Introduction to Nuclear Fusion as An Energy Source

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 10

2025 spring semester

Tuesday 9:00-12:00

Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

https://nckucc.webex.com/nckucc/j.php?MTID=mf1a33a5dab5eb71de9da43 80ae888592

Bootstrap current

 $B_{T1} < B_{T2}$

With poloidal fields, charged particles see nonuniform toroidal magnetic field

R,

 ∇P

2

 $P = P_2$

magnetic axis

Charged particles can be partially confined by a magnetic mirror machine

• Charged particles with small $v_{||}$ eventually stop and are reflected while those with large $v_{||}$ escape.

Parallel velocity changes when particles follow field the field line

Particles may be trapped by nonuniform magnetic field

- For $v_{||}^2 \ge 0$, particles are passing.
- For $v_{||}^2 \le 0$, particles are trapped.

Charge particles drift across magnetic field lines when the magnetic field is not uniform or curved

For passing particles, they drift back to the original position with a "semicircle" orbit

$$\vec{v}_{\text{total}} = \vec{v}_{\text{R}} + \vec{v}_{\nabla} = \frac{\vec{B} \times \nabla B}{\omega_{\text{c}} B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) = \frac{m}{q} \frac{\vec{R}_{\text{c}} \times \vec{B}}{R_{\text{c}}^2 B^2} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right)$$

For trapped particles, they drift back to the original position with a banana orbit

Trajectories of charged particles

9

The trajectories of charged particles follow the toroidal field lines

A banana current is generated when there is a pressure gradient in the plasma

Samuli Saarelma, Helsinki University of Technology, PhD Thesis 2015

Bootstrap current is generated when passing particles are scattered by the trapped particles

• Scattering smooths the velocity distribution and shifts it in the parallel direction, i.e., a current is generated. It is called the bootstrap current.

Momentum exchange may be needed to drive plasma current

Strong absorption occurs when the frequency matches the electron cyclotron frequency

• Electron cyclotron resonance (ECR) plasma reactor

Electron cyclotron frequency depends on magnetic field only

$$m_e \frac{d \, \vec{v}}{dt} = -\frac{e}{c} \, \vec{v} \times \vec{B}$$

• Assuming $\overrightarrow{B} = B\widehat{z}$ and the electron oscillates in x-y plane

$$m_e v_x = -\frac{e}{c} B v_y$$

$$m_e v_z = 0$$

$$m_e v_y = \frac{e}{c} B v_x$$

$$\ddot{v}_x = -\frac{eB}{m_e c} v_y = -\left(\frac{eB}{m_e c}\right)^2 v_x$$

$$\ddot{v}_y = -\frac{eB}{m_e c} v_x = -\left(\frac{eB}{m_e c}\right)^2 v_y$$

• Therefore

$$\omega_{\rm ce} = \frac{eB}{m_e c}$$

Electrons keep getting accelerated when a electric field rotates in electron's gyrofrequency

$$m_e \frac{d \vec{v}}{dt} = -\frac{e}{c} \vec{v} \times \vec{B} - e \vec{E} \qquad \vec{B} = B_0 \hat{z} \qquad \vec{E} = E_0 [\hat{x} \cos(\omega t) + \hat{y} \sin(\omega t)]$$

$$m_e \dot{v}_x = -\frac{e}{c} B v_y + E_0 \cos(\omega t) \qquad m_e \dot{v}_y = \frac{e}{c} B v_x + E_0 \cos(\omega t) \qquad m_e \dot{v}_z = 0$$

$$\ddot{v}_x = -\frac{eB}{m_e c} \dot{v}_y - \frac{E_0}{m_e} \omega \cos(\omega t) = -\omega_{ce}^2 v_x - \frac{E_0}{m_e} (\omega_{ce} + \omega) \cos(\omega t)$$
$$\ddot{v}_y = -\frac{eB}{m_e c} \dot{v}_x + \frac{E_0}{m_e} \omega \sin(\omega t) = -\omega_{ce}^2 v_y + \frac{E_0}{m_e} (\omega_{ce} + \omega) \sin(\omega t)$$

Electric field in a circular polarized electromagnetic wave keeps rotating as the wave propagates

Right-handed polarization

Left-handed polarization

Only right-handed polarization can resonance with electron's gyromotion

FIGURE 13.5. Basic principle of ECR heating: (*a*) continuous energy gain for righthand polarization; (*b*) oscillating energy for left-hand polarization (after Lieberman and Gottscho, 1994).

Strong absorption occurs when the frequency matches the electron cyclotron frequency

• Electron cyclotron resonance (ECR) plasma reactor

The collisional re-distribution of the ECRH-driven anisotropy in E_{\perp} causes some parallel momentum to flow from e⁻ to ions

• Coulomb collisions are more efficient at lower energies.

• Electron cyclotron current drive:

V. Erckmann and U. Gasparion, Plasma Phys. Control. Fusion **36**, 1869 (1994) Yuejiang Shi et al, Nucl. Fusion **62**, 086047 (2022)

Passing electrons can be trapped if the v_{\perp} is increased by heating

Lecture note "Physics and Applications of Electron Cyclotron Heating and Current Drive" by R. Prater from GA at 6th ITER International School 2012, Institute for Plasma Research, Gandhinagar Ahmedabad, India, December 2-6, 2012

Comparison of Fisch-Boozer Mechanism and Ohkawa Mechanism

Aspect	Fisch–Boozer Mechanism ^[1]	Ohkawa Mechanism ^[2]
Physical Process	Asymmetric heating of passing electrons with subsequent collisional momentum transfer	Selective de-trapping of barely trapped electrons into passing orbits (collisionless mechanism)
Requires collisions?	Yes (collisional mechanism)	No (collisionless pitch-angle scattering)
Key Particle Population	Passing electrons	Trapped (or barely trapped) electrons
Wave absorption location	Depends on Doppler-shifted resonance; typically near magnetic axis or mid-radius	Usually near edge where barely trapped particles are abundant

1 N. J. Fisch and A. H. Boozer, Phys. Rev. Lett. 45, 720 (1980).

2 T. Ohkawa, "Steady state operation of tokamaks by rf heating," General Atomics Report No. GA-A13847 (1976).

Neutral beam injector is one of the main heat mechanisms in MCF

Varies way of heating a MCF device

	Sy	stem	Frequency/ energy	Maximum power coupled to plasma	Overall system efficiency	Development/ demonstration required	Remarks
ECRF		Demonstrated in tokamaks	$28157~\mathrm{GHz}$	2.8 MW, $0.2 \ \rm s$	30-40%	Power sources	Provides
	-	ITER needs	$150170~\mathrm{GHz}$	50 MW, S S	20 10/0	off-axis CD	off-axis CD
ICRF	, ,	Demonstrated in tokamaks	$25120~\mathrm{MHz}$	22 MW, 3 s (L-mode); 16.5 MW, 3 s (H-mode)	50–60%	ELM tolerant system	Provides ion heating and smaller ELMs
		ITER needs	40–75 MHz	50 MW, S S			
LHRI	F	Demonstrated in tokamaks	1.3–8 GHz	2.5 MW, 120 s; 10 MW, 0.5 s	45-55%	Launcher,	Provides
		ITER needs	$5~\mathrm{GHz}$	50 MW, S S	40 0070	H-mode	off-axis CD
NBI	+ve ion	Demonstrated in tokamaks	$80–140~{\rm keV}$	40 MW, 2 s; 20 MW, 8 s	35 - 45%	None	Not applicable
		ITER needs	None	None			
	-ve ion	Demonstrated in tokamaks	$0.35~{\rm MeV}$	$5.2 \text{ MW}, \text{ D}^-, 0.8 \text{ s}$ (from 2 sources)			
		ITER needs	$1 { m MeV}$	50 MW, S S	$\sim 37\%$	System, tests on tokamak, plasma CD	provides rotation

 $\rm ^{\prime S}\,S^{\prime}$ indicates steady state

Neutral atoms are ionized by collisions in the plasma

- Charge exchange:

$$H_b + H_p^+ \rightarrow H_b^+ + H_p$$

- Ionization by ions
 - $H_b + H_p^+ \rightarrow H_b^+ + H_p^+ + e^-$
- Ionization by electrons

 $H_b + e^- \rightarrow H_b^+ + 2e^-$

b: beam p: plasma

Neutral beam absorption length increases with tangential injection

 It is more difficult to access through the toroidal field coils with tangential injection.

Neutral particles heat the plasma via coulomb collisions

- 1. create energetic (fast) neutral ions
- 2. ionize the neutral particles
- 3. heat the plasma (electrons and ions) via Coulomb collisions

Negative ion source is preferred due to higher neutralization efficiency

There are two ways to make negative ions – surface and volume production

- Surface production, depends on :
 - Work function Φ
 - Electron affinity level, 0.75 eV for H⁻
 - Perpendicular velocity
 - Work function can be reduced by covering the metal surface with cesium

$$H + e^- \rightarrow H^-$$

 $H^+ + 2e^- \rightarrow H^-$

• Volume production:

$$H_2 + e_{fast}(>20 \text{ eV}) \rightarrow H_2^{-}(\text{excited state}) + e_{fast},$$

 $H_2^{+}(\text{excited state}) + e_{slow}(\approx 1 \text{ eV}) \rightarrow H^{-} + H.$

<u>ما د</u>

Two-chamber method of negative ions in volume production with a magnetic filter

Adding cesium increases negative ion current

31

Electrons need to be filtered out since they are extracted together with negative ions

Acceleration

The ITER neutral beam system: status of the project and review of the main technological issues, presented by V. Antoni

NBI system of the LHD fusion machine

- 180 keV and 30 A
- Arc chamber: 35 cm x 145 cm, 21cm in depth
- Single stage accelerator

20 cm

JT60U NBI system

- JT-60 (Japan-Torus) is a tokamak in Japan.
- 550 keV, 22A j G 2m in diameter and 1. in heig • 3-stage accelerator Negative-ion generator Extractor Accelerator

Neutralization

- Gas neutralization
 - Collisions between fast negative ions and atoms

 $H^- + H_2 \longrightarrow H + H_2 + e^-$

- Fast ions can lose another electron after neutralized

$$H + H_2 \longrightarrow H^+ + H_2 + e^-$$

- Plasma neutralization
 - Collisions with charged particles in plasma

$$H^- + X(e, \operatorname{Ar}, H^+, H_2^+) \longrightarrow H + X + e^-$$

- The efficiencies reach up to 85% for fully ionized hydrogen plasma

Beam dump

- beam components (Ion Source, Accelerator, Neutralizer, Residual Ion Dump and Calorimeter)
- other components (cryo-pump, vessels, fast shutter, duct, magnetic shielding, and residual magnetic field compensating coils)

The ITER neutral beam system: status of the project and review of the main technological issues, presented by V. Antoni

Neutral beam penetration

- Parallel direction
 - Longest path through the densest part of the plasma
 - Harder to be built
- Perpendicular direction
 - Path is short
 - Larger perpendicular energies leads to larger losses
 - Easier to be built

Temperature of 100 eV is the threshold of radiation barrier by impurities

Course Outline

- Inertial confinement fusion (ICF)
 - Plasma frequency and critical density
 - Direct- and indirect- drive
 - Laser generated pressure (Inverse bremsstrahlung and Ablation pressure)
 - Burning fraction, why compressing a capsule?
 - Implosion dynamics
 - Shock (Compression with different adiabat)
 - Laser pulse shape
 - Rocket model, shell velocity
 - Laser-plasma interaction (Stimulated Raman Scattering, SRS; Stimulated Brillouin Scattering, SBS; Two-plasmon decay)
 - Instabilities (Rayleigh-taylor instability, Kelvin-Helmholtz instability, Richtmeyer-Meshkov instability)

Under what conditions the plasma keeps itself hot?

THE FORMER

• Steady state 0-D power balance:

 $S_{\alpha}+S_{h}=S_{B}+S_{k}$

- S_{α} : α particle heating
- S_h: external heating
- **S_B: Bremsstrahlung radiation**
- S_k: heat conduction lost

Ignition condition: Pτ > 10 atm-s = 10 Gbar - ns

- P: pressure, or called energy density
- т is confinement time

Significant breakthrough was achieved in ICF recently

Inertial confinement fusion (ICF) •

National Ignition Facility (NIF) demonstrated a gain grater than 1 for the • first time on 2022/12/5. The yield of 3.15 MJ from the 2.05-MJ input laser energy, i.e., Q=1.5.

https://www.science.org/content/article/historic-explosion-long-sought-fusion-breakthrough

https://zh.wikipedia.org/wiki/國家點火設施

Don't confine it!

 Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined by its own inertia: P~Gigabar, τ~nsec, T~10 keV (10⁸ °C)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

Compression happens when outer layer of the target is heated by laser and ablated outward

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester R. Betti, HEDSA HEDP Summer School, 2015

Plasma is confined by its own inertia in inertial confinement fusion (ICF)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

A ball can not be compressed uniformly by being squeezed between several fingers

 ρ_2

P.-Y. Chang, PhD Thesis, U of Rochester (2013) R. S. Craxton, etc., *Phys. Plasmas* **22**, 110501 (2015)

A spherical capsule can be imploded through directly or indirectly laser illumination

The 1.8-MJ National Ignition Facility (NIF) will demonstrate ICF ignition and modest energy gain

OMEGA experiments are integral to an ignition demonstration on the NIF.

Targets used in ICF

• Triple-point temperature : 19.79 K

http://www.lle.rochester.ed https://en.wikipedia.org/wiki/Inertial_confinement_fusion R. S. Craxton, etc., *Phys. Plasmas* **22**, 110501 (2015)

Softer material can be compressed to higher density

Compression of a baseball

Compression of a tennis ball

https://www.youtube.com/watch?v=uxIIdMoAwbY https://newsghana.com.gh/wimbledon-slow-motion-video-of-how-a-tennis-ball-turns-to-goo-after-serve/ 51

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis *R. Betti, HEDSA HEDP Summer School, 2015

Targets used in ICF

Cryogenic shroud

Rugby hohlraum

С

https://www.lle.rochester.edu/index.php/2014/11/10/next-generation-cryo-target/ Introduction to Plasma Physics and Controlled Fusion 3rd Edition, by Francis F. Chen https://www.llnl.gov/news/nif-shot-lights-way-new-fusion-ignition-phase

b

Nature letter "Fuel gain exceeding unity in an inertially confined fusion implosion"

Fuel gain exceeding unity was demonstrated for the first time.

The hot spot has entered the burning plasma regime

55

National Ignition Facility (NIF) achieved a yield of more than 1.3 MJ from ~1.9 MJ of laser energy in 2021 (Q~0.7)

 National Ignition Facility (NIF) achieved a yield of more than 1.3 MJ (Q~0.7). This advancement puts researchers at the threshold of fusion ignition.

THE ROAD TO IGNITION

The National Ignition Facility (NIF) struggled for years before achieving a high-yield fusion reaction (considered ignition, by some measures) in 2021. Repeat experiments, however, produced less than half the energy of that result.

• Laser-fusion facility heads back to the drawing board.

J. Tollefson, Nature (News) 608, 20 (2022)

T. Ma, ARPA-E workshop, April 26, 2022

"Ignition" (target yield larger than one) was achieved in NIF on 2022/12/5

https://physicstoday.scitation.org/do/10.1063/PT.6.2.20221213a/full/ The age of ignition: anniversary edition, LLNL-BR-857901

External "spark" can be used for ignition

58

Shock ignition

Fast ignition

External "spark" can be used for ignition

Shock ignition ٠

Fast ignition •

Ignition

--⊢ 10 ps

a) channeling FI concept

b) cone-in-shell FI concept

T. Ditmire, etc., J. Fusion Energy 42, 27 (2023)

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis *R. Betti, HEDSA HEDP Summer School, 2015

Ignition can happen by itself or being triggered externally

