Practice Course in Plasma

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

2021 spring semester Thursday 9:10-12:00

Material: http://capst.ncku.edu.tw/PGS/index.php/teaching/

Lecture 8

1

A magnetic field of 0.0876 T is needed for ECH

$$\omega_{ce} = \frac{eB}{m_e c} \equiv \omega = 2\pi \times 2.45 \text{ GHz}$$

$$B = \frac{2\pi \times 2.45 \times 10^9 m_e c}{e} = 876 \text{ G} = 0.0876 \text{ T}$$

$$B = \frac{\mu_0 I}{2\pi r}$$
Toroidal field coil
$$I = \frac{2\pi rB}{\mu_0} = \frac{2\pi rB}{4\pi \times 10^{-7}}$$

$$I = 22 \text{ kA } @ 5 \text{ cm}$$

$$A \text{ pulsed-power system will be used to generate the current with a pulse width of 1 ms.}$$

$$W_{ce} = \frac{2\pi r}{e}$$

 $2\pi rB$

The 0.1-T magnetic field is sufficient to confine 10-eV Ar ion

$$v = r\omega$$
 $\frac{1}{2}mv^2 = kT$ $\omega = \frac{eB}{m}$ $r = \frac{\sqrt{2mkT}}{eB}$

• Larmor radius in mm @ B=0.1 T:

T (eV)	H (1g/mole)	D (2g/mole)	T (3g/mole)	He (4g/mole)	Ar (40g/mole)
1	1.4	2.0	2.5	2.9	9.1
10	4.6	6.5	7.9	9.1	28.9
100	14.4	20.4	25.0	28.9	91.3
1000	45.6	64.5	79.1	91.3	288.7

• The Larmor radius of 1-keV electron @ B=0.1 T is 1.1 mm. Electrons are confined in our system.

• Ar will be used.

The magnetic field energy of the toroidal field is ~100 J

A pulsed-power system is capable of providing a highpower output

 Capacitive-storage pulsedpower system

PLACEMENT OF PILE

INSTALLATION OF PILE

REPETITION OF PROCESS

http://www.saudifoundations.com/driven.html 5

Trigatron will be used as the controlled-spark gap switch

Unit: mm

A slow trigger pulse generator was built using a ignition coil for cars

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)

The controlled spark-gap switch

A simple pulsed-power system is a RLC circuit

Pulse-forming network (PFN)

Different type of PFN

The current output of a LC circuit is a basis of Fourier series

A trapezoidal wave can be expressed by Fourier series (Guillemin's method)

The required inductance and capacitance are obtained by comparing LC output with the Fourier series

A trapezoidal current output can be generated using Guillemin's pulse-forming networks

Fourier components of τ =1 ms, a=0.1

n	#/
b1	1.2524
b3	0.3643
b5	0.1621
b7	0.069
b9	0.0155

Coils with 8 turns and a PFN charged to 1 kV will be used

									1931
l (kA)	V (kV)		1	2	3	4	5	E (kJ)	% to 100 J
2.5	1	L(uH)	101.7	116.5	157.1	271.8	915.0	0.6	17.7 %
		C(uF)	996.6	96.6	25.8	7.6	1.4		
2.5	1	L(uH)	101.7	116.5	157.1	271.8	915.0	0.6	17.7 %
		C(uF)	990	100	25	10	1		
2.5	1	L(uH)	86.4	86.4	135	264.6	912.6	0.6	17.7 %
		C(uF)	990	100	25	7.5	1.5		
2.5	1	L(uH)	86.4	126	131	253	907	0.6	17.7 %
		C(uF)	990	100	25	7.5	1.5		
	1								

$$\mu_r \approx 5000$$

$$A_L = 5400 \pm 25\% \text{ nH}$$

$$L = A_L N^2$$

A square pulse with a flat top of 2.5 kA can be generated

• Case 1: (L-theory, C-theory)

• Case 3: (L-Half theory, C-real)

• Case 2: (L-theory, C-real)

• Case 4: (L-real, C-real)

A simple PFN with constant C and L in all stages can also be used

					· · · · · · · · · · · · · · · · · · ·	22
1						R=0 1 Ohm
						AAA
	<u></u>	<u>.</u> 3	<mark>.</mark> 5	<mark>.</mark> 7	· · · · [12· · · ·	
÷	C1 L=45 uH	C2 L=45 uH	L=45 üH	 L=45 uH	C5 L=45 uH	
	C=225 JJE	T C=225 uF	D C=225 uF	C=225 uF	C=225 uF	
	V=2000	V=2000	V=2000	V=2000	V=2000 · · · · · · ·	5° <mark>1 11</mark>
						COm 2 = 15 µH
1				· · · · · · · · · · · · · · · · · · ·	••••	
÷						<u> </u>
	L=45 UH	L=45 UH	L=45 UH	L=45 UH	L=45 UH	🚖

$$C \equiv \bar{C} = \frac{1}{N} \sum_{n=1}^{N} C_n = 225 \mu F$$
$$L_n = 2nL + L_L \approx 2nL$$
$$\omega_n = \frac{1}{\sqrt{L_n C}} \approx \frac{1}{\sqrt{2nLC}}$$

• For 5 stages:

$$\omega_5 = \frac{2\pi}{T} = \frac{\pi}{\tau} = \frac{\pi}{1\text{ms}}$$
$$L = 45\mu\text{H}$$

The energy coupling efficiency is lower using the simple PFN

• Only 4.4 % of the energy is transferred to magnetic energy.

Time sequence

Instabilities occur in a cylindrical plasma column

В

(b)

Sausage instability:

Safety factor *q*: ullet

Fig. 4.6. Screw pinch geometry.

Kink instability: •

A plasma current of ~ 2 kA is needed

$$q(r) \approx \frac{rB_t}{R_0 B_p} \approx \frac{a B_t}{R_0 B_p}$$
$$B_T = \frac{\mu_0 I_T}{2\pi R_0} \qquad B_P = \frac{\mu_0 I_p}{2\pi a}$$
$$I_p \sim \frac{1}{q} \left(\frac{a}{R_0}\right)^2 I_T = \frac{1}{3} \left(\frac{5}{10}\right)^2 20 \text{kA} \sim 2 \text{kA}$$
$$B_p \sim 40 \text{ G}$$

 $R_0 \sim 10 \text{ cm}$ a ~ 5 cm

Plasma current will be generated by the Grad-B drift and the Curvature drift current

• Grad-B drift

Curvature drift

V

 $V_{
abla B}=\pmrac{1}{2}arphi_{\perp}r_{L}rac{\overrightarrow{B} imes
abla B^{2}}{B^{2}}$

$$V_R = \frac{m v_{||}^2}{q} \frac{\vec{R_c} \times \vec{B}}{R_c^2 B^2}$$

$$R + V_{\nabla B} = \frac{m}{q} \left(v_{||}^2 + \frac{1}{2} v_{\perp}^2 \right) \frac{\vec{R_c} \times \vec{B}}{R_c^2 B^2}$$
$$\approx \frac{1}{q} \left(2T_{||} + T_{\perp} \right) \frac{\vec{R_c} \times \vec{B}}{R_c^2 B^2}$$

https://en.wikipedia.org/wiki/Guiding_center http://silas.psfc.mit.edu/introplasma/chap2.html

A vertical field B_v of 12 G with a curvature of 5 cm is needed to generate the required plasma current

• For P = 10⁻¹ Torr = 13 Pa = 13 N/m²

$$n = \frac{P}{T} = \frac{13}{4.1 \times 10^{-21}} = 3.1 \times 10^{21} m^{-3}$$
Assuming the ionization fraction is 1%:

$$n_e = n_i = 3.1 \times 10^{19} m^{-3}$$

$$j = qn_e v$$

$$I \sim \pi a^2 j = \pi a^2 qn_e v$$

$$v = \frac{I}{\pi a^2 qn_e} = \frac{2 \times 10^3}{\pi 0.05^2 \times 1.6 \times 10^{-19} \times 3.1 \times 10^{19}} \sim 5 \times 10^4 \text{ cm/s}$$

$$v_{\text{drift}} = V_R + V_{\nabla B} \approx \frac{1}{q} (2T_{||} + T_{\perp}) \frac{\vec{R_c} \times \vec{B_V}}{R_c^2 B_V^2} \sim \frac{3T}{q} \frac{1}{R_c B_V}$$

$$B_V \sim \frac{1}{V_{\text{drift}}} \frac{3T}{q} \frac{1}{R_c} \sim \frac{1}{5 \times 10^4} 3 \times 1 \times \frac{1}{0.05} \sim 0.0012 \text{ T} = 12 \text{ G} \quad (B_{\text{earth}} \sim 0.5 \text{ G})$$
• For $T_e = 1 \text{ eV}$, $B_V = 12 \text{ G}$

$$r_{c} = \frac{\sqrt{2mT}}{eB_{V}} = \frac{\sqrt{2 \times 9.11 \times 10^{-31} \times 1.6 \times 10^{-19}}}{1.6 \times 10^{-19} \times 0.0012} = 2.8 \text{ mm}$$

NO/

- (2) Pulse forming network for driving VF coil: ? kA.
- (3) Rogowski coil for measuring plasma current: $I_P = 2 \text{ kA}$.
- (4) Triple probe for measuring Plasma characteristics: Te~1 eV, $n_e \sim 10^{19} \text{ m}^{-3}$.

Diagnostics

Current measurement using Rogowski coil

The flux through the Rogowski coil is a weak function of the position of the current

The Rogowski coil is self-integrated if the self inductance of the Rogowski coil is very large

No integrated is needed!

A big loop along the big radius of the Rogowski coil is needed to cancelled the flux contributed by the current that doesn't pass through the coil

The Rogowski coil we built can measure current to more than 100 kA of current

The Rogowski coil needs to wrap around the plasma

(1) Rogowski coil for measuring plasma current: $I_P = 2 \text{ kA}$.

Class schedule

Week	Progress Description
1	2/25 簡介、分組、課程 執行介紹
2	3/4 慣性控制核融合
3	3/11 磁場控制核融合
4	3/18 真空系統
5	3/25 電漿源
6	4/1 校慶(放假)
7	4/8 電漿加熱技術
8	4/15 脈衝功率系統
9	4/22 電漿量測

Week	Progress Description
10	4/29 小組討論
11	5/6各組口頭報告設計
12	5/13 托克馬克各次系統實作
13	5/20 托克馬克各次系統實作
14	5/27 各組口頭報告進度
15	6/3 托克馬克各次系統實作
16	6/10 托克馬克各次系統實作
17	6/17 托克馬克實作
18	6/24 各組口頭報告實驗成果