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Grading

« Homework (Quizzes) — 30 %

— Design of each component of a pulsed-power system
* Final presentations — 70 %

— Design of a pulsed-power system — 35 %.

— Applications of pulsed-power system — 35 %.

« The goalis you can design a pulsed-power system after taking this course.

* No class on 9/19!!!
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Foundations of pulsed power technology, by Jane Lehr & Pralhad Ron
Pulsed power systems, by H. Bluhm
Pulsed power, by Gennady A. Mesyats

J. C. Martin on pulsed power, edited by T. H. Martin, A. H. Guenther, and
M. Kristiansen

Pulse power formulary, by Richard J. Adler

Circuit analysis, by Cunningham and Stuller



Outlines

Introduction to pulsed-power system

Review of circuit analysis

Static and dynamic breakdown strength of dielectric materials

— Gas — Townsend discharge (avalanche breakdown), Paschen’s curve
— Liquid
— Solid

Energy storage
— Pulse discharge capacitors
— Marx generators

— Inductive energy storage
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« Switches * Pulse transmission and transformation
— Closing switches — Self-magnetic insulation
— Opening switches — Pulse transformer
* Pulse-forming lines — Voltage multiplier
— Blumlein line * Other techniques
— Pulse-forming network — H-bridge pulse generator
— Pulse compressor — Pulse-width modulation (PWM)

— Fast high-voltage pulse generator



Outlines

 Power and voltage adding
— Marx generator
— LC generator
— Line pulse transformers
— Induction voltage adder (IVA)
— Linear induction accelerator (LIA)
— Linear transformer driver (LTD)
« Diagnhostics
— Voltage measurement
— Current measurement

* Applications of pulsed-power system



Outlines

* Introduction to pulsed-power system



Pulsed-power system release the stored energy in a
short period of time to provide high power output

« Pulsed power is a scheme where stored energy is discharged as
electrical energy into a load in a short pulse or short pulses with a

controllable repetition rate.
* Driven piles - prefabricated steel, wood or concrete piles are driven

into the ground using impact hammers

» Driven piles « Hammer

http://www.saudifoundations.com/driven.htmi
http://learnhowtowritesongs.com/tag/thesaurus/ s



Example of short pulses with a controllable repetition rate

https://www.youtube.com/watch?v=5fe8b4MIPYw o



In general, a pulsed-power system provides a power in
the order of 1 GW

rrrrr

 The highest energy and power that have been achieved in a simple pulse
are in the order of 100 MJ & few hundreds TW, respectively.

_ General cases | Our system

Energy per pulse 1~ 10 MJ 1 kJ
Peak power 1 MW~ 100 TW 0.6 GW
Peak voltage 1kV~10 MV 20 kV
Peak current 1 kA ~10 MA 135 kKA

Pulse width 0.1 ns ~10us 1 us
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Physiological Effects of an Electric Shock

UR

LLE

Effects of Electrical Current* on the Body~

Current Reaction
1 milliamp Just a faint tingle.
5 milliamps Slight shock felt Disturbing, but not painful. Most people can “let go.”

6-25 milliamps (women)T
9-30 milliamps (men)

50-150 milliamps

1,000-4,300 milliamps
(1-4.3 amps)

10,000 milliamps
(10 amps)

15,000 milliamps
(15 amps)

However, strong involuntary movements can cause injuries.

Painful shock. Muscular control is lost. This is the range where “freezing
currents” start. It may not be possible to “let go."

Extremely painful shock, respiratory arrest (breathing stops), severe muscle
contractions. Flexor muscles may cause holding on; extensor muscles may
cause intense pushing away. Death is possible.

Ventricular fibrillation (heart pumping action not rhythmic) occurs. Muscles
contract; nerve damage occurs. Death is likely.

Cardiac arrest and severe burns occur. Death is probable.

Lowest overcurrent at which a typical fuse or circuit breaker opens a circuit!

*Effects are for voltages less than about 600 volts. Higher voltages also cause severe burns.
TDifferences in muscle and fat content affect the severity of shock.

Electric shock victims suffering from ventricular fibrillation will die if
they do not receive prompt, emergency medical attention.

12/14/15

S-SA-M-023 Rev B E_001 Elec Safety.pptm

6 of 38




A pulse is characterized by its shapes

 The shape of a pulse is characterized by:
— Rise time: from 10 % to 90 % of the plateau
— Fall time: from 90 % to 10 % of the plateau

(Rise & fall time depend on the evolution of the “load impedance,”
which in most cases varies with time.

Anatomy of the Pockels Cell

— Duration: Electrode
P(yvna:uzteu \I : ‘Figu,e 5 0o Plateau
- FWHM AN -
: e W 0.8-
- Width of 90% of | : o
- Crystar :crr:de\‘ %;?,g‘ é 0.6
the peak amplitude g2 |
fg’ 0.4-
— Flatness of the plateau region: g |

o
(M)

important for some applications

0.0

such as for driving a Pockel’s cell. ATt pecayTmel  Time
. : Foot Width : :

https://www.olympus-lifescience.com/en/microscope-resource/primer/java/pockelscell/ 12



A pulsed-power system has an energy bank that is
charged slowly and store the energy for some time
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* A generator scheme for the production of high-power electrical pulses |s
always based on an energy store that is charged slowly at a relatively low
charging power and is discharged rapidly by activating a switch.

« To achieve the desired power magnification factor and to shape the pulse,
the above process can be repeated several time.

)

switch  tIntermediatel switch

Energy- S
(Z Z) store and <7 ransmission
Store pU|Se ” ;r;dtching

forming
—
(Power (Power
\ / conditioning conditioning
stage 1) stage 2)

 The energy can be stored either chemically (battery), mechanically, or
electrically.

13



Batteries can be used for energy storage

VEST TF Caoil
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Emergency
Safety Breaker
(Pneumatic
& Mannual

Fuse
8.3KA for 4s

Modules | i
& 10 No. of battery modules
| 10 modules I
< i 8 modules ]
i 8 6 modules -
- L 4 modules
c 2 modules
0 6 4
=
= i 4
(6] 4 -
(&) 2 )
L
- i 4
0 e
<D s i s 1 i 1 s 1 s 1 s
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
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B.K. Jung, etc.,Fusion Eng. Design 88, 1597 (2013)
Chung K. J. et al, Plasma Sci. Technol. 15, 244 (2013)



A flywheel can store energy mechanically

: 1
« Mechanical energy:  E:, == Qw?

> Caliper

* For a massive cylinder:

1 1/1
0= EMTZ » Ekin = E (EMT2> wz

« Stored energy density:

angular frequency

0: moment of inertia

« The ultimate energy density is limited by the tensile strength of the material
used to construct the flywheel.

2 .2

2~p Wmax” T
« For a AISI 302 stainless steel cylinder with a radius of 1 m:
X~ = 860MPa p = 8190 kg/m3

®max~300(sec™1) Ey~2 x10*J/kg~1.6 x 108 J/m3

 The problem with mechanical storage is to release the energy in a
sufficiently short time. Several electrical compression stages are needed in
combination with the mechanical storage to achieve the desired power Ievel.1
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Electrical energy can be stored either capacitively in an
electric field or inductively in a magnetic field

L. 1
- Electric field: E, = EereoEZ

— Oil-impregnated paper: €.=6 Epreax =0.78 X108V /m

1
E, = 5% 6% 8.85x 10712 x (0.78 x 108)°~160 k] /m3

— With the finite packing density

/ 1 4 3
E,' =% E,~8x10*]/m

Electrode @ V

Dielectric ]

Electrode @ V=0

16



Electrical energy can be stored either capacitively in an
electric field or inductively in a magnetic field

field E L
« Magnetic field: =
9 572 wen,

— The maximum energy density is limited by the onset of melting at the
conductor surface or by the mechanical strength of the storage

inductor. ,
1 B : : :
_ Coil heating: ¢,pT = — B26~—— ¢y : Heat capacitor per unit mass
210 2up p : Mass density
Bx 1= pyNI T : Surface temperature
B P = I’R~B°R 0 : Afactor depending on the
B = poni~1 form of the pulse
— Copper: c,=0.385]/g — k
I 1
T melting = 1085°C B~100T \l /‘\T
p = 8960 kg/m3 NS i o
— | / |
Zcopper = 70MPa g /| |

— The coil needs to hold the magnetic pressure: ﬂ =Pp <X
B~13T



Electrical energy can be stored either capacitively in an
electric field or inductively in a magnetic field

field E L
« Magnetic field: =
9 572 wen,

— The maximum energy density is limited by the onset of melting at the
conductor surface or by the mechanical strength of the storage

inductor. ,
1 B : : :
_ Coil heating: ¢,pT = — B26~—— ¢y : Heat capacitor per unit mass
210 2up p : Mass density
Bx 1= pyNI T : Surface temperature
B P = I’R~B°R 0 : Afactor depending on the
B = poni~1 form of the pulse
— Copper: c,=0.385]/g — k
I 1
T melting = 1085°C B~100T \l /‘\T
p = 8960 kg/m3 NS i o
— | / |
Zcopper = 70MPa g /| |

— The coil needs to hold the magnetic pressure: ﬂ =Pp <X
B~13T = | Eg~7 x107 J/m3




More energy can be stored in a magnetic field

Mechanical Energy | Electrical energy | Magnetic energy

1.6x108 J/m3 8x10%4 J/m3 7x107 J/m3

The energy density stored in a magnetic field can be about 2~3 orders of
magnitude higher than that storable in a electric field!
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Capacitive storage:

— Requires one or more closing switches which remain open during
charging and hold the charging voltage.

— Power multiplication is done by current amplification.

Inductive storage:

— Requires an opening switch which is closed during charge-up,
carrying a large current at this stage.

— Power multiplication is done by voltage amplification.

Opening switches are harder to operate then closing switches.
They are generally slower leading to a lower power output.
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It is more complicated to use inductive storage

Capacitive storage : w,=eg,E/2 (10-80 kJ/m°) 100 GW, 1 ps

« Capacitive storage: i
10 kW, 20 s ﬂ
I
v F oot |
Charging Capacitive Closing Load
unit energy switch
store
Inductive storage : w,= B%/(2uy,) (1-50 MJ/m?) 1TW, 100 ns

* Inductive storage: - 18 GW, 10 s

200kW, 1s [\
|

Charging Inductive Opening Transmission Closing Load
unit energy switch line switch
store
Y "
1. Compression stage 2.Compression stage

« Capacitive storage is more common and easier to operate.




A pulsed power machine at Sandia National Laboratories
delivers a 20 MA, 3 MV, and 55-TW pulse

Power adding

Energy storage
Voltage adding

Pulse transmission

Pulse forming

Switches

TRY mwy,

oil section water section ;
vacuum section

W. A. Stygar et al. Phys. Rev. ST Accel. Beams 12, 120401 (2009) 21



the discharge

ing

Arcing may happen dur

22



The EUV light source will be developed using the
pulsed-power system we built from scratch

Experiments
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Unit: mm Capacitors
Capacitance (uF) 5

Veharge (KV) 20 (50)
Energy (kJ) 1 (6.25)
Inductance (nH) 204 + 4

Rise time 1592 + 3
(quarter period, ns)

lheak (KA) 135+ 1 (~340)

150}
100¢
50¢

=50}
-100¢
=150}

Current (kA)
=)

Time (us)
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Discharge test in Pulsed-Power Generator for Space
Science (PGS) laboratory
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Plasma can be compressed by using jxB force

« Zpinches  Theta pinches

A ——_‘:___:‘___~~ A I ‘;‘___‘_:________~:
:\-- _________—: delasma ST
< ~PpF d —
o L o

dB

[O; delasma d_

B dt < @ dt

dB
dt

5 dIcoil
dt
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There are multiple applications using pulsed power

machine

(a) Inertial confinement fusion

(c) Laboratory astrophysics

(a) = (b)

Plasma Ijet

(DAnode

l slug

6
) g Cathode

S Dcathode

(b) X pinch

X pinch Multi-wires
X pinch

L&

| mm
(d) Pulsed plasma thruster

Capacitors

<«—— Spark plug

Cathode

<+—— Plasma sheet

Propellant

Anode

M. G. Haines, Plasma Phys. Control. Fusion 53, 093001 (2011)
G. Birkhoft, etc., J. of Appl. Phys. 19, 563 (1948)

J. Bio. Sci. and Eng. 8, 747 (2015)

Plasma Phys. Report, 42, 226, (2016)

Acta Astronautica 67, 440 (2010) 2%



The pulsed-power system can be used to study
laboratory astrophysics and space sciences

* Milky way’s spiral arms

« Solar wind

* https://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html

» Jet Propulsion Laboratory [NASA/JPL] Astronomers Find a ‘Break’ in One of
the Milky Way’s Spiral Arms (Aug 17, 2021)

* B. Reipurth and J. BallyAnnu, Herbig-Haro Flows: Probes of Early Stellar
Evolution. Rev. Astron. Astrophys., 39:403-455, September 2001 27



The conical-wire array we used in our experiments

Material : Tungsten
Number of wires : 4
Diameter : 0.02 mm
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Plasma jets were captured by time-integrated camera in
the visible light

* One layer of cellophane with 8  Three layers of cellophane with
% transmission. 1 % transmission.

« Both images were taken by using Nikon D750 camera with D/# equals
to 22 and 1SO= 50 (effective). Exposure times were both 30 sec for
being synchronized with the driver.

29



Time-resolved images show how the plasma plume was
generated
@&

« Shadowgraph images:

(@) 930 £ 20ns (b) 975+ 2ns (c) 985+ 3ns

Schlieren images:

(e) 930+ 20ns (g) 985+ 3)ns
£1

: > -_j
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Ny L/ L\ V9P A

1.8 mm | 5 Moy / 2.3 mm >




A speed of 170 + 70 km/sec was estimated

Length (mm)
Y Y N
© & o

O
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/
/
/
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/

/

900

1000 1100
Time (ns)

1200

1300
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A “tornado” is generated by the twisted conical-wire array
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Ultraviolet lithography (EUVL) is one of the key
technologies in semiconductor manufacturing nowadays
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« The process technology of Taiwan Semiconductor Manufacturing
Company Limited (TSMC):

Q 3um
\
]

3um

\ .
O 0.5um O
~. 4 0. il
O~ 0.25pm
o= 7nm

“0.0.18um . 43um
e g 90nm 6
O~ 5r'1«m 45nm 40nm 28nm 20nm 16nm 10nm 7nm Sngnm
. ® o © T el ™ e\ 4 —~ AL
V=0 -O0—O0—0—0—0—0

—_—

OB Ao o oD\ (o (o o 0 o o oD (oD o o o g g P S A e (8O G W P g g g g g o

« Optical diffraction needs to be taken into account.
« Shorter wavelength is preferred.

« Light source with a center wavelength of 13.5 nm is used.

https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm 33



EUV light is generated from laser-produced plasma (LPP)
-

‘ Sn Li Xe - - - -11 mirrors ‘ Vacuum -10° mbar Multilayered Mirror Optics
1 2 Intermediate Focus Reticle

. Cooler Collector/ Droplet Dispenser

1 Debris Mitigation
(_\5 Laser
= 1
8 ..2 08 ln I Beam Delivery

c
55 ol J\n £\
5§ [ A W
cT s )
2> 04 \/‘ T
Za / \/\ 1
S5 02 VJ:- O
% © .ﬂ-l/ 4_‘_’--"/ , )
n: 0 T I T ] \ T
10 11 12 13 14 Wafer
-0.2

Vacuum
System

Wavelength (nm)

« A=13.5nm + 1% is required. e Tin:

« At T=35-40 eV (~450,000 K), . 4pb4dN — 4p54dN+L + 4p6adN-LAf
In-band emission occurs. (1<N < 6) in ions ranging from
« Xenon: Sns8+ to Spl2+
* 4p®4d® — 4p°4d75p + UTA @ 13.5nm

from single ion stage Xel0+

« UTA@ 11 nm "
« UTA: unresolved transition array

V. Bakshi, EUV sources for lithography
R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012)



Plasma can be compressed by using jxB force

« Zpinches  Theta pinches

A ——_‘:___:‘___~~ A I ‘;‘___‘_:________~:
:\-- _________—: delasma ST
< ~PpF d —
o L o

dB

[O; delasma d_

B dt < @ dt

dB
dt

5 dIcoil
dt
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Discharge produced plasma (DPP) can generate EUV
light for EUV lithography

« DPP - Xe, gas-puff z pinch

{lathode Anode

Cooling \ \

Surface discharge pre-donization

- /

Debris Collector Spectial Intermediate
mitigation optics purity filter focus
 Electrodes are damaged significantly due to the heat and sputtering by

ions.

- Laser-produced plasma (LPP) | Discharge-produced plasma (DPP)

Pros Commercial system available. High conversion efficiency.

Cons Low conversion efficiency. Short system life time due to
electrode erosion.

V. Borisov, etc., Proc. SPIE 6611, Laser Optics 2006: High-Power Gas Lasers, 66110B (12 April 2007)
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Outlines

* Review of circuit analysis
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Kirchhoff’s current law

« At any instant in time, the algebraic sum of all currents leaving any
closed surface is zero.

l1+12++lN — O

or in abbreviated notation: i
Ik

=0

k=1
where i, is the k" current of the N currents leaving the closed surfaces.
iy,+2-5=0

i, = 3(A)

—5+i,+9=0
i, = —4(A)

2+4i,—i,—9=0

38



Kirchhoff’s voltage law

« At any instant in time, the algebraic sum of all voltage drops taken
around any closed path is zero.

V1 +V2++VN - O
or in abbreviated notation: N
Z Vk == 0
k=1

where V, is the voltage drop, taken in the direction of the path along the
kth segment of the N segments in the closed path.

™~ —V,—-9+5=0

9V

V,=—4(V)

39



Source-free RC circuit

i
« Assuming that the capacitor is fully charged to V,. >f—’
« At t=0*, the switch is closed. +
C 4~ V¢ R
. dQ dV _
Vc—iR=0 ==t
ve+ree_o He 1y _o
T dt RC ¢~
ch(t) 1 1 rt
—dVe=——| dt
1 Ve  t
V, / RC
Ve(t) =V,e /RC =y et/ Tc = RC 0 1 2 3 4 5 6

Time (1)



Bleeder resistors dissipate energy in the capacitor for
safety

WS Ky,

- Example 1: i
V,=50 kV , C=1 pF, VS 10 V is safe. T—
If the bleeder resistor takes 15 mins to dissipate c A+ R
energy in the capacitor, then T Ve
15 X 60 )
_ _ R = 10MQ
10 50kExp< R < 10-6
« Example 2: SOP for working on high voltage \V/
system.
1.0F,
— 15t chicken stick with a large resistors is & 4 gi
needed to dissipate the energy in the ; 0.6t
capacitor slowly first. 5 o4l
: : LN
— 2nd chicken stick that ground the capacitc 0.2}

IS needed after most of the energy is 0.0}, , , , ] ; ]
dumped. 0 1 2 3 4 5 6
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Source-free RL circuit

« Assuming that the current is at steady state for t =0, 1(0)=I,. < >f

« At t=0%, the switch is opened/closed.

IR+LdI—O
dt

I(t)l
[“Lar--2 [
I,

I(t R t
ln( ()>=——t5—
IO L Ty,

dl
VL_LE
dl R
—t7I=0

L

L=

R,
It) =1,e L' =1,e

dl
V(t) = L— = LI, (
dt Ty

0o 1 2 3 4
Time (1)

) -t/1y, — _Rloe—t/TL

5 6
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Charging of a capacitor

i
« Assuming that the capacitor is NOT charged att < 0. —>>f \NVR\N‘—
At t=0%, the switch is closed. V, +
Vo—iR—V:=0 = —=C—— c
o~ ! ¢ =T -
dV dV 1 1
Vo—RC————V:=0 — = - i
dWV¢:—-V,) . .
T 2 = —2c Ve Vo) Vz=ve-V, V(it=0)=-V,
dv’ 1 V® 1 1 ¢ V'(t t
—=——V j —,dV’:——jdt In ) = ——
dt RC vV RC J, —V, RC

V'(t) = —Vee /% Ve =V4(1-e %)

I(t) = ¢ e _ —V, <— i) e-t/ic = Vo gt/

R

dt Tc

Tc = RC

43



The capacitor is almost fully charged after 5 time

constant

1.0}
0.8}
0.6}
0.4}
0 0.2}

0.0L

I(V,/R)

V, or

86%
63%

95%

98%

>99%

Ve =V, (1—e /%)

1(t) = _° e~ t/tc

TCERC
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LC oscillation

« Assuming that the capacitor is fully charged to V,, 1(0)=0.
« At t=0%, the switch is closed.

Ve v.o—o i-9Q_ 4V o di_ LCdZVCC
¢ VL= T dt L= ™at ™~ dt2
dZVC+1V =0

dt2 LC ¢

Ve(t) = asin(wt) + Bcos(wt) @ =

i = —C(awcos(wt) — Bwsin(wt))
i(t=0)=0=—Caw a=0
VC(t=O)=V0=B

Ve =V, cos(wt)

o

VL/C

=

sin(wt)
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Energy is oscillating between the capacitor and the

iInductor
1 0 1.0} : : '
< 0.5 W 0.8y
5 "W 0.6}
> 0.0} o
> o 04}
}U —0.5 L‘u‘l 0.2
-1.0L, 0.0
00 05 5 20 0.0 °c 05 5
Time (r) Time (T)
oy
1 1 —
Ve =V,cos(wt) = ic Ep = ECVCZ L
+
i= Yo sin(wt) 1, C ~ Ve % L
/L/ EB = ELl - I)

0

46



Series RLC circuit

« Assuming that the capacitor is fully charged to V,, 1(0)=0.

« At t=0*, the switch is closed.

- dQ dv, T
Ve—iR-V,=0 i=—7=-C_= |+
C f\VC
di d*v, )
V=L =-LC—
Vv
d’Vv, Rdv, 1
acz T at TicVe=0
R 1 R R\> 1
D2+ZD+L_C=O D=—ﬂij<ﬂ> ~1c

PR ] - ( (B

——t | + Bexp

e v

a7



Underdamped condition

— R | 1 R
Ve = exp (_ﬂt> aexp| i c_ — t |+ Bexp 2L
B R - ] 1 1 R
Ve = exp (_ﬂt> asin c t | + Bcos LC _L

R R 2
Ve = exp <_ﬂt> [acos(wt) + Bsin(wt)] w = \/LC <ﬂ>
V() =a=V, V() =exp <_2£Lt> [V,cos(wt) + Bsin(wt)]
_ Ve _[_R R _
i=-C—or= [—ﬂexp <_ﬂt> (V,cos(wt) + Bsin(wt))

R
+exp <— ﬂ t) (—VO(JL)Sin((JL)t) + Bu)COS(O.)t))]
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Underdamped condition

vor— o R o g RVo_, R2L __ V, |

2L ’
i _ £ 2 I.;I-ZLC -1
LC 2L

j=_cWe_|_R R (v (t)+RV°'(t)
= rraiall o b 0€os(w 5L o Sin(w
+ Rt v '(t)+RV° (wt)
exp (-5 owsin(w oL o @cos(w
. Vo R .
i(t) = exp | —=t |sin(wt)
A 2L
L_ (E
\/C 2
R \[ R/2L '
V() =V,exp _ﬂt cos(wt) + sin(wt)

[ (8
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Overdamped condition

( (& _> ; B( (& _>]

R /R 1
Ve = exp (——t> [aexp(yt) + Bexp(—yt)] V= (ﬁ) T LC

2L

Vc(t:O):V0:a+ﬁ

_ dv, R R
i=—-C—=—-C {— — exp (— oL t) [aexp(yt) + Bexp(—yt)]

R
+exp (— Y t> layexp(yt) — Byexp(—yt)] }
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Overdamped condition

R
i(0)=—C[—ﬂ(a+ﬁ)+(av—Bv)]=0
R
R R Y+31
a(y—ﬂ>—ﬁ(y+ﬂ>=0 azg _thigﬁ Vo=a+p
Y =321
_ R
Y+31
e R SIS
(r-21) Y

v, R R/2L R/2L
Ve = 7exp <_ﬂt> Kl + " )exp(yt) + <1 — ” )exp(—yt)]

V, 1 R 2
i = Zy 7 eXp <— ﬂt> [exp(yt) — exp(—yt)] y = \/(5) 1
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Critically damped condition

R\* 1_,
2L LC

Ve = (a+ Bt)exp(

. CdVC_ c
i = at = Bexp

Rt
2L

R
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Varying R can move the discharge currents into

different regime
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