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Most of the material in space is plasma

https://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html



Forty SpaceX’s Starlink satellites were destroyed by a
geomagnetic storm on 2022/2/4

« Geomagnetic storms occur when

intense solar wind near Earth
spawns shifting currents and

This interaction can warm Earth's
upper atmosphere and increase
atmospheric density high enough
above the planet to affect satellites
in low orbits like SpaceX's new
Starlink craft.

https://en.wikipedia.org/wiki/Geomagnetic_storm
https://wonderfulengineering.com/watch-the-40-starlink-satellites-destroyed-by-a-geomagnetic-storm-burn-up-in-the-sky/

plasmas in Earth's magnetosphere.
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Plasma plays an important role on semiconductor
manufacturing

 The process technology of Taiwan Semiconductor Manufacturing
Company Limited (TSMC):
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https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm



Plasma is commonly used in semiconductor manufacture
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Plasma is widely used in semiconductor fabrication
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Atmospheric plasma can b used in biomedical applications

Plasma medicine, by Alexander Fridman and Gary Friedman
Biochem Biophys Res Commun. 2006 May 5; 343(2): 351-360.



Nuclear fusion as an unlimited green energy source is
getting closed-1
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« Magnetic confinement fusion * Inertial confinement fusion

Laser light shines The target

Inner poloidal field coils on the target is compressed
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils

(for plasma positioning and shaping)
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(secondary transformer circuit)
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https://www.euro-fusion.org/2011/09/tokamak-principle-2/
Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester



Nuclear fusion as an unlimited green energy source is
getting closed-2
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« Magnetic confinement fusion * Inertial confinement fusion

https://www.iter.org
https://zh.wikipedia.org/wiki/ B 2 2 K & bff 9



“Ignition” (target yield larger than one) was achieved for

the first time in NIF on 2022/12/5
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« Magnetic confinement fusion (MCF) -« Inertial confinement fusion (ICF)
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Record-breaking 59 megajoules of « National Ignition Facility (NIF)

sustained fusion energy in Joint
European Torus (JET) facility in

Oxford demonstrates powerplant 2023/7/30.

potential and strengthens case for
ITER.

https://ccfe.ukaea.uk/resources/#gallery

achieved atarget yield of 1.54 and
repeated the experiment on

https://physicstoday.scitation.org/do/10.1063/PT.6.2.20221213a/full/ 10



Fusion projects in Inst. Space and Plasma Sciences
, National Cheng Kung University
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We welcome anyone interested in fusion research to join our team!
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Plasma can be used as particle accelerators and thrusters
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V. Malka, et al., Nature Physics 4, 447 (2008)
http://cuos.engin.umich.edu/researchgroups/hfs/research/laser-wakefield-acceleration/
https://zh.wikipedia.org/wiki/File:Electrostatic_ion_thruster-en.svg
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Course Qutline

1. What is Plasma?

2. Varies kinds of plasma

a.
b.

N ¢

o «Q

How plasma is generated

Plasma in space

c. Material Processing
d.

Biomedical application
Particle beam source

High energy particle accelerator

. Controlled thermonuclear fusion

. Neutral beam source

Electrical propulsion

17



Course Qutline

4. Demonstration
a. Magnetron sputtering
b. Dielectric barrier discharge (DBD)
c. Magnetic mirror

d. Tesla coil

e. Planeterrella
Planeterrella

Magnetron DBD plasma Magnetic mirror Tesla Coil
sputtering 18



Grading

Presentations 40 %

Final report

60 %
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Everyone needs to present a topic for up to 5
mins taught in the previous day. The topic will
be randomly assigned at the beginning of the
course.

Write a report talking about a plasma
application or plasma application/phenomenon.
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Reference for the section “What is Plasma?”
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* Introduction to plasma theory, by Dwight R. Nicholson
 Introduction to plasma physics and controlled fusion, by Francis F. Chen

* Principles of plasma physics for engineers and scientists, by Umran S.
Inan and Marek Golkowski

 The physics of plasma, by T. J. M. Boyd and J. J. Sanderson
* Principles of plasma physics, by Krall and Trivelpiece

« NRL Plasma Formulary, Naval Research Laboratory, 2013 by J. D. Huba

20



Course Qutline

1. What is Plasma?

21



Charged particles are accelerated due to Lorentz force
under electromagnetic fields

- Lorentz force: F=qE+q7 xB
* Force under electric fields * Force under magnetic fields
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Charged particles gyro around magnetic field lines
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http://www.ipp.cas.cz/vedecka_struktura ufp/tokamak/tokamak compass/diagnostics/

mikrovinne-diagnostiky/ece-ebw-radiometr.html
http://www-ssg.sr.unh.edu/tof/Smart/Students/lees/periods.html 23



Plasma is the 4t" state of matter
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http://tetronics.com/our-technology/what-is-plasmak



Plasma is everywhere
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In plasma, there are ions, electrons, and neutral gas

$(v)
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A plasmais a gas in which an important fraction of
the atoms is ionized so that the electrons and ions

are separated freely .
lonization
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http://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-plasma-physics-i-fall-2003/lecture-notes/



A plasma can be created when the ionization rate Is
higher than the recombination rate
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J. D. Huba \NRL Plasma Formulary", Naval Research Laboratory, 2013



Mean free path is important in ionization process

« For an electron to acquire enough energy between collisions, its
mean free path in the material must be sufficiently long.

Mean free path, A
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Electron impact ionization is the most important
process in a breakdown of gases

* Electron impact ionization: A+e — A*+e +e

— The most important process in the breakdown of gases but is not

sufficient alone to result in the breakdown.
eEA,; = eV;

V.. ionization potential

30



There are several Important plasma parameters that
need to be considered

1/2
KT
Debye length Ap = c
y J b <4nne2>
4T
Plasma parameter A= n?AD
4mn, e? 1z
Plasma frequency Wpe =
me
Collision i 3ym,(KT,)>?
ollision time Te =
¢ 4+/2tnlnA

eB

Hall parameter X = W¢Te , Where Wee = IS the electron gyrofrequency

e
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P
Plasma beta B =— ,where Pp=— isthe magnetic pressure
Pp 8m
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A test ion in the plasma gathers a shielding cloud
that tends to cancel its own charge
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Francis F. Chen, \Introduction to plasma physics and controlled fusion32



Debye shielding is a phenomenon such that the
potential due to atest charge in a plasma falls off much

faster than in vacuum &
-- Vacuum
S sl — Plasma ||
« Vacuum potential: « Potential in a plasma

r r

_ %o $o r ([ KT, Y2
= ¢ = exp <_E> Ap = <4nnez>
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Plasma parameter A is the number of particles in a
sphere with radius of Ag

- Plasma parameter:

o © ® @7‘9 Debye sphere A= n?AD
& o
, @ @ @ - 0 - -
©© | @ ® @ « Criterion for an ionized gas to be plasma:
© © /> Debye length

©\g © 0/
o ® @ e ® Ap < L

©) o) ©

@ @ ] L] L]
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<€ >

A>1
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Electron plasma frequency is the characteristic
frequency such that electrons oscillate around their
equilibrium positions
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- Mechanism of plasma oscillations.

1/2
4mn, e?
Wpe = W =
pe m,

« Wave number k becomes imaginary when w < w,

« Plasma frequency:

E = Eoei(kx—wt) — Eoe—kltei(ka—wt)
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The cutoff of the electromagnetic wave is important
In laser fusion and in the interaction of radio waves

with the ionosphere

(4nneez>1/2
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SpaceX moves their S-band transmitter to the top of
their rocket to avoid communication blackout

https://www.youtube.com/watch?v=Bf4rPsS_fwA 37



Comparison between the mean free path and the
system size L determines the regime of the plasma

 With more careful derivation, the collisional time is obtained:
4+/2TtninA
T, =V, 1=
3. m,(KT,)3/2
* Mean free path: Lntp = VeTe

Intp < L Fluid Theory
Imtp > L Kinetic Theory

38



Thermal conduction perpendicular to the magnetic field
can be suppressed when the plasma is magnetized

o dv € . B
o m,—=——7D X
° € dt c
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,)' ° ° electron oscillates in x-y plane
: e
° &° ° mev, = ——Bv, .
_ - | e ¢ m,v,=0
® o ° m,v, = szx
 Plasmais magnetized when eB . eB \2
v, = — v, = — %
R, wv. 1 <1 X myc ” (mec> X
Imfp  @ce VeTe . eB . eB \°
Uy ==~ Vx=—|—] Uy
I.e., the hall parameter €
X = ®eT, > 1 « Therefore
eB

w =
ce me C

39



Plasma 3 is the ratio between hydro pressure and
magnetic pressure

« Momentum equation in Magnetohydrodynamics (MHD) approach:

d?+ (- V)9 =-V NES N
—_ — — — X
pgtP(7-V)D p+=J
P« B 4T _
x B =—
p J
FxB="(VxB)xB=—|(B-V)xB - VB
X = — X X = — X _ =
J AT e 2
1T o V)7 =—F (p+ L)+ L (B.7)x B
S = — S S X
pdt PV v P 81 41
2
« Magnetic pressure: — p
81 ﬁE
B%/8m
. . 1 & . =
- Magnetic tension: E(B-V)xB

» Pressure can be treated as energy density, i.e., energy per volume.
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Course Qutline

2. Varies kinds of plasma

a. How plasma is generated

41



Methods of plasma production

« DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases
— DC electrical arc discharges in gases
 AC electrical discharges
— RF electrical discharges in gases
— Microwave electrical discharges in gases
— Dielectric-barrier discharges (DBDs)
« Other mechanism
— Laser produced plasma

— Pulsed-power generated plasma

42



Methods of plasma production

« DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases

— DC electrical arc discharges in gases

43



DC electrical discharges

Electrical discharge physics was studied using the
classical low pressure electrical discharge tube
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The V-l curve is nonlinear in a DC electrical discharge

tube
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 Depends on the voltage, the adjustable ballast resistor, the voltage-
current characteristic behaves differently in different regime.

— Dark discharge
— Glow discharge

— Arc discharge
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Dark discharge

In background ionization, ions and electrons are
created by ionization from background radiation
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« Sources of background radiation:
— Cosmic rays
— Radioactive minerals in the surroundings
— Static charges
— Other sources

* In adark discharge, the excitation light is so little and is not visible
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A plasmais a gas in which an important fraction of
the atoms is ionized so that the electrons and ions

are separated freely .
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http://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-plasma-physics-i-fall-2003/lecture-notes#



Mean free path is important in ionization process

« For an electron to acquire enough energy between collisions, its
mean free path in the material must be sufficiently long.

Mean free path, A
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Electron impact ionization is the most important
process in a breakdown of gases

* Electron impact ionization: A+e — A*+e +e

— The most important process in the breakdown of gases but is not

sufficient alone to result in the breakdown.
eEA,; = eV;

V.. ionization potential
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The region where the current exponentially increases is
called the Townsend discharge
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« The phenomenon of the number of electrons increase exponentially
Is called the avalanche breakdown.
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Phenomenology of corona generated by a fine wire
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ELECTRODE
ACTIVE VOLUME

ACTIVE RADIUS
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 The point of corona initiation is that point at which the voltage on the
inner conductor of radius ais high enough that corona is just detectable.

* The electric field will drop off to the breakdown value at a radius r, called
the active radius.



Don’t bring a long stick to a train station

High voltage cables

Pantograph + 0%; Long stick such as

fishing rod, ski board,
%\

L
_

| [
Rail (Grounded)
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The region where the current exponentially increases is
called the Townsend discharge

TOWNSEND
CISCHARGE
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* Primary electrons: electrons from the cathode due to photoemission,
background radiation, static chages, or other processes.

Secondary electrons: electrons emitted from the cathode per incident ion
or photon created from ionization in gas.

« Electrical breakdown occurs when applied voltage is greater than
the breakdown voltage
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Collision frequency and electron energy gained from
electric field are both important to electrical breakdown

v

RELATVE SPARKIYG POTENTIAL Y= p—E
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RELATIVE BREAKDOWN PARAMETER X=
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* Collision is not frequent
enough even the electrons
gain large energy between
each collision.

« Electrons do not gain enough
energy between each collision
even collisions happen frequently.

« The minimum of the Paschen curve corresponds to the Stoletow point,
the pressure at which the volumetric ionization rate is a maximum.
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Glow discharge

DC electrical glow discharges in gases

 The internal resistance of the power supply is relatively low, then the gas

will break down at the voltage Vg, and the discharge tube will move from
the dark discharge regime into the low pressure normal glow discharge

regime. VOLTAGE, V
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The plasma is luminous in the glow discharge regime

« The luminosity arises because the electron energy and number density
are high enough to generate visible light by excitation collisions.
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Low pressure normal glow discharge
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Striated discharges
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 Moving or standing striations are, respectively, traveling waves or
stationary perturbations in the electron number density which occur in
partially ionized gases, including the positive columns of DC normal glow
discharge tubes.

* https://youtu.be/Be4RIjMTOWE

https://en.wikipedia.org/wiki/Glow_discharge



Cylindrical glow discharge sources

« This configuration is used in lighting devices, such as fluorescent
lights and neon advertising signs.

= | HIGH VOLTAGE +
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Parallel plate sources are widely used for plasma
processing and plasma chemistry applications

« Unobstructed operation * Obstructed operation
NEGATIVE  FaRADAY
GLOw DARK SPACE CATHCDE MNEGAT W E GLOW
CATRODE / ANODE ANODE

- PLASMA
ne -
POWER SLRPLY

.|r

| oC i
POWER SUPPLY
-+
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« The obstructed configuration is used for plasma processing, where
high ion energies bombarding the cathode, over large areas and at
vertical incidence, are desired.
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Magnetron plasma source are used primarily for
plasma-assisted sputtering and deposition
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« When several hundred voltages are applied between the parallel
plates, a glow discharge will form, with a negative glow plasma
trapped in the magnetic mirrors above the magnet pole pieces.
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Penning discharge plasma sources produce a dense plasma
at pressures far below than most other glow discharges
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« Strong axial magnetic fields: to prevent electrons from intercepting

the anode.
« Axial electric fields: electrons are reflected by opposing cathodes.

« Multiple reflection of the electrons along axis.
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Abnormal glow discharge occurs when the cross section

of the plasma covers the entire surface of the cathode
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 Normal glow discharge:

l
O
Q >
= -
= )
2 | plasma |3
Q. 1)
® | A
- Y,

o= 1 1078 10-3

ot
CURRENT I, AMPS

 Abnormal glow discharge:
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« Surface cleaning using plasma needs to work in the abnormal glow

discharge region.



Plasma cleaning needs to work in the regime of
abnormal glow discharge
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Arc discharge

Discharge may enter glow-to-arc transition region if the
cathode gets hot enough to emit electrons thermionically
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» If the cathode gets hot enough to emit electrons thermionically and
the internal impedance of the power supply is sufficiently low, the
discharge will make a transition into the arc regime.
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DC electrical arc discharges in gases
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« An arc is highly luminous and is characterized by high currents (> 1 A)
and current densities (A=cm? t kA/cm?).

« Cathode voltage fall is small (£10 V) in the region of high spatial gradients
within a few mm of the cathode.
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An arc can be non-thermal or thermionic

104

1973 ol g3
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Plasma parameter

Non-thermal arc

Thermal arc

Equilibrium state
Electron density, n.
{electrons/m3)

Gas pressure, p (Pa)
Electron temperature, T, (eV)
Gas temperature, T, (eV)
Arc current, / (A)

E/p (V/m-Torr}

{E (kW/cm)

Typical cathode emission
Luminous intensity
Transparency

lonization fraction
Radiation output

Kinetic

109 < n, < 107!
0.1 <p<10°
02<T/ <20
0.025<T; <05
1 <l <50
High

TE <10
Thermonic
Bright
Transparent
Indeterminate
Indeterminate

LTE

102 < n, < 10%
10 < p <107
10<T/ <10
T,=T

50 < < 10*
Low

I1E > 1.0
Field
Dazzling
Opaque

Saha equation
LTE




Non-transferred arc
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» Gas fed along the axis blows the arc out toward the material which is to
be heated. WATER WATER

”I INSUI;ATOR _ | lL‘

GAS
FEED rzzrrr

« A working gas is fed in coaxially and forms a very hot arc jet, at

supersonic velocities.
ANCDE
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Plasma torches are used in waste disposal

Water Outlet

Carrier/Working Gas

Plasma Arc

Water Inlet

Pulse = Controllable (2 ms) il

——— I=5mA
High-voltage oscillator V = 20kv
- f=1MHz

) Pawer Supply System

™ Arc Scanning System
-+_. ( switch }

https://en.wikipedia.org/wiki/Plasma_torch
http://www.httcanada.com/torches.html
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Application — Plasma torch
(BIRIERINE by BRAFHIH/ S MR R)

* Non-Transferred -
arc

arc

Transferred

Plasma

Cathode
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(% 4 2 € &)
BB RERN #7 b #OAMGEELSAR)
(A # Ok (100%) # O (20%)
¥ o« & FE(TC) 4, 000~ 10,000 15,000~ 20,000
& & # H (MJ/kg) i~ 40 20~ 200
H A EHSR L S A TH - EA¥ - TRLEAE
MK E M E (%) |80~80 =40
X A& b M 1.k # & i %
A a 1.8 6B KB R (45%) IR THE MR
k 3.E R & A o F ik (60%)

https://www.atlas-
innotek.com/projects/e60Fj63K47PYPgPe2
http://www.resi.com.tw/PlasmaTorch.htm



Corona discharge demonstration

Tesla coil can generate high voltage
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The high voltage is generated by two resonant LC circuits
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https://en.wikipedia.org/wiki/Tesla_coil 72




Energy is oscillating between the capacitor and the
iInductor
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https://www.brainkart.com/article/Energy-conversion-during-LC-oscillations_38532/
http://ffden-2.phys.uaf.edu/webproj/211_fall_2016/Mark_Underwood/mark_underwood/Primary.html
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Voltage of two separated coils can be transferred by
mutual inductance between two colils

P

Coil 1 Coil 2
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_ Result
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41\ I
IRON CORE

http://mww.physics.louisville.edu/cldavis/phys299/notes/mag_mutualind.html
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/indmut.html 74



The high voltage is generated by two resonant LC circuits
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Components of the tesla coil

Capacitor of

the secondary
o LC circuit

- |

Inductor of the
primary LC circuit

Inductor of the
secondary LC
circuit

' Capacitor of the
primary LC circuit

High voltage
power supply

Show video.
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Arc discharge occur between the high voltage and a
grounded electrode

High voltage
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Corona discharge occurs when the electric field drops
below a certain value
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Methods of plasma production

 AC electrical discharges
— RF electrical discharges in gases
— Microwave electrical discharges in gases

— Dielectric-barrier discharges (DBDs)
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RF can interact with plasma inductively or capacitively

Capacitively coupled Inductively coupled

planar
coaxial
+ A
QE

spiral
coaxial ---L--l

B

 DC electrical discharge —atrue current in the form of a flow of ions or
electrons to the electrodes.

* AC electrical discharge — the power supply interacts with the plasma by
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Example of capacitively coupled RF plasma source 1

VACUUM BELL JAR

PLASMA e

y , ELECTRODE
¢ .‘ -' j‘_.:_‘l. 7 " . ‘.I ": .: I._
N Yl

RF POWER
BARREL REACTOR

SUPPLY
.L SUPPCRT

« Barrier reactor —the wafers
float electrically and have low
ion bombardment energies

RF P
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PLAN VIEW
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 Hexagonal reactor —the wafers
develop a DC bias which leads to a
relatively anisotropic, vertical etch.
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Example of capacitively coupled RF plasma source 2

* Plane parallel reactor

L
WORKING ZZZZZZZMZZ Az '
GAS :
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« Multiple electrode system
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Operating regimes of capacitively coupled plasma
reactors used for plasma processing

Parameter Low value Typical value High value
Frequency 1 kHz 13.56 MHz 100 MHz
Gas pressure 3 mTorr 300 mTorr 5 Torr
Power level S50 W ~ 200 W 500 W

rms electrode voltage 100 V ~ 300V 1000 V
Current density 0.1 mA/cm?  ~ 3 mA/cm? 10 mA/cm?
Electron temperature, T, 3eV A~ 5eV 8 eV
Electron density, n, 105 /m3 ~ 5 x 105 /m3 3 x 1077 /m?
Ion energy, & S5eV 50 eV 500 eV

Electrode separation, d 0.5 cm 4 cm 30 cm
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Inductively coupled RF discharge

The plasma is generated by the induced electric field
from the oscillating magnetic field
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RF energy is strongly absorbed within the skin depth if

the frequency is below the electron plasma frequency
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A kilowatt-level inductively coupled plasma torch is

shown
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High voltage initiation is usually required for inductive
RF plasma torches
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The power supplies are relatively inefficient

PLASMA TORCH

__________ RFEPOWERSUPPLY _ __ _ _ _  _ _ _  WORKING
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Operating regimes of inductively coupled plasma
torches

Parameter Low Characteristic High
Frequency 10 kHz 13.56 MHz 100 MHz
Power 1 kW 30 kW 1MW
Efficiency 20% 35% 50%
Pressure 10 Torr 1 atm 10 atm

Gas temperature 1000 K 10* K 2 x 10 K
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Inductive RF coupling provides a plasma with less
contamination from the electrode

WORK ING
WORKING GAS COOLING WATER Iy OAS
) [ ] COOLING WATER OUT
N

7
f%
/ COAXIAL
A GAS FLOW

g

coL

|

INDUCT |VE PLASMA TORCH ARG JET
10- 200 m/sec JET VELOCITY 500-150 m/sec
a- 40 mm JETDIAMETER  6-10 mm

VARIABLE JET SHAPE CYLINDRICAL
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Inductive parallel plate reactor

PLAN VIEW
QUARTZ DISC

SPIRAL RF COIL
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« Uniform plasma source

* Higher power (2 kW) leading to higher
plasma density (up to 1018 electrons/m?3)

 Lower gas pressure, i. e., longer mean
free paths and little scattering of ions
and is desired in deposition and
etching applications.
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Rotamak

RF PREIONIZATION

ORTHOGONAL ROTATING
MAGNETIC FIELD COILS

TO VACUUM
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« The rapidly rotating magnetic field generates large plasma currents, thus
heating the plasma to densities and temperatures of interest in many

industrial applications



Inductively heated toroidal plasmas

TO LINE
PULSED PRIMARY AC PRIMARY
‘ | INQUCTION CIRCUIT

A INDUCTION CIRCUIT
SWITCH
—— i PRIMARY WINDING PRIMARY WINDING

« Large currents are induced in the plasma by transformer action from a
ramped current in a pulsed primary induction circuit.
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Applications of inductive plasma torches

« High purity materials production
— Silica and other refractories
— Ultrafine powder
— Spherical fine power
— Refining/purification
* High temperature thermal treatment
— Heat treatment
— Plasma sintering
« Surface treatment
— Oxidation

— Nitriding
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Applications of inductive plasma torches

« Surface coating
— Plasma flame spraying
— Surface coating of powder
« Chemical vapor deposition (CVD)
— At atmospheric pressure
— At reduced pressure

« Chemical synthesis and processing

« Experimental applications

Laboratory furnace

High intensity light source
Spectroscopic analysis
Isotope separation

lon source

High power density
plasma source

i
¥ “
P %
z m
3 d
3 $
A ran
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Microwave electrical discharges

Advantage of using microwave electrical discharges
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 The wavelength of the microwave is in centimeters range. In contract, the
wavelength is 22 m for RF frequency f = 13.6 MHz.

 The electron number density can approach the critical number density.
(7x10'® m-3) at a frequency of 2.45 GHz.

« The plasma in microwave discharges is quasi-optical to microwave.

* Microwave-generated plasmas have a higher electron kinetic temperature
(5 ~15eV) than DC or low frequency RF-generated plasmas (1 or 2 eV).

« Capable of providing a higher fraction of ionization.
Do not have a high voltage sheath.

* No internal electrodes.
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Microwave frequency is determined for those used In
communications and radar purposes
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Internal of a magnetron
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© 2010 Encyclopeedia Britannica, Inc.

https://kids.britannica.com/students/article/electron-tube/106024/media?assemblyld=137 100



Internal of a magnetron
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Resonance in a magnetron

http://cdn.preterhuman.net/texts/government_information/intelligence_and_espionage/homebrew.milit
ary.and.espionage.electronics/servw89pn0aj.sn.sourcedns.com/_gbpprorg/mil/herfl/index.html 102



Magnetron schematic diagram

HV capacitor

5 ‘

Magnetron > @

ac
4000 V
—-

High-voltage
transformer

http://cdn.preterhuman.net/texts/government_information/intelligence_and_espionage/homebrew.milit
ary.and.espionage.electronics/servw89pn0aj.sn.sourcedns.com/_gbpprorg/mil/herfl/index.html 103



Microwave plasma reactor configurations
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 Waveguide coupled reactor  Resonant or multimode cavity —
If the impedance matching is
good, more energy can be fed
into the cavity.
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Strong absorption occurs when the frequency matches
the electron cyclotron frequency

« Electron cyclotron resonance (ECR) plasma reactor

RESONANT SURFACE
W= Weg

MAGNETIC NOZZLE
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RESONANCE COIL

TARGET
MATERIAL

CERAMIC
WINDOW

INPFUT WAVEGUIDE
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Electron cyclotron frequency depends on magnetic field

only

 Assuming B =Bz and the
electron oscillates in x-y plane

* Therefore

: e
mevx=—szy :
_ e m,v, =0
m.v, = —Bv,
c
2
. eB . eB
V, = — v, =—|—| v
o mec ” mec) *
2
. eB . eB
v, = — V,=—|——| v
Y mec myc/ 7
eB

w =
ce me c

e xu,
& G
p ¥
z m
° 4
%, $
v i
[

106



Electrons keep getting accelerated when a electric field
rotates in electron’s gyrofrequency

dT]\ e N RN RN - ~ - ~ A~ =
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: e : e .
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X mec y me ce X me ce
. _eB .- Ey B 2 Ey :
vy, = — mecvx + Ewsm(wt) = —Wce“Vy + E (wee + w)sin(wt)
eB
Wee =

m,c

107



Electric field in a circular polarized electromagnetic
wave keeps rotating as the wave propagates

* Right-handed polarization « Left-handed polarization

https://en.wikipedia.org/wiki/Circular_polarizatioss



Only right-handed polarization can resonance with
electron’s gyromotion
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FIGURE 13.5. Basic principle of ECR heating: (a) continuous energy gain for right-
hand polarization; (b) oscillating energy for left-hand polarization (after Lieberman and
Gottscho, 1994).
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Strong absorption occurs when the frequency matches
the electron cyclotron frequency

« Electron cyclotron resonance (ECR) plasma reactor
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Electron cyclotron resonance (ECR) microwave

systems

microwave systems
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Immersed ECR plasma source

« Theions in the plasma flux can be used for etching.
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Distributed ECR system
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Microwave plasma torch deposit a much faster rate than
other types of plasma source for diamond film deposition
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Microwave-generated plasmas have the capability of
filling very large volumes with moderately high density
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« Advantages

— Lower neutral gas pressure, i.e., longer ion and neutral mean free
paths.

— Higher fraction ionize.
— Higher electron density.
« Disadvantages
— Lower ion bombardment energies.
— Less control of the bombarding ion energy.
— Difficult in tuning up and achieving efficient coupling.
— Much more difficult and expensive to make uniform over alarge area.

— More expensive.

115



Dielectric-barrier discharges (DBDs)
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Space charge effect enhance the electric field
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The foundation of AC discharge in plasma display panel
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The plasma can be sustained using ac discharged in
plasma display panel
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 Wall discharge reduced the required discharge voltage
Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Wall discharge reduced the required discharge voltage
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Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 120



ON/OFF State Selection

VE: 250V
150V GND 150V GND 150V GND
ON Cell =5 -
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=T 150V GND 150V GND 150V GND

OFF Cell
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(i)

(ii)

(iii)

(iv)

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Sustain discharge

ON Cell
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Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Plasma-needle discharge

Matching
network RF source

_

Helium
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Atmospheric-pressure cold helium microplasma jets
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There are three different modes: chaotic, bullet, and
continuous mode
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In bullet mode, the plasma jet comes out as a pulse
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emission signal (350-800 nm)
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Methods of plasma production

 Other mechanism
— Laser produced plasma

— Pulsed-power generated plasma
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Laser produced plasma

Laser is absorbed in underdense plasma through
collisional process called inverse bremsstrahlung
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by electric fields other electrons / ions
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Electric field of a high-power laser can perturb the
potential of a nuclear and thus ionize the atom directly
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Pulsed-power produced plasma

Driven piles - prefabricated steel, wood or concrete
piles are driven into the ground using impact hammers
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PLACEMENT OF PILE INSTALLATION OF PILE REPETITION OF PROCESS

http://www.saudifoundations.com/driven.html
http://learnhowtowritesongs.com/tag/thesaurus/



Example of short pulses with a controllable repetition rate

https://www.youtube.com/watch?v=5fe8b4MIPYw



Sandia’s Z machine is the world's most powerful and
efficient laboratory radiation source

WS Kuy,

Peak current: 26 MA

Rise time: 100 ns

Peak X-ray emissions: 350 TW
Peak X-ray output: 2.7 MJ

« Stored energy: 20 MJ
« Marx charge voltage: 85 kV
« Peak electrical power: 85 TW
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Z machine discharge
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Plasma can be compressed when parallel propagating
current occurs
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All plasmas are separated from the walls surrounding
them by a sheath
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« When ions and electrons hit the wall, they recombine and are lost.

« Since electrons have much higher thermal velocities than ions, they are
lost faster and leave the plasma with a net positive charge.

« Debye shielding will confine the potential variation to a layer of the order
of several Debye lengths in thickness.

» A potential barrier is formed to confine electrons electrostatically.

 The flux of electrons is just equal to the flux of ions reaching the wall.
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The potential variation in a plasma-wall system can be
divided into three parts

« Electron-free region: Vix)
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Electrostatic probes (Langmuir probe)
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 The electron current can be neglected if the probe is sufficiently negative

relative to the plasmato repel most electrons.

KT, \"?
muy? > KT, J = engyu, | = nseA< me)
1 KT,
|¢| - E e PLASMA |
e 1
ng = nyexp <K;)> = nge /2 = 0.61n, f
e

KT,\"? l
Bohm current: Iz =~ 0.5nyeA (—e> :
m )

« The plasma density can be obtained once the temperature is known.
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Electron temperature can be determined by the slope of
the I-V curve between ion and electron saturation
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Course Qutline

2. Varies kinds of plasma

b. Plasmain space
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Aurora
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https://en.wiktionary.org/wiki/aurora 140



Aurora seen from a satellite

https://flashpack.com/insights/2014/11/20/aurora-australis-forget-the-
northern-lights-have-you-heard-about-the-southern-lights/ 141



Earth’s magnetic field

- The Earth’s Magnetic Field
- North i R
— Magnetic Geographic * : Spiral Trajectory of
R onnfel ghargedlpartige

Magnetic Field
Line

/
! South

/
Geographic ;
‘.. SouthPole Magnetic
: Pole

https://www.nasa.gov/mission_pages/sunearth/news/gallery/Earths-
magneticfieldlines-dipole.html
http://www.pas.rochester.edu/~blackman/ast104/emagnetic.html
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Colors of the aurora depends on the penetration depth

of energetic electrons
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Earth magnetic fields are strongly influenced by solar
wind

http://www.pas.rochester.edu/~blackman/ast104/emagnetic.html
144



A plume of charge particles ejected from the sun was
suggested in 19 centries
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1859, British astronomer Richard C. arringtn and Richard Hodgson
made the first observation of what is called a solar fare later. A

geomagnetic storm (solar storm) was observed on the following day.
Carrington suspected that there may be a connection between them.

1910, British astrophysicist Arthur Eddington essentially suggested the
existence of the solar wind without naming it.

1916, Kristian Birkeland suggested that the ejected material consisted of
both ions and electrons.

1919, Frederick Lindemann suggested that particles come form the sun
include both polarities, protons and electrons.

https://en.wikipedia.org/wiki/Solar_flare
https://en.wikipedia.org/wiki/Solar_wind#History 14s



Eugene Parker named the “solar wind”
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« 1930s, the temperature of the solar coronais in a million degrees Celsius
was determined by scientists.

« Mid-1950s, Sydney Chapman suggested that the “gas” in this
temperature must extend way out into space, beyond the orbit of Earth.

« 1950s, Ludwig Biermann suggested that the sun emits a steady stream of
particles so that the comet’s tail always points away from the sun.

« 1958, Eugene Parker realized that Chapman’s model
and Biermann’s hypothesis are the same
phenomenon. He name it “solar wind.” He was the
first person showing that the weakening effect of the
gravity is similar to the hydrodynamic flow in a de
Laval nozzle such that solar wind transits from
subsonic to supersonic flow.

« 1959, the Soviet spacecraft Luna 1 directly observed
the solar wind.

https://en.wikipedia.org/wiki/Solar_wind#History
https://en.wikipedia.org/wiki/Eugene_Parker
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Parker Solar Probe launched in 2018 was to observe the
outer corona of the sun

« The goals of the mission are:

« Trace the flow of energy that heats the corona and accelerates the
solar wind.

 Determine the structure and dynamics of the magnetic fields at the
sources of solar wind.

« Determine what mechanisms accelerate and transport energetic

particles.
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Parker Solar Probe will have 24 perihelion till 2025

Parker Solar Probe Mission Trajectory and Current Position Parker Solar Probe Distance from Sun

2
:
3
:
i
3

Round-Trip Light Time (Rhemimcss): D0E05:09
10 Aug 2020 0400000 UTC

 More information can be obtained from the following link:

https://www.nso.edu/wp-content/uploads/2018/04/PSP_DKIST_CSP_v1-1.pdf

http://parkersolarprobe.jhuapl.edu/The-Mission/index.php 148



Reconnection
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plasma reconnection | ‘ / "
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magnetic
slingshots

https://www.youtube.com/watch?v=7sS3Lpzh0Zw
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Corona mass ejection (CME)

http://cse.ssl.berkeley.edu/SegwayEd/lessons/exploring_magnetism/i
n_Solar_Flares/s4.html#sf 150



Reconnections occur in many locations

Magnetopause

Solar Wind

Sun
Nollols Streom
CME

Magnetotail el

Earth
Magnetic,
Field '

o

- Magnetotail il

. NS N— Oxygen lons

Magnetopause
is ‘broken’
Solar Wind enters

» The Aurora Borealis:

https://www.youtube.com/watch?v=IT3J6a9% 08

http://www.natalia-robba.com/myblog/travel/the-aurora-borealis-the-
northern-lights-everything-you-need-to-know/
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IS an aurora simu

Planeterrella
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Simple glow discharge is demonstrated
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Auroral/ring current are demonstrated

« B w/magnet: aurora demonstration
« Fw/ magnet: ring current
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Aurora and ring current are expected to be seen
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Our Planeterrella

Show video.
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Glow discharge
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Ring current demonstration
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2. Varies kinds of plasma

c. Material Processing
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Reference for material processing

« Principles of plasma discharges and materials processing, 2"d edition, by
Michael A. Lieberman and Allan J. Lichtenberg

* http://lwww.eecs.berkeley.edu/~lieber/

« Materials science of thin films, 2"d edition, by Milton Ohring

* Plasma etching, by Dennis M. Manos and Daniel L. Flamm

* Industrial plasma engineering, volume 1, by J. Reece Roth

Rf or microwave
power

:

e, CF3, CF3*, F, 07, O,, CO, SiFy, etc.

—> Pump

CF4/0, —>

Si0

ot
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A semiconductor device is fabricated by many
repetitive production process

lon implantatio\rv\
A "
Y

Stripping

Developing Photoresist coating

Exposure

Surf. Topogr.: Metrol. Prop. 4 (2016) 023001 162



Evolution of etching discharges

1st generation

(1 source, multi-
wafer, low density) = U

(] ‘ $E|
2"d generation ]
(2 sources, single- == | Il=l
wafer, high density) bt —

3'd generation
(multi-sources,
single-wafer,
moderate density)
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There are two types of etching: isotropic vs anistropic
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« Isotropic etching
Resist
Polysilicon
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« Anisotropic etching
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There are four major plasma etching mechanisms
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Sputtering is an unselective but anisotropic process

* Unselective process

« Anisotropic process, strongly sensitive to the angle of incidence of the
ion

« Sputtering rates of different materials are roughly the same

» Sputtering rates are generally low because the yield is typically of order
one atom per incident ion

« Sputtering is the only one of the four etch processes that can remove
involatile products from a surface

« The process is generally under low pressure since the mean free path of
the sputtered atoms must be large enough to prevent redeposition on the

I

substrate or target

—
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Topographical patterns might not be faithfully
transferred during sputter etching

1 ] 1 T | (a} |DI’|S
- - l l l l l l
1000 - m
2 800 Photoresist
E
£ 800 n
- e
= 400 - (b)
200 - X Photoresist -
O Aluminum
0 ] l i ] 1 T T T —

0 15 30 45 60 75 90

I
6 (degrees) :
/ Photoresist N
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Pure chemical etching

Atoms or molecules chemically react with the surface

to form gas-phase products
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Highly chemically selective, e.g.,

Meutral :

\ Volatile

. . product
Si(s) +4F — SiF,(g)

photoresist + O(g) — CO»s(g) + H,O(g)

Almost invariably isotropic
Etch products must be volatile
The etch rate can be quite large

Etch rate are generally not limited by the rate of arrival of etchant atoms,
but by one of a complex set of reactions at the surface leading to
formation of etch products
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lon-enhanced energy-driven etching
The discharge supplies both etchants and energetic ions

to the surface
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« Low chemical etch rate of silicon substrate in XeF2
etchant gas

* Tenfold increase in etch rate with XeF2 + 500 V argon
lons, simulating ion-enhanced plasma etching

* Very low “etch rate” due to the physical sputtering of .



lon-enhanced energy-driven etching has the characteristic
of both sputtering and pure chemical etching
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 Chemical in nature but with a reaction rate determined by the energetic
ilon bombardment

* Product must be volatile

« Highly anisotropic

170



lon-enhanced inhibitor etching

An inhibitor species is used
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Inhibitor precursor molecules that absorb or deposit on the substrate
form a protective layer or polymer film

Etchant is chosen to produce a high chemical tech rate of the substrate
in the absence of either ion bombardment or the inhibitor

lon bombardment flux prevents the inhibitor layer from forming or clears
it as it forms

Where the ion flux does not fall, the inhibitor protects the surface from
the etchant

May not be as selective as pure chemical etching
A volatile etch product must be formed

Contamination of the substrate and final removal of the protective

inhibitor film are other issues Neuwiral lon
C\I Volziile

] I ]

9= nhibitor
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Comparison of different processes

Sputtering | Pure chemical |lon energy- lon- enhanced
etchlng etchlng driven etching | Inhibitor etching

Selectivity
Anisotropic O X
Volatile product X O

O
O

TABLE 15.1. Etch Chemistries Based on Product

Volatility

Material

Etchant Atoms

Si, Ge

Si0,

Si3Ny, silicides
Al

Cu

C, organics

W, Ta, Ti, Mo, Nb
Au

Cr

GaAs

InP

F. Cl., Br
F.F+C

F

Cl, Br

Cl (T = 210°C)
O

F. Cl

Cl
CLLCl1+0
Cl, Br
Cl,C+H
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Deposition and implementation
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* Plasma-assisted deposition, implantation, and surface modification are
iImportant material processes for producing films on surfaces and
modifying their properties

« Example processes:
— Plasma-enhanced chemical vapor deposition (PECVD)
— Sputter deposition / physical vapor deposition (PVD)

— Plasma-immersion ion implantation (PIII)
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Chemical Vapor Deposition (CVD)
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Plasma-enhanced chemical vapor deposition (PECVD)
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Films can be deposited in low temperatures using
plasma deposition

« Device structures are sensitive to temperature, high-temperature
deposition processes cannot be used in many cases

« High-temperature films can be deposited at low temperatures

« Unique films not found in nature can be deposited, e.g., diamond

176



PVD
Sputtering deposition
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Plasma-immersion ion implantation (PlII)
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« Silicon doping —ions such as B, P, As are implanted

« Surface hardening of metals — N, C are implanted
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Plasma cleaning

Plasma can be used for cleaning surface

« Cleaning mechanisms:
— Chemical reactions by free radicals

— Physical sputtering by high energy ions

Plasma Cleaning

Hydrogen Plasma Oxygen Plasma
Argon Plasma
Chemical Energy Chemical Energy

Physical

23522

BRRAREROHBIRAE
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Free radicals are generated and used in chemical reactions
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« Highly reactive free radicals generated in plasma may react with the
hydrocarbon contaminatns of surface oxide.

* Both He and Oe can react with grease or oil on surface to form volatile
hydrocarbons.
H eyt CrHani2(s) = CHys)

Oe )+ CnH2n+2(s) - CO(S) + CHxOy(g) + HZO(g)

(g

e Oeis more reactive than He. But Oe may also react with surface metal to form oxide,
deteriorating the material properties. Nevertheless, He can make metal oxide back
to metal.

Oe¢ +Me » MeO

He+ +MeO - Me + H,0
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The effect of chemical reactions Is increased as the
pressure increases

« Advantages:
— Stable gas products are formed.
— No redeposition problem.

— High etching selectivity.

« Disadvantages:

— Higher concentration of H, or O, is required to ensure an appropriate
etching rate.

— H, safety or O, strong oxidation ability needs to be monitored.
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High energy ions are used in physical sputtering
cleaning

* lons generated in plasma can be accelerated toward the substrate to
physically bombard away the atoms of contaminants.

 The physical sputtering rate increases as the following quantities
Increase:

— Plasma density;

— Accelerating voltage;

— Mass of bombardment atoms.
 The physical sputtering is also enhanced by lowering the pressure.
« High cathode bias is used.

« Ar* has strong sputtering effect.
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The physical sputtering rate increases with higher
cathode bias and Ar concentration and lower pressure
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« Advantages:
— Highly efficient cleaning effect can be achieved.

— Gas consumption rate can be very low.

« Disadvantages:
— Etching problems — non-selective etching by physical sputtering.

— Redeposition problems: the products sputtered out may be highly
unstable and tend to deposit again downstream.
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Plasma cleaning examples
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Abnormal glow discharge occurs when the cross section

of the plasma covers the entire surface of the cathode
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« Surface cleaning using plasma needs to work in the abnormal glow

discharge region.



Plasma cleaning needs to work in the regime of
abnormal glow discharge
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