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Requirements of triggering the Marx generator

• Triggering the Marx generator means starting the erosion process by 

external-command control at a preselected instant in time.

– Small jitter.

– Low prefire probability.

– Large operating range.

• First stage – triggable three-electrode spark-gap switch.

• Later stage – self-breaking spark-gap switch.
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Uo Uo→2Uo Uo→3Uo Uo→4Uo

0 0→Uo 0→2Uo 0→3Uo



Stray capacitors needed to be considered

• Assumption: (1) each capacitor is charged to V0; (2) S1 is triggered first.

=> CS @ B try to hold B to ground.

=> C0 >> CS, so CS is charged to V0 rapidly.

=> A → 2V0 => S2 will fire only if it is over voltaged sufficiently long.
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• Charging cycle: • After the first stage has fired:

CS: between the stage capacitors and ground.

Cg: between the switch electrodes.

S1 S2
S2

A

B D

C0 C0 C0
C0 C0

C0



• Assumption:

=> A → 2V0 => S2 will fire only if it is overvoltaged sufficiently long.

=> Cg @ S2 and CS @ D form a capacitive voltage divider.

=> Cg/CS needs to be sufficiently small.

=> placing a ground conducting plate closed to the case of the 

storage capacitor.

Stray capacitors needed to be considered
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• Charging cycle: • After the first stage has fired:

S1 S2
S2

A

B D

C0 C0 C0
C0 C0

C0

𝑽𝑨 = 𝟐𝑽𝟎 𝑽𝑫 = 𝟐𝑽𝟎

𝒄𝒈

𝑪𝑺 + 𝑪𝒈

𝑽𝐒𝟐 = 𝑽𝑨 − 𝑽𝑫 = 𝟐𝑽𝟎

𝑪𝑺

𝑪𝑺 + 𝑪𝒈
=

𝟐𝑽𝟎

𝟏 + Τ𝑪𝒈 𝑪𝑺

𝑪 = 𝝐
𝑨

𝒅



• Assumption:

=>                                                                        , CS @ D is charged by 

VB through RL with a time constant of 

=> overvoltage across switch S2 drops to V0.

=> breakdown at an overvoltage across each switch with a delay  

time less than τ is needed.

Stray capacitors needed to be considered
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• Charging cycle: • After the first stage has fired:

S1 S2
S2

A

B D

C0 C0 C0
C0 C0

C0

𝑽𝑩 =𝑽𝟎 𝑽𝑫 = 𝟐𝑽𝟎

𝒄𝒈

𝑪𝑺 + 𝑪𝒈
≈ 𝟎 → 𝑽𝑫 = 𝑽𝟎

RL RL
RL

RLRLRL

𝝉 =
𝟏

𝟐
𝑹𝑳𝑪𝑺



The delay between breakdown in each spark gap 
becomes shorter and shorter

• ∵ overvoltage becomes increasingly large,

∴ easier and easier to breakdown the other spark gaps.
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Uo Uo→2Uo Uo→3Uo Uo→4Uo

0 0→Uo 0→2Uo 0→3Uo

M.-F. Huang, Master Thesis, ISAPS 2017
Time (μs)

𝜟𝒕𝟏

𝜟𝒕𝟐



Positive vs Negative output and peaking switch
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Peaking switch

• Positive output:

• Negative output:

Vo Vo→2Vo Vo→3Vo

0 0→Vo 0→2Vo

Vo→ 0

0 → -Vo 0 → -2Vo

Vo→ -Vo Vo→ -2Vo

0 → -3Vo



Step output of a Marx generator
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Time (μs)



A grounding resistor is needed if a load is a “gap”
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Step output is removed with using a peaking switch
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Examples of gaps as loads
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-

-HV

GND



Switch can be taken away from the discharge path to 
reduce system inductance using “LC Marx Generator”
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Switch can be taken away from the discharge path to 
reduce system inductance using “LC Marx Generator”

• VL = 0 @ time = 0 .

• When switches are closed, LC oscillations happen.

• @ time=T/2, VL = -nV0 .

    R: sum of resistance from switches, capacitors, and wires.

• Advantage: since switches locate outside the erected Marx circuit, 

inductance of the system is low!

• Disadvantage: all switches must be fired with very low jitter!
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𝑽𝑳

𝑽𝟎−𝑽𝟎 𝑽𝟎−𝑽𝟎

𝑽 𝒕 =
𝟏

𝟐
൧𝐧𝐕𝟎[𝟏 − 𝒆 Τ−𝒕 𝟐𝝉𝐜𝐨𝐬 𝛚𝐭 𝝎 =

𝟏

𝐋𝐂
𝝉 =

𝑳

𝑹



Load effects on the Marx discharge
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• A capacitor• A resistor



Resistive load

• The current and voltage are in phase and proportional, such as for 

relativistic e-beam generator or relativistic magnetron.
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• Relativistic magnetron • Relativistic e-beam

R. Chandra, etc., Proceedings of LINAC2014, Geneva, Switzerland

K. J. Thomas, etc., Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee



Resistive load

• The current and voltage are in phase and proportional, such as for 

relativistic e-beam generator or relativistic magnetron.

• If LM=0:

• In general cases, LM≠0.
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𝑽𝑳 𝒕 = 𝑽𝑴𝒆 Τ−𝒕 𝑹𝑳𝑪𝑴

𝑽𝟏 − 𝑳𝑴

𝐝𝐈

𝐝𝐭
− 𝑹𝑳𝑰 = 𝟎

𝑽𝟏 = 𝑽𝑴 −
𝟏

𝑪𝑴
න𝑰 𝐝𝒕 𝑽𝑴 = 𝐍𝐕𝟎

𝒅𝑽𝟏

𝐝𝐭
=

𝑰

𝑪𝑴

𝑰

𝑪𝑴
− 𝑳𝑴

𝒅𝟐𝑰

𝐝𝐭𝟐 − 𝑹𝑳

𝐝𝐈

𝐝𝐭
= 𝟎

𝒅𝟐𝑰

𝐝𝐭𝟐 +
𝑹𝑳

𝑳𝑴

𝐝𝐈

𝐝𝐭
+

𝟏

𝑳𝑴𝑪𝑴
𝑰 = 𝟎

𝑫𝟐 +
𝑹𝑳

𝑳𝑴
𝑫 +

𝟏

𝑳𝑴𝑪𝑴
= 𝟎 𝑫 = −

𝑹𝑳

𝟐𝑳𝑴
±

𝑹𝑳

𝟐𝑳𝑴

𝟐

−
𝟏

𝑳𝑴𝑪𝑴

𝑽𝟏



Resistive load
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𝑽𝟏

𝐅𝐨𝐫
𝟏

𝑳𝑴𝑪𝑴
>

𝑹𝑳

𝟐𝑳𝑴

𝟐

, 𝝎 ≡
𝟏

𝑳𝑴𝑪𝑴
−

𝑹𝑳

𝟐𝑳𝑴

𝟐

𝑰 𝒕 = 𝒆
−

𝑹𝑳
𝟐𝑳𝑴

𝒕
𝜶𝐬𝐢𝐧 𝛚𝐭 + 𝜷𝐜𝐨𝐬 𝛚𝐭

𝑰 𝟎 = 𝟎 => 𝑰 𝟎 = 𝜷 = 𝟎

𝑰 𝒕 = 𝛂𝐞
−

𝑹𝑳
𝟐𝑳𝑴

𝒕
𝐬𝐢𝐧 𝛚𝐭

𝒅𝑰

𝐝𝐭
= 𝜶 −

𝑹𝑳

𝟐𝑳𝑴
𝛂𝐞

−
𝑹𝑳

𝟐𝑳𝑴
𝒕
𝐬𝐢𝐧 𝛚𝐭 + 𝛚𝐞

−
𝑹𝑳

𝟐𝑳𝑴
𝒕
𝐜𝐨𝐬 𝛚𝐭

ቤ𝑳𝑴

𝒅𝑰

𝒅𝒕
𝒕=𝟎

= 𝑽𝑴 𝑳𝑴𝛂𝛚 = 𝑽𝑴, 𝜶 =
𝑽𝑴

𝑳𝑴𝝎

𝑰 =
𝑽𝑴

𝑳𝑴𝝎
𝒆

−
𝑹𝑳

𝟐𝑳𝑴
𝒕
𝐬𝐢𝐧 𝛚𝐭



𝒅𝑰

𝐝𝐭
= 𝜶 𝜸 −

𝑹𝑳

𝟐𝑳𝑴
𝒆

𝜸−
𝑹𝑳

𝟐𝑳𝑴
𝒕

+ 𝜸 +
𝑹𝑳

𝟐𝑳𝑴
𝒆

− 𝜸+
𝑹𝑳

𝟐𝑳𝑴
𝒕

𝐅𝐨𝐫
𝟏

𝑳𝑴𝑪𝑴
<

𝑹𝑳

𝟐𝑳𝑴

𝟐

, 𝜸 ≡
𝑹𝑳

𝟐𝑳𝑴

𝟐

−
𝟏

𝑳𝑴𝑪𝑴

Resistive load
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𝑽𝟏

𝑰 𝒕 = 𝒆
−

𝑹𝑳
𝟐𝑳𝑴

𝒕
𝜶𝒆𝛄𝐭 + 𝛃𝐞−𝛄𝐭

𝑰 𝟎 = 𝟎 => 𝜶 + 𝜷 = 𝟎 => 𝜷 = −𝜶

𝑰 𝒕 = 𝛂𝐞
−

𝑹𝑳
𝟐𝑳𝑴

𝒕
𝒆𝛄𝐭 − 𝒆−𝛄𝐭 = 𝛂𝐞

𝜸−
𝑹𝑳

𝟐𝑳𝑴
𝒕

− 𝛂𝐞
− 𝜸+

𝑹𝑳
𝟐𝑳𝑴

𝒕

ቤ𝑳𝑴

𝒅𝑰

𝒅𝒕
𝒕=𝟎

= 𝑳𝑴𝜶 𝜸 −
𝑹𝑳

𝟐𝑳𝑴
+ 𝜸 +

𝑹𝑳

𝟐𝑳𝑴
= 𝑽𝑴 𝟐𝑳𝑴𝛂𝛄 = 𝑽𝑴, 𝜶 =

𝑽𝑴

𝟐𝑳𝑴𝜸

𝑰 =
𝑽𝑴

𝟐𝑳𝑴𝜸
𝒆

−
𝑹𝑳

𝟐𝑳𝑴
𝒕

𝒆𝛄𝐭 − 𝒆−𝛄𝐭 ≈
𝑽𝑴

𝟐𝑳𝑴𝜸
𝒆

−
𝑹𝑳

𝟐𝑳𝑴
𝒕
𝒆𝛄𝐭



Resistive load
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𝑽𝟏

𝑰 =
𝑽𝑴

𝟐𝑳𝑴𝜸
𝒆

−
𝑹𝑳

𝟐𝑳𝑴
𝒕

𝒆𝛄𝐭 − 𝒆−𝛄𝐭 ≈
𝑽𝑴

𝟐𝑳𝑴𝜸
𝒆

−
𝑹𝑳

𝟐𝑳𝑴
𝒕
𝒆𝛄𝐭

𝒅𝑰

𝐝𝐭
= 𝜶 𝜸 −

𝑹𝑳

𝟐𝑳𝑴
𝒆

𝜸−
𝑹𝑳

𝟐𝑳𝑴
𝒕

+ 𝜸 +
𝑹𝑳

𝟐𝑳𝑴
𝒆

− 𝜸+
𝑹𝑳

𝟐𝑳𝑴
𝒕

≡ 𝟎

𝜸 −
𝑹𝑳

𝟐𝑳𝑴
𝒆𝛄𝐭 + 𝜸 +

𝑹𝑳

𝟐𝑳𝑴
𝒆−𝛄𝐭 = 𝟎

𝜸 −
𝑹𝑳

𝟐𝑳𝑴
𝒆𝟐𝛄𝐭 + 𝜸 +

𝑹𝑳

𝟐𝑳𝑴
= 𝟎

𝒆𝟐𝛄𝐭 =

𝑹𝑳
𝟐𝑳𝑴

+ 𝜸

𝑹𝑳
𝟐𝑳𝑴

− 𝜸
𝒕𝐈𝐦𝐚𝐱 =

𝟏

𝟐𝜸
𝐥𝐧

𝑹𝑳
𝟐𝑳𝑴

+ 𝜸

𝑹𝑳
𝟐𝑳𝑴

− 𝜸

𝜸 ≡
𝑹𝑳

𝟐𝑳𝑴

𝟐

−
𝟏

𝑳𝑴𝑪𝑴

𝒕𝐈𝐦𝐚𝐱

𝒆𝛄𝐭

𝒆
−

𝑹𝑳
𝟐𝑳𝑴

𝒕

𝑳𝑴↑ 𝜸↓ 𝒆𝛄𝐭↓ 𝒆
−

𝑹𝑳
𝟐𝑳𝑴

𝒕
↑−

𝑹𝑳

𝟐𝑳𝑴
↑

𝑳𝐌,𝐑𝐞𝐝 > 𝑳𝐌,𝐁𝐥𝐮𝐞



Capacitor load

• Pulse compression scheme: a charged capacitor can transfer almost all 

of its energy to an uncharged capacitor if connected through an inductor.

• Output voltage can be doubled in a peaking circuit.
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CM

LM

C2

L2

L
o

a
d

CM

LM

L
o

a
d

𝑰𝟎 =
𝑽𝟎

Τ𝑳𝑴 𝑪𝑴

𝑰𝟐 =
𝑽𝟎

Τ𝑳𝟐 𝑪𝟐

𝝎𝟎 =
𝟏

𝑳𝑴𝑪𝑴
𝝎𝟐 =

𝟏

𝑳𝟐𝑪𝟐

𝑰𝑴 < 𝑰𝟐
𝑳𝑴 > 𝑳𝟐 𝝎𝑴 < 𝝎𝟐 𝑻𝑴 > 𝑻𝟐

=>



Intermediate storage capacitors can be used to 
compress the pulse

21



Capacitor load
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𝑽𝟏 − 𝑳𝑴

𝐝𝐈

𝐝𝐭
= 𝑽𝟐

𝑽𝑴 = 𝐍𝐕𝟎𝑽𝟏 = 𝑽𝑴 −
𝟏

𝑪𝑴
න𝑰 𝐝𝒕

𝑽𝟐 =
𝟏

𝑪𝟐
න𝑰 𝐝𝒕

𝑽𝑴 −
𝟏

𝑪𝑴
න𝑰 𝐝𝒕 − 𝑳𝑴

𝐝𝐈

𝐝𝐭
=

𝟏

𝑪𝟐
න𝑰 𝐝𝒕

−
𝟏

𝑪𝑴
𝑰 − 𝑳𝑴

𝒅𝟐𝑰

𝐝𝐭𝟐 =
𝟏

𝑪𝟐
𝑰 𝑳𝑴

𝒅𝟐𝑰

𝐝𝐭𝟐 +
𝟏

𝑪𝑴
+

𝟏

𝑪𝟐
𝑰 = 𝟎

𝒅𝟐𝑰

𝐝𝐭𝟐 +
𝟏

𝑳𝑴𝑪𝐞𝐟𝐟
𝑰 = 𝟎

𝟏

𝑪𝐞𝐟𝐟
=

𝟏

𝑪𝑴
+

𝟏

𝑪𝟐
𝝎 =

𝟏

𝑳𝑴𝑪𝐞𝐟𝐟

𝑰 = 𝛂𝐬𝐢𝐧 𝛚𝐭 + 𝛃𝐜𝐨𝐬 𝛚𝐭

I



Capacitor load
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𝑰 = 𝛂𝐬𝐢𝐧 𝛚𝐭 + 𝛃𝐜𝐨𝐬 𝛚𝐭

𝑰 𝒕 = 𝟎 = 𝟎 => 𝜷 = 𝟎

𝑰 = 𝛂𝐬𝐢𝐧 𝛚𝐭

I

𝒅𝑰

𝐝𝐭
= 𝛂𝛚𝐜𝐨𝐬 𝛚𝐭

ቤ𝑳𝑴

𝒅𝑰

𝒅𝒕
𝒕=𝟎

= 𝑳𝑴𝛂𝛚 = 𝑽𝑴
𝜶 =

𝑽𝑴

𝑳𝑴𝝎

𝑰 𝒕 =
𝑽𝑴

𝐋𝛚
𝐬𝐢𝐧 𝛚𝐭

𝑽𝟏 = 𝑽𝑴 −
𝟏

𝑪𝑴
න

𝟎

𝒕 𝑽𝑴

𝐋𝛚
𝐬𝐢𝐧 𝛚𝐭 𝐝𝒕 = 𝑽𝑴 −

𝑽𝑴𝑪𝟐

𝑪𝑴 + 𝑪𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭

𝑽𝟐 =
𝟏

𝑪𝟐
න

𝟎

𝒕 𝑽𝑴

𝐋𝛚
𝐬𝐢𝐧 𝛚𝐭 𝐝𝒕 =

𝑽𝑴𝑪𝑴

𝑪𝑴 + 𝑪𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭 ቤ

𝑽𝟐

𝑽𝑴 𝐦𝐚𝐱

=
𝟐𝑪𝑴

𝑪𝑴 + 𝑪𝟐

𝐟𝐨𝐫 𝑪𝟐~𝑪𝑴,
𝑽𝟐

𝑽𝑴
~𝟏 𝐟𝐨𝐫 𝑪𝟐 << 𝑪𝑴,

𝑽𝟐

𝑽𝑴
~𝟐



Peaking circuit, C2<<CM
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𝐅𝐨𝐫 𝒕 =
𝝅

𝝎
, 𝐜𝐨𝐬 𝛚𝐭 = 𝐜𝐨𝐬 𝝅 = −𝟏

𝑽𝟏 ≈ 𝑽𝑴 𝑽𝟐 ≈ 𝟐𝑽𝑴

𝑽𝟏 = 𝑽𝑴 −
𝑽𝑴𝑪𝟐

𝑪𝑴 + 𝑪𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭 ≈ 𝑽𝑴 −

𝑽𝑴𝑪𝟐

𝑪𝑴
𝟏 − 𝐜𝐨𝐬 𝛚𝐭

𝑽𝟐 =
𝑽𝑴𝑪𝑴

𝑪𝑴 + 𝑪𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭 ≈ ሿ𝑽𝑴[𝟏 − 𝐜𝐨𝐬 𝛚𝐭

I

• The energy transfer is inefficient. 

• CM/C2~10 is normally used.



Pulse compression scheme: C2~CM
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𝑽𝟏 = 𝑽𝑴 −
𝑽𝑴𝑪𝟐

𝑪𝑴 + 𝑪𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭 ≈ 𝑽𝑴 −

𝑽𝑴

𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭

𝑽𝟐 =
𝑽𝑴𝑪𝑴

𝑪𝑴 + 𝑪𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭 ≈

𝑽𝑴

𝟐
𝟏 − 𝐜𝐨𝐬 𝛚𝐭

𝐅𝐨𝐫 𝒕 =
𝝅

𝝎
, 𝑽𝟏 ≈ 𝟎,  𝑽𝟐 ≈ 𝑽𝑴

Energy is fully transferred to the 2nd

cap, i.e., intermediate storage capacitor.

CM

LM

C2

L2

L
o

a
d𝑽𝟏 𝑽𝟐



Water is commonly used as the dielectric material for 
the intermediate capacitor

26

a

b

l

𝑪 =
𝟐𝛑𝛜𝒓𝝐𝟎

𝐥𝐧 Τ𝒃 𝒂
𝒍 𝐅𝐨𝐫

𝒃

𝒂
=

𝟏

𝟎. 𝟗
≈ 𝟏. 𝟏

𝐀𝐢𝐫: 𝝐𝒓 = 𝟏 =>
𝑪

𝒍
= 𝟎. 𝟓 × 𝟏𝟎−𝟗 Τ𝑭 𝒎

𝐖𝐚𝐭𝐞𝐫: 𝝐𝒓 = 𝟖𝟎 =>
𝑪

𝒍
= 𝟒 × 𝟏𝟎−𝟖 Τ𝑭 𝒎

𝑪𝑴 =
𝟎. 𝟓𝛍𝐅

𝟐𝟓
= 𝟐𝟓𝐧𝐅

𝐔𝐬𝐢𝐧𝐠 𝐰𝐚𝐭𝐞𝐫: 𝐥 =
𝟐𝟓 × 𝟏𝟎−𝟗

𝟒 × 𝟏𝟎−𝟖
= 𝟎. 𝟔𝟐𝟓 𝐦

Ex: KALIF, bipolar Marx generator, charged up to ±100 kV. VM,out=5 MV.

𝐔𝐬𝐢𝐧𝐠 𝐚𝐢𝐫: 𝐥 =
𝟐𝟓 × 𝟏𝟎−𝟗

𝟎. 𝟓 × 𝟏𝟎−𝟗 = 𝟓𝟎 𝐦

• The gap between two cylinders need 

to be able to handle the high voltage.



Intermediate storage capacitors can be used to 
compress the pulse

27



Outlines

• Introduction to pulsed-power system

• Review of circuit analysis

• Static and dynamic breakdown strength of dielectric materials

– Gas – Townsend discharge (avalanche breakdown), Paschen’s curve

– Liquid

– Solid

• Energy storage

– Pulse discharge capacitors

– Marx generators

– Inductive energy storage
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Inductive energy storage

• Capacitive energy storage – current amplifier.

• Inductive energy storage – voltage amplifier.

• Notice that energy density of the inductive energy storage is 2 order 

higher than that of the capacitive energy storage.

• If Io is large, charging of the inductor must be fast. It is because the 

energy loss in the resistance of the inductor windy and the opening 

switch.

• Current source has high internal impedance (Rg >> R) and a large power 

(tcharge ↓).

29

𝑰𝐦𝐚𝐱 = 𝑰𝒐

𝑹𝒈

𝑹𝒈 + 𝑹

𝑰 𝒕 = 𝑰𝒐

𝑹𝒈

𝑹𝒈 + 𝑹
𝟏 − 𝒆−

𝑹+𝑹𝒈

𝑳 𝒕



Output of the inductive storage

• Assumption: at t=0, inductance is fully charged. Resistance of the 

inductive storage is neglected.

30

I1 I2

IS

Closing switch

Opening switch

𝑹𝒈𝑰𝟏 + 𝑳𝟏

𝐝𝐈𝟏

𝐝𝐭
+ 𝑹𝑺 𝑰𝟏 − 𝑰𝟐 = 𝟎

𝑹𝒍𝑰𝟐 + 𝑳𝟐

𝐝𝐈𝟐

𝐝𝐭
+ 𝑹𝑺 𝑰𝟐 − 𝑰𝟏 = 𝟎

𝝉± =
𝑹𝒍 + 𝑹𝑺

𝟐𝑳𝑺
+

𝑹𝒈 + 𝑹𝑺

𝟐𝑳𝟏

× 𝟏 ± 𝟏 −
𝟒𝑳𝟏𝑳𝟐 𝑹𝒍 + 𝑹𝑺 𝑹𝒈 + 𝑹𝑺 − 𝑹𝑺

𝟐

𝑳𝟏 𝑹𝒍 + 𝑹𝑺 + 𝑳𝟐 𝑹𝒈 + 𝑹𝑺
𝟐



Output of the inductive storage
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𝝉+ =
𝑳𝟐

𝑹𝑺

𝝉− =
𝑳𝟏

𝑹𝒈 + 𝑹𝒍
𝝉+<< 𝝉−

𝑰𝟏 𝒕 ≈
𝑳𝟏𝑰𝒐

𝑳𝟏 + 𝑳𝟐
𝒆 Τ−𝒕 𝝉− +

𝑳𝟐

𝑳𝟏
𝒆 Τ−𝒕 𝝉+

𝑰𝟐 𝒕 ≈
𝑳𝟏𝑰𝒐

𝑳𝟏 + 𝑳𝟐
𝒆 Τ−𝒕 𝝉− − 𝒆 Τ−𝒕 𝝉+

𝑰𝑺 𝒕 = 𝑰𝟏 − 𝑰𝟐 ≈ 𝑰𝒐𝒆 Τ−𝒕 𝝉+

I1 I2

IS

Closing 

switch

Opening 

switch



Spark plugs in cars are triggered by the inductive 
energy storage

32

https://images.saymedia-content.com/.image/t_share/MTc0Mjk3MzYyODg0MjA4NTA4/diy-

auto-service-ignition-systems-operation-diagnosis-and-repair.png

Inductive energy 

storage

Opening switch

Closing switch

/load



Triggering pulse for PGS machine
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Pulsed-plasma thruster

34
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Outlines

• Introduction to pulsed-power system

• Review of circuit analysis

• Static and dynamic breakdown strength of dielectric materials

– Gas – Townsend discharge (avalanche breakdown), Paschen’s curve

– Liquid

– Solid

• Energy storage

– Pulse discharge capacitors

– Marx generators

– Inductive energy storage

– Rotors and Homopolar generators
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Rotors and Homopolar generators

• Pulsed current source is needed such that charge time << L/R 

=> using flywheel. 

• Energy density ~ 300 MJ/m3, total energy > 100 MJ.

• Can transfer its energy only in a time > 10 ms in most cases. 

• Homopolar generator:

36

(flywheel)

𝑾𝐤𝐢𝐧 =
𝟏

𝟐
𝛉𝛚𝟐

𝑽 = 𝛂𝐈𝛚

𝑳
𝐝𝐈

𝐝𝐭
+ 𝐈𝐑 = 𝛂𝐈𝛚

𝟏

𝟐
𝛉𝛚𝟐 +

𝟏

𝟐
𝐋𝐈𝟐 + න

𝟎

𝒕

𝑰𝟐𝑹 𝐝𝒕 =
𝟏

𝟐
𝛉𝛚𝒐

𝟐

• In a self-exciting generator, B is 

created by the output current of 

the rotor.



Homopolar generators
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Outlines

• Switches

– Closing switches: the switching process is associated with voltage 

breakdown across an initially insulant element.

– Opening switches: the switching process is associated with a 

sudden growth of its impedance.

• Pulse-forming lines

– Blumlein line

– Pulse-forming network

– Pulse compressor 

• Pulse transmission and transformation
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Outlines

• Switches

– Closing switches

– Opening switches

• Pulse-forming lines

– Blumlein line

– Pulse-forming network

– Pulse compressor 

• Pulse transmission and transformation

– Self-magnetic insulation

– Pulse transformer

– Voltage multiplier

– H-bridge pulse generator

– Fast high-voltage pulse generator
39



Switches

• High-power switching systems are the connecting elements between the 

storage device and the load.

• Characteristics of the generator output pulse that is strongly dependent 

on the properties of the switches:

– Rise time.

– Shape.

– Amplitude.

40



Closing switches

• The switching process is associated with voltage breakdown across an 

initially insulant element.

– Automatically.

– Externally supplied trigger pulse.

41



Gas switches (Spark-gap switches)

• Advantage of a gas switch:

– Commonly applied in high-power pulse generators.

– Easy to use.

– Capable of handling large currents.

– Capable of handling large charges.

– Can be triggered precisely.

• Many applications require a precisely controlled initiation of the voltage 

breakdown.

• The trigger method has a big influence on the ignition delay and its 

variance (jitter).

42



Different closing switches operate in different pressure

43



All switching systems operates in 4 phases

1. Trigger phase: build-up 

of a trigger discharge. 

2. Transition/commutation 

phase: transition from 

high to low switch 

impedance.

3. Stationary/conductivity 

phase: constant 

conductivity.

4. Recovery/restoration 

phase: restoration of the 

previous electric 

strength.

44



Cooling is needed to remove the energy loss for the 
breakdown.

𝐄𝐧𝐠 = න
𝟎

𝝉𝑺

𝑼 𝒕 𝑰 𝒕 𝐝𝒕

≈ ඲

𝟎

𝝉𝑺

𝑼𝑴 𝟏 −
𝒕

𝝉𝑺
𝑰𝑴

𝒕

𝝉𝑺
𝐝𝒕

=
𝑼𝑴𝑰𝑴𝝉𝑺

𝟔
≈ 𝟎. 𝟐𝑼𝑴𝑰𝑴𝝉𝒓

= 𝑼𝑴𝑰𝑴 ඲

𝟎

𝝉𝑺

𝟏 −
𝒕

𝝉𝑺

𝒕

𝝉𝑺
𝐝𝒕

• τS: switching time 

• τr: pulse rise time (τr ≈ 0.8 τr)

• UM/IM: maximum voltage/current
45



Gas-filled spark gaps

• Breakdown due to:

– Breakdown voltage has been exceeded.

– Breakdown strength has been reduced by certain events (UV 

radiation, plasma diffusion, etc.)

46

Off

On

On



Gas-filled spark gaps

• Important parameters:

– Self-breakdown / hold-off voltage Ub.

– Variance of Ub: determines the probability of breakdown.

– Operation range: range of voltage

- Held off with sufficiently low pre-breakdown possibility.

- Reliably triggered.

– Jitter.

– Switching time ts: decay of the impedance (resistance and 

inductance).

– Pre-breakdown inductance and capacitance.

– Repetition rate capability.

– Lifetime and cost.

• Triggering can be achieved by (1) a High-voltage pulse; (2) a laser pulse.
47



Spark-gap switch

48

• Ug: generator voltage.

• Ut: triggering voltage.

• Rg: generator impedance.

• RL: load impedance.

• Ub: breakdown voltage.

• Ub1/Ub1 : breakdown voltage of the partial gaps.

• Cc: coupling capacitor.



Spark-gap switch

• Longitudinal overvoltage triggering – if the voltage amplitude of the 

trigger pulse added to the applied operating voltage is sufficient to 

breakdown a partial gap.

• Ignition of the 2nd partial gap occurs if its breakdown voltage is less than 

the operating voltage.

• Cc is used to decouple the trigger source from the generator.

• Cc >> Cb1 => 

49

𝑼𝒕 𝒕 = 𝟎 = 𝑼𝒈

𝑪𝐛𝟏

𝑪𝒄 + 𝑪𝐛𝟏
≈ 𝟎

• Longitudinal overvoltage 

triggering:

• Ignition of the 2nd partial 

gap:



Spark-gap switch

• For a symmetric spark gap configuration, the trigger electrode should be 

positioned at 2/3 of the gap spacing from the main electrode.

50

𝑼𝒈 + 𝑼𝒕 > 𝑼𝐛𝟏

𝑼𝒕 < 𝑼𝐛𝟐

𝑼𝒈 > 𝑼𝐛𝟐

𝑼𝒈 ≥ 𝑼𝐛𝟐 => 𝑼𝒈,𝐦𝐢𝐧 = 𝑼𝐛𝟐

𝑼𝒕,𝒎𝒂𝒙 ≤ 𝑼𝐛𝟐 => 𝑼𝒕,𝒎𝒂𝒙 = 𝒖𝐛𝟐

𝑼𝒈,𝐦𝐢𝐧 + 𝑼𝒕,𝒎𝒂𝒙 = 𝟐𝑼𝐛𝟐 > 𝑼𝐛𝟏 => 𝑼𝐛𝟐 =
𝟏

𝟐
𝑼𝐛𝟏

𝑼𝒈 < 𝑼𝐛𝟏 = 𝟐𝑼𝐛𝟐

𝑼𝐛𝟐 < 𝑼𝒈 < 𝑼𝐛𝟐 𝐨𝐫
𝟏

𝟑
𝑼𝒃 < 𝑼𝒈 <

𝟐

𝟑
𝑼𝒃

(longitudinal overvoltage 

triggering)
(Ut doesn’t cause 

breakdown @ gap2)



Three-electrode trigger set-up

51

𝟐

𝟑
𝑼𝒈 < 𝑼𝐛𝟏

𝑼𝒈 > 𝑼𝐛𝟐

𝑼𝒈 + 𝑼𝒕 > 𝑼𝐛𝟏

𝑼𝒕 < 𝑼𝐛𝟐

𝑼𝒈 ≥ 𝑼𝐛𝟐 => 𝑼𝒈,𝐦𝐢𝐧 = 𝑼𝐛𝟐

𝑼𝒕,𝒎𝒂𝒙 ≤ 𝑼𝐛𝟐 => 𝑼𝒕,𝒎𝒂𝒙 = 𝒖𝐛𝟐

𝑼𝒈,𝐦𝐢𝐧 + 𝑼𝒕,𝒎𝒂𝒙 = 𝟐𝑼𝐛𝟐 > 𝑼𝐛𝟏 => 𝑼𝐛𝟐 =
𝟏

𝟐
𝑼𝐛𝟏

𝟐

𝟑
𝑼𝒈 < 𝑼𝐛𝟏 = 𝟐𝑼𝐛𝟐 =>

𝟏

𝟑
𝑼𝒈 < 𝑼𝐛𝟐 𝐨𝐫 𝑼𝒈 < 𝟑𝑼𝐛𝟐

𝑼𝐛𝟐 < 𝑼𝒈 < 𝟑𝑼𝐛𝟐 𝑼𝒃 = 𝑼𝐛𝟏 + 𝑼𝐛𝟐 = 𝟐𝑼𝐛𝟐 + 𝑼𝐛𝟐 = 𝟑𝑼𝐛𝟐

𝐨𝐫
𝟏

𝟑
𝑼𝒃 < 𝑼𝒈 < 𝑼𝒃



Potential distribution of a spark-gap
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Longitudinal triggering

• Longitudinal-overvoltage 

triggering (Ug > Ub2)

• Longitudinal-plasma 

triggering (Ug < Ub2)

53

• ta: trigger actuating time.

• td: switching delay.

• tc: commutation time.

• ts: switching time.



Longitudinal triggering

• Longitudinal-overvoltage 

triggering (Ug > Ub2)

• Longitudinal-plasma 

triggering (Ug < Ub2)

54

• 2nd gap can fire only if its 

breakdown strength is continuous 

reduced by UV radiation from the 

spark channel plasma of the 1st gap. 

=> much larger switch delay time.



Longitudinal triggering

• Longitudinal-overvoltage 

triggering (Ug > Ub2)

• Longitudinal-plasma 

triggering (Ug < Ub2)

55

• Longitudinal trigger can occur only 

for opposite polarities of the 

operating and triggering voltages.



Trigatron spark gap

56

• Best trigger performance: trigger and operation voltage are opposite, i.e., 

• Ug~50% Ub is possible, but with large delay and jitter.

𝑼𝒕 × 𝑼𝒈 < 𝟎

𝑼𝒈~ 𝟖𝟎~𝟗𝟗% 𝑼𝒃



Trigatron spark gap –

57

𝑼𝒕 × 𝑼𝒈 < 𝟎

• Step 1: Streamers begin to grow. • Step 2: ionization density in the 

channel to grow after streamer 

touch the electrode

• Step 3: conducting channel is 

formed.

• Step 4: two thermalized arcing 

connecting two electrode and pin.



Trigatron spark gap –

58

𝑼𝒕 × 𝑼𝒈 > 𝟎

• Step 1: breakdown between the 

trigger pin and the grounded 

electrode.

• Step 2: breakdown between two 

main electrodes occurs due to 

the UV radiation emitted from the 

1st arc.

• Breakdown is possible but with large delay and jitter.



Spark plug is a Trigatron
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Spark plugs in cars are triggered by the inductive 
energy storage

60
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The pulsed-power system in Pulsed-Plasma Laboratory
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4300

1745

830
2200

Unit: mm

Experiments

Parallel plate 

transmission line

Coaxial 

transmission line

Rail gap 

switch

Capacitors

500

300

• A 1 kJ pulsed-power system at ISAPS, NCKU started being 

operated since September, 2019.



Experiments will be taken placed at the center of the 
vacuum chamber

Unit: mm

I

500

Experiments

320 100
300

Parallel plate 

transmission line

Coaxial 

transmission line

Rail gap switch

Capacitors
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• The switch is pressurized with nitrogen gas (1~3 atm).

• Multi-channel discharges between two rail-like electrodes will be 

triggered by a fast trigger pulse generator (rising speed > 5kV/ns).

Low inductance rail-gap switches are used

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)

R.Verma etc., Rev. Sci. Instrum. 85, 095117 (2014)

Trigger 

Connector

Knife edge trigger electrode

Gas Out

Connector

Electrode

Bridge
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350 mm

9 mm

Φ50 mm



A slow trigger pulse generator was built using a ignition 

coil for cars 

Trise = 55.5 us

Jitter: ±𝟎. 𝟒𝛍𝐬

1.25 ms

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020)



Many MOSFET connected in series can be used to 
provide a fast high-voltage triggering pulse

Trise=140 ± 1 ns



HV Power 

supply 20 kV

Trigger pulse generator
(To rail-gap switch)

A three-stage Marx generator is used to provide a fast 
high voltage trigger pulse

• In a Marx generator, capacitors are connected in parallel when they 

are being charged.

• Capacitors in the Marx generator are connected in series during 

discharge. 

𝑽𝐨𝐮𝐭, 𝐢𝐝𝐞𝐚𝐥 = − 𝑵 × 𝑽𝟎 = −𝟑 × 𝟐𝟎 𝐤𝐕 = −𝟔𝟎 𝐤𝐕

66



30 mm

The falling speed of high voltage pulse from the Marx 
meets the requirement for triggering rail-gap switches

P.-Y. Chang etc. Rev. Sci. Instrum. 91, 114703 (2020) 67



Multistep trigger system is used

Slow Trigger 

generator

Function 

Generator

TTL Optical fiber

-20 kV

trise=55 us

Fiber Transmitter

Marx Generator

< -40 kV

dV/dt > 5 kv/ns

Spark-gap switch

• At least 3 channels were generated in each shot.
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Multistep trigger system is used

Slow Trigger 

generator

Function 

Generator

TTL Optical fiber

-20 kV

trise=55 us

Fiber Transmitter

Marx Generator

< -40 kV

dV/dt > 5 kv/ns

Spark-gap switch

• At least 3 channels were generated in each shot.

https://goods.ruten.com.tw/item/show?21941221827043
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Multistep trigger system is used

Slow Trigger 

generator

Function 

Generator

TTL Optical fiber

-20 kV

trise=55 us

Fiber Transmitter

Marx Generator

< -40 kV

dV/dt > 5 kv/ns

Spark-gap switch

• At least 3 channels were generated in each shot.

https://goods.ruten.com.tw/item/show?21941221827043
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Magneto-inertial fusion electrical discharge system

71O. V. Gotchev, etc., Rev. Sci. Instrum. 80, 043504 (2009)

6-7 ns pulse

60 mJ @ 266 nm

300 mJ @ 532 nm

150 mJ @ 1064 nm

Delay: < 1 ns

Jitter: < 1 ns



Breakdown uncertainty increases with a larger holding 
voltage

72

Trigatron

With Spacer

Trigatron

No Spacer

SparkGap

With 2 Spacer

SparkGap

With 1 Spacer

SparkGap

No Spacer

Gap 6 mm 9 mm 6 mm 9 mm 12 mm

Avg 17.49 24.55 19.21 28.86 35.83

Std 0.60 0.32 0.39 1.50 1.43

Max 18.70 25.10 19.80 32.40 38.60

Min 16.80 23.80 18.40 26.10 33.00

Sheng-Hua Yan, Master Thesis 2018



Multistage spark-gap switch with laser triggering

73

• Simply scaling a three-electrode spark gap to multimegavolt operating 

voltages would lead to large gaps, making the jitter and inductance 

unacceptably high.

• Operating voltage of up to 

6 MV and a switch current 

of 0.5 MA.

• It consists of 15 equal 

spark gaps and a trigger 

section.

• The operating voltage is 

around 90% of the self-

breakdown value with a 

prefire probability of 0.1 %.

• The gap capacitances are 

small, 20 % of the 

operating voltage occurs 

across the trigger section.



Multistage spark-gap switch with laser triggering

74

• The switch is 68 cm long 

and 61 m in diameter.

• The 1st gap is 5.7 cm and a 

UV laser pulse (KrF) with a 

25 mJ pulse energy is 

necessary.

• ~1 ns after the laser pulse, 

a breakdown occurs in 

thetrigger gap and the 

voltage increases across 

the remaining gaps rapidly. 

An ignition wave 

propagates to the other 

gaps and ignites them 

sequentially.

• Total inductance: 400 nH; 

Trigger delay: 20 ns; jitter 

<0.4 ns.



Thyratrons

75

• Thyratrons are gas-filled switching 

devices with a gas pressure (30-80 

Pa/3x10-4 – 8x10-4 atm) much lower 

than a spark-gap switches.

• A triode configuration is used.

• The thyratron is characterized by the 

presence of a plasma, which allows 

the passage of large currents without 

significant electrode erosion.

• The hold-off voltage is limited by field 

emission, > 105 V/cm.

• The anode-grid distance is 2-3 mm, 

~40 kV hold-off voltage.



Thyratrons

76

• The cathode-grid distance 

corresponds to the Paschen

minimum Umin.

• If U > Umin, a glow discharge is 

initiated between the cathode and 

the grid. => electrons from the glow 

discharge plasma can migrate 

rapidly through the openings in the 

grid to the main discharge region 

between the grid and the anode. => 

thyratron closes.



Thyratrons

77

• Operating voltage:      several times 

10 kV. After ignition: ~100 V => an 

appreciable power loss occurs and 

need to be dealt with by cooling.

• Delay: ~200 ns; jitter: ~ns.

• Operating times: 105 hours; 

Repetition rates: few kHz; 

Operating power: MW.

• To regain the initial hold-off voltage: 

anode voltage must become slightly 

negative for 25-75 us for plasma to 

decay.



Thyratrons

78

• A thermionic cathode is used in a 

thyratron.

• Advantage: absence of a marked 

cathode potential drop using hot 

cathode.

• If cold cathode is used, potential 

drop is needed to accelerate the ions 

for secondary-electron production => 

lead to erosion of the cathode and 

thus the lifetime. 

• A baffle is used as a screening 

element to avoide electron directly 

reaching the anode and causing the 

damage. It is shifted relatively to the 

grid to prevent a direct line of sight 

between cathode and anode.



• The pseudospark switch operates 

in a low-pressure regime, where 

the mean free path of electrons 

and ions become comparable to 

the electrode spacing. Most 

electrons reach the anode without 

any ionizing collisions in the gas.

• Hollow cathode: increases the 

possible discharge path lengths.

• The diameter of the aperture 

determines the field penetration 

into the hollow cathode.

The pseudospark switch
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• A small number of initial electrons, 

triggered discharge in the hollow 

cathode can initiate the 

pseudospark discharge.

• The switching mechanism is 

based on the build-up of a highly 

ionized plasma. 

• plasma build-up occurs first inside 

the hollow cathode where E/P is 

low.

The pseudospark switch
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Plasma formed first.

-



• Ions drift back into the hollow 

cathode => forming a positive 

space charge (virtual anode).

• Static electric field inside the 

hollow cathode is distorted.

• Electron production rate > loss 

rate in the hollow cathode and 

subsequently in the anode-

cathode gap.

• A low-resistivity plasma is 

estabilished, and breakdown of the 

gap occurs.

• Jitter: 10 ns; Delay: 0.5 us.

• Advantage: high dI/dt, reverse 

current, long lifetime, low jitter.

The pseudospark switch
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Virtual anode

-

+



The pseudospark switch with triggering system
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Ignitrons
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• Ignitron is a very high-current, high-

voltage switch with

• a liquid mercury pool cathode 

• an ignitor pin dipping into the 

liquid-metal reservoir.

• Internal mercury pressure: ~5 Pa

• Can switch a pulse charge of up to 

2000 Colum.

• Air/water cooled may be needed.

• Internal splash and deionization 

baffles may be contained in some 

devices.

• Anode:

• Anode is massive to prevent an 

impulsive temperature rise 

during conduction.

• Anode is cooled through 

(1) anode stem;

(2) radiation to the cooled walls.



Ignitrons

84

• Rise time ~ 300-500 ns.

• After current drops below a critical 

value => no more additional vapor is 

produced => with additional time to 

allow recombination and 

recondensation of mercury.

• The mercury vapor must be forced to 

recondense back into the pool.

• Repetition rate ~1 Hz

• Progressively eliminated due to the 

mercury-containing waste.



Krytrons
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• Low-pressure gas discharge device 

with a tetrode configuration, sealed 

in a glass tube with a cold cathode.

• 1.3 kPa (9.75 torr) of helium gas.

• A special design of the anode-grid 

area + applied gas pressure 

=> large hold-off voltage.

• An already existing plasma is created 

by a glow discharge between the 

special keep-alive electrode and the 

cathode. 

=> short trigger delay: ~30 ns.

• Rise time: ~1 ns, Vmax: 8kV, 

Imax: 3 kA.

• Pulse length~10 us, 

repetition rate ~1 kHz

• A positive pulse at the control grid 

initiate the switch.



Krytrons
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• A 63Ni β-emitter may be enclosed to 

create a weak permanent pre-

ionization.

• It is widely used in fast trigger 

generators and Pockels cell driver 

and also ideal for use in the 

detonating circuitry of bombs.



Triggered Vacuum Gap (TVG)
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• A three-electrode system with 

P=0.001 Pa (7.5 x 10-6 Torr).

• Closed by injection of a plasma 

cloud.

• Hold-off voltage depends on the 

properties of the electrode surfaces.

• I up to 10 kA, V up to 100 kV. 

Repetition rates of several kHz are 

possible if cooled.

• The gas-plasma mixture is created 

with the help of an auxiliary arc, 

burning between two electrodes 

inserted into one of the main 

electrodes.

• Jitter ~ 30 ns; switching time ~100 ns. 



Semiconductor closing switches

• The limiting switching characteristics of semiconductor devices are:

– Relatively low mobility

– Low density of charge carries

– Comparatively low operating temperature

=> Large volume of the conducting region is required to conduct large

currents.
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Thyristors
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Thyristors
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• Three modes of operation:

• Reverse blocking state

• Forward blocking state

• Conduction or on state

Most of the voltage is 

held by J1.

Most of the voltage is 

held by J2.



Thyristors
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• Three modes of operation:

• Reverse blocking state

• Forward blocking state

• Conduction or on state

Most of the voltage is 

held by J1.

Most of the voltage is 

held by J2.

e- will fill up 

the holes

w/ more e-

=> p type 

becomes 

N type



Thyristors
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• Three modes of operation:

• Reverse blocking state

• Forward blocking state

• Conduction or on state

Most of the voltage is 

held by J1.

Most of the voltage is 

held by J2.

e- will fill up 

the holes

w/ more e-

=> p type 

becomes 

N type

N



Thyristors
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• Without any external action, the thyristor cannot come back from the 

conducting to the blocking state.

• Two methods are generally applied:

– Commutation of the current by polarity inversion.

– Commutation of the current, supported by gate-assisted turn-off.

-



IGBT
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IGBT
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• Advantage: 

• Bipolar transistors (BJT) – low 

resistance in the switched-on 

state

• Field effect transistors (FET) –

loss-free gate control

• Switch-on times: 

~ several times 10 ns. 

• It has a limited reverse-blocking 

capability => an external diode is 

sometimes used in parallel.

• High-power IGBT: blocking voltages 

V~4 kV, on state I ~3kA



Optically activated semiconductor switches

𝜵𝒋𝒏 = 𝒆(𝑹𝒏 − 𝑮𝒏) + 𝒆
𝝏𝒏

𝝏𝒕

𝜵𝒋𝒑 = −𝒆(𝑹𝒑 − 𝑮𝒑) − 𝒆
𝝏𝒑

𝝏𝒕
𝐞𝐆𝐚𝐯 = 𝜶𝒏|𝒋𝒏| + 𝜶𝒑|𝒋𝒑|
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Rn: recombination rate.

Gn: generation rate.

• Electron and hole generation is 

caused either by optical excitation 

or by avalanche ionization at 

sufficiently high electric fields.



Optically activated semiconductor switches
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• The wavelength should be larger than 

0.9 um. Therefore a Nd:YAG laser, 

wavelength = 1.06 um, is an 

appropriate light source.



Optically activated semiconductor switches
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• Linear photoconducting regime: the available number of charge 

carriers is determined only by the laser intensity.

• Nonlinear regime: the number of charge carriers is increased by 

collisional ionization and as in a gas switch increases exponentially.
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Magnetic switches
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• Relatively small losses and without wear.

• While the capacitor is being charged: the coil has a ferromagnetic core 

with high inductance at the beginning: V=LdI/dt => like an open switch.

• When saturation of the core is reached by the leakage current flowing 

through the coil => L drops abruptly by a factor of μ => switch is closed.

• μ=B/H ->0 when saturated.

• The hysteresis loop should approximate a rectangular form, with an abrupt 

change of the permeability over several orders of magnitude when the 

saturation point is reached.



Summary
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