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2. Varies kinds of plasma

c. Material Processing



Sputtering deposition
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Magnetron sputtering provides higher deposition rates
than conventional sputtering
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Examples of magnetron sputtering deposition
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Demonstration experiments — magnetron sputtering
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A bright ring occurs when the magnet is inserted into
the system
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EUV light sources

A semiconductor device is fabricated by many
repetitive production process
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Ultraviolet lithography (EUVL) is one of the key
technologies in semiconductor manufacturing nowadays
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« The process technology of Taiwan Semiconductor Manufacturing
Company Limited (TSMC):
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« Optical diffraction needs to be taken into account.
« Shorter wavelength is preferred.

« Light source with a center wavelength of 13.5 nm is used.

https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm



EUV lithography becomes important for semiconductor
iIndustry

* 0.15 billion USD for each EUV light source.
https://lwww.youtube.com/watch?v=NHSRG6AHNIDs

http://finance.technews.tw/2019/01/25/euv-asml|-2018/ 10



EUV light can only be reflected using multilayer mirrors
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13.5-nm EUV light is picked for EUV lithography

‘ —38n Li —Xe----11mirrors|

1.2
_ 1
s [\
o ]
S A 1A
DS A /NN
5T 04 :
> . A H
8§ 02 w’/ N — <
= O 1] 1
A 0 . 4"""/.*' \_

10 11 12 13 14

-0.2
Wavelength (nm)

A=13.5nm + 1% is required. e Tin:

At T=35-40 eV (~450,000 K), . 4p®4dN — 4p54dN+L + 4p6adN-LAf
In-band emission occurs. (1<N < 6) in ions ranging from
Xenon: Sns8+ to Spl2+

* 4p®4d® — 4p°4d75p + UTA @ 13.5nm

from single ion stage Xel0+

« UTA@ 11 nm "
« UTA: unresolved transition array

V. Bakshi, EUV sources for lithography
R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012)
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EUV light is generated from laser-produced plasma (LPP)

Vessel
With Collector, Droplet

+ Key factors for high source power are: ! Generator and Metrology
|

High input CO, laser power

High conversion efficiency (CO, to EUV energy)
High collection efficiency (reflectivity and lifetime)
Advanced controls to minimize dose overhead
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D.-K. Yang, etc., Chip, 1, 100019 (2022) 13



Two laser pulses are used to heat the plasma
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Hydrogen buffer gas with a pressure of ~100 Pa is used
to protect the collector mirror

: , * Hydrogen buffer gas (pressure

' DG | ~100Pa) causes deceleration of ions

’ ’ « Hydrogen flow away from collector
reduces atomic tin deposition rate

EUV collector | i
Temperature controlled .

H, flow

Laser beam ‘

Sn droplet / IF

plasma

Reaction of H radicals with Sn to
form SnH,, which can be pumped
away.

Sn (s) + 4H (g) — SnH, (g)

T * Vessel with vacuum pumping to
remove hot gas and tin vapor

Sn * Internal hardware to collect micro
catcher particles

D.-K. Yang, etc., Chip, 1, 100019 (2022) 1s



Laser-produced plasma (LPP) is used in the EUV
lithography
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High harmonic generation from high-power laser
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EUV light can be gen
plasma

erated using discharged-produced
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Plasma cleaning

Plasma can be used for cleaning surface

« Cleaning mechanisms:
— Chemical reactions by free radicals

— Physical sputtering by high energy ions

Plasma Cleaning

Hydrogen Plasma Oxygen Plasma
Argon Plasma
Chemical Energy Chemical Energy

Physical

23522
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https://www.ecplaza.net/products/plasma-cleaning_111807 19




Free radicals are generated and used in chemical reactions
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« Highly reactive free radicals generated in plasma may react with the
hydrocarbon contaminants of surface oxide.

* Both He and Oe can react with grease or oil on surface to form volatile
hydrocarbons.
H eyt CrHani2(s) = CHys)

Oe )+ CnH2n+2(s) - CO(S) + CHxOy(g) + HZO(g)

(g

e Oeis more reactive than He. But Oe may also react with surface metal to form oxide,
deteriorating the material properties. Nevertheless, He can make metal oxide back
to metal.

Oe¢ +Me » MeO

He+ +MeO - Me + H,0

20



The effect of chemical reactions Is increased as the
pressure increases

« Advantages:
— Stable gas products are formed.
— No redeposition problem.

— High etching selectivity.

« Disadvantages:

— Higher concentration of H, or O, is required to ensure an appropriate
etching rate.

— H, safety or O, strong oxidation ability needs to be monitored.

21



High energy ions are used in physical sputtering
cleaning

* lons generated in plasma can be accelerated toward the substrate to
physically bombard away the atoms of contaminants.

 The physical sputtering rate increases as the following quantities
Increase:

— Plasma density;

— Accelerating voltage;

— Mass of bombardment atoms.
 The physical sputtering is also enhanced by lowering the pressure.
« High cathode bias is used.

« Ar* has strong sputtering effect.

22



The physical sputtering rate increases with higher
cathode bias and Ar concentration and lower pressure
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« Advantages:
— Highly efficient cleaning effect can be achieved.

— Gas consumption rate can be very low.

« Disadvantages:
— Etching problems — non-selective etching by physical sputtering.

— Redeposition problems: the products sputtered out may be highly
unstable and tend to deposit again downstream.
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Plasma cleaning examples
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Low-pressure plasma system: Generation with a low-frequency or high-frequency generator Low-pressure plasma system: Cleaning with a microwave generator
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Abnormal glow discharge occurs when the cross section

of the plasma covers the entire surface of the cathode
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« Surface cleaning using plasma needs to work in the abnormal glow

discharge region.



Plasma cleaning needs to work in the regime of
abnormal glow discharge
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Course Qutline

2. Varies kinds of plasma

d. Biomedical application
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Plasma medicine

» Reference:

— “Applied Plasma Medicine”, by G. Fridman, et al., Plasma Process.
Polym., 5, 503, 2008

— “Plasma Medicine”, by A. Fridman and G. Fridman

28



Outline

« Example of several plasma discharges for plasma medicine
* Living tissue sterilization

 Blood coagulation

* Nitrogen oxide (NO) treatment

* Non-thermal plasma treatment of melanoma skin cancer

« Skin regeneration

« Facemask regeneration

« Mushroom yield enhancement

29



Outline

« Example of several plasma discharges for plasma medicine

30



Plasma is characterized by the electron and ion
temperatures

* Non-thermal plasma

- T,<<T,

— Also called non-equilibrium plasma
 Thermal plasma

- T =T,

« Earlier applications of plasma in medicine — thermal effects of plasma

31



Plasma can provide good surface treatment with low
temperature

Treatment | Surface Depth Temperature Cost
treatment level

Chemical Large Deep Room temperature Medium
~200 °C

Heat Only oxidizing Deep High temperature Cheap

Radiation Small Whole High temperature Expensive

sample

Plasma Large Surface = Room temperature Cheap ~

~100 °C Medium

Yu-Lin Kuo, etc., BEEARERRXFBEREABFEA NS EXEWE(E, BHEM 227 2 p50 32



Microwave plasma torch
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Dielectric-barrier discharges (DBDs)

High voltage Discharge
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Plasma-needle discharge

Matching
network RF source

_

Helium
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Atmospheric-pressure cold helium microplasma jets
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J. L. Walsh, et al., J. Phys. D: Appl. Phys., 43, 075201 (2010) 36
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G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006)
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Simplified electrical schematic of FE-DBD

Cob

* electrodeitself + electrode near  e-plasma
the treated object discharge
% V
| 1
Cef I plasma gap

C,

Cop >> Cgap = Vop<< Vgap

G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006) 38



Depending on the needs, the size and the shape of FE-

DBD treatment electrodes can vary
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G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006)
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FE-DBD is a direct plasma medicine

/ Teflon
‘l/— Copper
|

\ :_:::::::::r- 1‘/—Impedance match “/_ Dielectric (Quartz)
.T\[ /— Plasma
-~ ]‘!\— Transformer
D 'UVVU\' ™~ Amplifier Treatment target
O— W, | : —

J ——— Signal generator

—

G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006)
Plasma medicine, by Alexander Fridman and Gary Friedman



Outline

* Living tissue sterilization

41



Bacteria concentration reduces after being treated with
FE-DBD

@
I Table 1. Bacteria sterilization results (in cfu - mL™").28]
Original 5 s of 10 s of 15 s of
concentration FE-DBD FE-DBD FE-DBD
10° 850 =183 9xX3 4+4
10° 2245 545 0+0

107 6+6 0+0

« Maximum acceptable dose — the highest dose that doesn’t cause a
damage on skin

G. Fridman, et al., Plasma Process. Polym., 5, 503 (2008) 42



The power of FE-DBD is low enough such that the
tissue is not damaged by the plasma

Figure 6.23 Photos (top) and tissue histology (bottom) of cadaver skin samples after FE-DBD treatment: (a, d)
control; (b, e) after 15 s of treatment; and (c, f) after 5 min of treatment — no visible damage is detected.

G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006)
Plasma medicine, by Alexander Fridman and Gary Friedman 43



Bacteria is inactivated by the plasma

Electrode
j—

.

I —

| Complete Inact.

Partial Inactivation

¢ ~1.3x107 cfu/cm? (10° cfu/ml) of skin flora
(CFU: colony-forming unit)
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G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006) 44



Outline

 Blood coagulation

45



Plasma can stimulate blood coagulation

Treatment electrode

Surface of blood plasma
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G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006) 46



Example of blood coagulation using plasma

Blood continues
toooze from
untreatged cut

Saphenous vein If left untreated following a cut
is a major blood vessel for a mouse animal will bleed out (control)

(a) (b)

15 seconds at 0.8 Watt/cm? stops the
bleeding completely right after treatment

(©)

G. Fridman, et al., Plasma Process. Polym., 5, 503 (2008)

G. Fridman, et al., Plasma Chem. Plasma Process., 26, 425 (2006)
Plasma medicine, by Alexander Fridman and Gary Friedman
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Outline

* Nitrogen oxide (NO) treatment

48



Nitrogen oxide (NO) serves a multitude of essential
biological functions

Blood coagulation

* Immune system

« Early apoptosis (Z2AT)

* Neural communication and memory

- Relaxation of flat bronchial (Z& %) and gastrointestinal muscles (BEALA)
- Hormonal (i81%) and sex functions

 Anti-microbial (FifilZ£E¥) and anti-tumor (¥1EEJE) defense

 Play an important role in tumor growth, immunodeficiency (RETRIE),
cardiovascular (0ME), liver (BF), gastrointestinal tract (Z &%) disease

49



NO treatment of wound pathologies

Before treatment 21st day of NO-therapy After 2 months of

_ (10 sean_ces) NO-therapy
« Decrease in the trophic ulcer area:

- Traditional treatment methods: 0.7% per day
- NO treatment methods: 1.7% per day

G. Fridman, et al., Plasma Process. Polym., 5, 503 (2008)
Plasma medicine, by Alexander Fridman and Gary Friedman
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NO treatment of wound pathologies

.

Before treatment After 4.5 months of NO-therapy
(3 courses; 12 seances per course)

G. Fridman, et al., Plasma Process. Polym., 5, 503 (2008)
Plasma medicine, by Alexander Fridman and Gary Friedman
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Outline

« Example of several plasma discharges for plasma medicine
« Living tissue sterilization

* Blood coagulation

* Nitrogen oxide (NO) treatment

* Non-thermal plasma treatment of melanoma skin cancer

« Skin regeneration

« Egg sterilization

« Facemask regeneration

52



Non-thermal plasma treatment of melanoma skin cancer

(BRBEBKREE)

Control
1.0 4 5sec
« Melanoma cancer cell _ B 10sec
(2]
) ) 2 E= 20sec
line (ATCC A2-58) was 8 os- [ 30sec
used .
« ~1.5x106 per dish £ o0s-
P
S
S =
O T
N § 0.2
— < > <
44 mm T
0.0+ T "
1 hour 3 hours 24 hours

Figure 22. Results of FE-DBD treatment of melanoma cancer
cells: Control, 5, 10, 20, and 30 s, counted 1, 3, and 24 h post-
treatment.?7)

G. Fridman, et al., Plasma Process. Polym., 5, 503 (2008)
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SKH-1 hairless mouse is treated with parallel plate
electrode under isoflurane inhalation anesthesia

Jﬂ.

2 4 6 8 10 12 14
Time (days)

Biochem Biophys Res Commun. 2006 May 5; 343(2): 351-360. 54



Melanoma shrinks after the treatment

2l

o

Day 0-3: 3 applications of 100 pulses (300 ns, 40 kv/cm, 0.5 Hz), 30 min apart

Day 4: single application using 5 mm diameter parallel plate electrode
Biochem Biophys Res Commun. 2006 May 5; 343(2): 351-360.

55



Electric field of 20 kVV/cm Is needed to treat Melanoma
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Outline

« Example of several plasma discharges for plasma medicine
« Living tissue sterilization

* Blood coagulation

* Nitrogen oxide (NO) treatment

* Non-thermal plasma treatment of melanoma skin cancer

« Skin regeneration

« Egg sterilization

« Facemask regeneration

57



Plasma skin regeneration (PSR) is a novel skin
treatment device

« PSR provides 1-2 J or 3-4 J per pulse for lower or higher power,
respectively

 The skin is damaged slightly by the nitrogen plasma jet
« Skin regeneration is stimulated

- Local anesthetic (fifZ) is required and a systemic anesthetic, administered
orally is recommended

« Ablative-like effect, similar to that of laser skin resurfacing can also be
achieved, but with higher doses

58



Zones of the face and associated treatment energy
settings

M. A. Bogle, et al., Arch. Dermatol.,143, 168 (2007) 59



This particular patient-rated improvement in overall skin
rejuvenation was 85%

« Patients reported minimal discomfort following the procedure and
reported over 60% improvement in their skin condition

M. A. Bogle, et al., Arch. Dermatol.,143, 168 (2007) 60



Outline

« Egg sterilization

61



Atmospheric-Pressure Plasma sterilization 99.9999%
bacteria on surfaces of eggs
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Outline

« Facemask regeneration

63



A face mask do restrict the air flow from the mouth and
the nose

. Coughing over one breath w/o mask.

. Coughing over a longer periods of
= time w/o mask.

- Coughing over one breath w/ mask.

" Talking w/o mask.

C. J. Kahler, et al., J. Aerosol Science, 148, 105617 (2020) 64



Wearing face mask can reduce the Covid-19
transmission probability significantly

‘: 3. Transmission ‘;3 >
\ o probability is above - |
=

COVID 19 Carrier 90% | Hoaltl:y‘

( without mask ) ( without mask )
" N
=% Transmission probability is >
\ &7/ \ /
| N 700 : N
COVID 19 Carrier v - Healthy contact
( without mask ) { with mask )

uf’{,l:l'
Transmission probability is &? 1}.:’

5% ' r~; “
COVID 19 Carrier Healthy contact

{ with mask ) ( without mask )

|
Transmission probability is I.‘ ,;‘

| \ 4
N1
COVID 19 Carrier @ Healthy contact
{ with mask ) { with mask )

http://www.riderta.com/coronavirus



Plasma can provide good surface treatment with low
temperature

Treatment | Surface Depth Temperature Cost
treatment level

Chemical Large Deep Room temperature Medium
~200 °C
Heat Only oxidizing Deep High temperature Cheap
Radiation Small Whole High temperature Expensive
sample
Plasma Large Surface Room temperature Cheap ~
~100 °C Medium

« Atmospheric plasma can generate radicals, ozone, reactive
oxygen/nitrogen/NH (ROS - RONS), UV light, electrons, charged
particles.

Yu-Lin Kuo, etc., BEEARERRXFBEREABFEA NS EXEWE(E, BHEM 227 2 p50
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Plasma can generate ROS and RONS

Intensity (arb. units)
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3 - -
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' J N3
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i '.-l -" I ‘r i I \ ‘_N*""'lﬁ "l._--'f .'I |
L I'H_ o \ i, L]
L ; I
= ‘_r. g, S '..\.FL J-.-L
e —-—— ="y ) I ) L i 3 i ] - i i m—
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Wavelength (nm)

Yu-Lin Kuo, etc., BEEARERRXFBEREABFEA NS EXEWE(E, BHEM 227 2 p50
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The temperature of the mask under plasma treamtment
is below 40 °C

aaaaa

Yu-Lin Kuo, etc., BEEARERRXFBEREABFEA NS EXEWE(E, BHEM 227 2 p50 68



The surface quality of the face mask was not influenced
by the plasma treament

ERRER ERERIBER ERERIER ERERIBER
M TSRy 2 7 l 108.5°

Yu-Lin Kuo, etc., BEEARERRXFBEREABFEA NS EXEWE(E, BHEM 227 2 p50 69



The growth of the bacteria on the face mask was
suppressed

Without plasma With plasma treated
Disinfected treatment on used mask on used mask

24 hr

48 hr

70



Outline

 Mushroom yield enhancement
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The mushroom yield is enhanced by electric stimulations
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DBD plasma demonstration

Ground

20 kHz AC HV

Show video.
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DBD plasma can be generated between the finger and
the dielectric layer
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Course Qutline

2. Varies kinds of plasma

e. Particle beam source

f. High energy particle accelerator

75



High energy particle accelerator

* linear particle accelerator

(Linac)

7~ «—_Electron
booster

Linear

accelerator -’ <——Damping

rings

Magnets
S
& SEEmC Al
"3;5:).
e T A -
o —— Electrons (")
B, 0] e Positrons (&)
& = &
Mark Il o —
particle
detector

« Cyclotron « Synchrotron

External beam

 Reference: Introduction to plasma phenomena and plasma
medicine, Y. Nishida and K.-L. Ou
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A linear particle accelerator (linac) accelerates charged
particles using a series of oscillating electric potentials
along alinear beamline &

- 11!- - -Lz—l- - 13 R 14 -

drift tubes Ll

et
P

https://en.wikipedia.org/wiki/Linear_particle_accelerator 77



Cyclotrons use a magnetic field to cause particles to
move in circular orbits

eB
w =
ce m,c
v mycv
r, = =
°® we,e eB

External beam

» Cyclotron was invented by Ernest Lawrence who earned the 1939
Nobel price in physics

http://math.ubooks.pub/Books/ON/M1/1704/C33S4M004.html
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Synchrotron uses time-dependent guiding magnetic
field synchronized to a particle beam

Ring cyclotron

Synchrotron

Uniform magnetic field
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Stanford linear accelerator center (SLAC) is a 50 GeV
electron / positron accelerator

s Ky
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oe+
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particle
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http://cnx.org/contents/ayp TUEKP @4/Accelerators-Create-Matter-fro
https://upload.wikimedia.org/wikipedia/commons/6/64/Pair_production_Cartoon.gif
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Large Hadron Collider (LHC) is the world's largest and
most powerful particle collider providing 13 TeV protons

Z ki
> &
% 5
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13t

http://www.coepp.org.au/large-hadron-collider 81



Plasma based accelerators will become 3 orders
smaller than the regular microwave based accelerator

e xuy
& (]

p ¥

z m

() g
5 8
e

« Maximum field strength:
— Microwave: 100 MV/m

— Plasma: >10 GV/m, 300 GV/m was achieved using laser wakefield
accelerator!?

 Plasma based high energy accelerators:
— Plasma wakefield accelerator (PWFA)3
— Laser wakefield accelerator (LWFA)?
— V,xB or surfatron accelerator4

— Plasma beat wave accelerator (PBWA)?

IN. A. M. Hafz, et al., Nature Photonics 2, 571 (2008)

°T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

3P. Chen, et al., Phys. Rev. Lett. 54, 693 (1985)

4T. Katsouleas and J. Dawson, Phys. Rev. Lett. 51, 392 (1983) 82



Dream beam —the dawn of compact particle

accelerators

$00Z 19quwidas 08 Z19-L6b ‘bEY

:
:
:
3
5

30 September 2004 International weekly journal of science

The dawn of gompact partigle accelerators

e

Disease control
Europe plays
catch-up

W

Protein folding
Escape from
the ribosome

The Earth’s hum ‘ Humai a‘ncestry
Sounds of air One from all and
and sea all.from one

LIl

technology feature RNA interference 9 77| ﬂ!!

\ ’
-

Front page of nature, 30 Sep., 2004
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Charged particles can be accelerated in the wave
electric field

+

- Positive charged particle

Q0

&) .

= Position

&)

@

L

i Negative charged particle
a b c

'Whitewater' of
plasma electrons

/sLaser pulse
1

-

Surfing Mono-

/‘_n?lectrons energetic
‘ beam
-

Plasma wake potential Loaded wake
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Plasma wakefield accelerator employs two beams

« When a bunch of electrons
enter the plasma, they expel
local electrons.

« When the bunch of electrons
leave the plasma, the local
electrons try to return but
oscillate around their original
locations and generate a wake
field behind the bunch.

« The longitudinal field of the
wake can accelerate the
particles in the back.

« Key components:
« Drive bunch: excite wake-
field
« Test bunch: beam that is
accelerated to high
energy

T. Katsouleas, Phys. Rev. A 33, 2056 (1986) 85



Who will catch the wave?

https://lightsabersandsurfboards.wordpress.com/tag/lake-erie-surfing/
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Plasma wake field accelerator is just like boat wake
surfing

http://newscenter.Ibl.gov/2011/03/17/simulating-at-lightspeed/ g7



http://wakeworld.com/forum/showthread.php?p=1885710
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A wake surfer catches the wake field via being pulled by
the boat using aroap

https://www.youtube.com/watch?v=VFp7SloeAnk

https://learntosurfkona.com/featured/wake-surfing-vs-regular-surfing/
https://i.ytimg.com/vi/CA-SDflwvTQ/maxresdefault.jpg
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Energy doubling of 42 GeV electrons in a metre-scale

plasma wakefield accelerator
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I. Blumenfeld, et al., Nature 445, 741 (2007)
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The surfer glides in a direction not parallel to the wave
direction to be in phase to the wave propagation

aaaaa
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The surfer glides in a direction not parallel to the wave
direction to be in phase to the wave propagation
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Electrons may be accelerated to speed of light using
V xB acceleration (Surfatron)

speed of light
circle
s

+ T. Katsouleas, et al., PRL 51, 392 (1983)
« T. Katsouleas, et al., IEEE TNS. NS-30, 3241 (1983) * Y. Nishida, et al., AIP Conf Proc. 737, 957 (2004) 93




Experimental results of V xB acceleration (Surfatron)

800
r probe
i 4
coil filaments 800 T
@ ® ,GﬂOdE{ 450 I~
z probe - 400
B 350 |~
klystron , ' 1\0: electron gun ~ 300
) -E :I ! 0= - @) 3 250 — -
hj' ; ! . / 8 < 200%=% —
n n v z probe 150 [ ]
grid horn e mall 100 |- =
I TIT — 50 ]
@]::@I[ U_tlt\l\tl\|£1t|l—
microwave U J o 1 =2 3 4 5 6 7 8
absorber fo pump .@J_‘ ) Magnetic Field {G)
nr vo VH
* Ny~ 1-30 x 1017 m-3 . T,~0.1-0.2 eV
« T,~2-5eV « Microwave frequency: 3-10 GHz

C. Domier, et al., Phys. Rev. Lett. 63, 1803 (1989) 94



Ponderomotive force expelled electrons away from the
higher electric field region

myx = q,E = q,Ey(x) cos mt dE dE
°_ o —%>0
X =xg9+x1 Wherexy =% dx dx
) ) dE, — Wenk stons
my(xg +x1) = qs| Eg + X1, | €os wt 5
« Take time average: <
) dEo|
MsXo = qs—g—| X1€0S wt
; ) oo dE,
° X1 > Xg , E0>>x1d :
\
myx; = q,E, cos wt t
E
X1 = —:: woz cos wt i qs> 5
’ Fp =msxo =  4m,w? dx (EO )
. qszEO dEO S
Xo = —

2mlw? dx
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Charged particles can be accelerated in the wave
electric field

+

- Positive charged particle

Q0

&) .

= Position

&)

@

L

i Negative charged particle
a b c

‘Whitewater' of
plasma electrons

/sLaser pulse
1

:: =

Surfing Mono-

x‘_ng‘,lectrons energetic
‘ beam
>

T. Katsouleas, Nature 431, 515 (2004) 96

Plasma wake potential Loaded wake



A plasma wake is generated by a short pulse laser

=

(1+]
S
)

Electrons Laser pulse
\ N —

< '.0:3*

Plasma wake

—S N WS O~

Trapped

alectrons Intense laser

/ 7, - pulse duration

lonization Front

Instantaneous Ap - plasma wavelen
electron density

V. Malka, et al., Nature Physics 4, 447 (2008)
http://cuos.engin.umich.edu/researchgroups/hfs/research/laser-wakefield-acceleration/ 97



lonization injection

Nitrogen
lonization Level

Y (um)

Potential [mc®\ e ]

6;—{Ionization Ievel—] P S| 10°
e 110°
2 e |Pulse envelope ao----| 4
c a) : A
0jll!lllll IIIIl.IIIIlIIIIl|III|IIIIIIIII|IIII|II_ 10
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- Trapped N®7* ] i i i
o o A - off axis slip over the potential
- ] well and are not trapped.
) A\ A N -
153.\_ —f
10F 3
5F :
:IIllIIIllIIIIIIEIIIIIIIllIIIIIIEII:IIIIIIIEIIIIIIIZ\
16 ©) : g = .
el : | /\ g : Electrons ionized closed to the
g F ] axis get enough energy from
; = 3 o T p— the flrst.wake are trapped and
$ (um) keep being accelerated.

A. Pak, et al., Phys. Rev. Lett. 104, 025003 (2010)
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Electrons with energy up to ~90 MeV were generated

« Simulation:  Experiments

Relative Charge (counts / MeV) Relative Charge (counts / MeV)
-2 2 6 10 0 051.01.52.0

Space (mm)

0 ; ;
30 50 70 90 110 30 50 70 90 110

Energy (MeV) Energy (MeV)

A. Pak, et al., Phys. Rev. Lett. 104, 025003 (2010)
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To Fuse, or Not to Fuse...

Laser light shines The target
on the target is compressed
B, A
~4mm @‘ O
l " “' '
4+
The target is ignited The target
burns

U73311
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Outline

 Introduction to nuclear fusion
« Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU
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Outline

* Introduction to nuclear fusion
 Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU
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World energy consumption is dominated by the use of

dwindling fossil fuels

TW

E15657

Fossil fuel

Estimated reserve

(2005 consumption rate)
Years remaining

Oil 1,277,702 million barrels 32 years
Natural gas| ~6,500,000 billion cubic ft 72 years
Coal 1,081,279 million tons 252 years

Oil
5 _\/_
4l

, | Coal
Gas

== Nuclear

3} _
) - _
1 B ——
—‘_'T—'—-_—l-—_-—_l 1 1 '
D 1 1 1 ' 1
1980 1990 2000
Date

While predictions about
the exact number of
remaining years vary,
fossil fuels will run out.

Hydro-electric

Energy Information Administration (EIA) 2006 Annual Report,

U.S. Department of Energy, Washington, D.C.
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*from Laboratory for Laser Energetics, University of Rochester, Rochester, NY
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The “iron group” of isotopes are the most tightly bound

Binding energy per nuclear
particle (nucleon) in MeV

L#7]

Y

%]

& Ku,
o ,
- s
< <
- H
z
7 ]
£y z
%, d
) (2
1831

Fe

The "iron group”

. yield from
of isotopes are the '

' nuclear fission

most tightly bound.
3 g: Ni (most tightly bound) |
58 ; _
26 Fe . Elements heavier
56 e : than iron can yield
26" have 8.8 MeV: energy by nuclear
per nucleon fission.

yield from binding energy. .
nuclear fusion :

* Average mass
+ of fission fragments 235
: is about 118. U:

i | L1 1

5b 1 I160I I1éul Eﬂu
Mass Number, A

http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html 104



Fusion in the sun provides the energy

* Proton-proton chain in sun or smaller

Particles are confined by the gravity.

'HQD D' 'HQ O
\/ \/
re \v e \v

Hd” | o
) Proton ‘He \"' )
Q Neutron Gamma ray Y
Positron Neutrino D

https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Nuclear_fusion
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In heavy sun, the fusion reaction is the CNO cycle

4He$ JlH

1HJ\ L ” g/v

12C \$i
13N ’
\/
¥ l\v
13C4‘_) ’
=N
4)» —
o -
/ \
v\ /
' v
J Proton
Q Neutron Gamma ray Y
Positron Neutrino D

https://en.wikipedia.org/wiki/Nuclear_fusion



The cross section of proton-proton chain is much
smaller than D T fusion

D+T—a+n 2.72x1072 3.43

D+T—T+p 2.81x10* 3.3x102 0.06 1250
D+T—3He+n 2.78x10* 3.7x102 0.11 1750
T+T—a+2n 7.90x10+ 3.4x1072 0.16 1000
D+3He—a+p 2.2x107 0.1 0.9 250
p+SLi—a+3He 6x1010 7x103 0.22 1500
p+1B—3a (4.6x1017) 3x104 1.2 550
p+p—D+e*+v  (3.6x102%%) (4.4x10%°)

p+2C—13N+y (1.9x10-26) 2.0x1010 1.0x10.4 400
2C+12C (all (5.0x10-103)

branches)

« “()” are theoretical values while others are measured values.

The Physics of Inertial Fusion, by Stefano Atzeni and Jurgen Meyer-Ter-Vehn



Nuclear fusion and fission release energy through
energetic neutrons

Fission
Uranium Radioactive
‘ daughter atoms Neutron/v
> O == 9 d5 200 MeV

O Neuotrm

Fusion

Deuterium Tritium Helium 4
NeutrV
O%O-Quﬂzo 75 18 MeV

(3.5MeV) (14.1MeV)

108



Nuclear fusion provides more energy per atomic mass
unit (amu) than nuclear fission

17.6 Mel” Mel”
Fusion of 2H+3H: 0 = € =3.5 €
4 (3+ 2) amu amu
200 MelV Mel”
Fission of 235U: O = =(0.85
A 236 amu anii
| Half-life (years)
U235 7.04x108
U238 4.47x10°

Tritium 12.3

109



What could you do with 1 kg DT?

« 1kg DT ->340 Tera joules

— You can drive your car for ~40,000 km (back and forth between
Keelung and Kaoshiung for 50 times).

— You can keep your furnace running for 8 years.

— You can blow things up! 1 TJ = 250 tons of TNT.

*R. Betti, HEDSA HEDP Summer School, 2015 110



Enormous fusion fuel can be produced from sea water

e xu,
z"\(l 2
p ¥
z m
° 4
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Total energy
= of world oll
reserve

*R. Betti, HEDSA HEDP Summer School, 2015 111



Fusion is much harder than fission

« Fission: 5 433° U —35° U —25" Ba +38 Kr -+ 3n + 177 MeV

« Fusion: D+T — He*(3.5MeV) + n (14.1 MeV) D @ (—).T

Cross section (barns)

Projectile/Neutron Energy (keV)
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Fast neutrons are slowed down due to the collisions

Neutron @ ==) @ Atom

my My

A moderator is used to slow down fast neutrons but not to absorb
neutrons.

 For m,,~m,, the energy decrement is higher. Therefore, H slows down
neutron most efficiently.

e However,H+ n — D, i.e., Habsorbs neutrons.

* The best option is the D in the heavy water (D,0O).

Energy Neutron scattering | Neutron absorption
decrement Cross section (os) |cross section (os)
GENS) GENS)
H 1 49 (H,0) 0.66 (H,0)
D 0.7261 10.6 (D,0) 0.0013 (D,0)
C 0.1589 4.7 (Graphite) 0.0035 (Graphite)

https://en.wikipedia.org/wiki/Neutron_moderator#cite_note-Weston-4
https://energyeducation.ca/encyclopedia/Neutron_moderator#cite_note-3
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Fusion doesn’t come easy

Temperature (MKk)
58. 116. 580.1160. 5802.

N g S S
S 9 9 9 9
p— — p— — p—
O o0 ~ (@) (V)]

Reaction Rate (cm?/sec)

o

S
N
o
N
4\

5.10 | 50 100 | 500
Temperature (keV)

*NRL Plasma Formulary, Naval Research Laboratory, Washington, DC 203785-5320 114



A “hot plasma” at 100M °C is needed

* Probability for fusion reactions to occur is low at low temperatures due to
the coulomb repulsion force.

0 (4) <@

« If the ions are sufficiently hot, i.e., large random velocity, they can collide

by overcoming coulomb repulsion

D T D T

*R. Betti, HEDSA HEDP Summer School, 2015
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It takes a lot of energy or power to keep the plasma at

100M °C

« Let the plasmado it itself!

@ The neutron leaves
because is neutral
Tritium

O + @
e o Helium (alpha particle)

Deuterium 'Q ® stays in the plasma because
® is charged and collides with

®  the electrons

 The a-particles heat the plasma.

*R. Betti, HEDSA HEDP Summer School, 2015 116



Under what conditions the plasma keeps itself hot?

o
¥ “
J %
z m
3 d
3 8
et

« Steady state 0-D power balance:
S+S,=Sg+S
S, aparticle heating
S, external heating
Sg: Bremsstrahlung radiation

S: heat conduction lost

Ignition condition: Pt > 10 atm-s = 10 Gbar - ns

 P: pressure, or called energy density
* Tis confinement time

117



The plasma is too hot to be contained

« Solution 1. Magnetic confinement fusion (MCF), use a magnetic field to
contain it. P~atm, T~sec, T~10 keV (108 °C)

Tokamak Stellarator

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/
https://en.wikipedia.org/wiki/Stellarator 118



Don’t confine it!

« Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined
by its own inertia: P~Gigabar, T~nsec, T~10 keV (108 °C)

Laser light shines The target
on the target is compressed

A [ 4
. X f‘?
~4mm »@« > o < _&
! N 7Y | ¢ W . F
aﬁ o
The target is ignited The target
burns
i’ \{
u\ 'w

U733]1

Inertial confinement fusion: an introduction, Laboratory
for Laser Energetics, University of Rochester 119



To control? Or not to control?

« Magnetic confinement fusion (MCF) ¢ Inertial confinement fusion (ICF)
< Laser light shines The target
on the target is compressed
The target is ignited Ths target
q’ 5{
uﬁ 'w
« Plasmais confined by toroidal - A DT ice capsule filled with DT
magnetic field. gas is imploded by laser.

Laboratory for Laser Energetics, University of Rochester is
a pioneer in laser fusion

120



Outline

 Introduction to nuclear fusion
« Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU
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Charged particles gyro around the magnetic fields

122



Charged particles can be partially confined by a
magnetic mirror machine

« Charged particles with small v, eventually stop and are reflected
while those with large v, escape.

1 1 1
~mv* = -my)* + -mv,?

2 2 2
* Large v, may occur from collisions between particles.

« Those confined charged particle are eventually lost due to collisions.

https://i.stack.imgur.com/GlzGZ.jpg 123



“loffe bars” are added to stabilize the Rayleigh-Taylor
Instabilities at the center of the mirror machine

loffe bars

Introduction to Plasma Physics and Controlled Fusion 3" Edition, by Francis F. Chen 124



A “baseball coil” is obtained if one links the coils and
the bars into a single conductor

S K
&, <
> %

1 4
2 &
% 5
nr sal =

« Baseball coil e MFTF-B mirror machine

Introduction to Plasma Physics and Controlled Fusion 3 Edition, by Francis F. Chen 125



Plasma can be confined in a doughnut-shaped chamber
with toroidal magnetic field

« Tokamak - "toroidal chamber with magnetic coils" (TopounaanbHas
Kamepa ¢ MarHUTHbIMUN KaTyLUKamMM)

Relatively Constant Elecinic Current

ﬂ

Taroidal

1 T;E f;‘fﬂ s E:ﬁ

=A% ?%ﬁ’?»\
e )
-tECEmnl Taroidal Field <<\\\\\\\\

https://www.iter.org/mach/tokamak
https://en.wikipedia.org/wiki/Tokamak#cite_ref-4
Drawing from the talk “Evolution of the Tokamak” given in 1988 by B.B. Kadomtsev at Culham. 126



Charged particles drift across field lines

« ExB drift e Grad-B drift
@ E - @ .

os  E M

Vgc - S
® VB

ION ELECTRON

Asuial
magnetic
field

http://www.geocities.jp/tomoyahirata417/fusion/gennkou.htm 127



A poloidal magnetic field is required to reduce the drift
across field lines

Inner poloidal field coils

Toroidal (Primary transformer circuit)

Direction Poloidal magnetic field Outer poloidal field coils

(for plasma positioning and shaping)

lon gyro-motion

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.davidpace.com/keeping-fusion-plasmas-hot/
https://www.euro-fusion.org/2011/09/tokamak-principle-2/ 128



A poloidal magnetic field is required to reduce the drift
across field lines

~

Outer poloidal field coils
or plasma positioning and shaping)

& )

-
[
o
-
4

Id Toroidal field coils

oidal magnetic field
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D-shaped tokamak with diverter is more preferred
nowadays

* Make the plasma closer
to the major axis

 Adivertor is needed to remove impurities
and the power that escapes from the plasma

Closed magnetic
surfaces

Open
magnetic
surfaces

~
&

&
Scrape-off layer

Strike points X-point

Divertor plates Priate plasma

Introduction to Plasma Physics and Controlled Fusion 3" Edition, by Francis F. Chen 130



Spherical tokamak is formed when the aspect ratio of a
tokamak is reduced to the order of unity

WS Kuy,

& ‘s
& B
- iz

H
z 1
5
Y &
45

« NSTX @ Princeton « MegaAmpere Spherical Tokamak
(MAST) @ Culham center for
fusion energy, UK

Introduction to Plasma Physics and Controlled Fusion 3" Edition, by Francis F. Chen 131



A diverter is needed to remove impurities and the power
that escapes from the plasma
o

Closed magnetic
surfaces

Open
magnetic
surfaces

~
&

s
Scrape-off layer

Strike points X-point

Divertor plates Private plasma

https://www.euro-fusion.org/newsletter/divertor-concepts/ 132



ITER ("The Way" Iin Latin) is one of the most ambitious
energy projects in the world today

https://www.iter.org 133



ITER ("The Way" Iin Latin) is one of the most ambitious
energy projects in the world today

« Vacuum vessel

« Magnets

Divertor

https://www.iter.org/ 134



ITER
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ITER — Magnets

Eg=51 GJ
Tg=4 K

Length of Nb;Sn
superconducting
strand: 10° km

B =11.8T
B =6 T

T,max

P,max

= /7—7 3 —
S
W I

]

rrrrr
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ITER — Vacuum vessel

- W = 8000 tons s e
+ V=840 m3 " T Y e—

* R=6m e —— tokaEte -
: F- == 1)

. >

T

//

M
=T
-
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ITER — Blanket

440 modules
Thermal load:

736 MW

e
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ITER — Divertor

SR YO,

54 cassettes e S

Thermal load: A | -

20 MW/m?2 e AR
= = s | I,

A=y

> i

Each cassette: S S
10 tons
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ITER — Crystat

« P=10%atm b e
« W =3800 tons : ~a | B

—

+ V =16000 m?3 e ‘;AF;.E;;—\\%,;%%

=
& XY A 3
1 iE "..
1 A oy i J
&
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Supporting systems

« Tritium breeding

« Control, Data access and Communication (CODAC)
« Cooling water

« Cryogenics

« Diagnostics

* Fuel cycle

« Hot cell - a secure environment for processing, repair or testing, etc., of
components that have become activated by neutrons.

 Power supply
« Remote handling
 Heating and current drive

* Vacuum system
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ITER is being assembled

(S KU,

Gravity supports v
18 required, 11 installed "

- 1 |

Cryostat lower cylinder & '

PF6.clamp plates v-»"

(to be posntloned) i“

-
& 4,
a 5%%
- &
@,
Faann®

Gravity supports
18 required, 11 installed

(N
\ /'// »
\# ‘

g I\a
5 -(

https://www.iter.org
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ITER is being assembled

_,-,\'I‘- _—
N E
16/

b2

https://www.iter.org 143



There is a long way to go, but we are on the right path...

s Xy,
A KU,
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* Dec 2025 First Plasma
« 2035 Deuterium-Tritium Operation begins
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Joint European Torus (JET) facility has a record-
breaking 59 megajoules of sustained fusion energy

s Ku,
o Yo
& %L
- =
H
7 5
s &
N &
v 54
Teat

Record-breaking 59 megajoules of sustained fusion energy in Joint
European Torus (JET) facility in Oxford demonstrates powerplant potential
and strengthens case for ITER.

https://ccfe.ukaea.uk/resources/#gallery 145



Stellarator uses twisted coil to generate poloidal
magnetic field

Tokamak Stellarator

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/
https://en.wikipedia.org/wiki/Stellarator 146



A figure-8 stellarator solved the drift issues

Introduction to Plasma Physics and Controlled Fusion 3 Edition, by Francis F. Chen 147



A figure-8 stellarator solved the drift issues

148



Lyman Spitzer, Jr. came out the idea during a long ride
on a ski lift at Garmisch-Partenkirchen

https://www.snowtrex.de/magazin/skigebiete/garmisch-classic-zugspitze/ 149



Exhibit model of a figure-8 stellarator for the Atoms for
Peace conference in Geneva in 1958
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Twisted magnetic field lines can be provided by toroidal
coils with helical coils

toroidal
. coil

—_—

\ y 3' . ‘
. 7
flux surface - \helical

plasma field line

Wagner, F., Fusion energy. MRS Energy & Sustainability, 5, E8 (2018) 151



LHD stellarator in Japan

https://en.wikipedia.org/wiki/Large_Helical_Device 152



Wendelstein 7-X is a stellarator built by Max Planck
Institute for Plasma Physics (IPP)

f‘ﬁﬁ K“%n
p iz
% e
“’" Teal i

outer vessel ports and domes
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< e
Y _nop-pla far eoils

vacuum field
Poincaré sections

« Wemdelstein 7-x is now
installing new diverters.
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Demonstration of a magnetic mirror machine

Show video. https://i.stack.imgur.com/GlzGZ.jpg 154



Plasma is partially confined by the magnetic field




Many mirror points are provided by a pair of ring-type

magnets

ALK

]

]

0
mm
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Outline

 Introduction to nuclear fusion
 Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU
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Compression happens when outer layer of the target is
heated by laser and ablated outward

Laser light shines
on the target

The target is ignited

u’ ™

%9 A
k S

U733]1

The target
is compressed

The target
burns

Light wave /S — Critic_al

density
pCI‘, ncr

pens'ty

| Sonic point M=1 |

—Corona conduction zone — M Mach # = VIC,
Isotherr.nal r steady state i
expansion Subsonic flow M<1

Time-dependent v =Ablation velocity

Supersonic flow
M>1

v,=blow-off velocity :

T

Heat flows by
conduction

Laser energy
deposited near
critical surface

Ablated plasma

II:Ilgtht Prarse ~ 1-158/cC
< xc — I
X g:i.t.if:zlz;scirffi‘:e -g=acceleration in the lab frame:
0.35um light

Inertial confinement fusion: an introduction, Laboratory
for Laser Energetics, University of Rochester
R. Betti, HEDSA HEDP Summer School, 2015
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The laser light cannot propagate past a critical density

)

Light wave /S —

-+ + - -+ + -
70 Dgo0 09
Critical | : | :: [
density 40 U@l [0
pcr, Ne, o
7 C

oA o
3 e
< >
& )
a
S, &
Tt

NN

- 0BEn

|
|

Mechanism of plasma oscillations.

« Critical density is given by plasma frequency=laser frequency

2mc
CAJL — W —
AL pe
2 2
Wi, = “pe
necr

1.1x10%" |

2 cm

)'L, pm

*R. Betti, HEDSA HEDP Summer School, 2015
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The laser generates a pressure by depositing energy at
the critical surface

Sonic point M=1
—Corona l conduction zone —i M=Mach # = V/C,
Isothermal  § steady state ‘
expansion Subsonic flow M<1 : :
Time-dependent = E—— v,=Ablation velocity
Supersonic flow: v, | vy=blow-off velocity :
M>1 :

T \Y

ablation front

Laser energy \ iHeat flows by
:| conduction

deposited near }
critical surface/ :

Target
: heavy
: cold

Ablated plasma

Light
: . ptarvﬂml-lsg/cc
i HOt v =
X Critical surface -o=acceleration i ab frame
n, ~1022/cc for g=acceleration in the lab frame
0.35um light *R. Betti, HEDSA HEDP Summer School, 2015 160




Plasma is confined by its own inertia in inertial
confinement fusion (ICF)

Laser light shines
on the target

The target is ignited
id 5»

YeEY

U733]1

The target
is compressed

The target
burns

Spatial profile at stagnation

temperature
density

heat flux

hot spot

"q
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A ball can not be compressed uniformly by being
squeezed between several fingers

Rayleigh-Taylor instability

P2 P2

« Stages of atarget implosion

(a) Early time (d) Peak compression

Imprinting and shock

Laser drive

Feedout Core—shell mix

Propagating burn

Plasma formation
and laser—plasma
interactions

Fusion neutrons, charged
particles, and x rays

Hot-spot ignition

Rayleigh-Taylor growth,—”
mitigation, and saturation

Shock convergence
Rayleigh—Taylor growth

Laser drive

(b) Acceleration phase (c) Deceleration phase

E988611

P.-Y. Chang, PhD Thesis, U of Rochester (2013)
R. S. Craxton, etc., Phys. Plasmas 22, 110501 (2015)
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A spherical capsule can be imploded through directly or
indirectly laser illumination

Direct-drive target Indirect-drive target

Capsule

Laser beams

Diagnostic hole

Hohlraum using
a cylindrical high-Z case

*R. Betti, HEDSA HEDP Summer School, 2015
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Rochester is known as “The World's Image Center”
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There are many famous optical companies at Rochester
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Laboratory for Laser Energetics, University of Rochester
IS a pioneer in laser fusion

o x
v,
& <
P %
1 2

3
2 &

« OMEGA Laser System « OMEGA EP Laser System

UR
60 beams 4 beams; 6.5 kJ UV (10ns) '-'—E*
« >30 kJ UV on target « Two beams can be high-  FS€>
* 1%~2% irradiation nonuniformity energy petawatt
» Flexible pulse shaping « 26 kJ IR in 10 ps

« Can propagate to the
OMEGA or OMEGA EP
target chamber

OMEGA target

- OMEGA EP
' : target
chamber

Main

i _amplifiers
Compression

chamber

OMEGA EP Laser Bay
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The OMEGA Facility is carrying out ICF experiments
using a full suite of target diagnostics

Imaging x-ray UR %é
LLNL flat streak camera LLE
crystal x-ray Target X-ray pinhole FS€
streak in TIM #1 positioner camera

X-axis target-
viewing system

X-ray pinhole
cameras = KB x-ray
‘microscope
#2 (GMX1)
Indium _
activation X-ray pinhole
camera
Copper
activation KB x-ray
microscope #1
KB x-ray X-ray framing A-ray Plasma
microscope camera #1 pinhole calorimeter
#3 in TIM#3 cameras

E8012b Photo taken from port H11B
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The 1.8-MJ National Ignition Facility (NIF) will
demonstrate ICF ignition and modest energy gain
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[Seand ) oo 3%

Completed March 2009
and beginning
experiments
at LLNL

= » ;' }’
\ Relative
size

OMEGA experiments are integral to an
ignition demonstration on the NIF.
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Targets used in ICF

« Triple-point temperature : 19.79 K

300

200

Power (TW)

100

TC8286J1

Time (ns)

12

http://www.lle.rochester.ed
https://en.wikipedia.org/wiki/Inertial_confinement_fusion
R. S. Craxton, etc., Phys. Plasmas 22, 110501 (2015)
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Softer material can be compressed to higher density

« Compression of a baseball

> Pl N 1447450

« Compression of a tennis ball

https://www.youtube.com/watch?v=uxlldMoAwbY
https://newsghana.com.gh/wimbledon-slow-motion-video-of-how-a-tennis-ball-turns-to-goo-after-serve/ 170



A shock is formed due to the increasing sound speed of
a compressed gas/plasma

« Wave in the ocean: Jockn

213 km 3 23 km

Depth Velocity Wave length
(meters) (km/h) (km)

7000 943 282
4000 713 213

2000 504 151

200 159 48
50 79 23
10 36 10.6

« Acoustic/compression wave driven by a piston:

CS3 Ushock>c
Csz
3V C., shock

X
Cs ~ B ™~ p \/7401}3
p p

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis
*R. Betti, HEDSA HEDP Summer School, 2015 171




Targets used in ICF

a Cryogenic hohlraum

Tent- > Gold hohiraum

Q_a'psule

https://www.lle.rochester.edu/index.php/2014/11/10/next-generation-cryo-target/
Introduction to Plasma Physics and Controlled Fusion 3" Edition, by Francis F. Chen
https://www.lInl.gov/news/nif-shot-lights-way-new-fusion-ignition-phase 172



Nature letter “Fuel gain exceeding unity in an inertially
confined fusion implosion”
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 Fuel gain exceeding unity (scientific breakeven) was demonstrated

Nature 506, p343, 2014
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The hot spot has entered the burning plasma regime
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The hot spot has entered the burning plasma regime

Hotspot pressure-energy [no-ol]
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National Ignition Facility (NIF) achieved a yield of more
than 1.3 MJ from ~1.9 MJ of laser energy in 2021 (Q~0.7)

Generalized Lawson Criterion

1.6

—
O CHLF
O CHHF

g cnr 1.35 MJ
@ HDC BF

I HDC Iraum
B HDC HyE

1.41

1.2

1F

0.8}

0.6}

Fusion yield (MJ)

0.4

0.2

o y !
0010203040506070809 1

PP,

National Ignition Facility (NIF)
achieved a yield of more than 1.3
MJ (Q~0.7). This advancement puts
researchers at the threshold of
fusion ignition.

Y
7 5
L/v Teal v

THEROAD TO IGNITION

The National Ignition Facility (NIF) struggled for years before achieving a
high-yield fusion reaction (considered ignition, by some measures) in 2021.
Repeat experiments, however, produced less than half the energy of that result.

On 8 August 2021, a laser shot
produced more than 1.3 megajoules
of fusion energy.

B The NIF’'s original
goal was to achieve
ignition by 2012.

Fusion yield (megajoules)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

« Laser-fusion facility heads back to
the drawing board.

T. Ma, ARPA-E workshop, April 26, 2022

J. Tollefson, Nature (News) 608, 20 (2022) 176



“Ignition” (target yield larger than one) was achieved in
NIF on 2022/12/5

Fusion yield (MJ)

28

2.6
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NIF fusion yields versus time
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(Q=1.54)

2.05MJ
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SEECE T R tinee i3 mall Tﬂrlll"hk

2011 2012 20132 2014 2045 2016 2017 2018 2019 2020 2021 2022
Year

NIF’s ignition achievement in perspective

Energy in megajoules @ =1

(1 1

Energy required from the grid Energy of laser fired upon hohlraum Energy produced via fusion

300 MJ 2.05 MJ 3.15 MJ

https://physicstoday.scitation.org/do/10.1063/PT.6.2.20221213a/full/
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External “spark” can be used for ignition

« Shock ignition

(a)

Compression )
wave (b) Spike shock wave

Return
shock
Picket
shock wave
]_O . . — f'/\-l-\ 20 T ) T T T —] 8 PT
~ Picket delay 4 = S 5L Spike delay 5
= s& E INES
: 5 F e ~ o — 10 | H4 E
o 2 = 3) =
=~ 2 = 0 | I | 0 %
0 ' 0 = =
-1 0 1 2 -1 0 1 2 3 4
Time (ns) E 1613011 Time (ns)

« Fastignition

a) channeling Fl concept

Hole [ '

boring ” Ignition

—| |a—

10 ps

b) cone-in-shell FI concept

ignition
10ps pulse

J. Badziak, Bull.Polish Acad. Sci. Tech. Sci.Phys. Plasmas 15, 056306 (2008)
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A shock is formed due to the increasing sound speed of
a compressed gas/plasma

« Wave in the ocean: Jockn

213 km 3 23 km

Depth Velocity Wave length
(meters) (km/h) (km)

7000 943 282
4000 713 213

2000 504 151

200 159 48
50 79 23
10 36 10.6

« Acoustic/compression wave driven by a piston:

CS3 Ushock>c
Csz
3V C., shock

X
Cs ~ B ™~ p \/7401}3
p p

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis
*R. Betti, HEDSA HEDP Summer School, 2015 179




Ignition can happen by itself or being triggered externally
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Self-ignition External “spark” for fast ignition
Conventional ICF Fast Ignition Shock Ignition
X ¥
Hot spot Shock
pulse
Fast
|- injection

T ' I I AP of heat

| T A | A

' |

Low-density central spot ignites Fast-heated side spot ignites Spherical shock wave ignites
a high-density cold shell a high-density fuel ball a high-density fuel ball
PThot = PTeold (Isobaric) Phot = Peold (Isochoric) PThot ® PTeold

P. B. Radha, Fusion Energy Conference,2018 180



We are closed to ignition!

103 p— AR N AR
5 Ignition = [gnition
102 F NIF m FRC
- ITER € Spheromak
101 A RFP
_ = OMEGA (2009) jgT v ST
; 100 E ¢ ® * Stellarator
= E C-mod ® © Tokamak
= 10-! F ©e TFTR @ Tokamak
IEJ E LHD»  DIID @ Tokamak
6‘: 102 F v NSTX @ Tokamak
~ = ® Tokamak
10-3 :E m[LSX (projected)
E AMST ; La5e1: DD
(04 Lase.1 ID
F SSPX (projected)
T BT BT
10-1 100 101 102
(T) (keV)

R. Betti, etc., Phys. Plasmas, 17, 058102 (2010) 181



Outline

 Introduction to nuclear fusion
 Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU
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A strong magnetic field reduces the heat flux

O .
= ° °
o
R, ° i ° K, = KT 5/2
} o ° K” Imfp
k, =—; forlargeHallparameter y oc — >>1
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o o o

* Typical hot spot conditions:
R, ~40 pm, p ~ 20 g/cm3, T ~ 5 keV:

B>10MG isneededfor y >1

Magnetic-flux compression can be used to provide the
needed magnetic field.
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Principle of frozen magnetic flux in a good conductor is

used to compress fields
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M. Hohenberger, P.-Y. Chang, et al., Phys. Plasmas 19, 056306 (2012).
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Plasma can be pinched by parallel propagating plasmas
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Sandia’s Z machine is the world's most powerful and
efficient laboratory radiation source

WS Kuy,

Peak current: 26 MA

Rise time: 100 ns

Peak X-ray emissions: 350 TW
Peak X-ray output: 2.7 MJ

« Stored energy: 20 MJ
« Marx charge voltage: 85 kV
« Peak electrical power: 85 TW
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Z machine
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Z machine

Compressed
fuel at fusion
3 temperatures

« Stored energy: 20 MJ  Peak current: 26 MA

« Peak electrical power: 85 TW  Risetime: 100 ns
 Peak X-ray output: 2.7 MJ

188



Z machine discharge
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Before and after shots

- Before shots - After shots =

SAND2017-0900PE_The sandia z machine - an overview of the
world's most powerful pulsed power facility.pdf
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Promising results were shown in MagLIF concept
conducted at the Sandia National Laboratories
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t=0ns t =100 ns t =150 ns
Laser entrance hole t’?;‘eétln:;?lnce hole La:ﬁ: 20, 2 kJ, 2 ns Axial field compressed
by implosion

with CH foil - ‘CR 20

magnetic fuel
field 250 eV :
lcm Compressed e
Liner fuel at fusion g %
(Al or Be) temperatures \
Cold DT .
gas (fuel)

Compression

The stagnation plasma reached fusion-relevant temperatures with a
70 km/s implosion velocity

S. A. Slutz et al Phys. Plasmas 17 056303 (2010)
M. R. Gomez et al Phys. Rev. Lett. 113 155003 (2014) 1901



MagLIF target
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Neutron yield increased by 100x with preheat and
external magnetic field.
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Sheared flow stabilizes MHD instabilities

m = 0 (sausage)

Perturbation o g/m®*%2+W m =1 (kink)

increasing

2o

u B2 . 2
L—r—} <3, decreasing dggreasin g \A"’j
:;,J: -— 28—; increasing </K|:E/

T =

dVv
2.0 M. G. Haines, etc., Phys. Plasmas 7, 1672 (2000)

dr U. Shumlak, etc., Physical Rev. Lett. 75, 3285 (1995)
U. Shumlak, etc., ALPHA Annual Review Meeting 2017 194
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A z-pinch plasma can be stabilized by sheared flows

Inner Electrode Neutral Gas Injection Plane Z-pinch plasma Electrode End Wall
]

& Outer Gas Valve

“ »

|

Inner Gas Valve ey

ST
o |
!

>

L]
L]
€&—— Outer Gas Valve Z=0 Z=15cm s
]

]
"“j.

.
Outer Electrode Observation Side-Window

Acceleration Region Dl Assembly Region ==
(100 cm) l (50 cm)

https://www.zapenergyinc.com/about
A. D. Stepanoy, etc., Phys. Plasmas 27, 112503 (2020)



Fusion reactor concept by ZAP energy

Vacuum Pumping

Weir Wall

™~

Sheared Flow
Stabilized
Z-Pinch in

Reactor
Chamber

Molten Wall

Outer Electrode \

From Steam Generator /
Fuel Recycling System

—
-

To Steam Generator /
Fuel Recycling System

Molten LiPb -

https://www.zapenergyinc.com/about
E. G. Forbes, etc., Fusion Sci. Tech. 75, 599 (2019)




There are alternative

TRAPPING
FUSION FIRE

When a superhot, ionized plasma is trapped in a
magnetic field, it will fight to escape. Reactors are
designed to keep it confined for long enough for

the nuclei to fuse and produce energy.

A CHOICE OF FUELS

Many light isotopes will fuse to release
energy. A deuterium-tritium mix ignites at
the lowest temperature, roughly 100 million
kelvin, but produces neutrons that make the
reactor radioactive. Other fuels avoid that,
but ignite at much higher temperatures.

D-T Tritium Neutron
e, + 3. R — 0:. + ®

Deuterium Helium-4 (o)

D-D

)+ @& —> (@ +o
D D Helium-3 "

D-*He
%)+ (& —> @ + 0

D 3He a Proton

p-1'B
20

.+'.5°§).—’.' + (@8 + @

Boron-11 o g

Magnetic field coils

Plasma Plasma
chamber

TOKAMAK

(ITER AND MANY OTHERS)

Multiple coils produce magnetic fields that
hold the plasma in the chamber. A coil
through the centre drives a current
through the plasma to keep it hot.

Fuel beams

Central
Central plasmoid
chamber

Plasmoid

Liquid metal
vortex

Pistons Plasma

MAGNETIZED TARGET REACTOR
(GENERAL FUSION)

Magnetized rings of plasma are injected
into a vortex of liquid metal. Pistons punch
the metal inwards, compressing the plasma
to ignite fusion.

COLLIDING BEAM FUSION REACTOR
(TRI ALPHA ENERGY)

'Cannons' fire plasma vortices into a
chamber, where they merge into a
stationary vortex. This is suspended in
magnetic fields, and is kept heated by
beams of fresh fuel.

http://mww.nextbigfuture.com/2016/05/nuclear-fusion-comany-tri-alpha-energy.html
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Commonwealth Fusion Systems, a MIT spin-out
company, is building a high-magnetic field tokamak
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« Fusion power o« B4,
« The fusion gain Q > 2 is expected for SPARC tokamak.

https://en.wikipedia.org/wiki/SPARC_(tokamak) 198



Merging compression is used to heat the tokamak at the

start-up process in ST40 Tokamak at Tokamak Energy Ltd

40~60 cm « High temperature superconductors
Outer vacuum are used.
chamber/cryostat ° BT ~3T

Merging

compression
coil

o
_1__!7,;

Inner vacuum =
chamber &

Central
solenoid

Poloidal

field coil

Divertor
coil

M. Gryaznevich, etc., Fusion Eng. Design, 123,177 (2017)
https://www.tokamakenergy.co.uk/
P. F. Buxton, etc., Fusion Eng. Design, 123, 551 (2017) 199



Reconnection

b A

| ! !

/ ! ;
plasma reconnection | ‘ / "
current diffusion region / ‘ | T :

layer A B2 ; 3 | - “ |
DA ‘ . -
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s\l : |
' N e :

magnetic
slingshots

https://www.youtube.com/watch?v=7sS3Lpzh0Zw
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Merging compression is used to heat the plasma

R [m] R [m] R [m]

http://www.100milliondegrees.com/merging-compression/
P. F. Buxton, etc., Fusion Eng. Design, 123, 551 (2017)
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Spherical torus (ST) and compact torus (CT)

 Spherical torus (ST)

Large aspect ratio

ta) (Standard tokamak)

MinoF

radius
R
ajor .
ius.

Low aspectradio |
(Spherical tokamak)

« Compact torus (CT)
« Spheromak * Field reversed configuration (FRC)

Zhe Gao, Matter Radiat. Extremes 1, 153 (2016)
https://en.wikipedia.org/wiki/Field-reversed_configuration 202



Field reverse configuration is used in Tri-alpha energy

cusp
mirror segmented
coils theta-pi\nch coil

separatrix
1
\ N

\

open \— . quartz tube
magnetic | closed poloidal toroidal

A SRR GG LANL.: design, test
field lines magnetic field line (F:)urrent AFRL: Shiva-FRC

*Magneto-Inertial Fusion& Magnetized HED Physics by Bruno
S. Bauer, UNR & Magneto-Inertial Fusion Community
**https://en.wikipedia.org/wiki/Field-reversed_configuration
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Field reverse configuration is used in Tri-alpha energy

S K
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> %

1 4
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Neutral-Beam Injectors

Plasma Gun

(inside)

Confinement Chamber
DC Magnets

http://trialphaenergy.com/ 204



NBI for Tri-Alpha Energy Technologies

205
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Neutral beams are injected in to the chamber for
spinning the FRC

https://tae.com/media/ 206



FRC sustain longer with neutral beam injection
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H. Gota, etc., Nucl. Fusion 57 (2017) 116021 207



General fusion is a design ready to be migrated to a
power plant

Plasma Injectors

Hydraulic Rams J Core Liquid drain

\

/ Heat Exchanger

Injectors —> Steam Turbo-alternator

A

Core Injector Pump

https://en.wikipedia.org/wiki/General_Fusion 208



A spherical tokamak is first generated

Fast CHI Spherical Tokamak devices

SPECTOR
= =1
[Tl 11 ) | PI3
- Tm

K. EPP, etc., 60" APS-DPP, CP11.00192 09



Plasma injector for the spherical tokamak

K. EPP, etc., 60" APS-DPP, CP11.00192 210



A spherical tokamak is generated in a liquid metal
vortex
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The spherical tokamak is compressed by the pressure
provided by the sournding hydraulic pistons
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BBC: General Fusion to build its Fusion Demonstration
Plant in the UK, at the UKAEA Culham Campus

Nuclear energy: Fusion plant backed
by Jeff Bezos to be built in UK

By Matt McGrath
Environment correspondent

® 17 June

- .
e | L
e L (i

i R i M Ty RN GENERAL FUSION

An artist's impression of what the new demonstration plant might look like

A company backed by Amazon's Jeff Bezos is set to build a large-scale
nuclear fusion demonstration plant in Oxfordshire.

(Canada'c Ganaral Fucian ic nne nf the leadina nrivate firme aimina tn tiirn the

https://www.bbc.com/news/science-environment-57512229 213



Helion energy Is compressing the two merging FRCs
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Ebsite uses cookies. Read more about our privacy policy & terms of use.

https://www.helionenergy.com/ 214



Two FRCs are accelerated toward each other

e uses cookies. Read more about our privacy policy & terms of use.

https://www.helionenergy.com/ 215



Two FRCs merge with each other

usion electricity is used to power homes and

bsite uses cookies. Read more about our privacy policy & terms of use.

https://www.helionenergy.com/ 216



The merged FRC is compressed electrically to high
temperature

e uses cookies. Read more about our privacy policy & terms of use.

« Similar concept will be studied in our laboratory. nitps:/fwww.helionensrgy.com
. . . 217




Projectile Fusion is being established at First Light
Fusion Ltd, UK
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Incident Shock /Maln Transverse Jet
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« Stored energy: 2.5 MJ @ 200 kV
(Cioi=125 uF)
lpeak=14 MA W/ T);~2US.

4 \
« High pressure is generated by
the colliding shock.
https://www.youtube.com/watch?v

=—aTMPIigL7FB8

https://firstlightfusion.com/
B. Tully and N. Hawker, Phys. Rev. E93, 053105 (2016) 218
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A gas gun is used to eject the projectile

T

https://www.youtube.com/watch?v=JN7lyxC11n0O
https://www.youtube.com/watch?v=aW4eufacf-8



Many groups aim to achieve ignition in the MCF regime
In the near future

 ITER - 2025 First Plasma  Tokamak energy, UK
2035 D-T Exps « 2025 Gain
2050 DEMO .

« Commonwealth Fusion Systems, USA
— 2025 Gain

|

https://www.iter.org
https://www.tokamakenergy.co.uk/
https://www.psfc.mit.edu/sparc
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Fusion is blooming!
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We are closed to ignition!
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Fusion projects in Inst. Space and Plasma Sciences
, National Cheng Kung University
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We welcome anyone interested in fusion research to join our team!
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