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Course Qutline

1. Introduction to plasma )

a. What is Plasma?

> Day 1~3




Charged particles gyro around magnetic field lines
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A plasmais a gas in which an important fraction of
the atoms is ionized so that the electrons and ions
are separated freely @
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A plasma can be created when the ionization rate is
higher than the recombination rate
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There are several Important plasma parameters that
need to be considered
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A test ion in the plasma gathers a shielding cloud
that tends to cancel its own charge

Francis F. Chen, \Introduction to plasma physics and controlled fusion's



Debye shielding is a phenomenon such that the
potential due to atest charge in a plasma falls off much
faster than in vacuum oo
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Electron plasma frequency is the characteristic
frequency such that electrons oscillate around their
equilibrium positions
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- Mechanism of plasma oscillations.
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The cutoff of the electromagnetic wave is important
In laser fusion and in the interaction of radio waves

with the ionosphere
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Course Qutline

1.

Introduction to plasma

b. How to generate plasma

> Day 1~3
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Methods of plasma production

 DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases
— DC electrical arc discharges in gases
 AC electrical discharges
— RF electrical discharges in gases
— Microwave electrical discharges in gases
— Dielectric-barrier discharges (DBDs)
e Other mechanism
— Laser produced plasma

— Pulsed-power generated plasma
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The region where the current exponentially increases is
called the Townsend discharge
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 Primary electrons: electrons from the cathode due to photoemission,
background radiation, static chages, or other processes.

« Secondary electrons: electrons emitted from the cathode per incident ion
or photon created from ionization in gas.

Electrical breakdown occurs when applied voltage is greater than
the breakdown voltage
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Collision frequency and electron energy gained from
electric field are both important to electrical breakdown
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e Collision is not frequent
enough even the electrons
gain large energy between
each collision.

 Electrons do not gain enough
energy between each collision
even collisions happen frequently.

« The minimum of the Paschen curve corresponds to the Stoletow point,
the pressure at which the volumetric ionization rate is a maximum.,
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Glow discharge

DC electrical glow discharges in gases

 The internal resistance of the power supply is relatively low, then the gas
will break down at the voltage Vg, and the discharge tube will move from
the dark discharge regime into the low pressure normal glow discharge
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Glow discharge in a glass jar
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Discharge may enter glow-to-arc transition region if the
cathode gets hot enough to emit electrons thermionically

t
Q%{
< :
. ST
raan

VOLTAGE, v
[
DARK DISCHARGE GLOW DISCHARGE ARC DISCHARGE
|
TOWNSEND REGIME !
|
: CORONA g !
veb | B BREAKDOWN VOLTAGE |
|
: S : O
1 \ I‘ H m >
! \ I —t
| A e CLOW-TO-ARC — )
| \ R Y TRANSITION o
\ ’ @)
C | \ i Q
\I \ | Q— (-D
N I ‘ (@)
! |
SATURATION F | .
REGIME
8 1
BACKGROUND IONIZATION
A i l 1 t L l ] 1 i] I R S| -

10710 lo-8 1076 o4 j0-2 § 100 10,000
CURRENT I, AMPS

* |f the cathode gets hot enough to emit electrons thermionically and
the internal impedance of the power supply is sufficiently low, the
discharge will make a transition into the arc regime.
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Arc discharge

DC electrical arc discharges in gases
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 An arc is highly luminous and is characterized by high currents (> 1 A)
and current densities (A=cm? 2z kA/cm?).

« Cathode voltage fall is small (<10 V) in the region of high spatial
gradients within a few mm of the cathode.
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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 DC electrical discharge — a true current in the form of a flow of ions or
electrons to the electrodes.

 AC electrical discharge — the power supply interacts with the plasma by
displacement current.

— Inductive radio frequency (RF) electrical discharges
— Capacitive RF electrical discharges

— Microwave electrical discharges

— Dielectric-barrier discharges (DBDs)

e Optical (laser) produced plasma
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RF can interact with plasma inductively or capacitively

Capacitively coupled
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The plasma is generated by the induced electric field
from the oscillating magnetic field
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High voltage initiation is usually required for inductive
RF plasmatorches
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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 DC electrical discharge — a true current in the form of a flow of ions or
electrons to the electrodes.

 AC electrical discharge — the power supply interacts with the plasma by
displacement current.

— Inductive radio frequency (RF) electrical discharges
— Capacitive RF electrical discharges

— Microwave electrical discharges

— Dielectric-barrier discharges (DBDs)

e Optical (laser) produced plasma
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Symmetrical capacitive RF discharge model
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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 DC electrical discharge — a true current in the form of a flow of ions or
electrons to the electrodes.

 AC electrical discharge — the power supply interacts with the plasma by
displacement current.

— Inductive radio frequency (RF) electrical discharges
— Capacitive RF electrical discharges

— Microwave electrical discharges

— Dielectric-barrier discharges (DBDs)

e Optical (laser) produced plasma
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Microwave plasma reactor configurations

« Waveguide coupled reactor
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 Resonant or multimode cavity —
if the impedance matching is
good, more energy can be fed
into the cavity.
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Strong absorption occurs when the frequency matches

the electron cyclotron frequency

» Electron cyclotron resonance (ECR) plasma reactor
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Electron cyclotron frequency depends on magnetic field

only

dv e . 5
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electron oscillates in x-y plane
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Electrons keep getting accelerated when a electric field
rotates in electron’s gyrofrequency
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Electric field in a circular polarized electromagnetic
wave keeps rotating as the wave propagates

 Right-handed polarization « Left-handed polarization

https://en.wikipedia.org/wiki/Circular_polarization



Only right-handed polarization can resonance with
electron’s gyromotion
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FIGURE 13.5. Basic principle of ECR heating: (@) continuous energy gain for right-

hand polarization; (b) oscillating energy for left-hand polarization (after Lieberman and
Gottscho, 1994).
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Strong absorption occurs when the frequency matches

the electron cyclotron frequency

» Electron cyclotron resonance (ECR) plasma reactor
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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 DC electrical discharge — a true current in the form of a flow of ions or
electrons to the electrodes.

 AC electrical discharge — the power supply interacts with the plasma by
displacement current.

— Inductive radio frequency (RF) electrical discharges
— Capacitive RF electrical discharges

— Microwave electrical discharges

— Dielectric-barrier discharges (DBDs)

e Optical (laser) produced plasma
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Dielectric-barrier discharges (DBDs)
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Atmospheric-pressure cold helium microplasma jets
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J. L. Walsh, et al., J. Phys. D: Appl. Phys., 43, 075201 (2010) 37



Atmospheric-Pressure Plasma

https://www.itri.org.tw/chi/Content/Publications/contents.aspx?Sitel
D=1&MmmID=2000&MSid=745416417706673311
Plasma medicine, by Alexander Fridman and Gary Friedman
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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 DC electrical discharge — a true current in the form of a flow of ions or
electrons to the electrodes.

 AC electrical discharge — the power supply interacts with the plasma by
displacement current.

— Inductive radio frequency (RF) electrical discharges
— Capacitive RF electrical discharges
— Microwave electrical discharges

» Optical (laser) produced plasma
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Laser is absorbed in underdense plasma through
collisional process called inverse bremsstrahlung
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Course Qutline

1.

Introduction to plasma

c. Applications of plasma

> Day 1~3

41



Applications of plasma

Material Processing

Plasmain space

Biomedical application

High energy particle accelerator

Electric propulsion

L o A

Controlled thermonuclear fusion
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Applications of plasma

1. Material Processing

43



A semiconductor device is fabricated by many
repetitive production process
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Surf. Topogr.: Metrol. Prop. 4 (2016) 023001
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A semiconductor device is fabricated by many
repetitive production process

lon implantation
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PVD
Sputtering deposition
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A semiconductor device is fabricated by many
repetitive production process

lon implantation
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There are two types of etching: isotropic vs anistropic
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A semiconductor device is fabricated by many
repetitive production process

lon implantation
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Plasma-immersion ion implantation (PllI)
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« Silicon doping —ions such as B, P, As are implanted

o Surface hardening of metals — N, C are implanted
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A semiconductor device is fabricated by many
repetitive production process

lon implantation
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Ultraviolet lithography (EUVL) is one of the key
technologies in semiconductor manufacturing nowadays
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« The process technology of Taiwan Semiconductor Manufacturing
Company Limited (TSMC):
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« Optical diffraction needs to be taken into account.
« Shorter wavelength is preferred.

« Light source with a center wavelength of 13.5 nm is used.

https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm 52



EUV light with A=13.5 nm is used

« Multilayer mirrors is needed for reflecting EUV light.

Reflected Light: Combination of 6 Beams

Incident —Sn Li ——Xe - - - -11 mirrors
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V. Bakshi, EUV sources for lithography



EUV light is generated when material is heated to

35~40 eV (~450,000 K)

Reflectivity and spectral

density (arb. units)
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At T=35-40 eV (~450,000 K),
in-band emission occurs.
Xenon:

e 4p%4d® — 4p%4d’5p
from single ion stage Xel0*

e UTA @ 11 nm

Tin:

o 4p%4dN — 4p°4dN+l+ 4pS4dN-14f
(1<N < 6) inions ranging from
Sn8+ to Sn12+

e UTA @ 13.5nm

« UTA: unresolved transition array

V. Bakshi, EUV sources for lithography
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EUV light sources from laser-produced plasma (LPP)

Tin:

o 4p%4dN — 4pS4dNtL +

Cooler Collector/
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Beam Delivery

4ps4adN-14f (1SN <
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Vacuum -~103 mbar Multilayered Mirror Optics

Intermediate Focus Reticle

Droplet Dispenser

Wafer

6) in

Vacuum
System

R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012)
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Applications of plasma

2. Plasmain space
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Earth’s magnetic field

~ The Earth’s Magnetic Field
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https://www.nasa.gov/mission_pages/sunearth/news/gallery/Earths-
magneticfieldlines-dipole.html
http://mww.pas.rochester.edu/~blackman/ast104/emagnetic.html
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Aurora occurs when energetic electrons penetrating
Into atmosphere in the pole regions
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« O,: green or dark red
* N,: blue or purple

J. Atoms Terr. Phys., 32 (1970) 1015-1045 https://flashpack.com/insights/2014/11/20/aurora-australis-forget-the-
Johnson, 1969; Luhmann, 1995 northern-lights-have-you-heard-about-the-southern-lights/
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Reconnection

b A

plasma
current
layer

reconnection

https://www.youtube.com/watch?v=7sS3Lpzh0Zw

magnetic
slingshots
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Reconnections occur in many locations

Magnetopause

Solar Wind

Magnetotail G
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Solar Wind enters

e The Aurora Borealis:

https://www.youtube.com/watch?v=IT3J6a9p 08

http://www.natalia-robba.com/myblog/travel/the-aurora-borealis-the-
northern-lights-everything-you-need-to-know/




Applications of plasma

3. Biomedical application
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Biomedical applications of low temperature plasma

Plasma medicine, by Alexander Fridman and Gary Friedman
Biochem Biophys Res Commun. 2006 May 5; 343(2): 351-360. 62



Melanoma shrinks after the treatment

-«

« Day 0-3: 3 applications of 100 pulses (300 ns, 40 kv/cm, 0.5 Hz), 30 min apart

« Day 4: single application using 5 mm diameter parallel plate electrode
Biochem Biophys Res Commun. 2006 May 5; 343(2): 351-360.
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Applications of plasma

4. High energy particle accelerator
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Electrons can be accelerated by a plasma wake
generated by a short pulse laser
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V. Malka, et al., Nature Physics 4, 447 (2008)
http://cuos.engin.umich.edu/researchgroups/hfs/research/laser-wakefield-acceleration/
https://i.ytimg.com/vi/CA-SDflwvTQ/maxresdefault.jpg 65



Electrons with a maximum energy of 320 MeV are generated
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A. Maksimchuk, et al., Appl. Phys. B 89, 201 (2007)
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Applications of plasma

5. Electric propulsion
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Comparison between liquid rockets and ion thrusters

e Liquid rockets

u~4500 m/s
ISp~450 s
Energy ~ 100GJ
Power ~ 300MW
Thrust ~ 2x10 N

lon thrusters

u~30000 m/s
IsSp~3000 s
Energy ~ 1000GJ
Power ~ 1kW
Thrust ~0.1 N

Combustion
Chambel

Oxidizer

Pumps

Propellant
i Supply

Neutralizer

" Power Ve v < Thrust

i . V-
Processing lonization

Unit Chamber lon Acceleration

Electrodes
* lons - Atoms - Electrons

https://www.grc.nasa.gov/WWW/K-12/airplane/lrockth.html
https://defence.pk/pdf/threads/isro-to-test-electric-propulsion-on-satellites.411176/
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Applications of plasma

6. Controlled thermonuclear fusion
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The “iron group” of isotopes are the most tightly bound

Binding energy per nuclear
particle (nucleon) in MeV
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http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.htmi 70



Nuclear fusion and fission release energy through
energetic neutrons

Fission
Uranium Radioactive
daughter atoms
Neutron Q Neah'cm/Y
Q mmp > == o Z5 200 MeV
O Neutrcm\;
Fusion
Deuterium Tritium Helium 4

@ = O > O ot NEng} 18 MeV

(3.5MeV) (14.1MeV)
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Nuclear fusion provides more energy per atomic mass
unit (amu) than nuclear fission

Fusion of 2H+3H: QO = 17.6 Mey =3.5 Mel
4 (3+ 2) amu amu
200 MelV Mel
Fission of 235U: 4 = ° - 0.85 €
A 236 amu amiu
| Half-life (years) |
U235 7.04x108
U238 4.47x10°

Tritium 12.3

o
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F 3

p 5

]
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% #
2 L4

raat
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Fusion is much harder than fission

« Fission: 5 455°U —53° U —ig* Ba +5¢ Kr + 3n + 177 MeV
e Fusion: D+7T — He*(3.5MeV)+n(14.1 MeV) D @ «@)».T
107
§ ™
E 1
% oor
g 10

10€ 10104001 1 100 10*
Prgectile/Neutron Enargy (keV)
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Fusion doesn’t come easy

Temperature (MKk)
58. 116. 580.1160. 5802.

ok ek e
p— p— —
~ (@) (V)]

Reaction Rate (cm?/sec)

10-1%

10—19

10~20/ S 4
1 5 10 50 100 500

Temperature (keV)

*NRL Plasma Formulary, Naval Research Laboratory, Washington, DC 203785-5320 74



The plasma is too hot to be contained

e Solution 1. Magnetic confinement fusion (MCF), use a magnetic field to
contain it. P~atm, T~sec, T~10 keV (108 °C)

Tokamak Stellarator

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils

(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/
https://en.wikipedia.org/wiki/Stellarator 75



There is along way to go, but we are on the right path...
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« Schedule of ITER:
 Dec 2025 First Plasma
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Plasma is confined by its own inertia in inertial
confinement fusion (ICF)

Laser light shines The target
on the target is compressed

Spatial profile at stagnation

v
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A spherical capsule can be imploded through directly or
Indirectly laser illumination

Direct-drive target Indirect-drive target

Laser beams

Diagnostic hole

Hohlraum using
a cylindrical high-Z case

*R. Betti, HEDSA HEDP Summer School, 2015
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Laboratory for Laser Energetics, University of Rochester
IS a pioneer in laser fusion

- OMEGA Laser System - OMEGA EP Laser System o
60 beams 4 beams; 6.5 kJ UV (10ns) '—'—E*
« >30kJ UV on target « Two beams can be high-  [FS€)
o 1%~2% irradiation nonuniformity energy petawatt
» Flexible pulse shaping e 26 kJIRIn 10 ps

e Can propagate to the
OMEGA or OMEGA EP
target chamber

OMEGA target

b, chambe ,
OMEGA EP
target
chamber
Main

o _amplifiers
Compression -
chamber
‘ Booster

amplifiers

OMEGA EP Laser Bay
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The OMEGA Facility is carrying out ICF experiments
using a full suite of target diagnostics

Imaging x-ray

LLNL flat streak camera
crystal x-ray Target X-ray pinhole
streak in TIM #1 positioner camera

X-axis target-
viewing system

X-ray pinhole
cameras =~ KB x-ray
microscope
#2 (GMX1)
Indium _
activation X-ray pinhole
camera
Copper
activation KB x-ray
microscope #1
KB x-ray X-ray framing )_(-ray Plasma
microscope camera #1 pinhole calorimeter
#3 in TIM#3 cameras

E8012b Photo taken from port H11B
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FS€ >
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The 1.8-MJ National Ignition Facility (NIF) will
demonstrate ICF ignition and modest energy gain

Completed March 2009
and beginning
experiments

OMEGA experiments are integral to an
ignition demonstration on the NIF.
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Targets used in ICF
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Nature letter “Fuel gain exceeding unity in
confined fusion implosion”
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 Fuel gain

exceeding unity was demonstrated for the first time.

Nature 506, p343, 2014
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We are really closed!
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Course Qutline

1. Introduction to plasma

a. What is Plasma?

b.

How to generate plasma

c. Applications of plasma

2. Theory of Langmuir probe

a.

b.

C.

d.
3. Demonstration of Langmuir probe

a. Building vacuum systems

b. Building Langmuir probes

c. Measuring temperatures and densities of plasma

Sheath
Single Langmuir probe
Double Langmuir probe

Triple Langmuir probe

\

> Day 1~3

Day 4~5:
Experiments
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