/5. The yield of 3.15 MJ from the 2.05-MJ input laser energy, i.e., Q=1.5.

https://www.science.org/content/article/historic-explosion-long-sought-fusion-breakthrough

https://zh.wikipedia.org/wiki/國家點火設施

Don't confine it!

 Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined by its own inertia: P~Gigabar, τ~nsec, T~10 keV (10⁸ °C)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

Compression happens when outer layer of the target is heated by laser and ablated outward

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester R. Betti, HEDSA HEDP Summer School, 2015

Plasma is confined by its own inertia in inertial confinement fusion (ICF)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

A ball can not be compressed uniformly by being squeezed between several fingers

 ρ_2

P.-Y. Chang, PhD Thesis, U of Rochester (2013) R. S. Craxton, etc., *Phys. Plasmas* **22**, 110501 (2015)

A spherical capsule can be imploded through directly or indirectly laser illumination

^{*}R. Betti, HEDSA HEDP Summer School, 2015 9

The 1.8-MJ National Ignition Facility (NIF) will demonstrate ICF ignition and modest energy gain

OMEGA experiments are integral to an ignition demonstration on the NIF.

Targets used in ICF

• Triple-point temperature : 19.79 K

http://www.lle.rochester.ed https://en.wikipedia.org/wiki/Inertial_confinement_fusion R. S. Craxton, etc., *Phys. Plasmas* **22**, 110501 (2015)

Softer material can be compressed to higher density

Compression of a baseball

Compression of a tennis ball

https://www.youtube.com/watch?v=uxIIdMoAwbY https://newsghana.com.gh/wimbledon-slow-motion-video-of-how-a-tennis-ball-turns-to-goo-after-serve/

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis *R. Betti, HEDSA HEDP Summer School, 2015

Targets used in ICF

Cryogenic shroud

a Cryogenic hohlraum

Rugby hohlraum

С

d Tent holder

https://www.lle.rochester.edu/index.php/2014/11/10/next-generation-cryo-target/ Introduction to Plasma Physics and Controlled Fusion 3rd Edition, by Francis F. Chen https://www.llnl.gov/news/nif-shot-lights-way-new-fusion-ignition-phase

b

Nature letter "Fuel gain exceeding unity in an inertially confined fusion implosion"

Fuel gain exceeding unity was demonstrated for the first time.

The hot spot has entered the burning plasma regime

National Ignition Facility (NIF) achieved a yield of more than 1.3 MJ from ~1.9 MJ of laser energy in 2021 (Q~0.7)

 National Ignition Facility (NIF) achieved a yield of more than 1.3 MJ (Q~0.7). This advancement puts researchers at the threshold of fusion ignition.

THE ROAD TO IGNITION

The National Ignition Facility (NIF) struggled for years before achieving a high-yield fusion reaction (considered ignition, by some measures) in 2021. Repeat experiments, however, produced less than half the energy of that result.

• Laser-fusion facility heads back to the drawing board.

T. Ma, ARPA-E workshop, April 26, 2022

J. Tollefson, Nature (News) 608, 20 (2022)

"Ignition" (target yield larger than one) was achieved in NIF on 2022/12/5

https://physicstoday.scitation.org/do/10.1063/PT.6.2.20221213a/full/ The age of ignition: anniversary edition, LLNL-BR-857901

External "spark" can be used for ignition

19

Shock ignition

Fast ignition

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis *R. Betti, HEDSA HEDP Summer School, 2015

Ignition can happen by itself or being triggered externally

- Riccardo Betti, University of Rochester, HEDSA HEDP summer school, San Diego, CA, August 16-21, 2015
- ICF lectures for course PHY558/ME533
- The physics of inertial fusion, by S. Atzeni, J. Meyer-Ter-Vehn

Laser-driven imploding capsules are mm-size shells with hundreds of µm thick layers of cryogenic solid DT

Conservation equations of gas-dynamics and ideal gas EOS are used for DT plasma

- Mass conservation:
- Momentum conservation:
- **Energy conservation:**
- Ideal gas EOS:

- $\partial_{\mathbf{t}} \boldsymbol{\rho} + \partial_{\mathbf{x}} (\boldsymbol{\rho} \ \overrightarrow{\boldsymbol{v}}) = \mathbf{0}$
- $\partial_{\mathrm{t}}(\rho \, \overrightarrow{v}) + \partial_{\mathrm{x}}(p + \rho v^2) = \overrightarrow{F}$

 $\frac{v^2}{2}$

 $\partial_{t}\epsilon + \partial_{x}(\vec{v}(\epsilon + p) - \kappa\partial_{x}T) = \text{source} + \text{sinks}$

$$p = (n_e T_e + n_i T_i) = 2nT = \frac{2}{m_i}\rho_i T = \frac{\rho T}{A}$$

Total energy per unit volume:

Mass density: ρ

$$\epsilon = \frac{3}{2}p + \rho$$
$$\rho = n_{i}m_{i}$$

2

Plasma thermal conductivity: *k*

The plasma thermal conductivity is written in a power law of T

$$n\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial T}{\partial x}\right) \rightarrow n\frac{T}{t} \sim \frac{\kappa T}{x^2} \Rightarrow \kappa \sim n\frac{x^2}{t}$$
$$x \Rightarrow \lambda_{\rm mfp} \sim v_{\rm th}\tau_{\rm coll} = \frac{v_{\rm th}}{\nu_{\rm coll}} \qquad t \Rightarrow \tau_{\rm coll} = \frac{1}{\nu_{\rm coll}} \qquad \Rightarrow \kappa \sim n\frac{v_{\rm th}^2}{\nu_{\rm coll}}$$
$$T \qquad \Rightarrow \kappa \sim T^{5/2}$$

$$v_{\rm th}^2 \sim \frac{T}{m_{\rm e}} \qquad \qquad \nu_{\rm coll} \sim \frac{n}{T^{3/2}}$$

v_{coll}: collision frequency

 T_{coll} : collision time

Plasma thermal conductivity

$$\kappa \approx \kappa_0 T^{5/2}$$

Sound speed in an ideal DT gas/plasma

 Adiabatic sound speed when the entropy is conserved along the fluid motion

$$C_{\rm s}^{\rm adiabatic} = C_{\rm s} \left(\text{constant entropy} \right) = \sqrt{\frac{5}{3} \frac{p}{\rho}} = \sqrt{\frac{10}{3} \frac{T}{m_{\rm i}}}$$

 Isothermal sound speed when the temperature is constant along the fluid motion

$$C_{\rm s}^{\rm isothermal} = C_{\rm s} \left(\text{constant temperature} \right) = \sqrt{\frac{p}{\rho}} = \sqrt{\frac{2T}{m_{\rm i}}}$$

The laser light cannot propagate past a critical density

• Critical density is given by plasma frequency=laser frequency

The laser generates a pressure by depositing energy at the critical surface

• Integrate with space:

$$\rho v = \rho_c v_c$$

$$p + \rho v^2 = p_c + \rho_c v_c^2 \qquad \frac{\rho T}{A} + \rho v^2 = \frac{\rho_c T_c}{A} + \rho_c v_c^2$$

$$\rho v \left(\frac{T}{Av} + v\right) = \rho_c v_c \left(\frac{T_c}{Av_c} + v_c\right)$$

$$\frac{T}{Av} + v = \frac{T_c}{Av_c} + v_c \qquad v \left(\frac{1}{M^2} + 1\right) = v_c \left(\frac{1}{M_c^2} + 1\right)$$

$$\frac{d}{dx}(\rho v) = 0 \qquad \kappa = \kappa_0 T^{5/2}$$

$$\frac{d}{dx}(p + \rho v^2) = 0 \qquad \int$$

$$\frac{d}{dx}\left(v\left(\frac{5}{2}p + \frac{\rho v^2}{2}\right) - \kappa \frac{dT}{dx}\right) = 0$$

$$p = \frac{\rho T}{A} \qquad A = \frac{m_i}{1 + z}$$

$$v_c^2 \qquad V_a \qquad V_b \qquad$$

$$\frac{T}{Av} + v = \frac{T_c}{Av_c} + v_c \qquad v^2 - v\left(\frac{T_c}{Av_c} + v_c\right) + \frac{T}{A} = 0$$

$$v = \frac{1}{2}\left(\frac{T_c}{Av_c} + v_c \pm \sqrt{\left(\frac{T_c}{Av_c} + v_c\right)^2 - \frac{4T}{A}}\right)$$

$$Laser energy teat flows by the flow show the flow s$$

• Near the target where $T \ll T_c$, one expect that $v \ll v_c$. Therefore,

$$\boldsymbol{v} = \frac{1}{2} \left(\frac{T_{\rm c}}{A \boldsymbol{v}_{\rm c}} + \boldsymbol{v}_{\rm c} - \sqrt{\left(\frac{T_{\rm c}}{A \boldsymbol{v}_{\rm c}} + \boldsymbol{v}_{\rm c} \right)^2 - \frac{4T}{A}} \right)$$

• At $T = T_c$, $v = v_c$:

$$\boldsymbol{v}_{c} = \frac{1}{2} \left(\frac{T_{c}}{A \boldsymbol{v}_{c}} + \boldsymbol{v}_{c} - \left| \frac{T_{c}}{A \boldsymbol{v}_{c}} - \boldsymbol{v}_{c} \right| \right)$$

• If
$$\frac{T_c}{Av_c} - v_c \le 0$$
 $v_c = \frac{T_c}{Av_c}$ $M_c = 1$

• If
$$\frac{I_c}{Av_c} - v_c \ge 0$$
 $v_c = v_c$ $M_c \le 1$

• Pick $M_c = 1$, i.e., the flow is sonic at the critical surface.

• Integrate the energy equation in the conduction zone:

Assuming $M_c \ll 1$, i. e. , $p \gg \rho v^2$

T

$$\frac{5}{2}pv - \kappa \frac{dT}{dx} = \frac{5}{2}p_{o}v_{o} - \left(\kappa \frac{dT}{dx}\right)_{o} = \frac{5}{2}\frac{\rho_{o}T_{o}}{A}v_{o} - \left(\kappa_{o}T^{5/2}\frac{dT}{dx}\right)_{o} \to 0$$

$$\frac{5}{2}\frac{\rho Tv}{A} - \kappa_{o}T^{5/2}\frac{dT}{dx} = 0$$

$$T = T_{c}\left(1 + \frac{25}{4A}\frac{\rho_{c}v_{c}}{k_{o}T_{c}^{5/2}}(x - x_{c})\right)^{2/5}$$

The plasma keeps expanding in the corona zone so that no steady state can be found

• For $x > x_c$:

$$\partial_t \rho + \partial_x (\rho v) = 0$$

$$- \rho(\partial_t v + v \partial_x v) + \partial_x p = 0$$

$$\partial_t \left(\frac{3p}{2} + \frac{\rho v^2}{2} \right) + \partial_x \left(v \left(\frac{5p}{2} + \frac{\rho v^2}{2} \right) - \kappa \frac{\partial T}{\partial x} \right) = 0$$

• The temperature in the corona is high.

$$\kappa = \kappa_o T^{5/2} \Rightarrow \text{very large} \Rightarrow \frac{\partial T}{\partial x} = 0 \Rightarrow T = T_c = \text{constant} \qquad p = \frac{\rho T_c}{A}$$

$$\rightarrow \rho(\partial_t v + v \partial_x v) + \frac{T_c}{A} \partial_x \rho = 0$$

• Self-similar solutions depending on $\xi = \frac{z}{t}$ $z \equiv x - x_c$ $\partial_t \to -\frac{\xi}{t} \partial_{\xi}$ $\partial x \to \frac{1}{t} \partial_{\xi}$

The plasma keeps expanding in the corona zone so that no steady state can be found

The plasma keeps expanding in the corona zone so that no steady state can be found

$$\frac{\partial_{\xi}\rho}{\rho} = \frac{\partial_{\xi}v}{\xi - v}$$

$$(\xi - v)\partial_{\xi}v = \frac{T_c}{A}\frac{\partial_{\xi}\rho}{\rho}$$

$$v = \xi + \sqrt{\frac{T_c}{A}}$$

$$\frac{\partial_{\xi}(1 - v)}{\sqrt{\frac{1}{c}}}$$

$$v = \xi + \sqrt{\frac{T_c}{A}}$$

$$v = \xi + \sqrt{\frac{T_c}{A}}$$

$$\frac{\partial_{\xi}(1 - v)}{\sqrt{\frac{1}{c}}}$$

$$v = \frac{\xi}{\sqrt{\frac{1}{c}}}$$

$$v = -\frac{\xi}{\sqrt{\frac{1}{c}}} + constant$$

$$\rho = \rho_c e^{-\frac{\xi}{\sqrt{\frac{1}{c}}}}$$

$$\rho = \rho_c at \xi = 0$$

$$v = \frac{x - x_c}{t} + \sqrt{\frac{T_c}{A}}$$

$$\rho = \rho_c at \xi = 0$$

$$\cdot \text{ Laser energy is absorbed at the critical surface:}$$

$$\frac{\partial_{\xi}(\frac{3p}{2} + \frac{\rho v^2}{2}) + \frac{\partial}{\partial x}\left(v\left(\frac{5p}{2} + \frac{\rho v^2}{2}\right) - \kappa\frac{\partial T}{\partial x}\right) = I\delta(x)$$

The plasma keeps expanding in the corona zone so that no steady state can be found

$$\frac{\partial}{\partial t}\left(\frac{3p}{2}+\frac{\rho v^2}{2}\right)+\frac{\partial}{\partial x}\left(v\left(\frac{5p}{2}+\frac{\rho v^2}{2}\right)-\kappa\frac{\partial T}{\partial x}\right)=I\delta(x)$$

The jump conditions are

$$\left[-\kappa\frac{\partial T}{\partial x}\right]_{x_c^{-}}^{x_c^{+}} = I = -\kappa^{+}\left(\frac{\partial T}{\partial x}\right)^{+} + \kappa^{-}\left(\frac{\partial T}{\partial x}\right)^{-}$$

$$\kappa^{-} \left(\frac{\partial T}{\partial x}\right)^{-} \simeq \frac{5}{2} \frac{\rho_c v_c T_c}{A} + \frac{1}{2} \rho_c v_c^{3} = 3 \frac{\rho_c v_c T_c}{A} = 3 \rho_c \left(\frac{T_c}{A}\right)^{3/2}$$
$$\kappa^{+} \left(\frac{\partial T}{\partial x}\right)^{+} = ? \qquad \left(\frac{\partial T}{\partial x}\right)^{+} \to 0 \qquad \kappa^{+} \to \infty$$

The plasma keeps expanding in the corona zone so that no steady state can be found

Total energy in the corona:

(

$$\epsilon = \int_{x_c}^{\infty} dx \left(\frac{3}{2}p + \frac{1}{2}\rho v^2\right) = \int_0^{\infty} dz \left(\frac{3}{2}\rho \frac{T_c}{A} + \frac{1}{2}\rho v^2\right)$$

$$=t\int_0^\infty d\xi \rho_c e^{-\frac{\xi}{\sqrt{T_c/A}}} \left(\frac{3}{2}\frac{T_c}{A}+\frac{1}{2}\xi^2+\xi\sqrt{\frac{T_c}{A}}+\frac{1}{2}\frac{T_c}{A}\right)$$

$$= t \left(\frac{T_c}{A}\right)^{3/2} \rho_c \int_0^\infty d\zeta e^{-\zeta} \left(2 + \frac{1}{2}\zeta^2 + \zeta\right)$$

$$= 4\rho_c \left(\frac{T_c}{A}\right)^{3/2} t$$

$$\frac{d\epsilon}{dt} = 4\rho_c \left(\frac{T_c}{A}\right)^{3/2}$$

X

The plasma keeps expanding in the corona zone so that no steady state can be found

The plasma keeps expanding in the corona zone so that no steady state can be found

Total ablation pressure (static + dynamic):

$$P_{A} = \frac{\rho_{c}T_{c}}{A} + \rho_{c}v_{c}^{2} = 2\frac{\rho_{c}T_{c}}{A} \sim \rho_{c}\frac{I^{2/3}}{\rho_{c}^{2/3}} \sim \rho_{c}^{1/3}I^{2/3}$$

$$v_{c} = \sqrt{\frac{T_{c}}{A}} \qquad I = 4\rho_{c}\left(\frac{T_{c}}{A}\right)^{3/2}$$
Temperature at critical surface: $T_{c} \sim \left(\frac{I}{A}\right)^{2/3}$

Temperature at critical surface:

Velocity at critical surface:

$$(\rho_c)$$
 $\nu_c \sim \left(\frac{I}{L}\right)^{1/3}$

 $\langle \rho_c \rangle$

Ablation rate:

 $\rho_c v_c \sim \rho_c^{2/3} I^{1/3}$

Pressure generated by a laser is obtained using energy conservation equation

 Since the temperature gradients are small in the corona, the heat flux is small

 $\kappa \partial_{\mathbf{x}} T \left(x \ge x_{\mathbf{cr}} \right) << \kappa \partial_{\mathbf{x}} T \left(x \le x_{\mathbf{cr}} \right)$

$$\left(\kappa\partial_{\mathbf{x}}T\left(x\geq x_{\mathrm{cr}}\right)\approx\frac{1}{3}\kappa\partial_{\mathbf{x}}T\left(x\leq x_{\mathrm{cr}}\right)\right)$$

Integrate around critical surface x_c

$$\int_{x_{\rm cr}^-}^{x_{\rm cr}^+} \left\{ \partial_t \varepsilon + \partial_x \left[\vec{v} \left(\varepsilon + p \right) - \kappa \partial_x T \right] \right\} dx = \int_{x_{\rm cr}^-}^{x_{\rm cr}^+} \left\{ I\delta \left(x - x_{\rm cr} \right) \right\} dx$$
$$\partial_t \varepsilon x \Big|_{x_{\rm cr}^-}^{x_{\rm cr}^+} + \left[v \left(\varepsilon + p \right) \right]_{x_{\rm cr}^-}^{x_{\rm cr}^+} - \left[\kappa \partial_x T \right]_{x_{\rm cr}^-}^{x_{\rm cr}^+} = I$$
$$- \left[\kappa \partial_x T \right]_{x_{\rm cr}^-}^{x_{\rm cr}^+} = I$$

Laser produced ablation pressure

$$\partial_t \varepsilon + \partial_x \left[\vec{v} \left(\varepsilon + p \right) - \kappa \partial_x T \right] = I \delta \left(x - x_{\rm cr} \right)$$

Solving at steady state in the conduction zone (x<x_c) leads to

$$v\left(\varepsilon+p\right)\sim\kappa\partial_{x}T$$
 for $x\leq x_{\mathrm{cr}}^{-}$

• At the sonic point (i.e., critical surface) $C_{
m s} \sim \sqrt{p/
ho}$

$$I = \left[v\left(\varepsilon + p\right)\right]_{x_{\mathrm{cr}}} = C_{\mathrm{s}}\left(\frac{5}{2}p_{\mathrm{cr}} + \rho_{\mathrm{cr}}\frac{C_{\mathrm{s}}^2}{2}\right) \sim \frac{p_{\mathrm{cr}}^{3/2}}{\rho_{\mathrm{cr}}^{1/2}}$$

 $-\left[\kappa\partial_x T\right]_{x=1}^{x_{\rm cr}^+} = I$

The total pressure (static+dynamic) is the ablation pressure

$$p_{\rm A} = \left[p + \rho v^2\right]_{x=x_{\rm cr}} = 2p_{\rm cr} \sim \left(I\rho_{\rm cr}^{1/2}\right)^{2/3} \sim \left(\frac{I}{\lambda_{\rm L}}\right)^{2/3} \qquad n_{\rm cr,e} = \frac{1.1 \times 10^{21}}{\lambda_{\rm L,\mu m}^2} \,{\rm cm}^{-3}$$

• The laser-produced total (ablation) pressure on target:

$$p_{\rm A}({\rm Mbar}) \approx 83 \left(rac{I_{15}}{\lambda_{{\rm L},{\rm \mu m}}/0.35}
ight)^{2/3}$$

 I_{15} : laser intensity in $10^{15} w/cm^2$ $\lambda_{L,\mu m}$: laser wavelength in μm

Mass ablation rate induced by the laser

• At steady state, the mass flow across the critical surface must equal the mass flow off the shell (i.e., the mass ablation rate)

$$\dot{m}_{\rm a} = \rho v = \rho_{\rm cr} v_{\rm cr} = \rho_{\rm cr} C_{\rm s}^{\rm cr} = \rho_{\rm cr} \sqrt{\frac{p_{\rm cr}}{\rho_{\rm cr}}} = \sqrt{\rho_{\rm cr} p_{\rm cr}}$$

$$\rho_{\rm cr} \sim \frac{1}{\lambda_{\rm L}^2} \qquad p_{\rm cr} \sim \left(\frac{I}{\lambda}\right)^{2/3}$$

$$\Rightarrow \dot{m}_{\rm a} = \frac{I^{1/3}}{\lambda_{\rm L}^{4/3}}$$

$$\dot{m}_{\rm a} = 3.3 \times 10^5 \frac{I_{15}^{1/3}}{\lambda_{\rm L}^{4/3}} \,{\rm g/cm^2 \, s}$$

- The entropy S is a property of a gas just like p, T, and ρ

$$S = c_{\rm v} \ln \left[\frac{p}{\rho^{5/3}} {\rm const} \right] = c_{\rm v} \ln \alpha \qquad \qquad \alpha = {\rm const} \frac{p}{\rho^{5/3}}$$

- α is called the "adiabat"
- The entropy/adiabat S/α changes through dissipation or heat sources/sinks

$$\rho\left(\frac{\partial S}{\partial t} + \vec{u} \cdot \nabla S\right) = \frac{DS}{Dt} = \mu \frac{\left|\nabla \vec{u}\right|^2}{T} + \frac{\nabla \cdot \kappa \nabla T}{T} + \text{sources/sinks}$$

 In an ideal gas (no dissipation) and without sources and sinks, the entropy/adiabat is a constant of motion of each fluid element

$$\frac{DS}{dt} = 0 \Rightarrow S , \ \alpha = \text{const} \Rightarrow p \sim \alpha \rho^{5/3}$$

It is easier to compress a low adiabat (entropy) gas

$$W_{1\to 2} = -\int p dV \sim -\int_{\rho_1}^{\rho_2} \alpha \rho^{5/3} d\left(\frac{M}{\rho}\right) \sim \alpha M\left(\rho_2^{2/3} - \rho_1^{2/3}\right)$$

• Smaller α -> higher density for the same pressure

$$\alpha \sim \frac{p}{\rho^{5/3}} \Rightarrow \rho \sim \left(\frac{p}{\alpha}\right)^{3/5}$$

- In HEDP, the constant in adiabat definition comes from the normalization of the pressure against the Fermi pressure.
- When thermal effects are negligible at very high densities, the pressure is proportional to $\rho^{5/3}$ due to the quantum mechanical effects (degenerate electron gas) just like isentropic flow

$$\alpha \equiv \frac{p}{p_{\rm F}} \quad \Rightarrow \alpha_{\rm DT} = \frac{p_{\rm Mbar}}{2.2\rho_{\rm g/cc}^{5/3}}$$

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis 45

Rankine-Hugoniot conditions are obtained using conservation of mass, momentum and energy across the shock front

$$\rho_1 u_1 = \rho_2 u_2$$

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

$$u_1 (\varepsilon_1 + p_1) = u_2 (\varepsilon_2 + p_2)$$

Ideal gas/plasma:

$$\varepsilon = \frac{3}{2}p + \rho \frac{u^2}{2}$$

For a strong shock where $p_2 >> p_1$, the R-H conditions are simplified

$$\begin{aligned} \frac{\rho_2}{\rho_1} &\approx 4 \\ U_{\rm shock} &= -u_1 \approx \sqrt{\frac{4p_2}{3\rho_1}} \\ u_2 &\approx \sqrt{\frac{p_2}{12\rho_1}} \\ \frac{\alpha_2}{\alpha_1} &= \frac{p_2/\rho_2^{5/3}}{p_1/\rho_1^{5/3}} \approx \frac{1}{4^{5/4}} \frac{p_2}{p_1} >> 1 \end{aligned}$$

The adiabat increases through the shock.

In an ideal gas/plasma, the adiabat α only raises when a shock is present

Post-shock density

 $\rho_2 \approx 4\rho_1$

• Adiabat set by the shock for DT:

$$\alpha_2 \approx \frac{p_{2,\text{Mbar}}}{2.2 \left(4\rho_{1,\text{g/cc}}\right)^{5/3}}$$

• Time required for the shock to reach the rear target surface (shock break-out time, t_{sb})

$$t_{\rm sb} = \frac{\Delta_1}{u_{\rm shock}} = \Delta_1 \sqrt{\frac{3\rho_1}{4p_2}} \propto \sqrt{\frac{1}{\alpha_2 \rho_1^{2/3}}}$$

Higher laser intensity leads to higher adiabat

• For a cryogenic solid DT target at 18 k:

$$\rho_1 = 0.25 \text{ g/cc}$$
 $\alpha = \frac{p_{\text{Mbar}}}{2.2}$
 $p \approx 83 \left(\frac{I_{15}}{\lambda_{\mu\text{m}}/0.35}\right)^{2/3}$

$$I \approx 4.3 \times 10^{12} \text{ w/cm}^2 \implies p = 2.2 \text{ Mbar} \implies \alpha = 1$$
$$I \approx 1.2 \times 10^{13} \text{ w/cm}^2 \implies p = 4.4 \text{ Mbar} \implies \alpha = 2$$
$$I \approx 2.2 \times 10^{13} \text{ w/cm}^2 \implies p = 6.6 \text{ Mbar} \implies \alpha = 3$$

The pressure must be "slowly" increased after the first shock to avoid raising the adiabat

- After the foot of the laser pulse, the laser intensity must be raised starting at about 0.5t_{sb} and reach its peak at about t_{sb}
- Reaching I_{max} at t_{sb} prevents a rarefaction/decompression wave to propagate back from the rear target surface and decompress the target.

Most of the absorbed laser energy goes into the kinetic and thermal energy of the expanding blow-off plasma

• The rocket model:

Shell Newton's law

$$M\frac{du}{dt} = -4\pi R^2 p_{\rm a}$$

Shell mass decreases due to ablation

$$\frac{dM}{dt} = -4\pi R^2 \dot{m}_{\rm a}$$

p_a =ablation rate x exhaust velocity

 $p_{\rm a} = \dot{m}_{\rm a} u_{\rm exhaust}$

Shell velocity can be obtained by integrating the rocket equations

$$M \frac{du}{dt} = -4\pi R^2 p_a \qquad \frac{dM}{dt} = -4\pi R^2 \dot{m}_a \qquad p_a = \dot{m}_a u_{exhaust}$$

$$M \frac{du}{dt} = -4\pi R^2 p_a = -4\pi R^2 \dot{m}_a u_{exhaust}$$

$$= -4\pi R^2 u_{exhaust} \frac{1}{-4\pi R^2} \frac{dM}{dt}$$

$$= u_{exhaust} \frac{dM}{dt}$$

$$\int du = u_{exhaust} \int \frac{dM}{M}$$

$$u_{shell} = u_{exhaust} \ln \left(\frac{M_{initial}}{M_{final}}\right)$$

$$E_{kin}^{shell} = \frac{M_{final}}{2} u_{shell}^2 = \frac{M_{final}}{2} \left[u_{exhaust} \ln \left(\frac{M_{initial}}{M_{final}}\right)\right]^2$$

$$E_{exhaust} = (M_{initial} - M_{final}) \left(\frac{u_{exhaust}^2 + \frac{3}{2} \frac{p_{ex}}{p_{ex}}}{2}\right) \qquad (dynamic + static)$$

$$M_{exhaust} = M_{initial} - M_{final}$$

$$E_{\rm kin}^{\rm shell} = \frac{M_{\rm final}}{2} u_{\rm shell}^2 = \frac{M_{\rm final}}{2} \left[u_{\rm exhaust} \ln \left(\frac{M_{\rm initial}}{M_{\rm final}} \right) \right]^2$$

$$E_{\text{exhaust}} = \left(M_{\text{initial}} - M_{\text{final}}\right) \left(\frac{u_{\text{exhaust}}^2}{2} + \frac{3}{2} \frac{p_{\text{ex}}}{\rho_{\text{ex}}}\right)$$

Take
$$u_{\text{exhaust}}^2 \approx C_{\text{s}}^2 \approx \frac{p_{\text{ex}}}{\rho_{\text{ex}}}$$

 $\eta_{\text{h}} = \frac{E_{\text{kin}}^{\text{shell}}}{E_{\text{exhaust}}} = \frac{M_{\text{f}}/M_{\text{i}} \left[\ln \left(M_{\text{f}}/M_{\text{i}} \right) \right]^2}{4 \left(1 - M_{\text{f}}/M_{\text{i}} \right)}$
 (0.15)
 (0.15)
 (0.15)
 (0.05)
 (0.05)
 (0.05)
 (0.00)
 (0.02)
 (0.12)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.12)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.12)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.12)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.16)
 (0.05)
 (0.05)
 (0.02)
 (0.16)
 (0.05)
 (0.05)
 (0.06)
 (0.05)
 (0.06)
 (0.05)
 (0.06)
 (0.05)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 (0.06)
 $(0$

One dimensional implosion hydrodynamics

What are the stagnation values of the relevant hydrodynamic properties?

What variables can be controlled?

Take Take

- Shell outer radius R₀ at time t=0
- Shell inner radius R₁ at time t=0
- The total laser energy on target
- Adiabat α through shocks
- Applied pressure p(t) through the pulse shape I(t)

$$\alpha \sim \frac{p}{\rho^{5/3}} \qquad p \sim I^{2/3} \qquad \qquad I(t)$$

There are three stages in the laser pulse: foot, ramp, and flat top

The adiabat is set by the shock launched by the foot of the laser pulse

Density and thickness at shock break out time are expressed in laser intensity

• Use $p \sim I^{2/3}$

Shell density
$$\rho_{\rm sb} \sim 4\rho_1 \left(\frac{p_{\rm max}}{p_{\rm foot}}\right)^{3/5} = 4\rho_1 \left(\frac{I_{\rm max}}{I_{\rm foot}}\right)^{2/5}$$

- $\Delta_{\rm sb} \sim \frac{\Delta_1}{4} \left(\frac{p_{\rm foot}}{p_{\rm max}}\right)^{3/5} = \frac{\Delta_1}{4} \left(\frac{I_{\rm foot}}{I_{\rm max}}\right)^{2/5}$ Shell thickness ٠
- Shell radius ٠

The aspect ratio is maximum at shock break out

Aspect ratio $\equiv \frac{R}{\Delta}$ $A_1 = \frac{R_1}{\Delta_1} = \text{initial aspect ratio}$ $A_{\text{sb}} = IFAR = \frac{R_1}{\Delta_{\text{sb}}} = 4A_1 \left(\frac{I_{\text{max}}}{I_{\text{foot}}}\right)^{2/5}$ $A_{\text{sb}} = A_{\text{max}}$

IFAR = Maximum In-Flight-Aspect-Ratio = aspect ratio at shock break-out

The IFAR scales with the Mach number

• The shell kinetic energy = the work done on the shell

$$Mu_{\max}^{2} \sim \int_{R}^{R_{1}} pr^{2} dr \sim p (R_{1}^{3} - R^{3}) \approx pR_{1}^{3} \qquad R_{1}^{3} = \frac{Mu_{max}^{2}}{p}$$

$$M \sim \rho_{sb} \Delta_{sb} R_{1}^{2} \qquad \Delta_{sb} \sim \frac{M}{\rho_{sb} R_{1}^{2}} \qquad R_{1} >> R$$

$$IFAR = \frac{R_{1}}{\Delta_{sb}} = \frac{R_{1}}{\frac{M}{\rho_{sb} R_{1}^{2}}} = \frac{\rho_{sb} R_{1}^{3}}{M} = \frac{\rho_{sb}}{M} \frac{Mu_{max}^{2}}{p}$$

$$= \frac{u_{max}^{2}}{p/\rho_{sb}} \sim Mach_{max}^{2}$$

$$\rho \sim (p/\alpha)^{3/5} \qquad p \sim I^{2/3} \qquad IFAR \sim \frac{u_{max}^{2}}{\alpha^{3/5} I^{4/15}}$$

R

The final implosion velocity can be found using IFAR

$$u_{\text{max}}^{2} \sim IFAR \times \alpha^{3/5} I^{4/15}$$

$$IFAR = 4A_{1} \left(\frac{I_{\text{max}}}{I_{\text{foot}}}\right)^{2/5}$$

$$A_{1} = \frac{R_{1}}{\Delta_{1}}$$

$$u_{\text{max,cm/s}} \approx 10^{7} \sqrt{0.7A_{1}\alpha^{3/5} I_{15,\text{max}}^{4/15} \left(\frac{I_{\text{max}}}{I_{\text{foot}}}\right)^{2/5}}$$

There are three stages in the laser pulse: foot, ramp, and flat top

A simple implosion theory can be derived in the limit of infinite initial aspect ratio

- Start from a high aspect ratio shell (thin shell) at the beginning of the acceleration phase
 - Constant ablated pressure
 - The adiabat is set and kept fixed by the first and the only shock

$$IFAR = A_{\rm sb} = \frac{R_1}{\Delta_{\rm sb}} >> 1$$

The implosion are divided in 3 phases after the shock break out

- 1st phase: acceleration
- 2nd phase: coasting
- 3rd phase: stagnation