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Outlines
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e Switches

— Closing switches: the switching process is associated with voltage
breakdown across an initially insulant element.

— Opening switches: the switching process is associated with a
sudden growth of its impedance.
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Switches
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 High-power switching systems are the connecting elements between the

storage device and the load.

« Characteristics of the generator output pulse that is strongly dependent

on the properties of the switches:

— Rise time.
— Shape.
— Amplitude.
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Closing switches
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 The switching process is associated with voltage breakdown across an
initially insulant element.

— Automatically.

— Externally supplied trigger pulse.



Gas switches (Spark-gap switches)
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 Advantage of a gas switch:
— Commonly applied in high-power pulse generators.
— Easy to use.
— Capable of handling large currents.
— Capable of handling large charges.
— Can be triggered precisely.

 Many applications require a precisely controlled initiation of the voltage
breakdown.

 The trigger method has a big influence on the ignition delay and its
variance (jitter).



Different closing switches operate in different pressure
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84 4 Switches
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All switching systems operates in 4 phases
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Trigger phase: build-up
of a trigger discharge.
Transition/commutation
phase: transition from
high to low switch
impedance.
Stationary/conductivity
phase: constant
conductivity.
Recovery/restoration
phase: restoration of the
previous electric
strength.

Fig. 4.2. Evolution of voltage, current, and power loss in a gas-filled switching

system



Cooling is needed to remove the energy loss for the

breakdown. x
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Fig. 4.2. Evolution of voltage, current, and power loss in a gas-filled switching

system

* Tg: Switching time
T pulserisetime (r,=0.8T1)
« U/l maximum voltage/current

10



Gas-filled spark gaps

e Breakdown due to:

— Breakdown voltage has been exceeded.

— Breakdown strength has been reduced by certain events (UV
radiation, plasma diffusion, etc.)
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Gas-filled spark gaps
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 Important parameters:
— Self-breakdown / hold-off voltage U,.
— Variance of U,: determines the probability of breakdown.
— Operation range: range of voltage
- Held off with sufficiently low pre-breakdown possibility.
- Reliably triggered.
— Jitter.

— Switching time t.: decay of the impedance (resistance and
inductance).

— Pre-breakdown inductance and capacitance.
— Repetition rate capability.
— Lifetime and cost.

« Triggering can be achieved by (1) a High-voltage pulse; (2) a laser pulse.
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Spark-gap switch
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Main-Electrode

RQ
insulatin ———IIS
P, Casing u
C.

as

Trigger
Electrod

—G:* Ugl O é j ) R
1

Ground Electrode
* U, generator voltage.

« U,: triggering voltage.

* Ry generator impedance.

R, :load impedance.

« U,: breakdown voltage.

 U,,/U,,: breakdown voltage of the partial gaps.
« C.: coupling capacitor.
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Spark-gap switch
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« Longitudinal overvoltage triggering — if the voltage amplitude of the
trigger pulse added to the applied operating voltage is sufficient to
breakdown a partial gap.

 Ignition of the 2"d partial gap occurs if its breakdown voltage is less than
the operating voltage.

« Ccis used to decouple the trigger source from the generator.

e« Cc>Chl=> U (t=0)=U Lzo
IC. + Cpq
* Longitudinal overvoltage « Ignition of the 2"d partial
triggering: gap: .
e D ¢ e D%Q
I%l() R, U‘“’l() élu R,
1

||}—
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Spark-gap switch
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(longitudinal overvoltage
triggering)

u,| <u,, (Udoesn'tcause __ ———DYQ
breakdown @ gap?2)

U,
R, 0
UD1 Ub2
C.
Uy > Uy J Ugl C) R,
U,
Ug 2 Uy => Ug,min = Up2 j
1
Up1

|Ut,max| < Upy => |Ut,max| = Up2

A
A

1
— Ug»min + |Ut,max| - 2Ub2 > Ubl => sz = E

 For a symmetric spark gap configuration, the trigger electrode should be
positioned at 2/3 of the gap spacing from the main electrode.

Ug < Ubl = ZUbZ

1 2
Ub2<Ug<Ub2 or §Ub<Ug<§Ub
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Three-electrode trigger set-up
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2 R, L
©  +—I.
§Ug < Upq
2R
u, ;
u,+ U, >U © v = H Trigger
g t b1 [ Transformer
|Ut| < sz F{D Ut J_
Ug = Upy => Ug,min = Uy .

|Ut,max| S Uy => |Ut,max| = Up2 —

1
Ugmin + [Utmax| = 2Ubz > Upy => Uz =5 Ups

2 1
§Ug < Ubl = Zsz => §Ug < sz or Ug < 3Ub2
Upz < Uy <3Up; U = Uy + Upy = 2U, + Uyy = 33Uy,

1
or §Ub<Ug<Ub
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Potential distribution of a spark-gap

Trigger electrode

|

Main 10 Ground
electrode electrode

Z-ais [mm)

Fig. 4.6. Potential distribution in a three-electrode spark gap switch, before igni-
tion (top), after application of a trigger signal (centre), and after breakdown of the
first gap (bottom)
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Longitudinal triggering
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* Longitudinal-overvoltage * Longitudinal-plasma
UT triggering (U, > Uy,) UT triggering (U, < Uy,)
U, - e

t, oot t L t, t
t, . L
NP
080, e t, trigger actuating time.
O - N « t,: switching delay.
élu‘ e t.: commutation time.
| e t.: switching time.
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Longitudinal triggering
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* Longitudinal-overvoltage

UT triggering (Uy > Uy,)
Ug
Ub1
U,
U
! Lt
t, R
U
R, 0
——
U, Y Ups
C,
i'e .
L
1

* Longitudinal-plasma

4 triggering (U, < Uy,)
e
Y : \““u
Um / \
U, '
t t, t
t

2"d gap can fire only if its
breakdown strength is continuous
reduced by UV radiation from the

spark channel plasma of the 15t gap.

=>much larger switch delay time.
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Longitudinal triggering
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* Longitudinal-overvoltage * Longitudinal-plasma
UT triggering (U, > Uy,) UT triggering (U, < Uy,)
U, e
Ug

t Do t t t, t
t ; t

&.

R 0

« Longitudinal trigger can occur only el ol
for opposite polarities of the e c. i
operating and triggering voltages. | él” L

il
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Trigatron spark gap
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Adjacent Electrode Opposite Electrode

MMM NN 9+

Insulator

Load

 Best trigger performance: trigger and operation voltage are opposite, i.e.,

U xUgy, <0
Uy;~(80~99%)U,
* U,~50% U, is possible, but with large delay and jitter.
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Trigatron spark gap — U; x U, <0

« Step 1. Streamers begin to grow. ¢ Step 2: ionization density in the
channel to grow after streamer
touch the electrode

Adjacent Electrode Opposite Electrode Adjacent Electrode Opposite Electrode

« Step 3: conducting channel is « Step 4: two thermalized arcing

formed. connecting two electrode and pin.

Adjacent Electrode Opposite Electrode Adjacent Electrode Opposite Electrode

o iy
& .
:
! &
0 5
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Trigatron spark gap — U; x U, > 0
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o Step 1. breakdown between the
trigger pin and the grounded
electrode.

Adjacent Electrode Opposite Electrode

QA

Suy, Trigger Pin et

Step 2: breakdown between two
main electrodes occurs due to
the UV radiation emitted from the
1st arc.

Adjacent Electrode Opposite Electrode

 Breakdown is possible but with large delay and jitter.
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Spark plug is a Trigatron
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Spark plugs in cars are triggered by the inductive
energy storage
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/Ioad ] Distributor
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Spark Plugs il Wi .
Coil Wire Inductive energy

storage
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Ignition

lgnition Switch G

Opening switch

Ignition Points
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N
Ignition Coil Condenser

Battery

https://images.saymedia-content.com/.image/t_share/MTcOMjk3MzYyODgOMjA4NTA4/diy-
auto-service-ignition-systems-operation-diagnosis-and-repair.png
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The pulsed-power system in Pulsed-Plasma Laboratory

Rail gap
switch

Capacitors

Unit: mm transmission line

Experiments

Parallel plate
transmission line

Coaxial

A 1 kJ pulsed-power system at ISAPS, NCKU started being
operated since September, 20109.

o,
e" °
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<
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Experiments will be taken placed at the center of the

Rail gap switch
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Unit: mm
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Low inductance rail-gap switches are used

Electrode

Connector:

-
=N e

. SR .

l""lll L]

Trigger
Connector

Knife edge trigger electrode

 The switch is pressurized with nitrogen gas (1~3 atm).

e Multi-channel discharges between two rail-like electrodes will be
triggered by a fast trigger pulse generator (rising speed > 5kV/ns).

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)
R.Verma etc., Rev. Sci. Instrum. 85, 095117 (2014)
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A slow trigger pulse generator was built using a ignition
coil for cars

DC-DC Converter
V;, :18-36 V
V. .24V

out*

1kQ

Ignition coil . ;
(Hltachl C6R- 5005 12v) V, .

| signal

Control

IGBT

Driver | . ;
~ IGBT|

ignition coil for car

Fiber coupling

circuit board

IGBT circuit board

24V output power supplies

5V output

power supplies
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P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)
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Many MOSFET connected in series can be used to
provide a fast high-voltage triggering pulse
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A three-stage Marx generator is used to provide a fast
high voltage trigger pulse
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10 MQ 10 MQ 10 MQ
HV Power

w INOA

supply 20 kV
: (To rail-gap switch)
Trigger pulse generator — o

o o T

10 MQ

* In a Marx generator, capacitors are connected in parallel when they

are being charged.
« Capacitors in the Marx generator are connected in series during

discharge.

Vout, ideal = — N X VO = -3 Xx20KkV =-60KkV
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The falling speed of high voltage pulse from the Marx

meets the requirement for triggering rail-gap switches

(b)

High voltage
pulse output

 Trigger
pulse IN

Capacitors
(40 nF each)

To hih voltage
power supply

= S % T
o g o

-
o o

o

Breakdown voltage, V|, (kV)
—k
n

pd (atm-mm)

E @

1 |
N -
o O O

—6.6 + 0.4 kA/ns

Voltage (kV)
-
(;) o

I
&)
o

60 -40 -20 0 20 40
Time (ns)
P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)
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Multistep trigger system is used

Marx Generator

Fiber Transmitter

Optical fiber

U Slow Trigger

l
__O O__

Spark-gap switch

L < -40 kV
dV/dt > 5 kv/ns

-20 kV

trise

=55 us

generator

—

At least 3 channels were generated in each shot.

&
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Multistep trigger system is used

Marx Generator

<-40kv  lrise
l dV/dt > 5 kv/ns

__O O__

Spark-gap switch

e At least 3 channels were

https://goods.ruten.com.tw/item/show?21941221827043
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Multistep trigger system is used

https://goods.ruten.com.tw/item/show?21941221827043
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Magneto-inertial fusion electrical discharge system

6-7 ns pulse

60 mMJ @ 266 nm
300 mJ @ 532 nm
150 mJ @ 1064 nm

w
|

Delay: <1ns
Jitter: <1ns

Return current
Conductor

O. V. Gotchey, etc., Rev. Sci. Instrum. 80, 043504 (2009) 36



Breakdown uncertainty increases with a larger holding

voltage
Trigatron Trigatron | SparkGap SparkGap SparkGap
With Spacer No Spacer|With 2 Spacer With 1 Spacer No Spacer
Gap 6 mm 9 mm 6 mm 9 mm 12 mm
Avg 17.49 24.55 19.21 28.86 35.83
Std 0.60 0.32 0.39 1.50 1.43
Max 18.70 25.10 19.80 32.40 38.60
Min 16.80 23.80 18.40 26.10 33.00
Vbreak (kV)
Vireak (KY)
60; 70F
sof/ V :Zi
L 10F
40f
30t 20l
,\_/\/\/'\/\-/"\/V\/M 10 10 15 20 2.5 3.0 35 o)
10 20 30 40 g oan ok

Sheng-Hua Yan, Master Thesis 2018
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Multistage spark-gap switch with laser triggering
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« Simply scaling a three-electrode spark gap to multimegavolt operating
voltages would lead to large gaps, making the jitter and inductance

unacceptably high.

 Operating voltage of up to
6 MV and a switch current
of 0.5 MA.

It consists of 15 equal
spark gaps and a trigger
section.

« The operating voltage is SP9
around 90% of the self-
breakdown value with a
prefire probability of 0.1 %.

« The gap capacitances are
small, 20 % of the
operating voltage occurs
across the trigger section.

Water

¢ é 5'\1 $
p

Electrodes lastic

/

0..0\.0.0000000\

00000000000000 Hole

Trigger
Section
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Multistage spark-gap switch with laser triggering

« The switchis 68 cm long
and 61 m in diameter.

« Thelstgapis 5.7cm and a
UV laser pulse (KrF) with a
25 mJ pulse energy is
necessary.

« ~1 ns after the laser pulse,
a breakdown occurs in
thetrigger gap and the
voltage increases across
the remaining gaps rapidly.
An ignition wave
propagates to the other
gaps and ignites them

sequentially. Pie. 448, A 4TIV version of s mullipap spalawitds
 Total inductance: 400 nH;

Trigger delay: 20 ns; jitter

<0.4 ns.

&
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Thyratrons

Thyratrons are gas-filled switching
devices with a gas pressure (30-80
Pa/3x104 — 8x104 atm) much lower
than a spark-gap switches.

A triode configuration is used.

The thyratron is characterized by the
presence of a plasma, which allows
the passage of large currents without
significant electrode erosion.

The hold-off voltage is limited by field
emission, > 10° V/cm.

The anode-grid distance is 2-3 mm,
~40 kV hold-off voltage.

Cathode  Heated Oxide
= Cathqde

=T -

+ U [Vol]  aid

" Anode potential
drop

heated

Trigger Pulse U>U_,

01

) Cathode potential

drop
d [cm]

10° 10° 10 [y

s} 10° 1w o0 (v (s
Pressure [Pa)
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Thyratrons

« The cathode-grid distance Cathode - Heated Oxide
corresponds to the Paschen :
minimum U,

« IfU>U,,, aglowdischarge is
initiated between the cathode and g prnet ____...f°°'d
the grid. => electrons from the glow 3 e
discharge plasma can migrate 3 heated
rapidly through the openings in the ~ § Grieoe petsatal
grid to the main discharge region s d fom

between the grid and the anode. => |
thyratron closes. 2

100

Voltage [kV]
54

10° 10° o’ (i s} 10° 1w o (v (s
Pressure [Pa)
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Thyratrons

Operating voltage:  several times Cethode - Heated Oxide
10 kV. After ignition: ~100 V => an :
appreciable power loss occurs and
need to be dealt with by cooling.

J 4+ U [Volt] ._:cofd
Delay: ~200 ns; jitter: ~ns. 3 e

01::,) heated
Operating times: 105 hours; -% gra:)t;odepotential
Repetition rates: few kHz; " d fom|

Anode

Operating power: MW.

To regain the initial hold-off voltage: ey
anode voltage must become slightly
negative for 25-75 us for plasmato
decay.

Voltage [kV]
=)

10° 10° o’ (i s} 10° 1w o0 (v (s
Pressure [Pa)
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Thyratrons
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A thermionic cathode is used in a o
athode -
thyratron. . Lo

Advantage: absence of a marked
cathode potential drop using hot
cathode.

=T -

4 U [Volt] P

- Anode potential

'DE .'._-".' drop
l heated

If cold cathode is used, potential
drop is needed to accelerate the ions
for secondary-electron production =>
lead to erosion of the cathode and
thus the lifetime.

Cathode potential
drop

Trigger Pulse U>U_,

d [cm]

100

A baffle is used as a screening
element to avoide electron directly
reaching the anode and causing the
damage. It is shifted relatively to the
grid to prevent a direct line of sight |
between cathode and anode. A I A

Pressure [Pa)
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The pseudospark switch
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Anode

« The pseudospark switch operates
in a low-pressure regime, where
the mean free path of electrons
and ions become comparable to
the electrode spacing. Most
electrons reach the anode without N
any ionizing collisions in the gas.

=

» Hollow cathode: increases the
possible discharge path lengths. ~_Cathode

1001

« The diameter of the aperture
determines the field penetration

e

E::‘.\'{

I[J-,éi

into the hollow cathode.

01

10° 10° 10 10 10 10 o 10t 10° 0
Pressure [Pa)
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The pseudospark switch
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Anode

A small number of initial electrons,
triggered discharge in the hollow S
cathode can initiate the
pseudospark discharge.

)
L—=)

 The switching mechanism is
based on the build-up of a highly N
ionized plasma.

* plasma build-up occurs first inside ~
the hollow cathode where E/P is . Cathode Plasma formed first.
low.

Voltage [kV]
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The pseudospark switch
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* lons drift back into the hollow
cathode => forming a positive
space charge (virtual anode).

e Static electric field inside the
hollow cathode is distorted.

« Electron production rate > loss
rate in the hollow cathode and
subsequently in the anode-
cathode gap.

o A low-resistivity plasma is
estabilished, and breakdown of the
gap occurs.

o Jitter: 10 ns; Delay: 0.5 us.

 Advantage: high dl/dt, reverse
current, long lifetime, low jitter.

Anode

=
L—=)

N

N .
~ Cathode Virtual anode

100

01

10° 10° 10 10 10 10 o o0 (v 0
Pressure [Pa)
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The pseudospark switch with triggering system
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Trigger : 10-1
Electrods Trigger P‘:Ise - 3 kO : asov
v Transis. O
— . Amplif. g
Preionization 1 MQ
| 1 o -2 kV/100 pA
Auxiliary
Electrodes Blocki v
ocking | + ) 5
2 : Potential _l_/ 100 Q -'S_ET;'_IS o V
’ < 0 - . o~ +50-300V
Cathode y | =
R
U., |‘|—‘| HV
Anode —C Z.
| T % .
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Ilgnitrons

Ignitron is a very high-current, high-
voltage switch with

 aliquid mercury pool cathode

e an ignitor pin dipping into the
liguid-metal reservoir.

Internal mercury pressure: ~5 Pa
Can switch a pulse charge of up to
2000 Colum.

Air/water cooled may be needed.
Internal splash and deionization
baffles may be contained in some
devices.

Anode:

« Anode is massive to prevent an
impulsive temperature rise
during conduction.

« Anode is cooled through
(1) anode stem;

(2) radiation to the cooled walls.

Liquid
Mercury —
Pool

Support

Anode

Baffle

— Ignitor

Cathode
Trig‘ger Pulse

Metal
.~~~ connector

Graphite
shank

Ignitor

Mercury «level
8 mm
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Ilgnitrons

Rise time ~ 300-500 ns.

After current drops below a critical
value => no more additional vapor is
produced => with additional time to
allow recombination and
recondensation of mercury.

The mercury vapor must be forced to
recondense back into the pool.

Repetition rate ~1 Hz

Progressively eliminated due to the
mercury-containing waste.

Liquid
Mercury —
Pool

Support

Anode

Baffle

— Ignitor

¥
Cathode
Trig‘ger Pulse

Metal
.~~~ connector

Graphite
shank

Ignitor

Mercury «level
8 mm
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Krytrons

Low-pressure gas discharge device
with a tetrode configuration, sealed
in a glass tube with a cold cathode.
1.3 kPa (9.75 torr) of helium gas.

Krytron

pack

A special design of the anode-grid + o
area + applied gas pressure Trigger
=> |arge hold-off voltage. input

An already existing plasma is created
by a glow discharge between the
special keep-alive electrode and the
cathode.
=> short trigger delay: ~30 ns.
Rise time: ~1 ns, Vmax: 8kV,

Imax: 3 kKA.
Pulse length~10 us,
repetition rate ~1 kHz
A positive pulse at the control grid
Initiate the switch.

=
é\l \e 5

&
- N

Cathode
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Krytrons
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* A %Ni B-emitter may be enclosed to °
create a weak permanent pre- Anode

lonization. ) R :
. pack :

* Itis widely used in fast trigger + o g
generators and Pockels cell driver Trigger H
o

and also ideal for use in the input
detonating circuitry of bombs.

Cathode




Triggered Vacuum Gap (TVG)

A three-electrode system with
P=0.001 Pa (7.5 x 10° Torr).
Closed by injection of a plasma
cloud.

Hold-off voltage depends on the
properties of the electrode surfaces.
| up to 10 kA, V up to 100 kV.
Repetition rates of several kHz are
possible if cooled.

The gas-plasma mixture is created
with the help of an auxiliary arc,
burning between two electrodes
Inserted into one of the main
electrodes.

Jitter ~ 30 ns; switching time ~100 ns.

Gas-free Electrode Space

Auxiliary

B Metal

Trigger
Lead

[1 Ceramic
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Semiconductor closing switches

« The limiting switching characteristics of semiconductor devices are:
— Relatively low mobility
— Low density of charge carries
— Comparatively low operating temperature

=> Large volume of the conducting region is required to conduct large

currents.

&
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Thyristors

Metal Contact

J, J; Ja
Anode Cathode
p "ol P n
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Fig. 4.22. Structure of thyristor, and two-transistor equivalent circuit
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Thyristors

« Three modes of operation:
 Reverse blocking state
 Forward blocking state
« Conduction or on state
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Thyristors

« Three modes of operation:
 Reverse blocking state
 Forward blocking state
« Conduction or on state
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Thyristors

« Three modes of operation:

 Reverse blocking state
 Forward blocking state
 Conduction or on state
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Thyristors
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« Without any external action, the thyristor cannot come back from the
conducting to the blocking state.

« Two methods are generally applied:
— Commutation of the current by polarity inversion.

— Commutation of the current, supported by gate-assisted turn-off.

A AT
- +
{ P
8] i
J
n 1
J 12
. P 2 = O—O/C'— B
G
G - Jg : s
)\ Reverse
I +—Leakage KJ;
+5 Current =
K

Fig2: Forward Conduction



IGBT
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IGBT
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Advantage:
e Bipolar transistors (BJT) — low C: Collector
resistance in the switched-on 7
state

* Field effect transistors (FET) —
loss-free gate control & Gc%te—@) :>
Switch-on times:
~ several times 10 ns.
It has a limited reverse-blocking E:E?nitlar
capability => an external diode is
sometimes used in parallel.
High-power IGBT: blocking voltages

V~4 kV, on state | ~3kA
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Optically activated semiconductor switches
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Optically activated semiconductor switches
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« The wavelength should be larger than
. 0.9 um. Therefore a Nd:YAG laser,

o1 | wavelength = 1.06 um, is an

0.01 h appropriate light source.
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Fig. 4.32. Optical absorption depth in GaAs as a function of wavelength
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Optically activated semiconductor switches
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 Linear photoconducting regime: the available number of charge
carriers is determined only by the laser intensity.

 Nonlinear regime: the number of charge carriers is increased by
collisional ionization and as in a gas switch increases exponentially.
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Magnetic switches
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Ferromagnetic
Core -B

Relatively small losses and without wear.

While the capacitor is being charged: the coil has a ferromagnetic core
with high inductance at the beginning: V=Ldl/dt => like an open switch.
When saturation of the core is reached by the leakage current flowing
through the coil => L drops abruptly by a factor of y => switch is closed.
M=B/H ->0 when saturated.

The hysteresis loop should approximate a rectangular form, with an abrupt
change of the permeability over several orders of magnitude when the
saturation point is reached.
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Summary

Type Hold-off Peak Cumu- Repetition Lifetime Remarks
poten-  current lative rate (Hz) (number
tial (kA) charge [commuta- of pulses)
(kV) (As) tion  time
(us)]
Spark gap 1-6000 1073~  0.1-50 1-10 10%-10"  Lifetime is
1000 [11000] determined by
electrode erosion
Thyratron 5-50 0.1-10 1073 1000 107-10%  Applied in lasers
[5100] and accelerators
Ignitron > 10 > 100 2000 1 10510  Applied in lasers
[1000] and accelerators
TVG 0.5-50 1-10 40 1 > 10*
[10-100]
Pseudo-  1-50  1-20 1 1-1000 10°-10%  Similar to
spark [> 10] Thyratron
Krytron 8 3 0.01-0.1 < 1000 107 Very short delay
[1-10] and commutation
time
Magnetic 1000 100 10 108 10°  Cannot be
Switch 1000 [5-10000] triggered;
one operating
point only
Thyristor < 5 <5 1072 10 10% Can be stacked;
[> 1000] expensive;
complex
IGBT <4 3 100 108 Can be switched
off
GaAs pho- < 20 1-10 <107% <10 10?2 10*  Needs intense
toactivated [l 10] light source
switch
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