Application of Plasma Phenomena

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 6

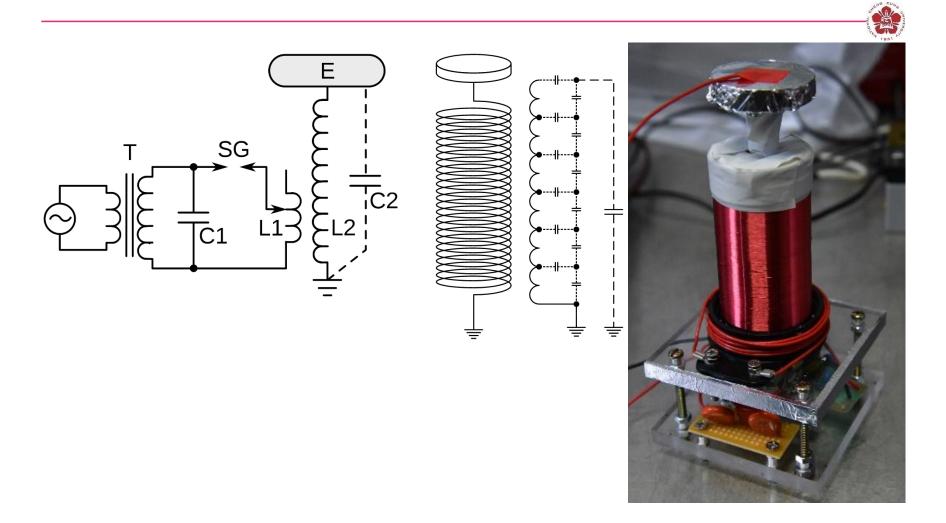
2025 fall semester

Thursday 9:00-12:00

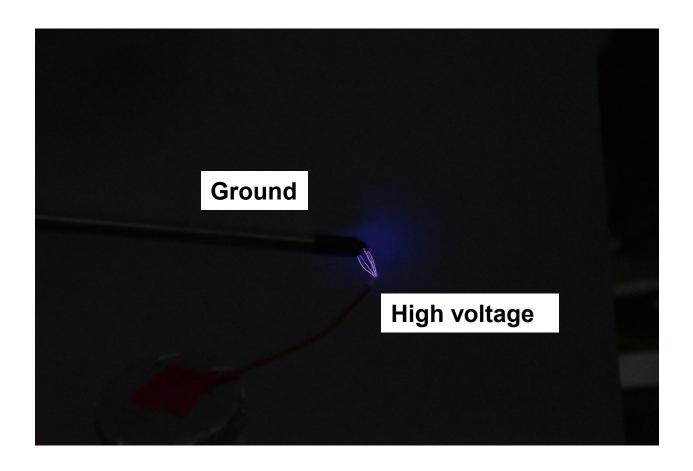
Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

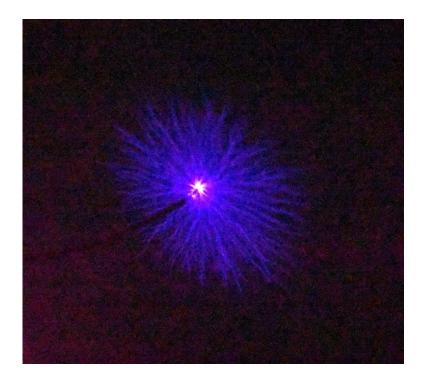

https://nckucc.webex.com/nckucc/j.php?MTID=m50e2008a7e216ef32c42db2 d027415ec

Tesla coil can generate high voltage

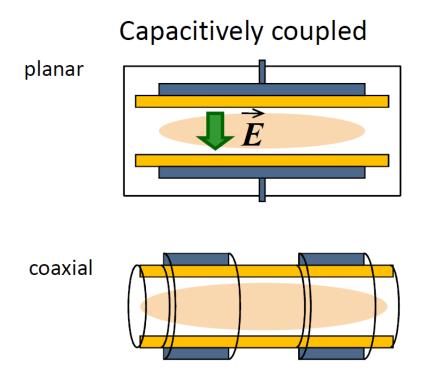


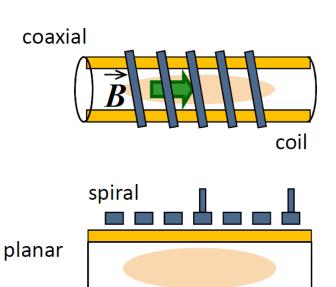
The high voltage is generated by two resonant LC circuits

Arc discharge occur between the high voltage and a grounded electrode

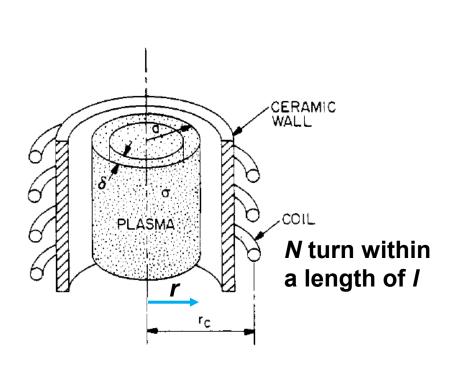


Corona discharge occurs when the electric field drops below a certain value


Methods of plasma production


- DC electrical discharges
 - Dark electrical discharges in gases
 - DC electrical glow discharges in gases
 - DC electrical arc discharges in gases
- AC electrical discharges
 - RF electrical discharges in gases
 - Microwave electrical discharges in gases
 - Dielectric-barrier discharges (DBDs)
- Other mechanism
 - Laser produced plasma
 - Pulsed-power generated plasma

RF can interact with plasma inductively or capacitively



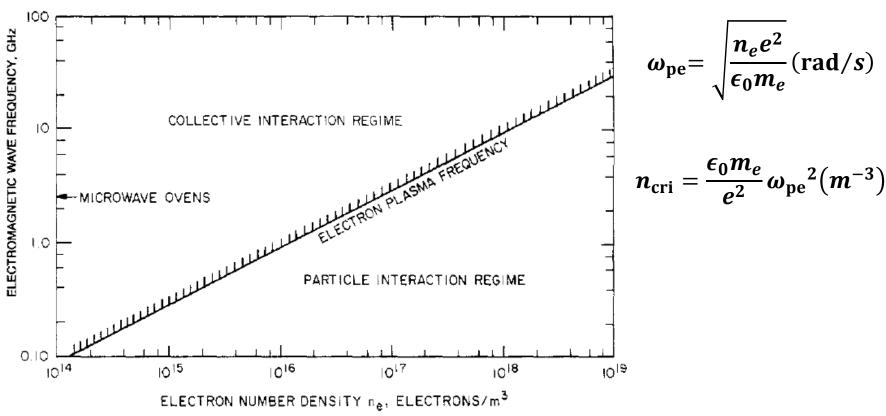
Inductively coupled

The plasma is generated by the induced electric field from the oscillating magnetic field

$$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

$$\int (\nabla \times \overrightarrow{E}) d\overrightarrow{A} = \int \left(-\frac{\partial \overrightarrow{B}}{\partial t}\right) d\overrightarrow{A}$$

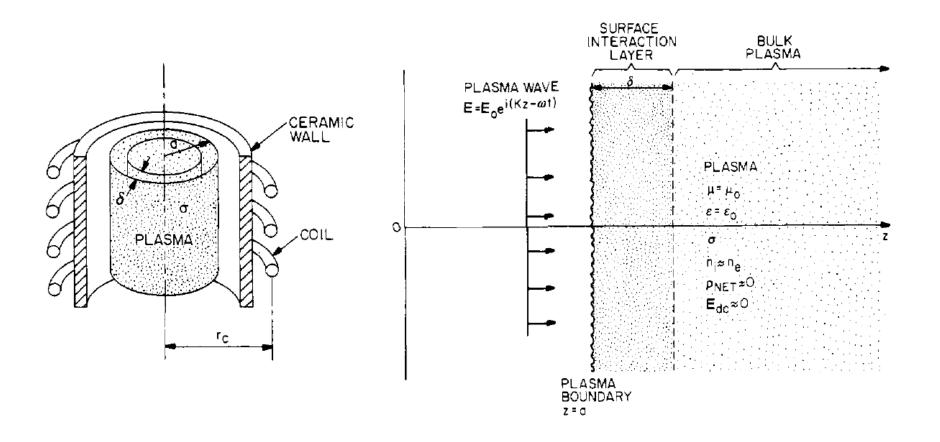
$$2\pi r E = -\pi r^2 \frac{\partial B}{\partial t}$$


$$E = -\frac{r}{2} \frac{\partial B}{\partial t} \qquad B \times l = \mu_o NI$$

$$E = -\frac{r}{2}\mu_o \frac{N}{l} \frac{\partial I}{\partial t}$$

$$|E| = \frac{r}{2}\mu_o \frac{N}{l} \omega I$$

How an electromagnetic wave interacts with a plasma depends on its frequency



$$n_{760\,\mathrm{Torr}\,/\,300\mathrm{K}} = 2.45 \times 10^{25}\;\mathrm{m}^{-3}$$

$$n_{0.1 \, {
m Torr}, \, 1 \, \% \, ionization} = 3.2 \times 10^{19} \; {
m m}^{-3}$$

RF energy is strongly absorbed within the skin depth if the frequency is below the electron plasma frequency

Skin depth is calculated using Maxwell's equations

$$\nabla \cdot \overrightarrow{E} \approx 0 (\text{quasi-neutral}) \quad \nabla \cdot \overrightarrow{B} = 0$$

$$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \qquad \nabla \times \overrightarrow{B} = \mu_0 \overrightarrow{J} + \mu_0 \epsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} \qquad \overrightarrow{J} = \sigma \overrightarrow{E} (\text{Ohm'slaw})$$

$$-\frac{\partial}{\partial t} (\nabla \times \overrightarrow{B}) = \nabla \times (\nabla \times \overrightarrow{E}) = \nabla (\nabla \cdot \overrightarrow{E}) - \nabla^2 \overrightarrow{E} \sim -\nabla^2 \overrightarrow{E}$$

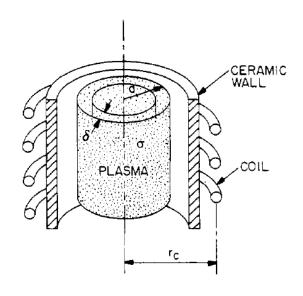
$$\frac{\partial^2 \overrightarrow{E}}{\partial z^2} - \mu_0 \sigma \frac{\partial \overrightarrow{E}}{\partial t} - \mu_0 \epsilon_0 \frac{\partial^2 \overrightarrow{E}}{\partial t^2} = 0 \qquad \overrightarrow{E} = \overrightarrow{E}_0 \exp[-i(kz - \omega t)] \qquad k \equiv \alpha + \frac{i}{\delta}$$

$$(-k^2 + i\omega\mu_0 \sigma + \mu_0 \epsilon_0 \omega^2) \overrightarrow{E} = 0 \qquad \alpha = \sqrt{\frac{\sigma\mu_0 \omega}{2}} \left[\frac{\omega \epsilon_0}{\sigma} + \sqrt{1 + \left(\frac{\omega \epsilon_0}{\sigma}\right)^2} \right]^{1/2}$$

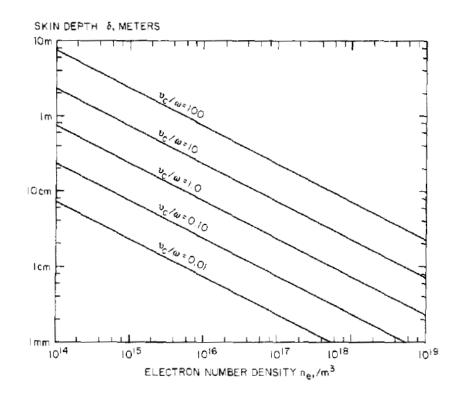
$$\frac{1}{\delta} = \sqrt{\frac{\sigma\mu_0 \omega}{2}} \left[\sqrt{1 + \left(\frac{\omega \epsilon_0}{\sigma}\right)^2 - \frac{\omega \epsilon_0}{\sigma}} \right]^{1/2}$$

Skin depth is calculated using Maxwell's equations

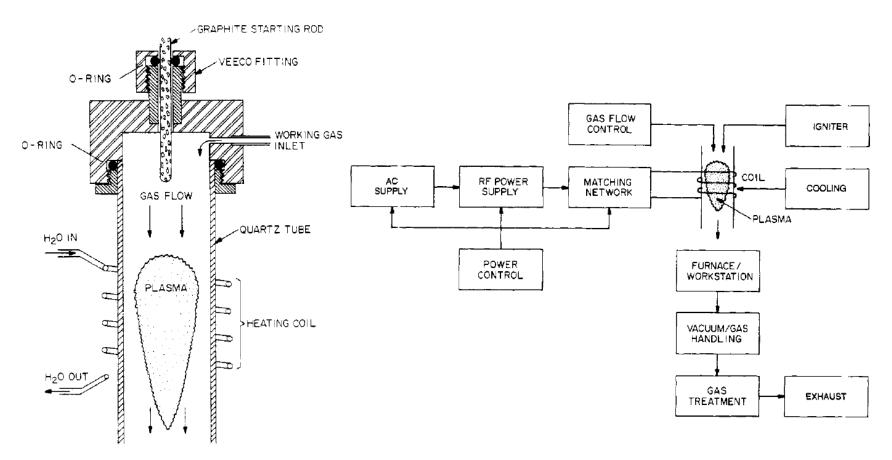
$$\alpha = \sqrt{\frac{\sigma\mu_0\omega}{2}} \left[\frac{\omega\epsilon_0}{\sigma} + \sqrt{1 + \left(\frac{\omega\epsilon_0}{\sigma}\right)^2} \right]^{1/2} \qquad \frac{1}{\delta} = \sqrt{\frac{\sigma\mu_0\omega}{2}} \left[\sqrt{1 + \left(\frac{\omega\epsilon_0}{\sigma}\right)^2} - \frac{\omega\epsilon_0}{\sigma} \right]^{1/2}$$


• In most industrial plasma, $\frac{\omega\epsilon_0}{\sigma}\ll 1$. Note that $\sigma=\frac{e^2n_{\rm e}}{m_{\rm e}\nu_c}=\frac{\epsilon_0\omega_{\rm pe}^2}{\nu_c}$ so $\nu_c\omega<<\omega_{\rm pe}^2$ is required.

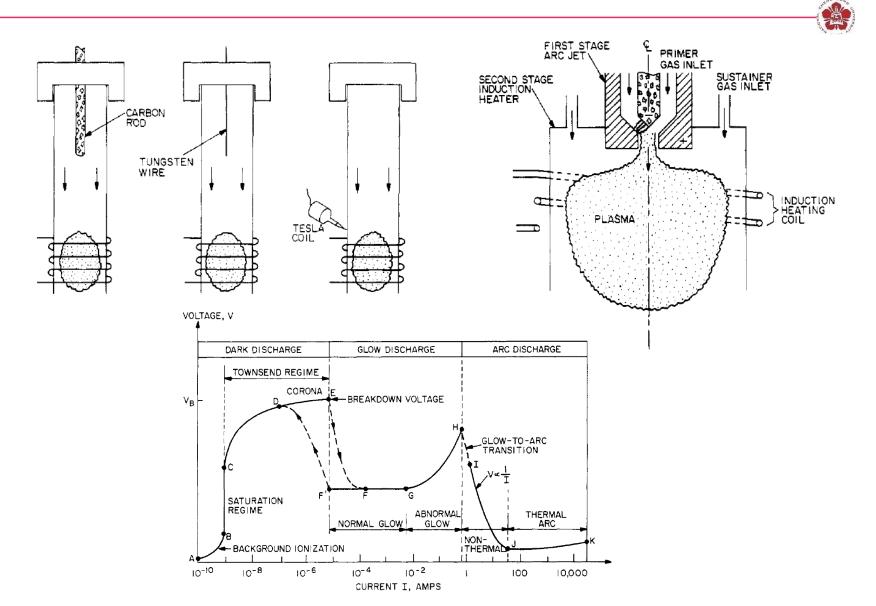
$$\alpha \approx \sqrt{\frac{\sigma\mu_0\omega}{2}} \left(m^{-1}\right)$$
 skin depth:
$$\delta \approx \sqrt{\frac{2}{\sigma\mu_0\omega}} = \frac{\sqrt{2}c}{\omega_{\rm pe}} \sqrt{\frac{\nu_c}{\omega}} = \frac{c}{e} \sqrt{\frac{2m_{\rm e}\epsilon_0}{n_{\rm e}}} \sqrt{\frac{\nu_c}{\omega}} = \frac{c}{2\pi\nu_{\rm pe}} \sqrt{\frac{\nu_c}{\pi f}} (m)$$


• The skin depth δ ~ the distance that an electromagnetic wave propagates into a medium during one period of the electron plasma frequency.

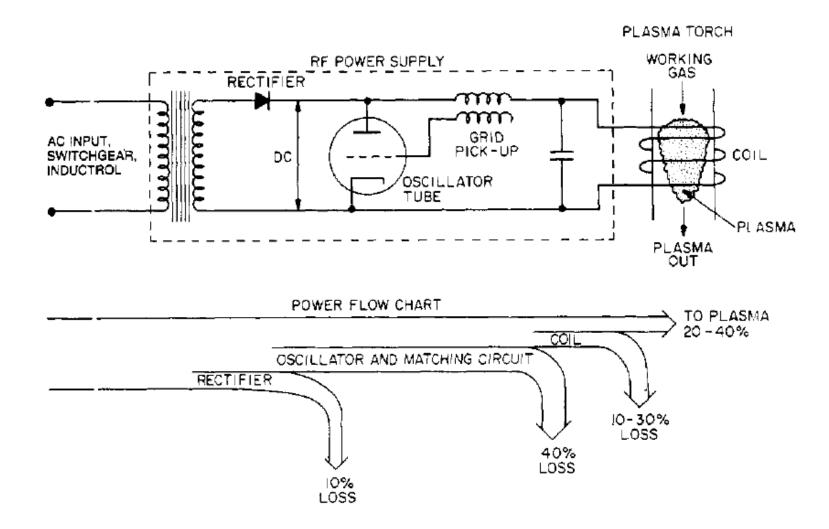
Skin depth needs to be carefully considered in the design of inductive industrial plasma reactors



 Boulos et al showed that the energy coupling parameter is maximum when 1.5δ ≤ a ≤ 3δ. However, it doesn't mean the plasma will be uniformly heated.

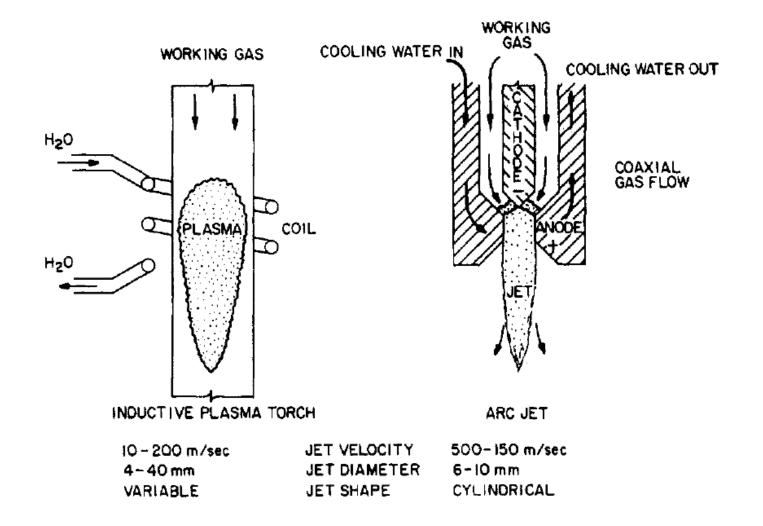


A kilowatt-level inductively coupled plasma torch is shown

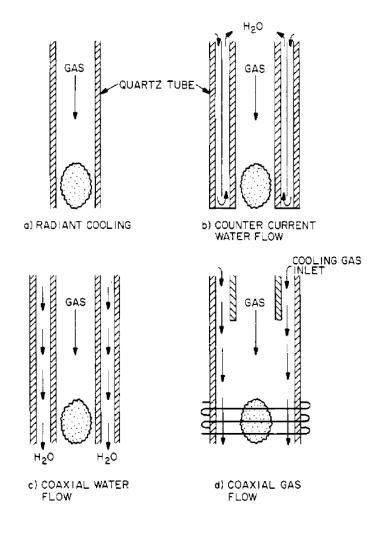


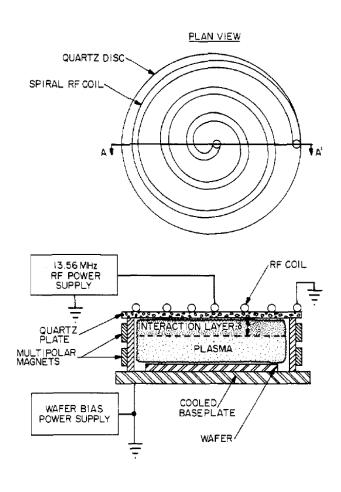
High voltage initiation is usually required for inductive RF plasma torches

The power supplies are relatively inefficient

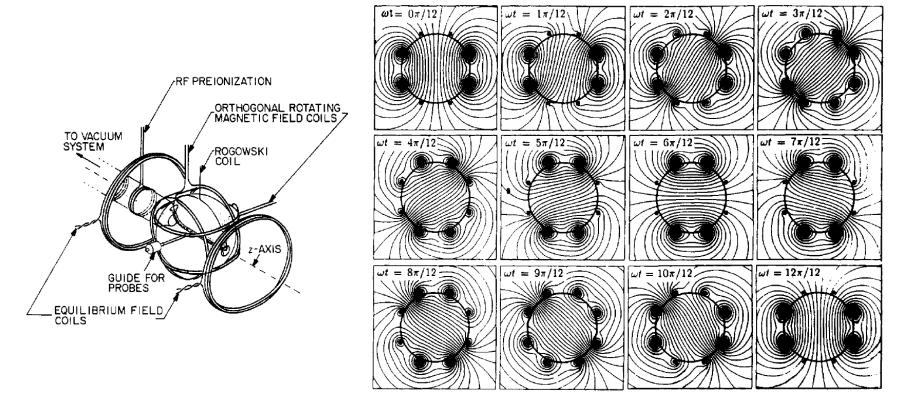

Operating regimes of inductively coupled plasma torches

Parameter	Low	Characteristic	High
Frequency	10 kHz	13.56 MHz	100 MHz
Power	1 kW	30 kW	1MW
Efficiency	20%	35%	50%
Pressure	10 Torr	1 atm	10 atm
Gas temperature	1000 K	10 ⁴ K	$2 \times 10^4 \text{ K}$


Inductive RF coupling provides a plasma with less contamination from the electrode

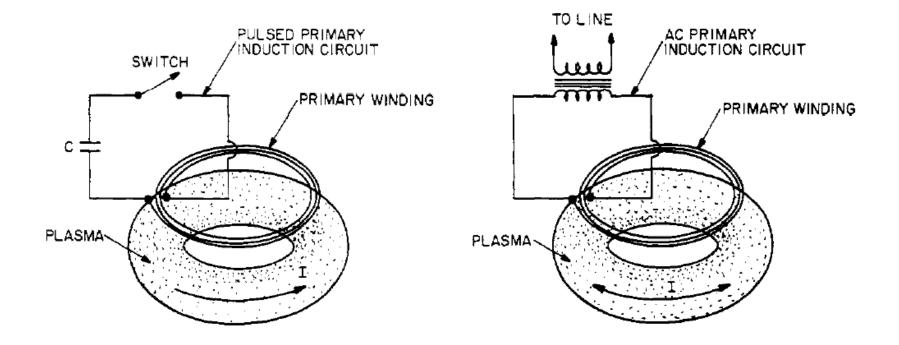

Several cooling configurations are shown

Inductive parallel plate reactor



- Uniform plasma source
- Higher power (2 kW) leading to higher plasma density (up to 10¹⁸ electrons/m³)
- Lower gas pressure, i. e., longer mean free paths and little scattering of ions and is desired in deposition and etching applications.

Rotamak



 The rapidly rotating magnetic field generates large plasma currents, thus heating the plasma to densities and temperatures of interest in many industrial applications

Inductively heated toroidal plasmas

• Large currents are induced in the plasma by transformer action from a ramped current in a pulsed primary induction circuit.

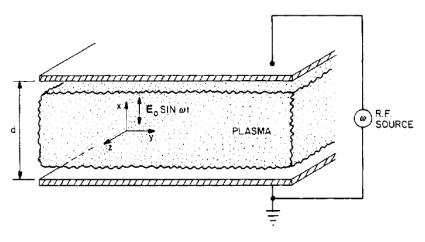
Applications of inductive plasma torches

- High purity materials production
 - Silica and other refractories
 - Ultrafine powder
 - Spherical fine power
 - Refining/purification
- High temperature thermal treatment
 - Heat treatment
 - Plasma sintering
- Surface treatment
 - Oxidation
 - Nitriding

Applications of inductive plasma torches

- Surface coating
 - Plasma flame spraying
 - Surface coating of powder
- Chemical vapor deposition (CVD)
 - At atmospheric pressure
 - At reduced pressure
- Chemical synthesis and processing

- Experimental applications
 - Laboratory furnace
 - High intensity light source
 - Spectroscopic analysis
 - Isotope separation
 - lon source
 - High power density plasma source


AC electrical discharges deliver energy to the plasma without contact between electrodes and the plasma

- DC electrical discharge a true current in the form of a flow of ions or electrons to the electrodes.
- AC electrical discharge the power supply interacts with the plasma by displacement current.
 - Inductive radio frequency (RF) electrical discharges
 - Capacitive RF electrical discharges
 - Microwave electrical discharges
 - Dielectric-barrier discharges (DBDs)
- Other mechanism
 - Laser produced plasma
 - Pulsed-power generated plasma

Capacitive RF coupling plasma without magnetic fields

$$\vec{F} = m \vec{a} = -v_c m \vec{v} - e \vec{E}$$

$$m\frac{\mathrm{d}\mathbf{v}_y}{\mathrm{d}\mathbf{t}} + m\mathbf{v}_c\mathbf{v}_y = \mathbf{0}$$

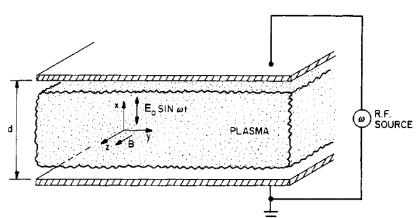
$$v_{y}(t) = v_{y0} \exp(-v_{c}t)$$

$$m\frac{d^2x}{dt^2} + m\nu_c \frac{dx}{dt} = eE_0 \sin(\omega t)$$

$$x = C_1 \sin(\omega t) + C_2 \cos(\omega t)$$

$$C_1 = -\frac{eE_0}{m} \frac{1}{\omega^2 + \nu_c^2}$$

$$C_2 = -\frac{\nu_c eE_0}{\omega m} \frac{1}{\omega^2 + \nu_c^2}$$


$$v_x(t) = -\frac{eE_0 \omega}{m(\omega^2 + \nu_c^2)} \left[\cos(\omega t) - \frac{\nu_c}{\omega}\sin(\omega t)\right]$$

$$P = \frac{dW}{dt} = eE_0 \sin(\omega t) v_x$$

$$\bar{P}_{tot} = n_e \bar{P} = \frac{1}{4} \epsilon_0 E_0^2 \frac{2n_e e^2}{m\epsilon_0} \frac{\nu_c}{\omega^2 + \nu_c^2}$$

Capacitive RF coupling plasma with magnetic fields

$$\frac{d^2x}{dt^2} + \nu_c \frac{dx}{dt} + \omega_c \frac{dy}{dt} = -\frac{eE_0}{m} \sin(\omega t)$$

$$\frac{d^2x}{dt^2} + \nu_c \frac{dx}{dt} - \omega_c \frac{dy}{dt} = 0 \qquad \omega_c = \frac{eB}{m}$$

$$\overrightarrow{F} = m \overrightarrow{a} = -\nu_c m \overrightarrow{v} - e(\overrightarrow{v} \times \overrightarrow{B}) - e \overrightarrow{E}$$

$$x = C_1 \sin(\omega t) + C_2 \cos(\omega t)$$

$$m\frac{d^2x}{dt^2} + mv_c\frac{dx}{dt} + eB\frac{dy}{dt} = -eE_0\sin(\omega t)$$

$$y = C_e \sin(\omega t) + C_4 \cos(\omega t)$$

$$m\frac{dv_y}{dt} + mv_cv_y - eB\frac{dx}{dt} = 0$$

$$m\frac{\mathrm{d}v_y}{\mathrm{d}t} + mv_cv_y - \mathrm{eB}\frac{\mathrm{d}x}{\mathrm{d}t} = 0 \qquad C_1 = -\frac{eE_0}{2m} \left[\frac{\omega + \omega_c}{(\omega + \omega_c)^2 + v_c^2} + \frac{\omega - \omega_c}{(\omega - \omega_c)^2 + v_c^2} \right]$$

$$m\frac{\mathrm{d}\mathbf{v}_z}{\mathrm{d}\mathbf{t}} + m\mathbf{v}_c\mathbf{v}_z = \mathbf{0}$$

$$C_2 = -\frac{v_c e E_0}{2\omega m} \left[\frac{1}{(\omega + \omega_c)^2 + v_c^2} + \frac{1}{(\omega - \omega_c)^2 + v_c^2} \right]$$

$$v_z(t) = v_{z0} \exp(-v_c t)$$

$$C_3 = \frac{\omega_c(C_1\nu_c + C_2\omega)}{\omega^2 + {\nu_c}^2}$$
 $C_4 = -\frac{\omega_c(C_1\omega - C_2\nu_c)}{\omega^2 + {\nu_c}^2}$

The coupling efficient for capacitive RF with magnetic fields is less than DC electrical discharge

$$P = \frac{dW}{dt} = eE_0 \sin(\omega t) v_x$$

$$\bar{P}_{\text{tot}} = n_e \bar{P} = \frac{1}{4} \epsilon_0 E_0^2 \frac{n_e e^2}{m \epsilon_0} \nu_c \left[\frac{1}{(\omega + \omega_c)^2 + \nu_c^2} + \frac{1}{(\omega - \omega_c)^2 + \nu_c^2} \right]$$
$$= \frac{1}{4} \epsilon_0 E_0^2 \times \omega_{\text{pe}}^2 \nu_c \left[\frac{1}{(\omega + \omega_c)^2 + \nu_c^2} + \frac{1}{(\omega - \omega_c)^2 + \nu_c^2} \right]$$

• DC, unmagnetized discharge ($\omega=\omega_c=0$): $v_{*0}=\frac{2\omega_{\rm pe}^2}{v_c}$

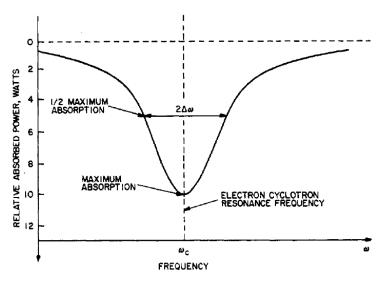
• Low collisionality ($\omega_c >> v_c$):

$$u_* \approx \nu_{*0} \nu_c^2 \left[\frac{\omega^2 + \omega_c^2}{(\omega^2 - \omega_c^2)^2} \right] \rightarrow \nu_{*0} \frac{{\nu_c}^2}{{\omega_c}^2} \ll \nu_{*0} \quad (\omega, \nu_c \ll \omega_c)$$

• High collisionality ($\omega_c \ll v_c$):

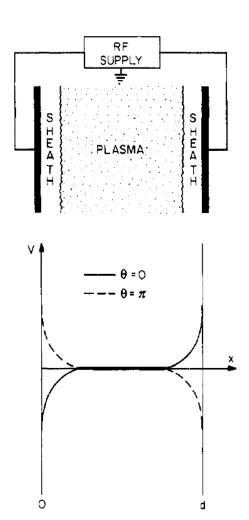
$$v_* \approx v_{*0} \frac{{v_c}^2}{\omega^2 + {v_c}^2} \approx v_{*0}(\omega, \omega_c << v_c)$$

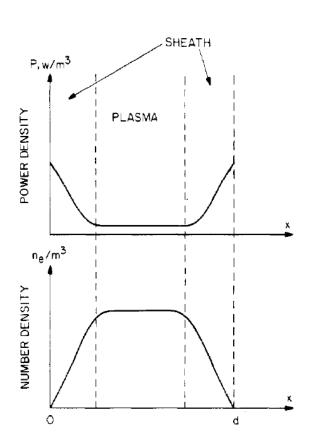
Resonant (ω=ω_c):


$$v_* = v_{*0} \frac{2\omega_c^2 + v_c^2}{4\omega_c^2 + v_c^2} \rightarrow \frac{1}{2}v_{*0}(\omega = \omega_c >> v_c)$$

Collision frequency can be measured using capacitive RF electrical discharges

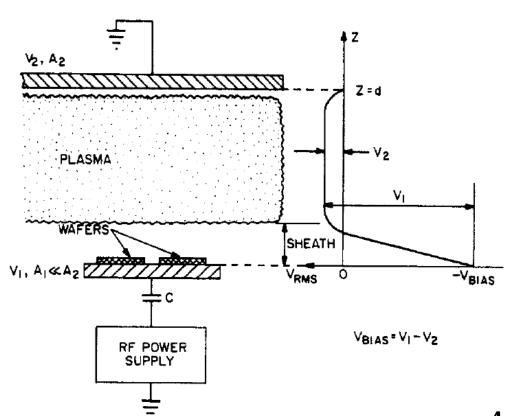
$$\bar{P}(\omega_c) = \frac{1}{4}\epsilon_0 E_0^2 \times \nu_{*0} \frac{2 + (\nu_c/\omega_c)^2}{4 + (\nu_c/\omega_c)^2} = \frac{1}{4}\epsilon_0 E_0^2 \times \nu_{*0} \frac{2 + \epsilon^2}{4 + \epsilon^2}$$


$$\begin{split} \bar{P}(\omega_c \pm \Delta \omega) &= \frac{1}{4} \epsilon_0 E_0^2 \times \frac{\nu_{*0}}{2} \left(\frac{\nu_c}{\omega_c} \right)^2 \left[\frac{1}{(2 \pm \Delta \omega/\omega_c)^2 + (\nu_c/\omega_c)^2} + \frac{1}{(\Delta \omega/\omega_c)^2 + (\nu_c/\omega_c)^2} \right] \\ &= \frac{1}{4} \epsilon_0 E_0^2 \times \frac{\nu_{*0}}{2} \epsilon^2 \left[\frac{1}{(2 \pm \delta)^2 + \epsilon^2} + \frac{1}{\delta^2 + \epsilon^2} \right] \text{ where } \delta \equiv \frac{\Delta \omega}{\omega_c}, \epsilon \equiv \frac{\nu_c}{\omega_c} \end{split}$$



For
$$\delta \approx \epsilon << 1$$
,
 $\bar{P}(\omega_c \pm \nu_c) = \frac{1}{2}\bar{P}(\omega_c)$

Symmetrical capacitive RF discharge model



Empirical scaling of electrode voltage drop

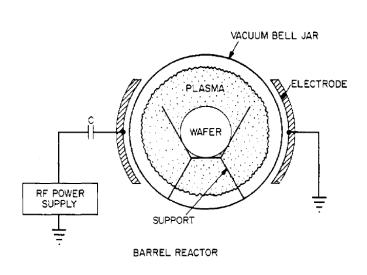
$$I_1 = A_1 J_1 = A_1 e n_{i1} \overline{v}_{i1}$$

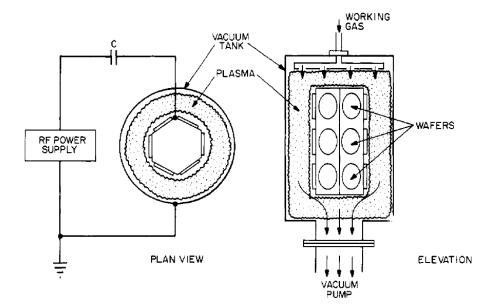
$$I_2 = A_2 J_2 = A_2 e n_{i2} \overline{v}_{i2}$$

$$\overline{v}_{i1} = \sqrt{\left(\frac{2eV_1}{m_i}\right)}$$

$$\overline{v}_{i2} = \sqrt{\left(\frac{2eV_2}{m_i}\right)}$$

Assuming: $I_1 = I_2$ $n_{i1} = n_{i2}$

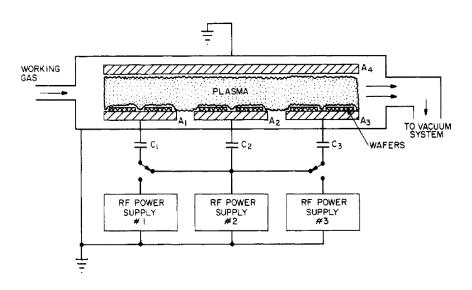

$$A_1en_{i1}\sqrt{\left(rac{2eV_1}{m_i}
ight)}=A_2en_{i2}\sqrt{\left(rac{2eV_2}{m_i}
ight)}$$


$$\frac{V_1}{V_2} = \left(\frac{A_2}{A_1}\right)^2$$

$$\frac{V_1}{V_2} = \left(\frac{A_2}{A_1}\right)^q$$
 where $1.0 \le q \le 2.5$

Example of capacitively coupled RF plasma source 1

- Barrier reactor the wafers float electrically and have low ion bombardment energies
- Hexagonal reactor the wafers develop a DC bias which leads to a relatively anisotropic, vertical etch.


Example of capacitively coupled RF plasma source 2

Plane parallel reactor

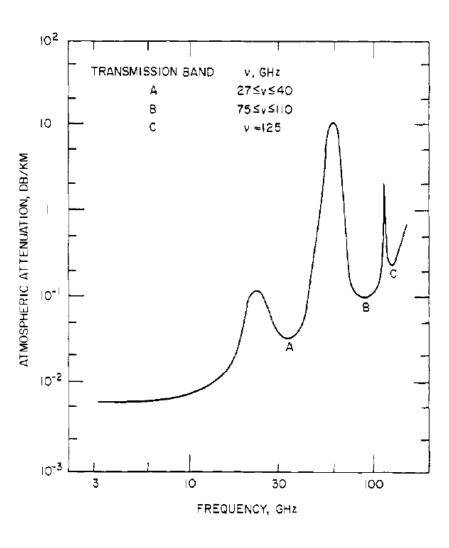
Multiple electrode system

Operating regimes of capacitively coupled plasma reactors used for plasma processing

Parameter	Low value	Typical value	High value
Frequency	1 kHz	13.56 MHz	100 MHz
Gas pressure	3 mTorr	300 mTorr	5 Torr
Power level	50 W	$\approx 200 \text{ W}$	500 W
rms electrode voltage	100 V	≈ 300 V	1000 V
Current density	0.1 mA/cm^2	$\approx 3 \text{ mA/cm}^2$	10 mA/cm ²
Electron temperature, $T_{\rm e}$	3 eV	$\approx 5 \text{ eV}$	8 eV
Electron density, n_e	$10^{15}/m^3$	$\approx 5 \times 10^{15}/\text{m}^3$	$3 \times 10^{17} / \text{m}^3$
Ion energy, \mathcal{E}_{i}	5 eV	50 eV	500 eV
Electrode separation, d	0.5 cm	4 cm	30 cm

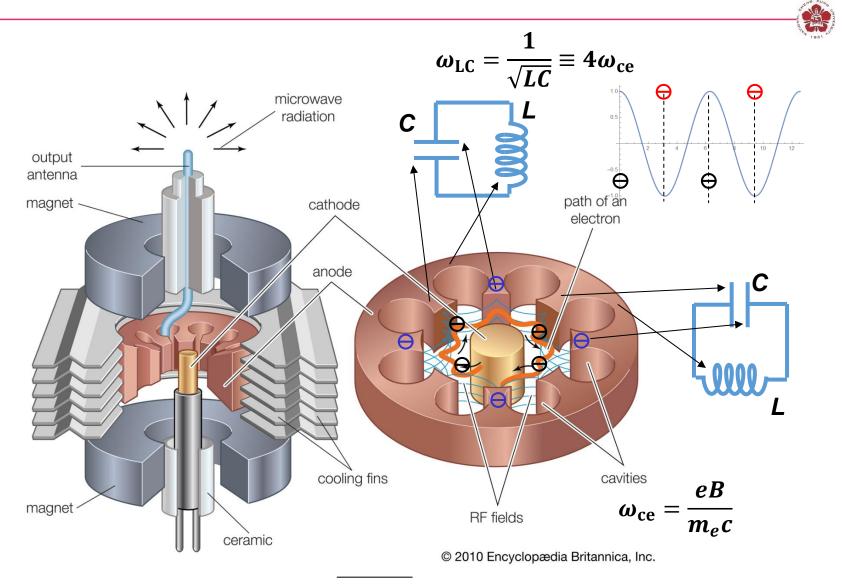
AC electrical discharges deliver energy to the plasma without contact between electrodes and the plasma

- DC electrical discharge a true current in the form of a flow of ions or electrons to the electrodes.
- AC electrical discharge the power supply interacts with the plasma by displacement current.
 - Inductive radio frequency (RF) electrical discharges
 - Capacitive RF electrical discharges
 - Microwave electrical discharges
 - Dielectric-barrier discharges (DBDs)
- Other mechanism
 - Laser produced plasma
 - Pulsed-power generated plasma

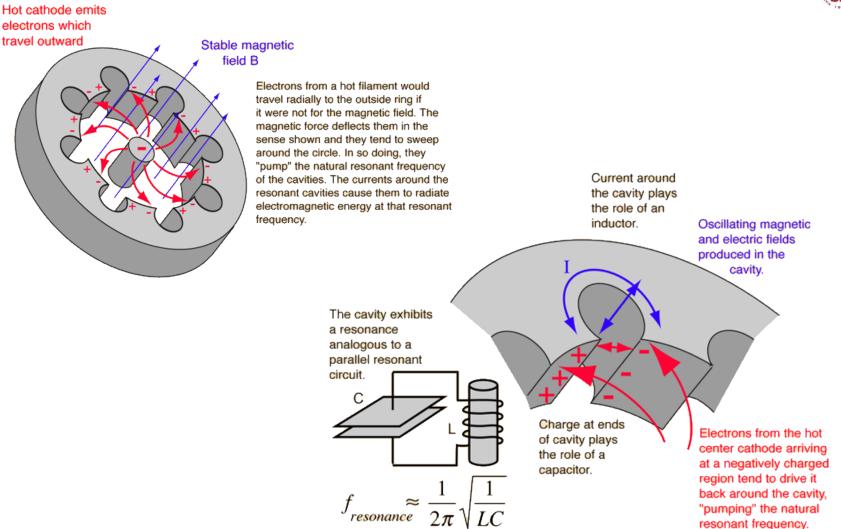

Advantage of using microwave electrical discharges


- The wavelength of the microwave is in centimeters range. In contract, the wavelength is 22 m for RF frequency f = 13.6 MHz.
- The electron number density can approach the critical number density. (7x10¹⁶ m⁻³) at a frequency of 2.45 GHz.
- The plasma in microwave discharges is quasi-optical to microwave.
- Microwave-generated plasmas have a higher electron kinetic temperature (5 ~ 15 eV) than DC or low frequency RF-generated plasmas (1 or 2 eV).
- Capable of providing a higher fraction of ionization.
- Do not have a high voltage sheath.
- No internal electrodes.

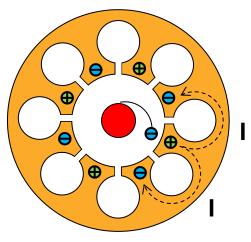
Microwave frequency is determined for those used in communications and radar purposes

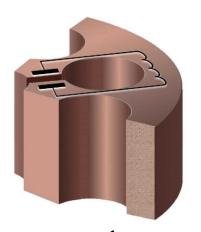


Internal of a magnetron

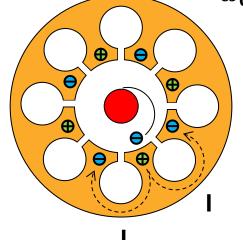


Internal of a magnetron

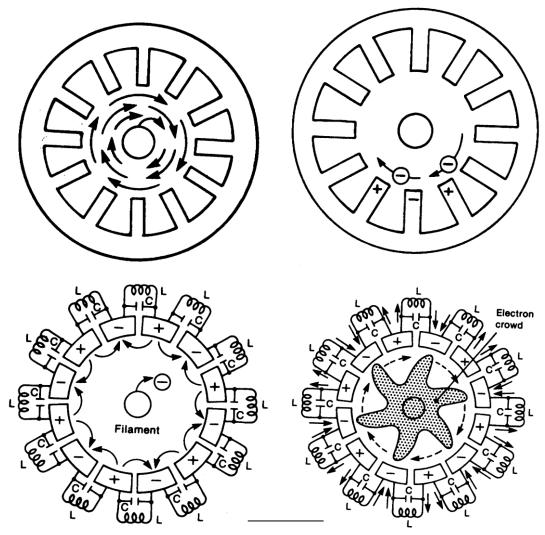

Magnetron is a forced oscillation driven by electrons between the gap



Strong oscillation occurs when the electron cyclotron frequency match the LC oscillation frequency

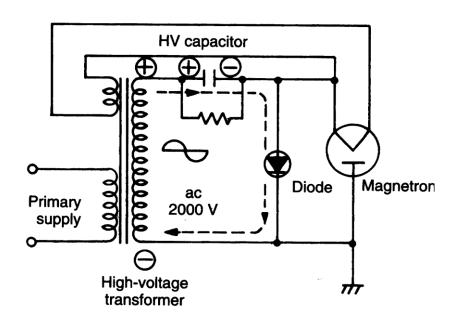


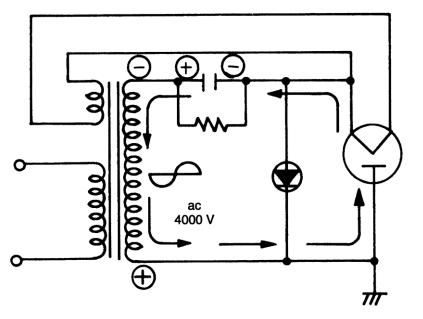
$$\omega_{\rm CE} = \frac{eB}{mc}$$


$$\omega = \frac{1}{\sqrt{LC}}$$

Resonance condition: $\omega_{CE} = \omega$

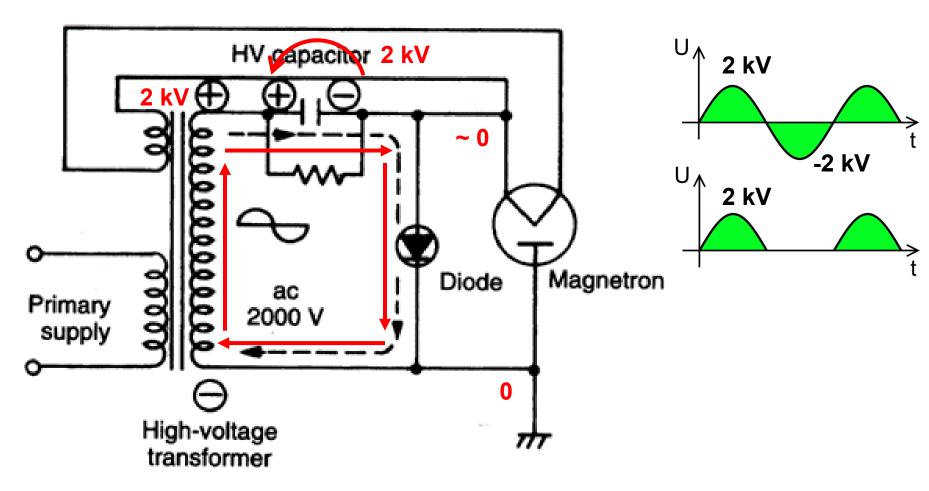
Resonance in a magnetron

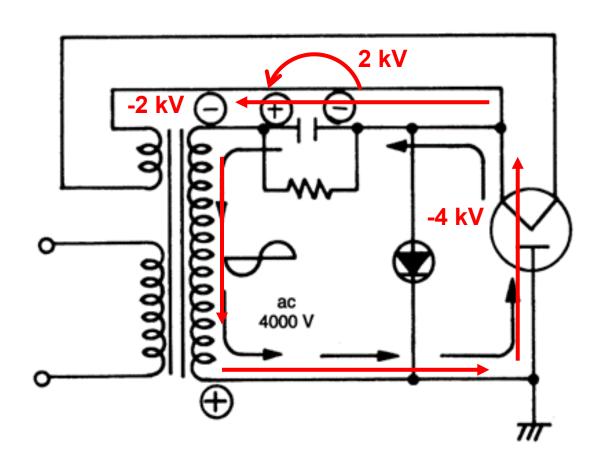


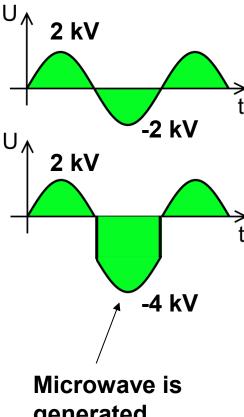


http://cdn.preterhuman.net/texts/government_information/intelligence_and_espionage/homebrew.military.and.espionage.electronics/servv89pn0aj.sn.sourcedns.com/_gbpprorg/mil/herf1/index.html

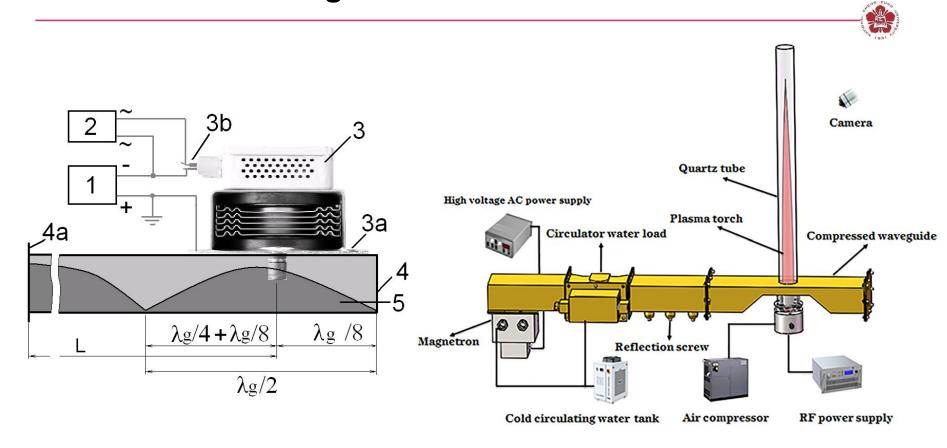
Magnetron schematic diagram

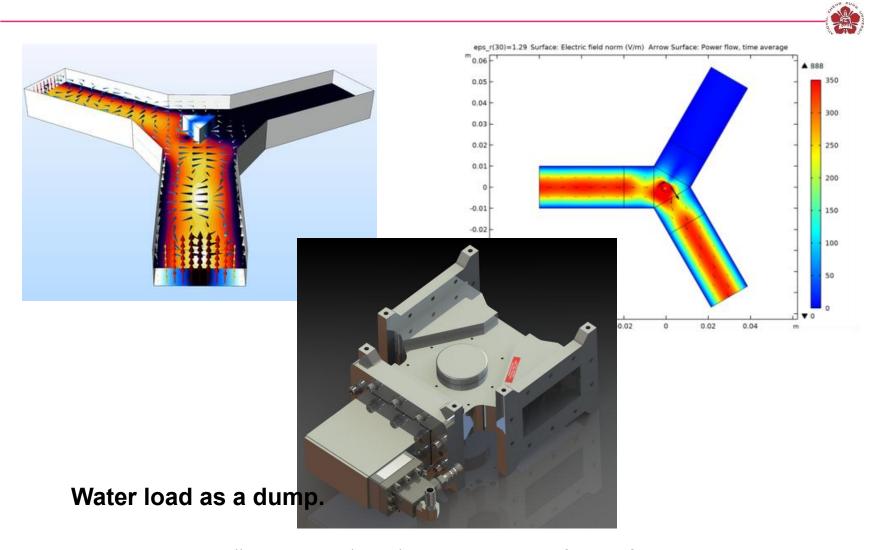



Magnetron schematic diagram



Magnetron schematic diagram

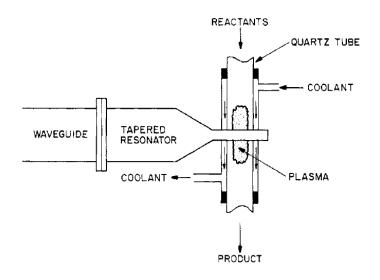


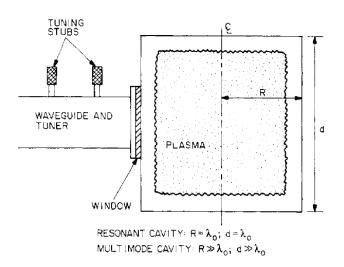

generated.

http://cdn.preterhuman.net/texts/government information/intelligence and espionage/homebrew.milit ary.and.espionage.electronics/servv89pn0aj.sn.sourcedns.com/_gbpprorg/mil/herf1/index.html

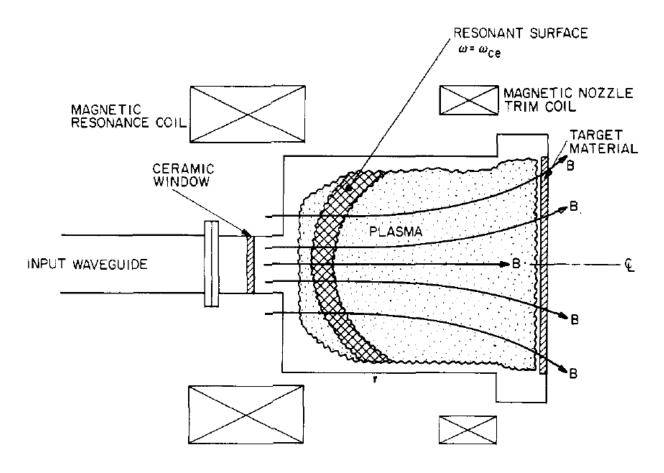
The electrode of the microwave source is located at the location with the highest electric field

A 3-port circulator combining with a dump can be used as a isolator


https://cn.comsol.com/model/impedance-matching-of-a-lossy-ferrite-3-port-circulator-10302 https://doc.comsol.com/6.0/doc/com.comsol.help.models.rf.circulator/circulator.html https://ferriteinc.com/high-power-microwave-circulators-isolators/wr340-waveguide-s-band/


Microwave plasma reactor configurations

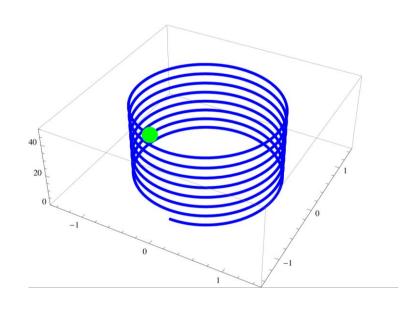
Waveguide coupled reactor


Resonant or multimode cavity –
if the impedance matching is
good, more energy can be fed
into the cavity.

Strong absorption occurs when the frequency matches the electron cyclotron frequency

Electron cyclotron resonance (ECR) plasma reactor

Electron cyclotron frequency depends on magnetic field only



$$m_e \frac{d \overrightarrow{v}}{dt} = -\frac{e}{c} \overrightarrow{v} \times \overrightarrow{B}$$

• Assuming $\overrightarrow{B} = B\widehat{z}$ and the electron oscillates in x-y plane

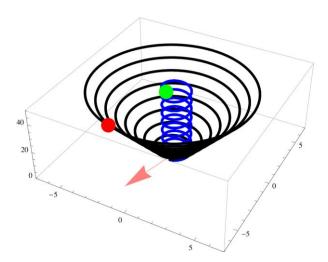
$$m_e v_x = -\frac{e}{c} B v_y$$
 $m_e v_z = 0$
 $m_e v_y = \frac{e}{c} B v_x$

$$\ddot{v}_{x} = -\frac{eB}{m_{e}c}\dot{v}_{y} = -\left(\frac{eB}{m_{e}c}\right)^{2}v_{x}$$
$$\ddot{v}_{y} = -\frac{eB}{m_{e}c}\dot{v}_{x} = -\left(\frac{eB}{m_{e}c}\right)^{2}v_{y}$$

Therefore

$$\omega_{\mathrm{ce}} = \frac{eB}{m_e c}$$

Electrons keep getting accelerated when a electric field rotates in electron's gyrofrequency

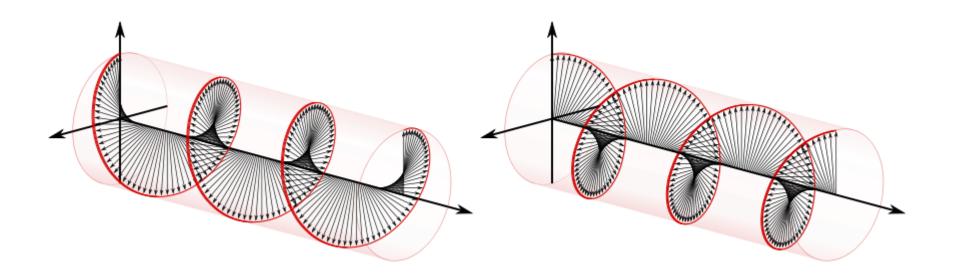

$$m_e \frac{d \vec{v}}{dt} = -\frac{e}{c} \vec{v} \times \vec{B} - e \vec{E} \qquad \vec{B} = B_0 \hat{z} \qquad \vec{E} = E_0 [\hat{x} \cos(\omega t) + \hat{y} \sin(\omega t)]$$

$$m_e \dot{v}_x = -\frac{e}{c}Bv_y + E_0\cos(\omega t)$$
 $m_e \dot{v}_y = \frac{e}{c}Bv_x + E_0\sin(\omega t)$ $m_e \dot{v}_z = 0$

$$\ddot{v}_x = -\frac{eB}{m_e c}\dot{v}_y - \frac{E_0}{m_e}\omega\sin(\omega t) = -\omega_{ce}^2 v_x - \frac{E_0}{m_e}(\omega_{ce} + \omega)\sin(\omega t)$$

$$\ddot{v}_y = -\frac{eB}{m_e c}\dot{v}_x + \frac{E_0}{m_e}\omega\cos(\omega t) = -\omega_{ce}^2 v_y + \frac{E_0}{m_e}(\omega_{ce} + \omega)\cos(\omega t)$$

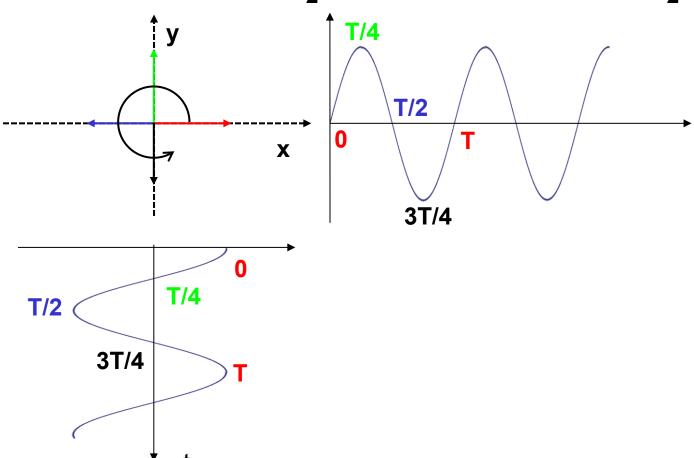
$$\omega_{\rm ce} = \frac{eB}{m_e c}$$



Electric field in a circular polarized electromagnetic wave keeps rotating as the wave propagates

Right-handed polarization

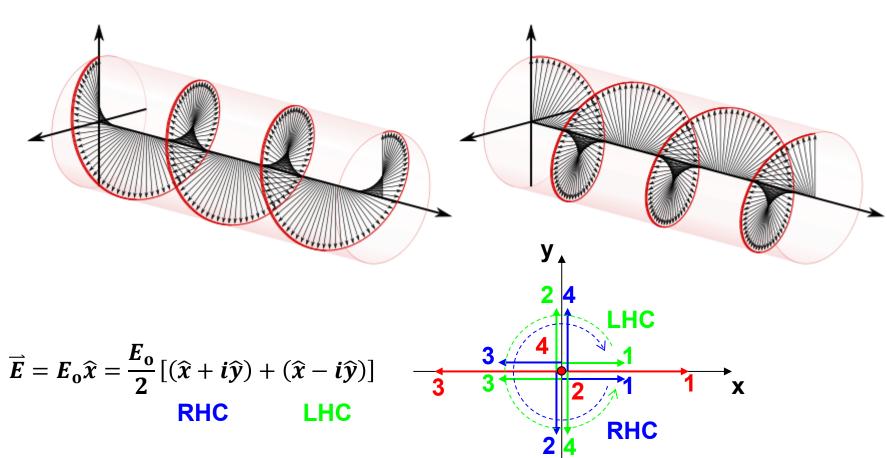
Left-handed polarization



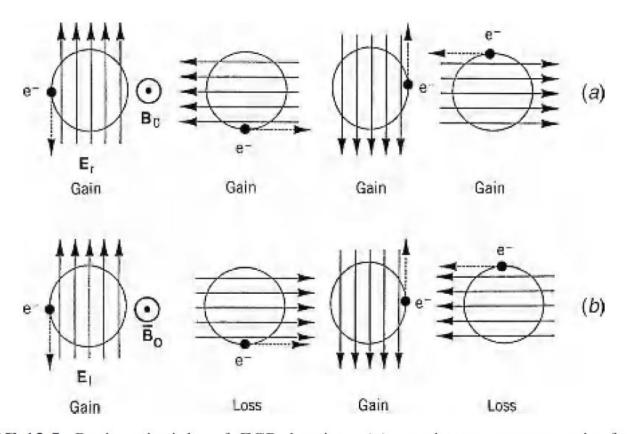
Electric field rotates in a circular polarization

$$E_{\rm x} = E_{\rm o} \exp(-i\omega t)$$

$$E_{y} = \pm iE_{x} = iE_{0}\exp(-i\omega t) = E_{0}\exp\left(\pm i\frac{\pi}{2}\right)\exp(-i\omega t) = E_{0}\exp\left[-i\left(\omega t \pm \frac{\pi}{2}\right)\right]$$



A linear polarized wave can be decomposed by a lefthanded and a right-handed polarized wave


Right-handed polarization

Left-handed polarization

Only right-handed polarization can resonance with electron's gyromotion

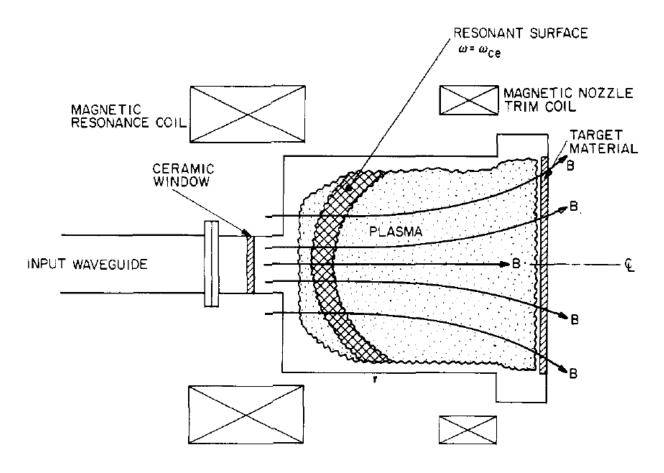
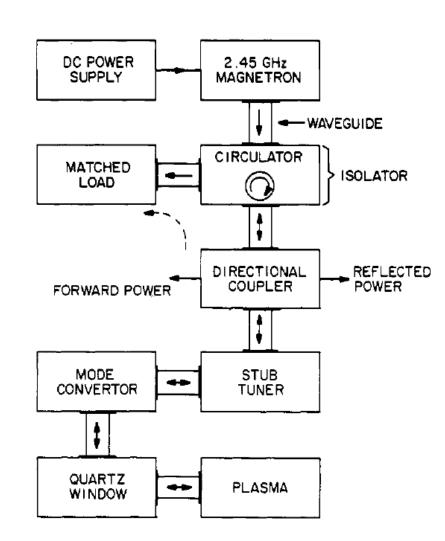
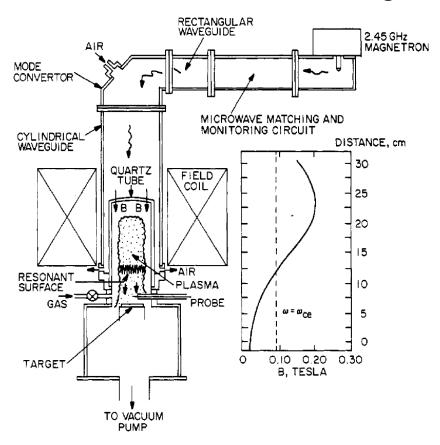


FIGURE 13.5. Basic principle of ECR heating: (a) continuous energy gain for right-hand polarization; (b) oscillating energy for left-hand polarization (after Lieberman and Gottscho, 1994).


Strong absorption occurs when the frequency matches the electron cyclotron frequency

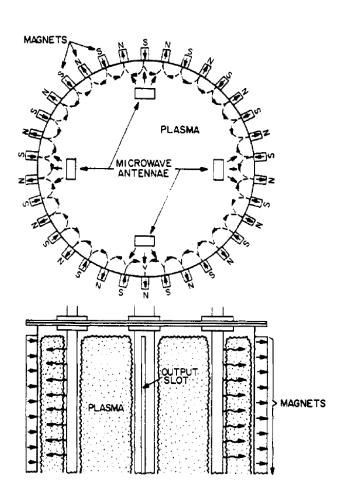
Electron cyclotron resonance (ECR) plasma reactor

Electron cyclotron resonance (ECR) microwave systems

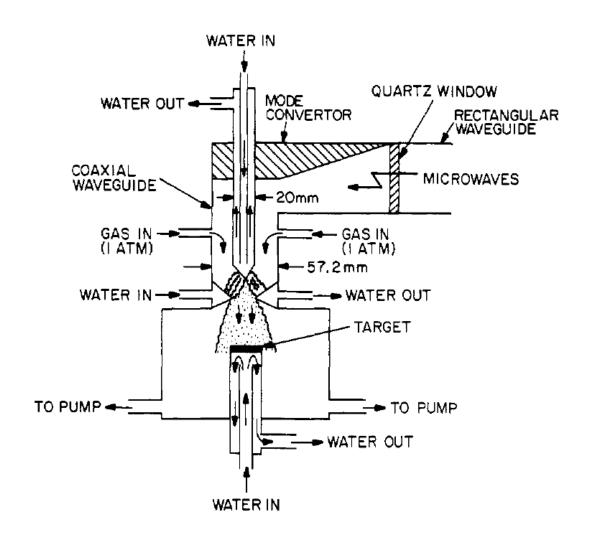


microwave systems

Immersed ECR plasma source



- High particle fluxes on targets for diamond or other thin film deposition
- The ions in the plasma flux can be used for etching.


Distributed ECR system

- Function of the multipolar magnetic field at the tank boundary:
 - Provide a resonant surface for ECR absorption
 - Improve the confinement of the plasma

Microwave plasma torch deposit a much faster rate than other types of plasma source for diamond film deposition

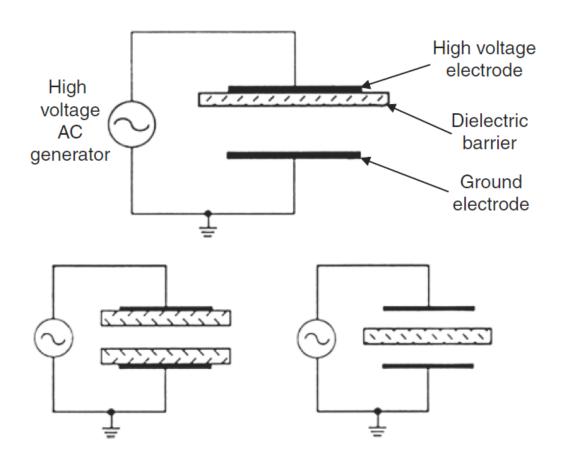
Microwave-generated plasmas have the capability of filling very large volumes with moderately high density

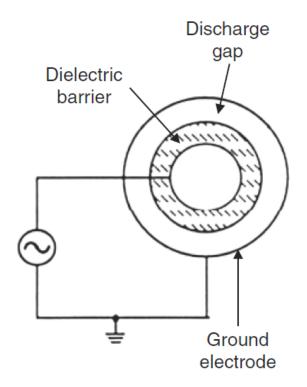
Advantages

- Lower neutral gas pressure, i.e., longer ion and neutral mean free paths.
- Higher fraction ionize.
- Higher electron density.

Disadvantages

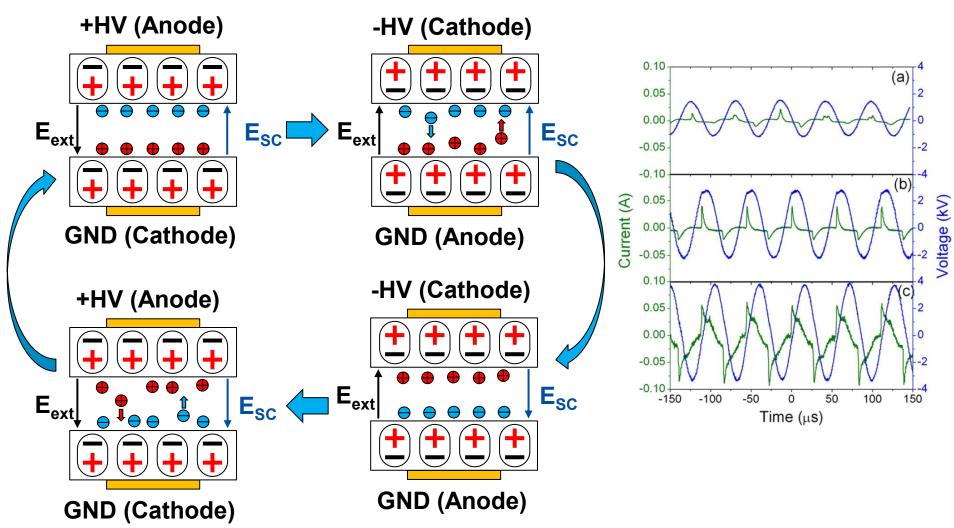
- Lower ion bombardment energies.
- Less control of the bombarding ion energy.
- Difficult in tuning up and achieving efficient coupling.
- Much more difficult and expensive to make uniform over a large area.
- More expensive.


AC electrical discharges deliver energy to the plasma without contact between electrodes and the plasma

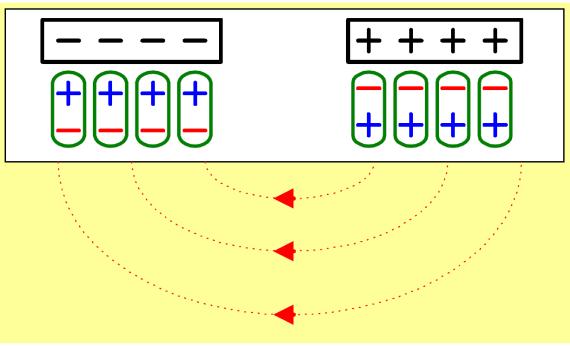


- DC electrical discharge a true current in the form of a flow of ions or electrons to the electrodes.
- AC electrical discharge the power supply interacts with the plasma by displacement current.
 - Inductive radio frequency (RF) electrical discharges
 - Capacitive RF electrical discharges
 - Microwave electrical discharges
 - Dielectric-barrier discharges (DBDs)
- Other mechanism
 - Laser produced plasma
 - Pulsed-power generated plasma

Dielectric-barrier discharges (DBDs)

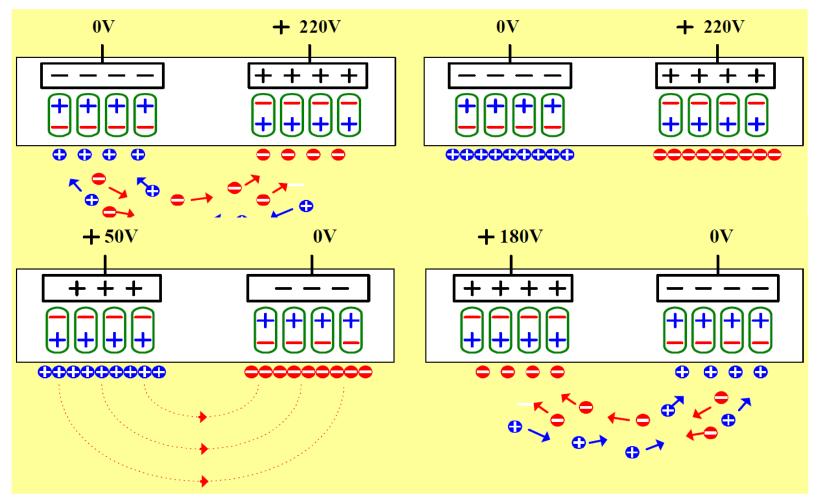


Space charge effect enhance the electric field

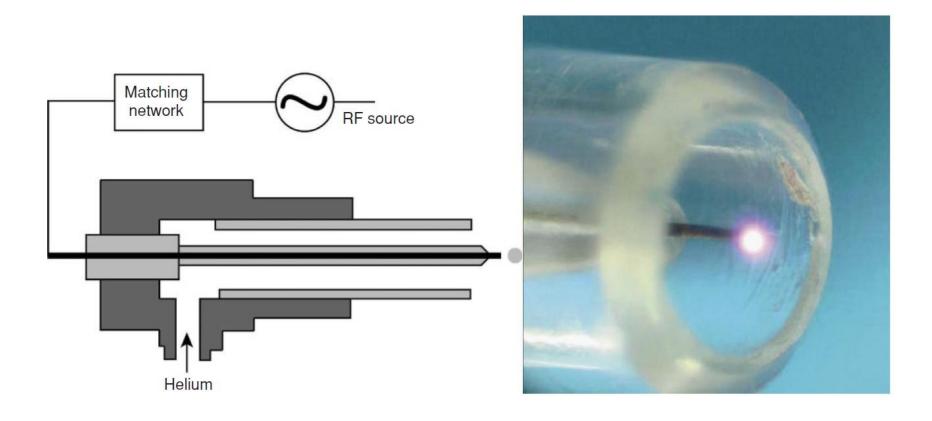


J. L. Walsh, et al., J. Phys. D: Appl. Phys., 43, 075201 (2010)

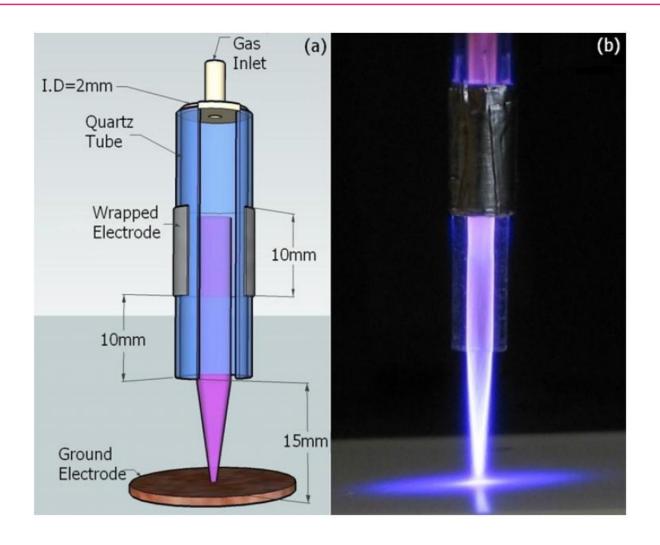
The foundation of AC discharge in plasma display panel

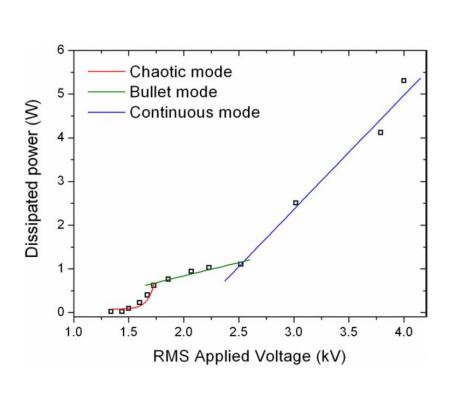


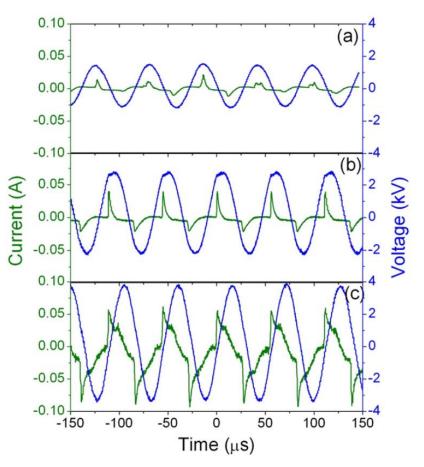
The plasma can be sustained using ac discharged in plasma display panel



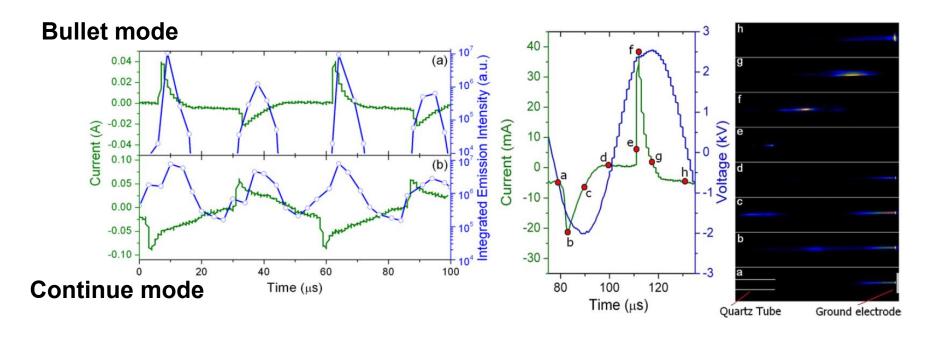
Wall discharge reduced the required discharge voltage


Plasma-needle discharge


Atmospheric-pressure cold helium microplasma jets



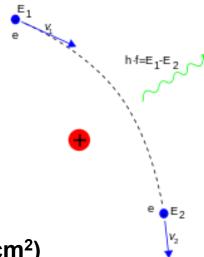
There are three different modes: chaotic, bullet, and continuous mode



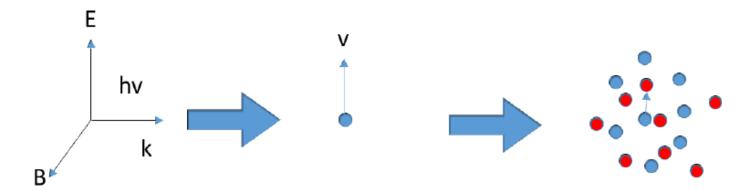
In bullet mode, the plasma jet comes out as a pulse

 wavelength-integrated optical emission signal (350–800 nm) Images of bullet mode

AC electrical discharges deliver energy to the plasma without contact between electrodes and the plasma



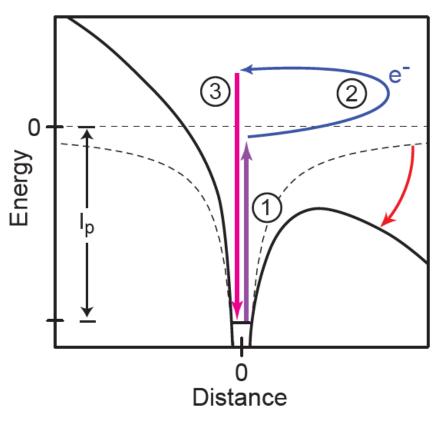
- DC electrical discharge a true current in the form of a flow of ions or electrons to the electrodes.
- AC electrical discharge the power supply interacts with the plasma by displacement current.
 - Inductive radio frequency (RF) electrical discharges
 - Capacitive RF electrical discharges
 - Microwave electrical discharges
 - Dielectric-barrier discharges (DBDs)
- Other mechanism
 - Laser produced plasma
 - Pulsed-power generated plasma


Laser is absorbed in underdense plasma through collisional process called inverse bremsstrahlung

Bremsstrahlung

Inverse bremsstrahlung (For I < 10¹⁸ w/cm²)


Electrons accelerated by electric fields


Electrons collide with other electrons / ions

Electric field of a high-power laser can perturb the potential of a nuclear and thus ionize the atom directly

For I ~ 10¹⁴ ~ 10¹⁶ w/cm²

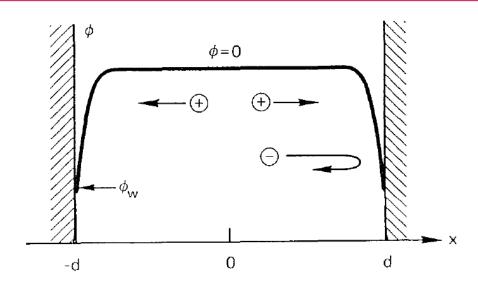
 $E_{\rm cutoff} \approx I_{\rm p} + 3.17 U_{\rm p}$ $I_{\rm p}$: ionization potential $U_{\rm p}$: ponderomotive energy

M. Krüger, etc., Appl. Sci. 9, 378 (2019) Robert Boyd. Nonlinear optics.

AC electrical discharges deliver energy to the plasma without contact between electrodes and the plasma

- DC electrical discharge a true current in the form of a flow of ions or electrons to the electrodes.
- AC electrical discharge the power supply interacts with the plasma by displacement current.
 - Inductive radio frequency (RF) electrical discharges
 - Capacitive RF electrical discharges
 - Microwave electrical discharges
 - Dielectric-barrier discharges (DBDs)
- Other mechanism
 - Laser produced plasma
 - Pulsed-power generated plasma it will be introduced later.

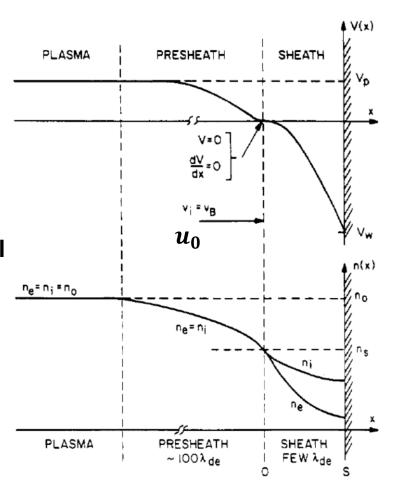
Diagnostics


- Single/double Langmuir probe n_e, T_e
- Interferometer n_e
- Schlieren dn_e/dx
- Faraday rotator B
- Bdot probe B
- Charged particle B
- Spectroscopy T_e, n_e
- Thomson scattering T_e, n_e, T_i, n_i
- Faraday cup dn_i/dt
- Retarding Potential Analyzer v_i

- Intensified CCD 2D image
- Framing camera 2D image
- Streak camera 1D image
- VISAR shock velocity
- Neutron time of fligh (NToF)
 - Neutron yield, T_i
- Thomson parabola e/m
- Stimulated brillouin scattering
 - Laser pulse compression

All plasmas are separated from the walls surrounding them by a sheath

- When ions and electrons hit the wall, they recombine and are lost.
- Since electrons have much higher thermal velocities than ions, they are lost faster and leave the plasma with a net positive charge.
- Debye shielding will confine the potential variation to a layer of the order of several Debye lengths in thickness.
- A potential barrier is formed to confine electrons electrostatically.
- The flux of electrons is just equal to the flux of ions reaching the wall.


The potential variation in a plasma-wall system can be divided into three parts

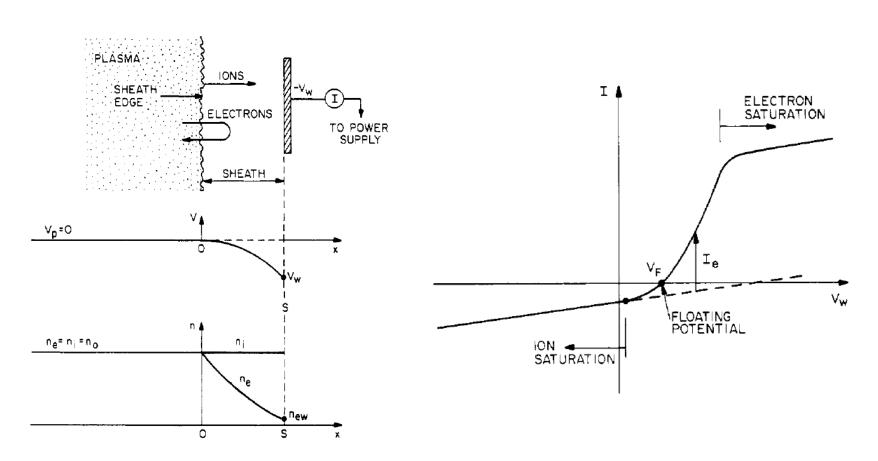
Sheath:

- ~Debye length, n_e is appreciable.
- A dark layers where no electrons were present to excite atoms to emission.
- It has been measured by the electrostatic deflection of a thin electron beam shot parallel to a wall
- Presheath: ions are accelerated to the required velocity u₀ by a potential drop

$$|\phi| \geq \frac{1}{2} \frac{KT_e}{e} .$$

$$\frac{1}{2}m{u_0}^2 = |e\phi|, \ m{u_0}^2 > KT_e$$

Electrostatic probes


 The electron current can be neglected if the probe is sufficiently negative relative to the plasma to repel most electrons.

$$mu_0^2 > KT_e$$
 $J = enu$ $I = n_s eA \left(\frac{KT_e}{m}\right)^{1/2}$ $|\phi| \simeq \frac{1}{2} \frac{KT_e}{e}$ $n_s = n_0 \exp\left(\frac{e\phi}{KT_e}\right) = n_0 e^{-1/2} = 0.61 n_0$ Bohm current: $I_B \simeq 0.5 n_0 eA \left(\frac{KT_e}{m}\right)^{1/2}$

The plasma density can be obtained once the temperature is known.

A plasma sheaths is formed when plasma is contact to a surface

Floating voltage is determined when ion flux is balanced by electron flux

Wall flux of ions:

$$\Gamma_i = \frac{1}{4} n_0 \bar{v}_i = n_0 \sqrt{\frac{8KT_i}{\pi m_i}}$$

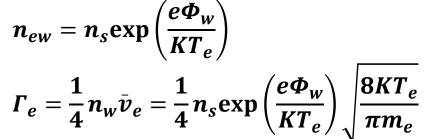
Wall flux of electrons due to random motion:

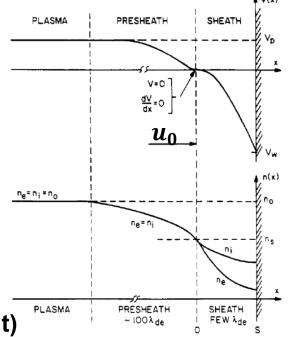
$$n_{ew}=n_0 ext{exp}\left(rac{eoldsymbol{\Phi}_w}{KT_e}
ight)$$
 (Boltzman equation) $\Gamma_e=rac{1}{4}n_{ew}ar{v}_e=n_0 ext{exp}\left(rac{eoldsymbol{\Phi}_w}{KT_e}
ight)\sqrt{rac{8KT_e}{\pi m_e}}$

Balance between electron and ion flux (current)

$$I = eA(\Gamma_i - \Gamma_e) = 0$$

$$\boldsymbol{\Phi}_{w} = -\frac{KT_{e}}{2e}\ln\left(\frac{m_{i}T_{e}}{m_{e}T_{i}}\right)$$

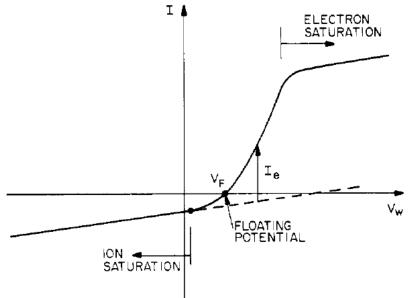

Floating voltage can also be calculated using Bohm's velocity



Wall flux of ions using Bohm's velocity:

$$u_0 = \sqrt{\frac{KT_e}{m_i}} \qquad \Gamma_i = n_s u_0$$

Wall flux of electrons due to random motion:


Balance between electron and ion flux (current)

$$I = eA(\Gamma_i - \Gamma_e) = 0$$

$$\Phi_{wB} = -\frac{KT_e}{2e} \ln \left(\frac{m_i}{2\pi m_e} \right) \quad \Longleftrightarrow \quad \Phi_w = -\frac{KT_e}{2e} \ln \left(\frac{m_i T_e}{m_e T_i} \right)$$

Electron temperature can be determined by the slope of the I-V curve between ion and electron saturation

Ion saturation current:

$$I_{is} = AJ_{is} = eA\Gamma_{is}$$

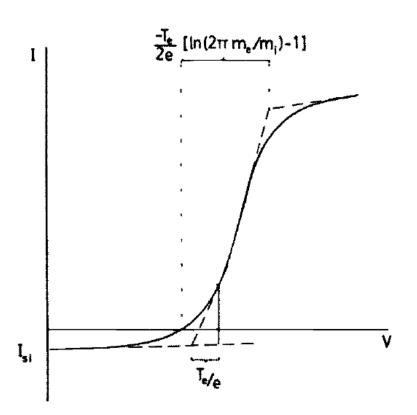
$$= eA\frac{1}{4}n_i\bar{v}_i$$

$$= \frac{eAn_i}{4}\sqrt{\frac{8KT_i}{\pi m_i}}$$
 $n_i = \frac{4I_{is}}{eA}\sqrt{\frac{\pi m_i}{8KT_i}}$

$$n_i = \frac{4I_{is}}{eA} \sqrt{\frac{\pi m_i}{8KT_i}}$$

• Total current:
$$I = I_{is} + I_e = I_{is} + \frac{1}{4} n_s \exp\left(\frac{eV}{KT_e}\right) \bar{v}_e eA$$
 $V \equiv \Phi$

Assuming: $\frac{dI_{is}}{dV} \ll \frac{dI}{dV}$


$$\frac{dI}{dV} = \frac{dI_{is}}{dV} + \frac{1}{4} \frac{e}{KT_e} n_s \exp\left(\frac{eV}{KT_e}\right) \bar{v}_e eA = \frac{dI_{is}}{dV} + \frac{e}{KT_e} I_e = \frac{dI_{is}}{dV} + \frac{e}{KT_e} (I - I_{is})$$

$$\approx \frac{e}{KT_e} (I - I_{is})$$

$$T_e = \frac{e(I - I_{is})}{dV/dV}$$

Electron temperature can be obtained alternatively by finding the slope of I-V curve in Log-Linear plot

Electron saturation

$$V = V_p$$
 $I_{es} = \frac{1}{4} n_s \exp\left(\frac{eV_p}{KT_e}\right) \bar{v}_e eA$

$$I = I_e + I_{is} \approx I_{es} = \frac{1}{4} n_s \exp\left(\frac{eV}{KT_e}\right) \bar{v}_e eA$$

$$= \frac{1}{4} n_s \exp\left(\frac{eV - eV_p + eV_p}{KT_e}\right) \bar{v}_e eA$$

$$= \frac{1}{4} n_s \exp\left(\frac{eV_p}{KT_e}\right) \exp\left(e\frac{V - V_p}{KT_e}\right) \bar{v}_e eA$$

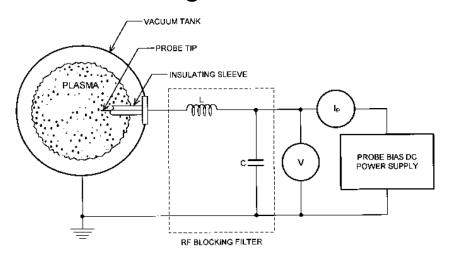
$$= I_{es} \exp\left(e\frac{V - V_p}{KT_e}\right)$$

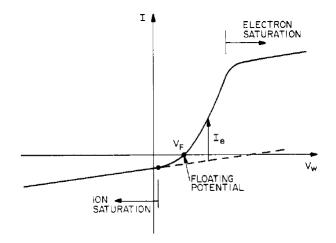
$$T_e = \frac{e(V - V_p)}{K(\ln I_{es} - \ln I)}$$

Plasma density can be obtained by finding the electron saturation current

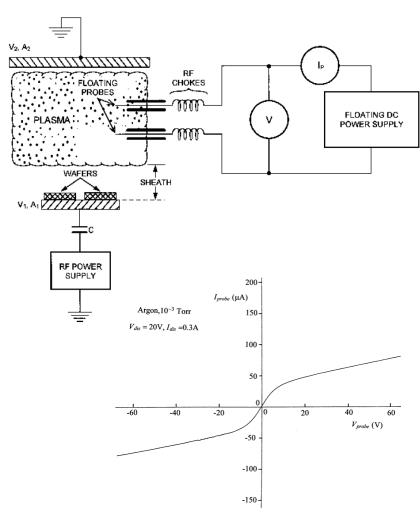
$$I_{\mathrm{es}} = \frac{1}{4} n_{s} \exp\left(\frac{\mathrm{eV}_{p}}{KT_{e}}\right) \bar{v}_{e} \mathrm{eA}$$

$$= \frac{1}{4} n_{0} \mathrm{eA} \sqrt{\frac{8KT_{e}}{\pi m_{e}}}$$

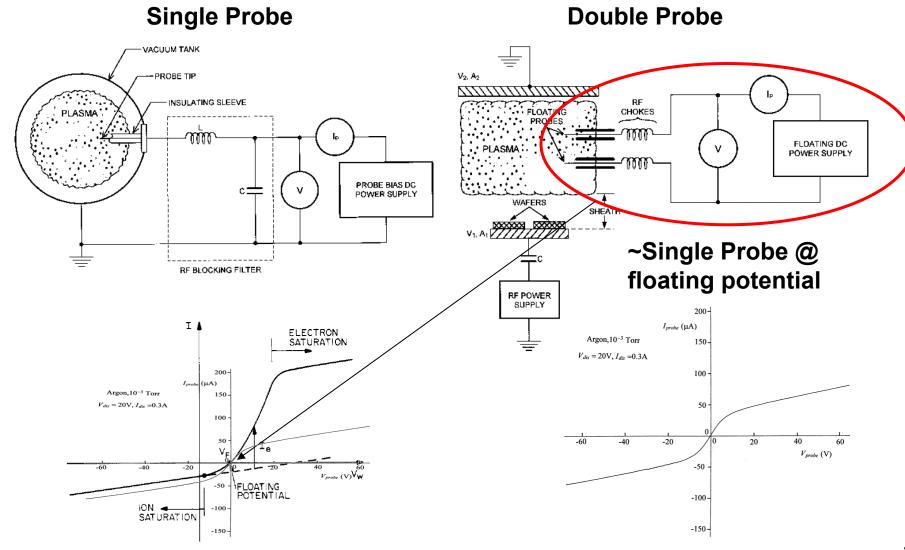

$$n_0 = \frac{4I_{\rm es}}{\rm eA} \sqrt{\frac{\pi m_e}{8KT_e}}$$



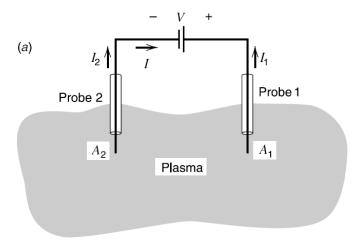
Two Langmuir probes can be operated simultaneously



Single Probe



Double Probe


Two Langmuir probes can be operated simultaneously

Double Langmuir probe is not disturbed by the discharge

$$I \downarrow I_{2i} I_{2i} I_{2i}$$

$$I \downarrow I_{1i} I_{2i} I_{2i}$$

$$I \downarrow I_{1i} I_{2i} I_{2i}$$

$$I = I_{1e} - I_{1i} = I_{2i} - I_{2e}$$

$$I_{1e} = A_1 \frac{\bar{v}_e e}{4} n_s \exp\left(\frac{eV_1}{KT_e}\right)$$

$$I_{2e} = A_2 \frac{\bar{v}_e e}{4} n_s \exp\left(\frac{eV_2}{KT_e}\right)$$

$$I_{1e} = I + I_{1i}$$
 $I_{2e} = I_{2i} - I$

$$\frac{I + I_{1i}}{I_{2i} - I} = \frac{A_1}{A_2} \exp\left(\frac{e(V_1 - V_2)}{KT_e}\right)$$

$$= \frac{A_1}{A_2} \exp\left(\frac{eV}{KT_e}\right)$$

$$I = I_i \tanh\left(\frac{eV}{2KT_e}\right)$$
 $\frac{dI}{dV}|_{v=0} = \frac{eI_i}{2KT_e}$

• The net current never exceeds the ion saturation current, minimizing the disturbance to the discharge.

An electromagnetic wave is described using Maxwell's equation

$$\begin{cases}
\nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{B} &= \mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}
\end{cases}$$

$$\nabla \times \left(\nabla \times \vec{E}\right) = -\frac{\partial}{\partial t} \left(\nabla \times \vec{B}\right) = -\frac{\partial}{\partial t} \left(\mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}\right)$$

Conductivity: $\vec{j} = \overleftarrow{\sigma} \cdot \vec{E}$

$$\nabla \times \left(\nabla \times \vec{E} \right) = -\frac{\partial}{\partial t} \left(\nabla \times \vec{E} \right) = -\frac{\partial}{\partial t} \left(\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Plane wave:
$$\vec{E} = \vec{E} \exp \left[i \left(\vec{k} \cdot \vec{x} - \omega t \right) \right]$$

$$i\vec{k} \times \left(i\vec{k} \times \vec{E}\right) = i\omega \left(\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} - i\omega\epsilon_0\mu_0\vec{E}\right)$$

An electromagnetic wave is described using Maxwell's equation

$$\begin{cases}
\nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{B} &= \mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}
\end{cases}$$

$$\nabla \times \left(\nabla \times \vec{E}\right) = -\frac{\partial}{\partial t} \left(\nabla \times \vec{B}\right) = -\frac{\partial}{\partial t} \left(\mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}\right)$$

Conductivity: $\vec{j} = \overleftarrow{\sigma} \cdot \vec{E}$

$$\nabla \times \left(\nabla \times \vec{E} \right) = -\frac{\partial}{\partial t} \left(\nabla \times \vec{E} \right) = -\frac{\partial}{\partial t} \left(\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Plane wave: $\vec{E} = \vec{E} \exp \left[i \left(\vec{k} \cdot \vec{x} - \omega t \right) \right]$

$$i\vec{k} \times \left(i\vec{k} \times \vec{E}\right) = i\omega \left(\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} - i\omega\epsilon_0\mu_0\vec{E}\right)$$

Dispersion relation is determined by the determinant of the matrix of coefficient

$$-\vec{k}\times\left(\vec{k}\times\vec{E}\right) \ = \ -\left[\left(\vec{k}\cdot\vec{E}\right)\vec{k}-\left(\vec{k}\cdot\vec{k}\right)\vec{E}\right] = -\left(\vec{k}\colon\vec{k}\right)\vec{E} + k^2\vec{E}$$

$$i\omega\left(\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} - i\omega\epsilon_0\mu_0\vec{E}\right) = i\omega\left(\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} - \frac{i\omega}{c^2}\vec{E}\right) = \frac{\omega^2}{c^2} \left[-\frac{c^2}{i\omega}\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} + \vec{E}\right]$$
$$= \frac{\omega^2}{c^2} \left(\overleftrightarrow{1} + \frac{i}{\omega\epsilon_0} \overleftrightarrow{\sigma}\right) \vec{E} \equiv \frac{\omega^2}{c^2} \overleftrightarrow{\varepsilon} \vec{E}$$

Dielectric tensor:
$$\overleftarrow{\varepsilon} \equiv \overleftarrow{1} + \frac{i}{\omega \epsilon_0} \overleftarrow{\sigma}$$

$$i\vec{k} \times \left(i\vec{k} \times \vec{E}\right) = i\omega \left(\mu_0 \overleftrightarrow{\sigma} \cdot \vec{E} - i\omega\epsilon_0\mu_0\vec{E}\right)$$

$$\left(\vec{k} : \vec{k} - k^2 \overleftrightarrow{1} + \frac{\omega^2}{c^2} \overleftrightarrow{\varepsilon}\right) \vec{E} = 0$$

$$\det\left(\vec{k} : \vec{k} - k^2 \overleftrightarrow{1} + \frac{\omega^2}{c^2} \overleftrightarrow{\varepsilon}\right) = 0$$

Two mode can propagate in the plasma

$$\det\left(\vec{k} : \vec{k} - k^2 \overleftarrow{1} + \frac{\omega^2}{c^2} \overleftarrow{\varepsilon}\right) = 0$$

Assuming the wave propagates along the z direction and isotropic medium:

$$\vec{k} = k\hat{z}$$

$$\Leftrightarrow = \varepsilon \overleftrightarrow{1}$$

$$\begin{pmatrix} -k^2 + \frac{\omega^2}{c^2} \varepsilon & 0 & 0\\ 0 & -k^2 + \frac{\omega^2}{c^2} \varepsilon & 0\\ 0 & 0 & \frac{\omega^2}{c^2} \varepsilon \end{pmatrix} = 0$$

$$\left(-k^2 + \frac{\omega^2}{c^2}\varepsilon\right)^2 \frac{\omega^2}{c^2}\varepsilon = 0$$

$$\frac{\omega^2}{c^2}\varepsilon = 0$$

$$\left(-k^2 + \frac{\omega^2}{c^2}\varepsilon\right)^2 = 0$$

Longitudinal wave

Transverse wave

The reflective index is determined by the dielectric

Longitudinal wave:

$$\frac{\omega^2}{c^2}\varepsilon = 0$$

$$\begin{pmatrix} -k^2 + \frac{\omega^2}{c^2} \varepsilon & 0 & 0 \\ 0 & -k^2 + \frac{\omega^2}{c^2} \varepsilon & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} E_{\mathbf{x}} \\ E_{\mathbf{y}} \\ E_{\mathbf{z}} \end{pmatrix} = 0 = \begin{pmatrix} \left(-k^2 + \frac{\omega^2}{c^2} \varepsilon \right) E_{\mathbf{x}} \\ \left(-k^2 + \frac{\omega^2}{c^2} \varepsilon \right) E_{\mathbf{y}} \\ 0 \end{pmatrix}$$

$$E_{\mathbf{x}} = E_{\mathbf{v}} = 0$$

Transverse wave:

$$\left(-k^2 + \frac{\omega^2}{c^2}\varepsilon\right)^2 = 0$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{\omega^2}{c^2} \varepsilon \end{pmatrix} \begin{pmatrix} E_{\mathbf{x}} \\ E_{\mathbf{y}} \\ E_{\mathbf{z}} \end{pmatrix} = 0$$

$$E_{\mathbf{z}} = 0$$

Reflective index:
$$n \equiv \frac{kc}{\omega} = \varepsilon^{1/2}$$

Conductivity tensor can be determined from equation of motion for electron

$$m_{e} \frac{\partial \vec{v}}{\partial t} = -e \left(\vec{E} + \vec{v} \times \vec{B} \right) \qquad \vec{v} = \vec{v} \exp \left[i \left(\vec{k} \cdot \vec{x} - \omega t \right) \right]$$

$$\begin{cases}
-i\omega m_{e} v_{x} &= -e E_{x} - e B_{0} v_{y} \\
-i\omega m_{e} v_{y} &= -e E_{y} + e B_{0} v_{x} \\
-i\omega m_{e} v_{z} &= -e E_{z}
\end{cases} \qquad \Omega \equiv \frac{e B_{0}}{m_{e}} \qquad \Sigma$$

$$\begin{cases}
v_{x} &= -\frac{ie}{\omega m_{e}} \frac{1}{1 - \Omega^{2} / \omega^{2}} \left(E_{x} - i \frac{\Omega}{\omega} E_{y} \right) & \vec{j} = -e n_{e} \vec{v}_{e} \equiv \vec{\sigma} \vec{E} \\
v_{y} &= -\frac{ie}{\omega m_{e}} \frac{1}{1 - \Omega^{2} / \omega^{2}} \left(i \frac{\Omega}{\omega} E_{x} + E_{y} \right) & \vec{j} = -e n_{e} \vec{v}_{e} \equiv \vec{\sigma} \vec{E} \\
v_{z} &= -\frac{ie}{\omega m_{e}} E_{z}
\end{cases}$$

$$\vec{\sigma} = -e n_{e} \left(\frac{-ie}{\omega m_{e}} \right) \frac{1}{1 - \Omega^{2} / \omega^{2}} \left(i \frac{1}{i \frac{\Omega}{\omega}} \frac{-i \frac{\Omega}{\omega}}{1} \frac{0}{0} \\
0 & 0 & 1 - \frac{\Omega^{2}}{\omega^{2}} \right)$$

$$= i \frac{n_{e} e^{2}}{\omega m_{e}} \frac{1}{1 - \Omega^{2} / \omega^{2}} \left(i \frac{\Omega}{\omega} \frac{1}{1} \frac{0}{0} \\
0 & 0 & 1 - \frac{\Omega^{2}}{\omega^{2}} \right)$$

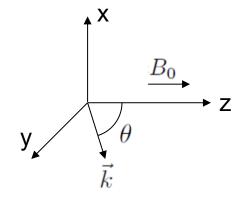
Dielectric tensor is obtained from conductivity tensor

$$\frac{i}{\omega\epsilon_{0}} \stackrel{\longleftrightarrow}{\longleftrightarrow} = -\frac{n_{e}e^{2}}{\epsilon_{0}m_{e}} \frac{1}{\omega^{2}} \frac{1}{1 - \Omega^{2}/\omega^{2}} \begin{pmatrix} 1 & -i\frac{\Omega}{\omega} & 0 \\ i\frac{\Omega}{\omega} & 1 & 0 \\ 0 & 0 & 1 - \frac{\Omega^{2}}{\omega^{2}} \end{pmatrix}$$

$$= -\frac{\omega_{p}^{2}}{\omega^{2} - \Omega^{2}} \begin{pmatrix} 1 & -i\frac{\Omega}{\omega} & 0 \\ i\frac{\Omega}{\omega} & 1 & 0 \\ 0 & 0 & 1 - \frac{\Omega^{2}}{\omega^{2}} \end{pmatrix}$$

$$\omega_{p}^{2} = \frac{n_{e}e^{2}}{\epsilon_{0}m_{e}}$$

$$= \begin{pmatrix} -\frac{\omega_{p}^{2}}{\omega^{2} - \Omega^{2}} & i\frac{\Omega}{\omega} \frac{\omega_{p}^{2}}{\omega^{2} - \Omega^{2}} & 0 \\ -i\frac{\Omega}{\omega} \frac{\omega_{p}^{2}}{\omega^{2} - \Omega^{2}} & -\frac{\omega_{p}^{2}}{\omega^{2} - \Omega^{2}} & 0 \\ 0 & 0 & -\frac{\omega_{p}^{2}}{\omega^{2}} \end{pmatrix}$$


Assuming the wave is on the yz plane

$$\text{let} \quad X \equiv \frac{\omega_{\mathrm{p}}^2}{\omega^2}$$

$$Y \equiv \frac{\Omega}{\omega}$$

$$\mathbf{let} \quad X \equiv \frac{\omega_{\mathrm{p}}^2}{\omega^2} \qquad Y \equiv \frac{\Omega}{\omega} \qquad \qquad \stackrel{\longleftrightarrow}{\varepsilon} \quad = \quad \left(\begin{array}{ccc} 1 - \frac{X}{1 - Y^2} & i \frac{XY}{1 - Y^2} & 0 \\ -i \frac{XY}{1 - Y^2} & 1 - \frac{X}{1 - Y^2} & 0 \\ 0 & 0 & 1 - X \end{array} \right)$$

$$\vec{k} = k \left(0, \sin \theta, \cos \theta \right)$$

$$k_{\mathbf{i}} = 0 , k_{\mathbf{j}} = k \sin \theta , k_{\mathbf{k}} = k \cos \theta$$

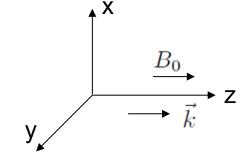
$$\vec{k} \colon \vec{k} = \begin{pmatrix} 0 \\ k \sin \theta \\ k \cos \theta \end{pmatrix} \cdot \begin{pmatrix} 0 & k \sin \theta & k \cos \theta \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sin^2 \theta & \sin \theta \cos \theta \\ 0 & \sin \theta \cos \theta & \cos^2 \theta \end{pmatrix}$$

$$n \equiv \frac{kc}{\omega} \qquad \qquad \frac{\omega^2}{c^2} \stackrel{\longleftrightarrow}{\varepsilon} = \frac{k^2 \omega^2}{k^2 c^2} \stackrel{\longleftrightarrow}{\varepsilon} = \frac{k^2}{n^2} \stackrel{\longleftrightarrow}{\varepsilon}$$

$$\det\left(\vec{k} : \vec{k} - k^2 \overleftarrow{1} + \frac{\omega^2}{c^2} \overleftarrow{\varepsilon}\right) = 0$$

Reflective index

$$\begin{vmatrix} -k^2 + \frac{k^2}{n^2} \left(1 - \frac{X}{1 - Y^2} \right) & i \frac{k^2}{n^2} \frac{XY}{1 - Y^2} & 0 \\ -i \frac{k^2}{n^2} \frac{XY}{1 - Y^2} & k^2 \sin^2 \theta - k^2 + \frac{k^2}{n^2} \left(1 - \frac{X}{1 - Y^2} \right) & k^2 \sin \theta \cos \theta \\ 0 & k^2 \sin \theta \cos \theta & k^2 \cos^2 \theta - k^2 + \frac{k^2}{n^2} \left(1 - X \right) \end{vmatrix} = 0$$


$$\begin{vmatrix} -n^2 + 1 - \frac{X}{1 - Y^2} & i \frac{XY}{1 - Y^2} & 0 \\ -i \frac{XY}{1 - Y^2} & -n^2 \cos^2 \theta + 1 - \frac{X}{1 - Y^2} & n^2 \sin \theta \cos \theta \\ 0 & n^2 \sin \theta \cos \theta & -n^2 \sin^2 \theta + 1 - X \end{vmatrix} = 0$$

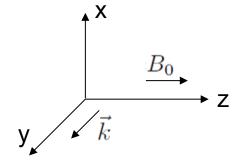
$$n^{2} = 1 - \frac{X(1-X)}{1 - X - \frac{1}{2}Y^{2}\sin^{2}\theta \pm \left[\left(\frac{1}{2}Y^{2}\sin^{2}\theta\right)^{2} + (1-X)^{2}Y^{2}\cos^{2}\theta\right]^{1/2}}$$

Wave is circular polarized propagating along the magnetic field

• Parallel to $\mathbf{B_0} \quad (\theta = 0)$

$$n^2 = 1 - \frac{X \left(1 - X \right)}{1 - X \pm \left[\left(1 - X \right)^2 Y^2 \right]^{1/2}} = 1 - \frac{X}{1 \pm Y} = 1 - \frac{\omega_{\rm p}^2 / \omega^2}{1 \pm \Omega / \omega} = 1 - \frac{\omega_{\rm p}^2}{\omega \left(\omega \pm \Omega \right)}$$

$$\begin{pmatrix} -n^2 + 1 - \frac{X}{1 - Y^2} & i\frac{XY}{1 - Y^2} & 0 \\ -i\frac{XY}{1 - Y^2} & -n^2\cos^2\theta + 1 - \frac{X}{1 - Y^2} & 0 \\ 0 & 0 & 1 - X \end{pmatrix} \begin{pmatrix} E_{\mathbf{x}} \\ E_{\mathbf{y}} \\ E_{\mathbf{z}} \end{pmatrix} = 0$$


$$\left(-n^2 + 1 - \frac{X}{1 - Y^2}\right)E_{\mathbf{x}} + i\frac{XY}{1 - Y^2}E_{\mathbf{y}} = \frac{\mp XY}{1 - Y^2}E_{\mathbf{x}} + i\frac{XY}{1 - Y^2}E_{\mathbf{y}} = 0$$

 $rac{E_{
m x}}{F_{
m rec}}=\pm i$ Left hang circular (LHC) or right hang circular (RHC) polarized.

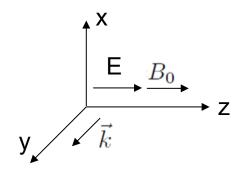
Electric field is not necessary parallel to the propagating direction which is perpendicular to B₀

• Perpendicular to B_0 $\left(\theta = \frac{\pi}{2}\right)$

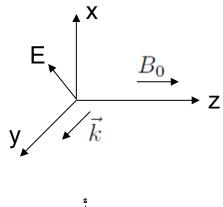
$$n^2 = 1 - \frac{X(1-X)}{1-X-\frac{1}{2}Y^2 \pm \frac{1}{2}Y^2} = 1 - X \text{ or } 1 - \frac{X(1-X)}{1-X-Y^2}$$

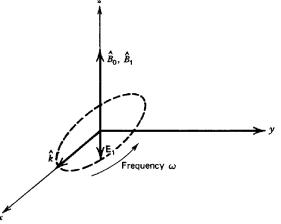
$$\begin{pmatrix} -n^2 + 1 - \frac{X}{1 - Y^2} & i\frac{XY}{1 - Y^2} & 0 \\ -i\frac{XY}{1 - Y^2} & 1 - \frac{X}{1 - Y^2} & 0 \\ 0 & 0 & -n^2 + 1 - X \end{pmatrix} \begin{pmatrix} E_{\mathbf{x}} \\ E_{\mathbf{y}} \\ E_{\mathbf{z}} \end{pmatrix} = 0$$

$$n^2=1-rac{\omega_{
m p}^2}{\omega^2}$$
 $E_{
m x}=E_{
m y}=0$ Ordinary wave (O-wave)


$$n^{2} = 1 - \frac{\omega_{\rm p}^{2} \left(1 - \omega_{\rm p}^{2} / \omega^{2}\right)}{\omega^{2} - \omega_{\rm p}^{2} - \Omega^{2}} \quad \frac{E_{\rm x}}{E_{\rm y}} = -i\omega \left(\frac{\omega^{2} - \omega_{\rm p}^{2} - \Omega^{2}}{\omega_{\rm p}^{2}\Omega}\right) \qquad E_{\rm z} = 0$$

Extraordinary wave (E-wave)


The electric field of an extraordinary wave rotates elliptically



Ordinary wave (O-wave)

Extraordinary wave (E-wave)

Electromagnetic wave can be used to measure the density or the magnetic field in the plasma

Nonmagnetized isotropic plasma (interferometer needed):

$$n^{2} = 1 - \frac{X(1 - X)}{1 - X - \frac{1}{2}Y^{2}\sin^{2}\theta \pm \left[\left(\frac{1}{2}Y^{2}\sin^{2}\theta\right)^{2} + (1 - X)^{2}Y^{2}\cos^{2}\theta\right]^{1/2}}$$

$$= 1 - X = 1 - \frac{\omega_{\mathrm{p}}^{2}}{\omega^{2}} = 1 - \frac{n_{\mathrm{e}}}{n_{\mathrm{cr}}} \qquad \left(\mathbf{Y} \equiv \frac{\mathbf{\Omega}}{\boldsymbol{\omega}} \equiv \mathbf{0}\right)$$

$$\mathbf{Note:} \qquad \omega_{\mathrm{p}}^{2} = \frac{n_{\mathrm{e}}e^{2}}{\epsilon_{0}m_{\mathrm{e}}} \qquad n_{\mathrm{cr}} = \frac{\epsilon_{0}m_{\mathrm{e}}\omega^{2}}{e^{2}}$$

Magnetized isotropic plasma (Polarization detected needed):

Parallel to B₀
$$n^2 = 1 - \frac{\omega_{\rm p}^2}{\omega \left(\omega \pm \Omega\right)} \qquad \qquad \frac{E_{\rm x}}{E_{\rm y}} = \pm i \qquad \Omega \equiv \frac{eB_0}{m_{\rm e}}$$

Faraday rotation: linear polarization rotation caused by the difference between the speed of LHC and RHC polarized wave.

Electromagnetic wave can be used to measure the density or the magnetic field in the plasma

Nonmagnetized isotropic plasma (interferometer needed):

$$n^{2} = 1 - \frac{X(1 - X)}{1 - X - \frac{1}{2}Y^{2}\sin^{2}\theta \pm \left[\left(\frac{1}{2}Y^{2}\sin^{2}\theta\right)^{2} + (1 - X)^{2}Y^{2}\cos^{2}\theta\right]^{1/2}}$$

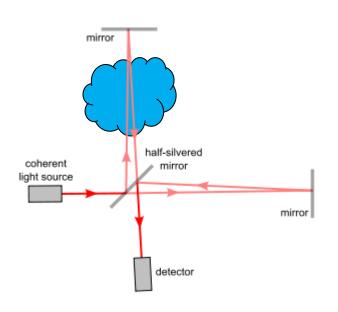
$$= 1 - X = 1 - \frac{\omega_{\mathrm{p}}^{2}}{\omega^{2}} = 1 - \frac{n_{\mathrm{e}}}{n_{\mathrm{cr}}} \qquad \left(\mathbf{Y} \equiv \frac{\mathbf{\Omega}}{\boldsymbol{\omega}} \equiv \mathbf{0}\right)$$

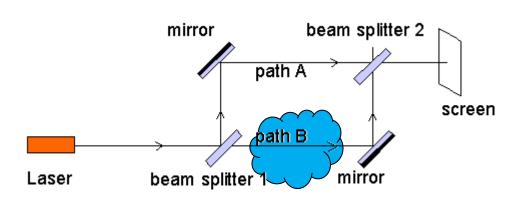
$$\mathbf{Note:} \qquad \omega_{\mathrm{p}}^{2} = \frac{n_{\mathrm{e}}e^{2}}{\epsilon_{0}m_{\mathrm{p}}} \qquad n_{\mathrm{cr}} = \frac{\epsilon_{0}m_{\mathrm{e}}\omega^{2}}{e^{2}}$$

Magnetized isotropic plasma (Polarization detected needed):

Parallel to
$$B_0$$

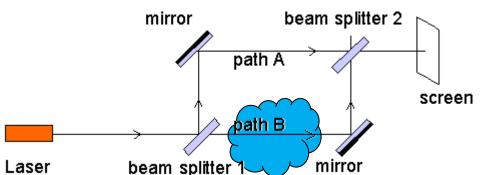
$$n^2 = 1 - \frac{\omega_{\rm p}^2}{\omega \left(\omega \pm \Omega\right)} \qquad \qquad \frac{E_{\rm x}}{E_{\rm y}} = \pm i \qquad \Omega \equiv \frac{eB_0}{m_{\rm e}}$$


Faraday rotation: linear polarization rotation caused by the difference between the speed of LHC and RHC polarized wave.


There are two main style of interferometer

Michelson interferometer

Mach-zehnder interferometer



Interference pattern are due to the phase difference between two different path

$$E_1 = E_1 \exp\left(-i\omega t\right)$$

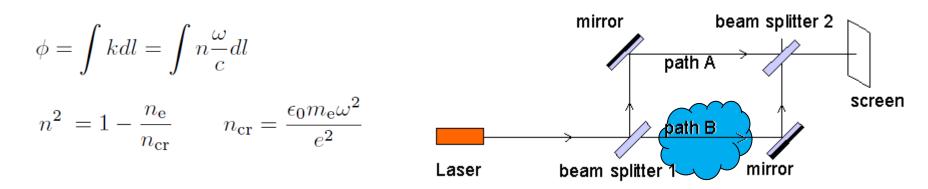
$$E_2 = E_2 \exp\left(-i\omega t + i\phi\right)$$

$$E = E_1 + E_2 = [E_1 + E_2 \exp(i\phi)] \exp(-i\omega t)$$


$$I = |E|^2 = E^*E = [E_1 + E_2 \exp(-i\phi)] \exp(i\omega t) [E_1 + E_2 \exp(i\phi)] \exp(-i\omega t)$$

$$= E_1^2 + E_2^2 + E_1 E_2 \exp(i\phi) + E_1 E_2 \exp(-i\phi)$$

$$= E_1^2 + E_2^2 + 2E_1 E_2 \cos \phi$$

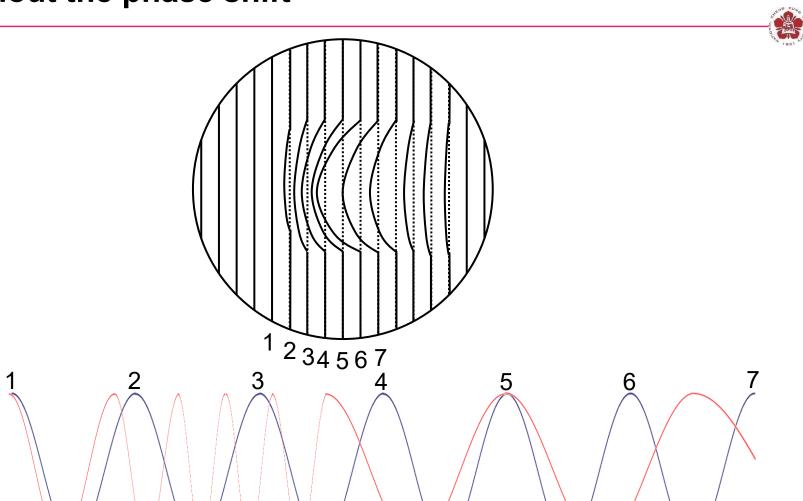

$$= (E_1^2 + E_2^2) \left(1 + \frac{2E_1 E_2}{E_1^2 + E_2^2} \cos \phi\right)$$

The intensity on screen depends on the phase different between two paths

$$I = \left(E_1^2 + E_2^2\right) \left(1 + \frac{2E_1 E_2}{E_1^2 + E_2^2} \cos \phi\right)$$

The phase different depends on the line integral of the electron density along the path

$$\Delta \phi = \int (k_{\text{plasma}} - k_0) \, dl = \frac{\omega}{c} \int (n - 1) \, dl$$


$$= \frac{\omega}{c} \int \left(\sqrt{1 - \frac{n_e}{n_c}} - 1 \right) \, dl \approx \frac{\omega}{c} \int \left(1 - \frac{1}{2} \frac{n_e}{n_c} - 1 \right) \, dl$$

$$= -\frac{\omega}{2cn_c} \int n_e \, dl$$

Note that $n_{\rm e} << n_{\rm cr}$ is assumed,

$$\sqrt{1 - \frac{n_{\rm e}}{n_{\rm cr}}} \approx 1 - \frac{1}{2} \frac{n_{\rm e}}{n_{\rm cr}}$$

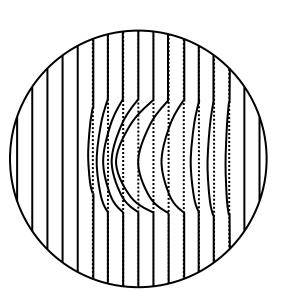
The phase is determined by comparing to the pattern without the phase shift

Fourier transform can be used to retrieve the data from the interferometer image

$$I(x,y) = I_0(x,y) + m(x,y)\cos[2\pi\nu_0 x + \phi(x,y)] \qquad cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

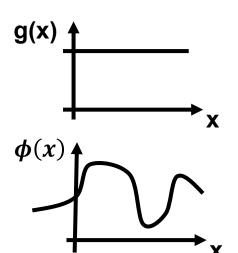
$$= I_0(x,y) + \frac{1}{2}m(x,y)\left(e^{i[2\pi\nu_0 x + \phi(x,y)]} + e^{-i[2\pi\nu_0 x + \phi(x,y)]}\right)$$

$$= I_0(x,y) + \frac{1}{2}m(x,y)e^{i\phi(x,y)}e^{i2\pi\nu_0 x} + \frac{1}{2}m(x,y)e^{-i\phi(x,y)}e^{-i2\pi\nu_0 x}$$

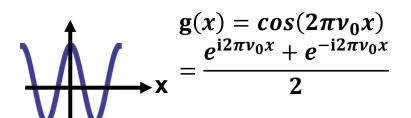

$$= I_0(x,y) + c(x,y)e^{i2\pi\nu_0 x} + c^*(x,y)e^{-i2\pi\nu_0 x}$$

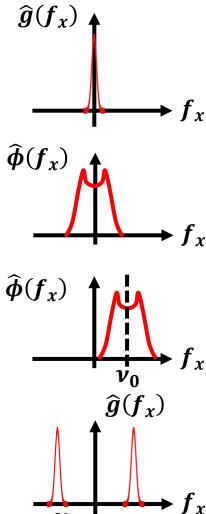
$$c(x,y) \equiv \frac{1}{2}m(x,y)e^{i\phi(x,y)} \qquad \phi(x,y) = \tan^{-1}\left(\frac{\operatorname{Im}[c(x,y)]}{\operatorname{Re}[c(x,y)]}\right)$$

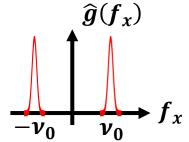
$$\widehat{g}(f_x, y) \equiv \text{FT}[g(x, y)]$$


$$\widehat{g}(f_{x}-\nu_{0},y)=\mathrm{FT}\big[g(x,y)e^{\mathrm{i}2\pi\nu_{0}x}\big]$$

$$\hat{I}(f_x, y) = \hat{I}_0(f_x, y) + \hat{c}(f_x - \nu_0, y) + \hat{c}^*(f_x + \nu_0, y)$$

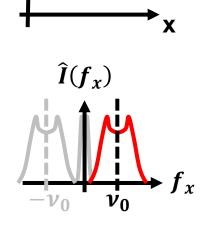


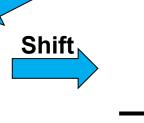

Basic knowledge of Fourier transform



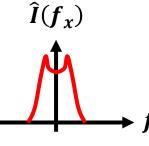
$$\mathbf{h}(x) = \boldsymbol{\phi}(x) \times e^{-\mathrm{i}2\pi\nu_0 x}$$

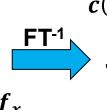
Procedure of retrieving data

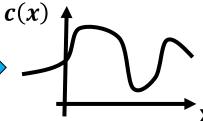

$$I(x) = I_{0}(x) + m(x)\cos[2\pi\nu_{0}x + \phi(x)] \qquad \hat{I}(f_{x}) = \hat{c}(f_{x} - \nu_{0}) + \hat{c}^{*}(f_{x} + \nu_{0})$$


$$\equiv \cos[2\pi\nu_{0}x + \phi(x)]$$

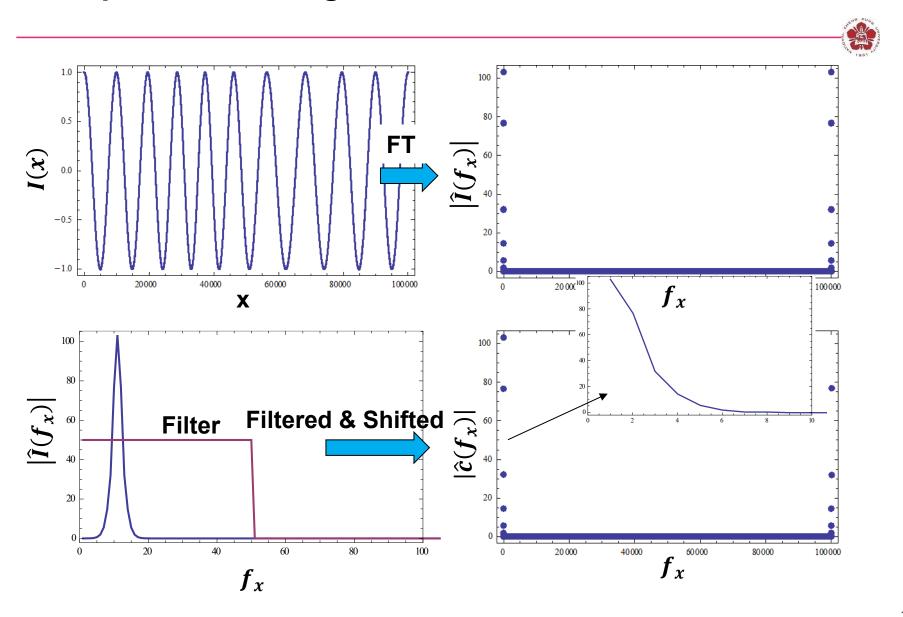
$$= c^{*}(x, y)e^{i2\pi\nu_{0}x} + c(x, y)e^{-i2\pi\nu_{0}x}$$

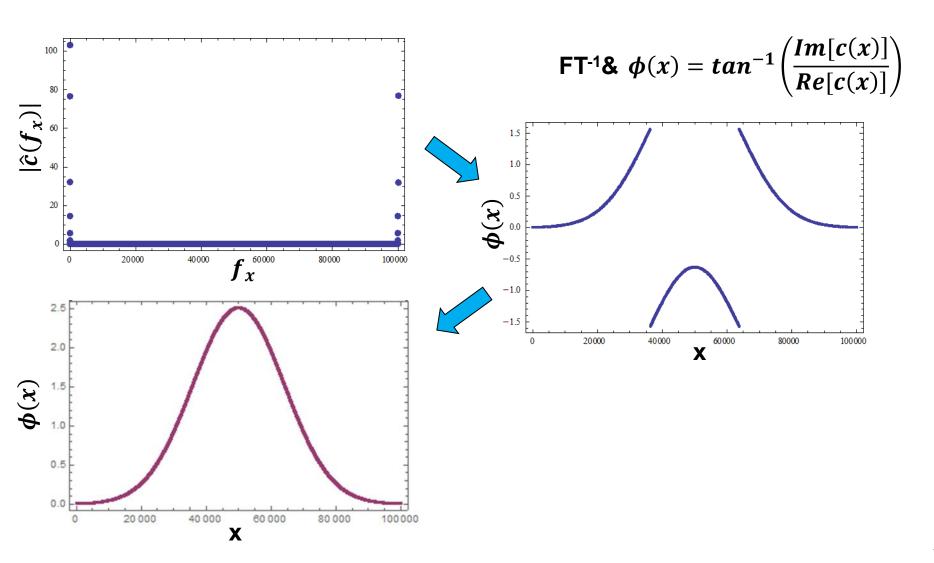

$$\hat{c}(f_{x}) \qquad \hat{c}(f_{x}) \qquad \hat{f}(f_{x})$$


$$\hat{c}^{*}(f_{x} + \nu_{0}) \qquad \hat{c}(f_{x} - \nu_{0})$$

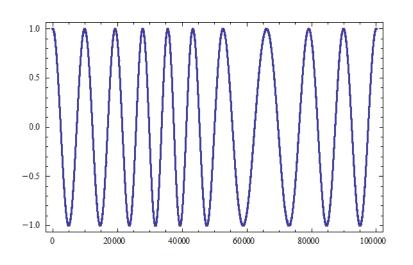


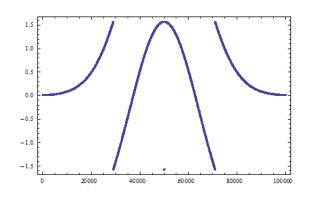
Filter

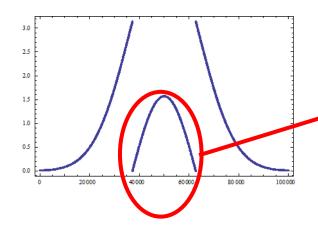


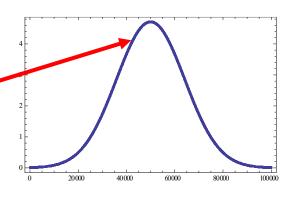

 $c(x,y) \equiv \frac{1}{2}e^{\mathrm{i}\phi(x,y)}$

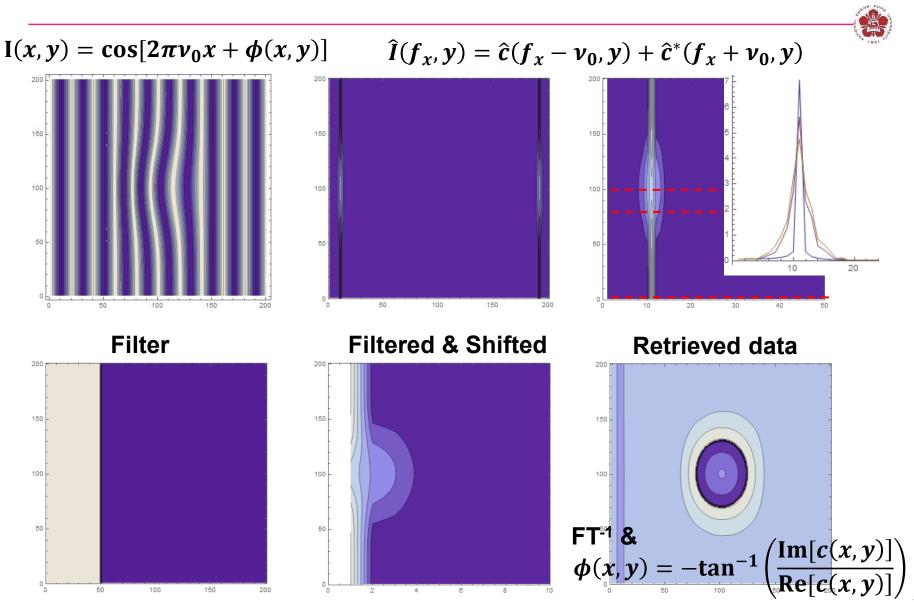
Example of retrieving data from 1D interferometer

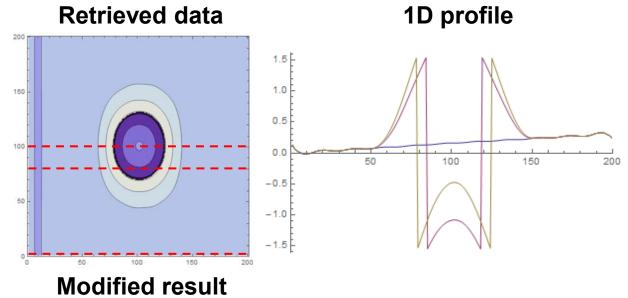

The retrieved data need to be modified if the phase change is too much





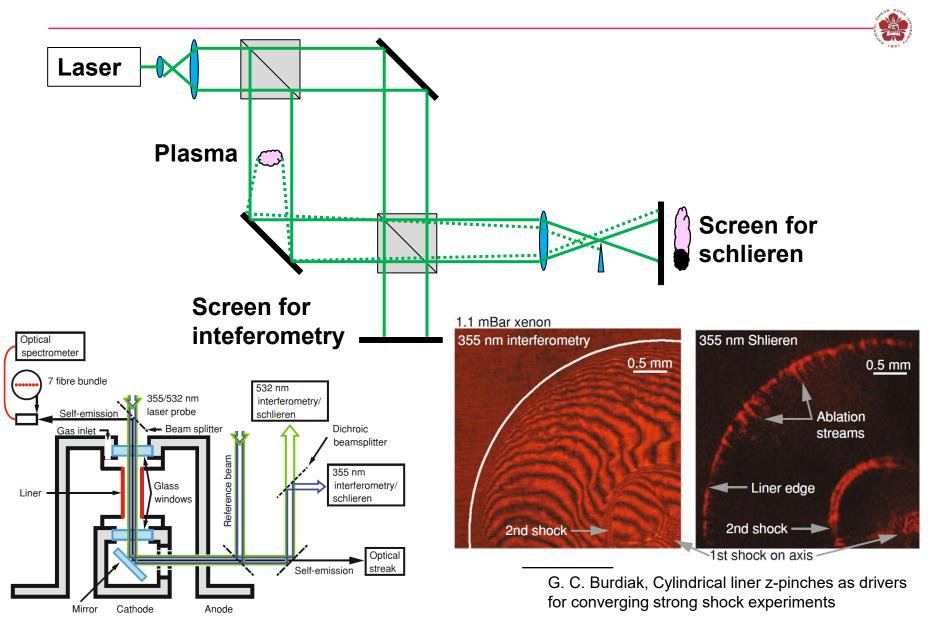

The final phase difference needs to be determined manually since it may exceeds 2π





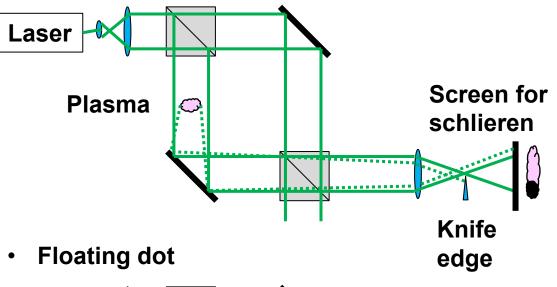
Example of retrieving data from 2D interferometer

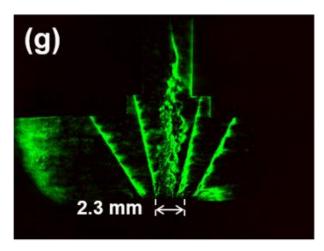
The retrieved data may need to be modified if the phase change is too large

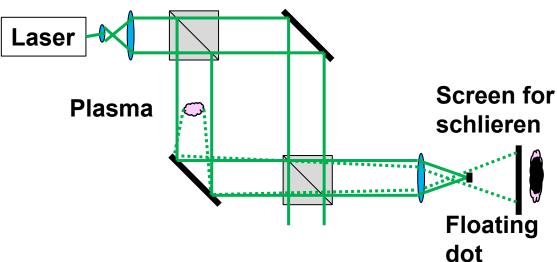


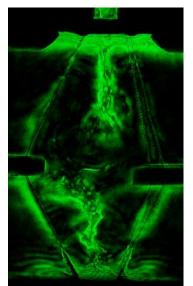
150 100 50 0 50 100 150 200

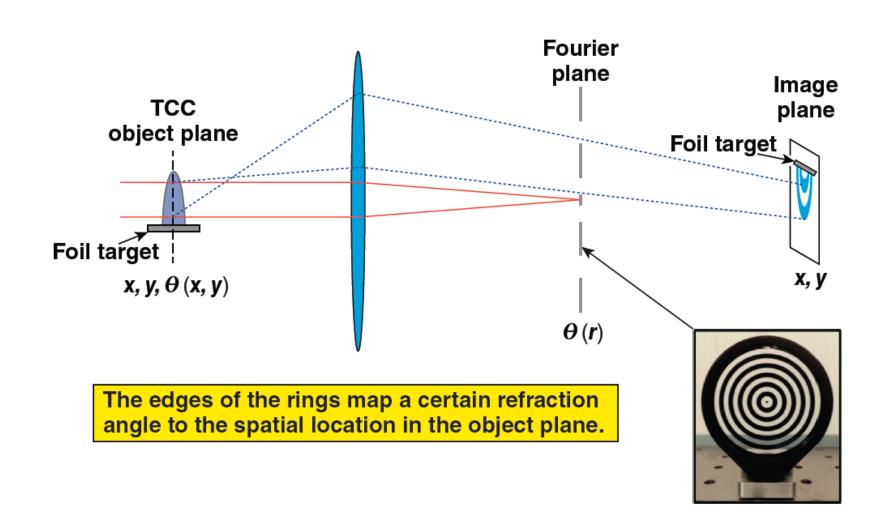
Noise came from low spatial resolution.

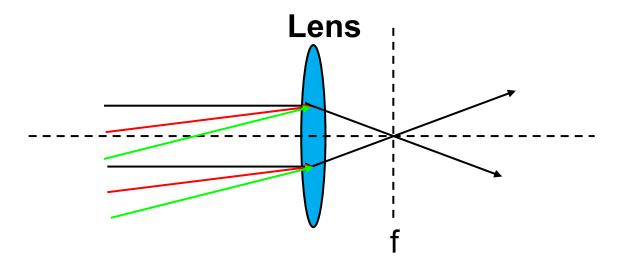

Schlieren imaging system can detect density gradient



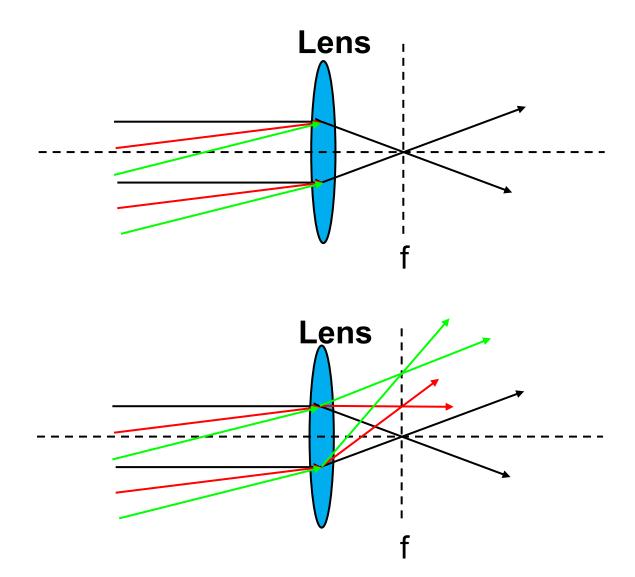

A symmetric Schlieren image can be obtained if the knife edge is replaced by a "floating dot"

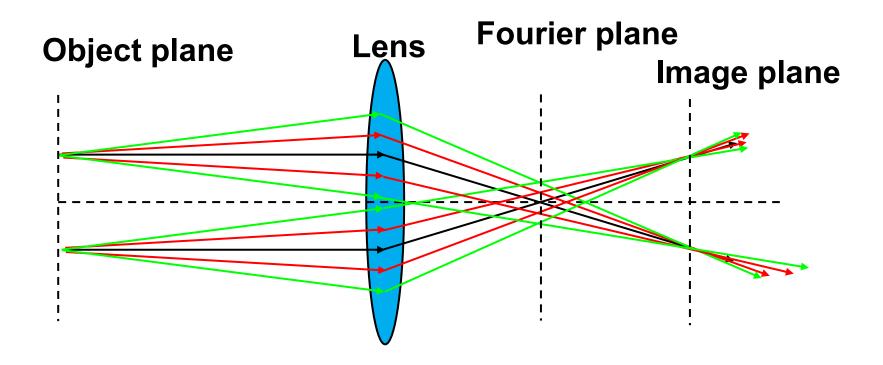


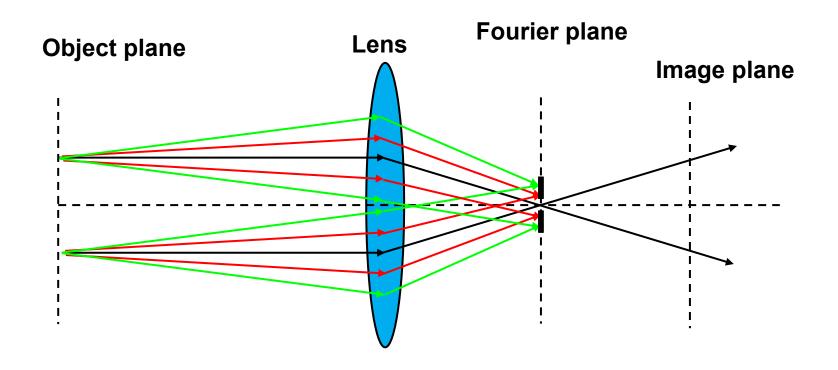


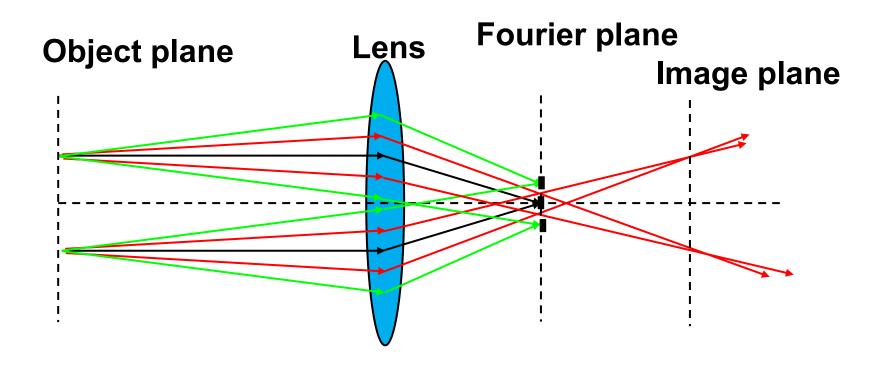


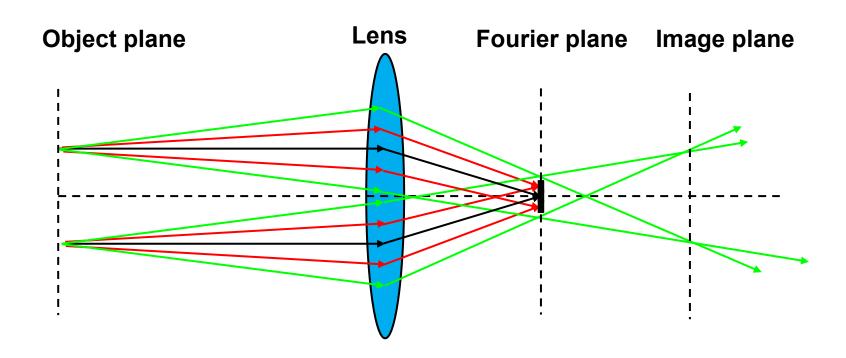
Angular filter refractometry (AFR) maps the refraction of the probe beam at TCC to contours in the image plane

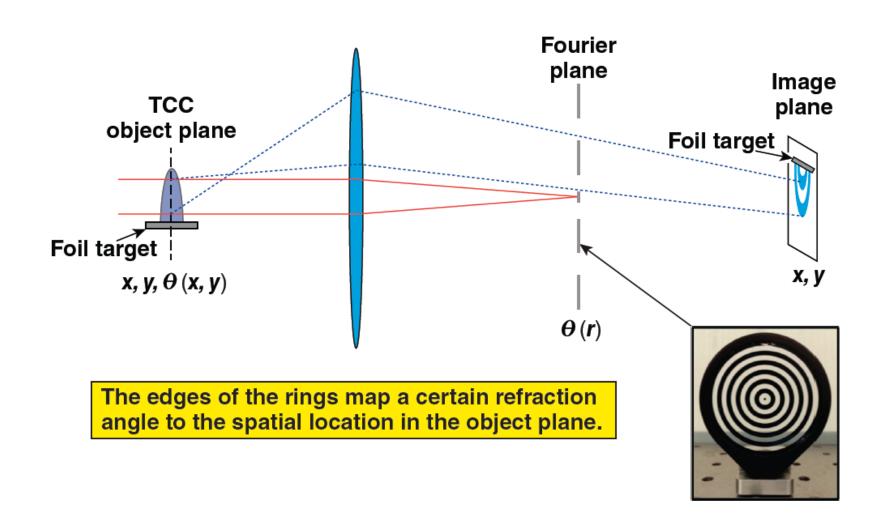

Angular spectrum of plane waves can be used for diagnostic


Angular spectrum of plane waves can be used for diagnostic

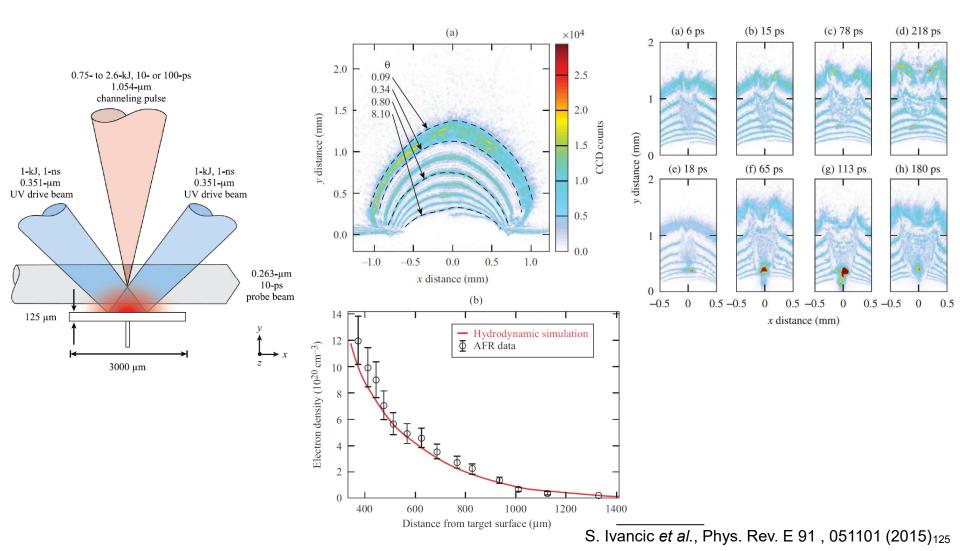

Rays with different angles go through different focal points on the focal points


Rays with different angles can be selected by blocking different focal points


Rays with different angles go through different focal points on the focal points



Rays with different angles go through different focal points on the focal points



Angular filter refractometry (AFR) maps the refraction of the probe beam at TCC to contours in the image plane

Channeling of multi-kilojoule high-intensity laser beams in an inhomogeneous plasma was observed using AFR

Electromagnetic wave can be used to measure the density or the magnetic field in the plasma

Nonmagnetized isotropic plasma (interferometer needed):

$$n^{2} = 1 - \frac{X(1 - X)}{1 - X - \frac{1}{2}Y^{2}\sin^{2}\theta \pm \left[\left(\frac{1}{2}Y^{2}\sin^{2}\theta\right)^{2} + (1 - X)^{2}Y^{2}\cos^{2}\theta\right]^{1/2}}$$

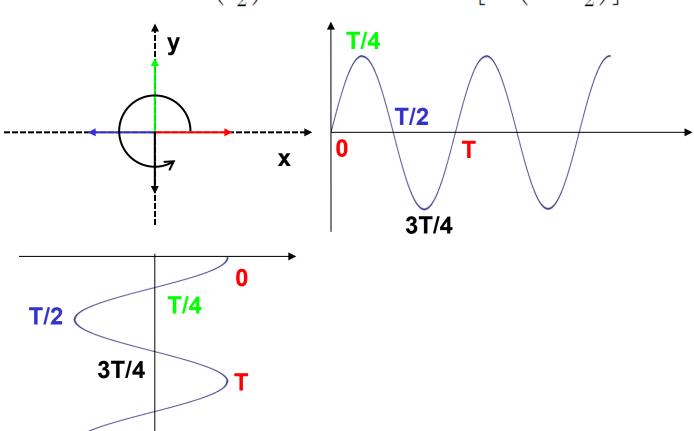
$$= 1 - X = 1 - \frac{\omega_{\mathrm{p}}^{2}}{\omega^{2}} = 1 - \frac{n_{\mathrm{e}}}{n_{\mathrm{cr}}} \qquad \left(\mathbf{Y} \equiv \frac{\mathbf{\Omega}}{\boldsymbol{\omega}} \equiv \mathbf{0}\right)$$

$$\mathbf{Note:} \qquad \omega_{\mathrm{p}}^{2} = \frac{n_{\mathrm{e}}e^{2}}{\epsilon_{0}m_{\mathrm{e}}} \qquad n_{\mathrm{cr}} = \frac{\epsilon_{0}m_{\mathrm{e}}\omega^{2}}{e^{2}}$$

Note:
$$\omega_{\rm p}^2 = \frac{n_{\rm e}e}{\epsilon_0 m_{\rm e}}$$
 $n_{\rm cr} = \frac{\epsilon_0 m_{\rm e}\omega}{e^2}$

Magnetized isotropic plasma (Polarization detected needed):

Parallel to B₀
$$n^2 = 1 - \frac{\omega_{\rm p}^2}{\omega \left(\omega \pm \Omega\right)} \qquad \qquad \frac{E_{\rm x}}{E_{\rm y}} = \pm i \qquad \Omega \equiv \frac{eB_0}{m_{\rm e}}$$


Faraday rotation: linear polarization rotation caused by the difference between the speed of LHC and RHC polarized wave.

Circular polarization

$$E_{\rm x} = E_0 \exp\left(-i\omega t\right)$$

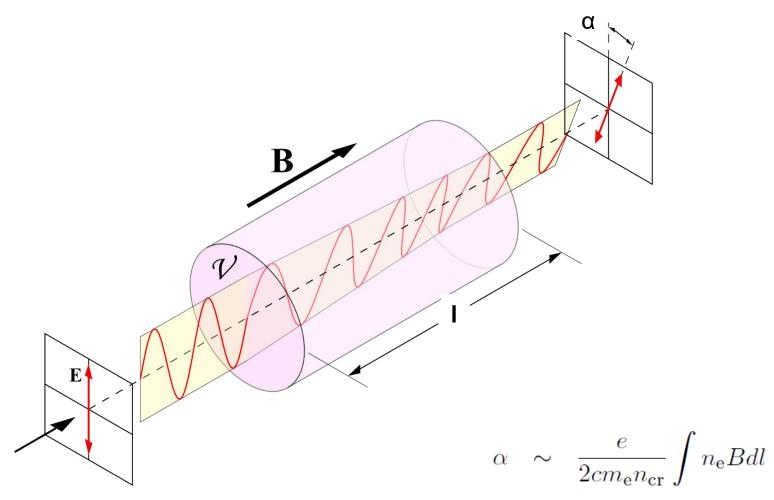
$$E_{y} = iE_{x} = iE_{0} \exp\left(-i\omega t\right) = E_{0} \exp\left(i\frac{\pi}{2}\right) \exp\left(-i\omega t\right) = E_{0} \exp\left[-i\left(\omega t - \frac{\pi}{2}\right)\right]$$

Linear polarization rotates as the wave propagates with different speed in LHC and RHC polarization

$$\begin{split} \vec{E} &= E_0 \hat{x} = \frac{E_0}{2} \left[(\hat{x} + i\hat{y}) + (\hat{x} - i\hat{y}) \right] \qquad \vec{E} \left(z \right) = \vec{E} \exp \left(i\phi \right) \qquad \phi_{\mathrm{R}} \neq \phi_{\mathrm{L}} \\ \vec{E} \left(z \right) &= \frac{E_0}{2} \left[(\hat{x} + i\hat{y}) e^{\mathrm{i}\Phi_{\mathrm{R}}} + (\hat{x} - i\hat{y}) e^{\mathrm{i}\Phi_{\mathrm{L}}} \right] \qquad \bar{\phi} \equiv \frac{\phi_{\mathrm{R}} + \phi_{\mathrm{L}}}{2} \qquad , \qquad \Delta \phi = \frac{\phi_{\mathrm{R}} - \phi_{\mathrm{L}}}{2} \\ &= \frac{E_0}{2} \left[\hat{x} \left(e^{\mathrm{i}\Phi_{\mathrm{R}}} + e^{\mathrm{i}\Phi_{\mathrm{L}}} \right) + \hat{y} i \left(e^{\mathrm{i}\Phi_{\mathrm{R}}} - e^{\mathrm{i}\Phi_{\mathrm{L}}} \right) \right] \\ &= \frac{E_0}{2} \left[\hat{x} \left(e^{i(\bar{\phi} + \frac{\Delta\Phi}{2})} + e^{i(\bar{\phi} - \frac{\Delta\Phi}{2})} \right) + \hat{y} i \left(e^{i(\bar{\phi} + \frac{\Delta\Phi}{2})} - e^{i(\bar{\phi} - \frac{\Delta\Phi}{2})} \right) \right] \\ &= E_0 e^{i\bar{\phi}} \left[\hat{x} \left(e^{i\frac{\Delta\Phi}{2}} + e^{-i\frac{\Delta\Phi}{2}} \right) + \hat{y} i \left(e^{i\frac{\Delta\Phi}{2}} - e^{-i\frac{\Delta\Phi}{2}} \right) \right] \\ &= E_0 e^{i\bar{\phi}} \left[\hat{x} \cos \left(\frac{\Delta\Phi}{2} \right) \cos + \hat{y} \sin \left(\frac{\Delta\Phi}{2} \right) \right] \\ &\downarrow \mathbf{y} \\ &\downarrow \mathbf{x} \end{split}$$

The rotation angle of the polarization depends on the linear integral of magnetic field and electron density

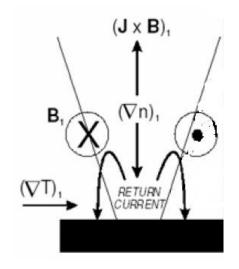
$$\phi = \int k dl = \int n \frac{\omega}{c} dl$$
 $\alpha = \frac{\Delta \phi}{2} = \frac{\omega}{2c} \int (n_{\rm R} - n_{\rm L}) dl$

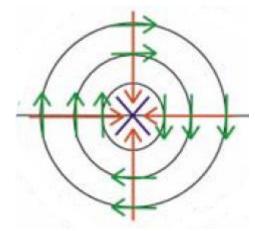

$$n_{\rm R} = \sqrt{1 - \frac{X}{1 + Y}} \sim 1 - \frac{1}{2} \frac{X}{1 + Y}$$
 $X, Y << 1$
 $n_{\rm L} \sim 1 - \frac{1}{2} \frac{X}{1 - Y}$ $\frac{X}{1 \pm Y} << 1$

$$n_{\rm R} - n_{\rm L} \sim \frac{X}{2} \left(\frac{1}{1 - Y} - \frac{1}{1 + Y} \right) = \frac{XY}{1 - Y^2} \sim XY$$

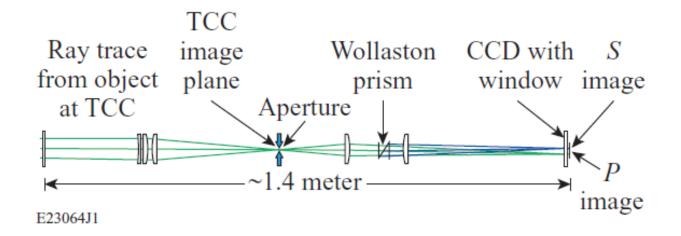
$$\alpha \sim \frac{\omega}{2c} \int XYdl = \frac{\omega}{2c} \int \frac{\omega_{\rm p}^2}{\omega^2} \frac{\Omega}{\omega} dl = \frac{1}{2c} \int \frac{n_{\rm e}}{n_{\rm cr}} \frac{eB}{m_{\rm e}} dl$$
$$= \frac{e}{2cm_{\rm e}n_{\rm cr}} \int n_{\rm e}Bdl$$

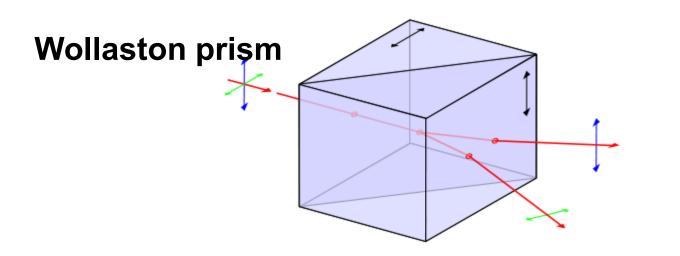
The rotation angle of the polarization depends on the linear integral of magnetic field and electron density



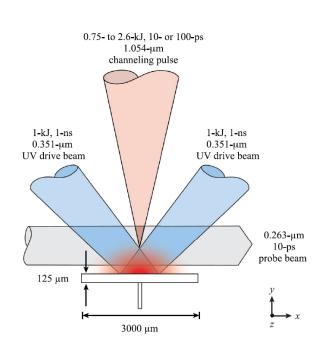

Magnetic field can be generated when the temperature and density gradients are not parallel to each other

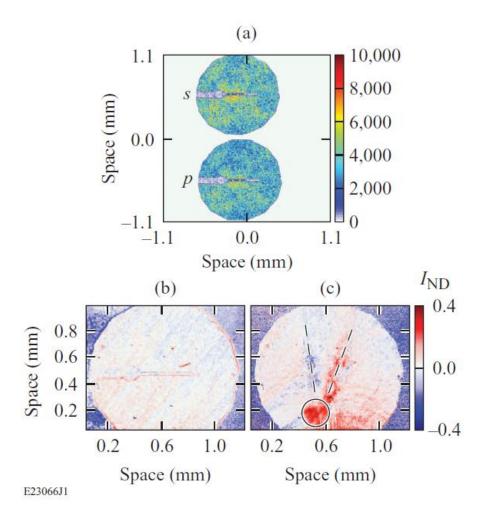
$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left[\underbrace{\vec{u} \times \vec{B}}_{\text{Convection term}} + \underbrace{\frac{1}{\sigma \mu_0} \nabla \times \vec{B}}_{\text{Diffusion term}} + \underbrace{\frac{\nabla p_e}{n_e e}}_{\text{self generated field}} - \underbrace{\frac{1}{\mu_0} \left(\frac{\nabla \times \vec{B}}{n_e e} \times \vec{B} \right)}_{\text{Hall term}} \right]$$

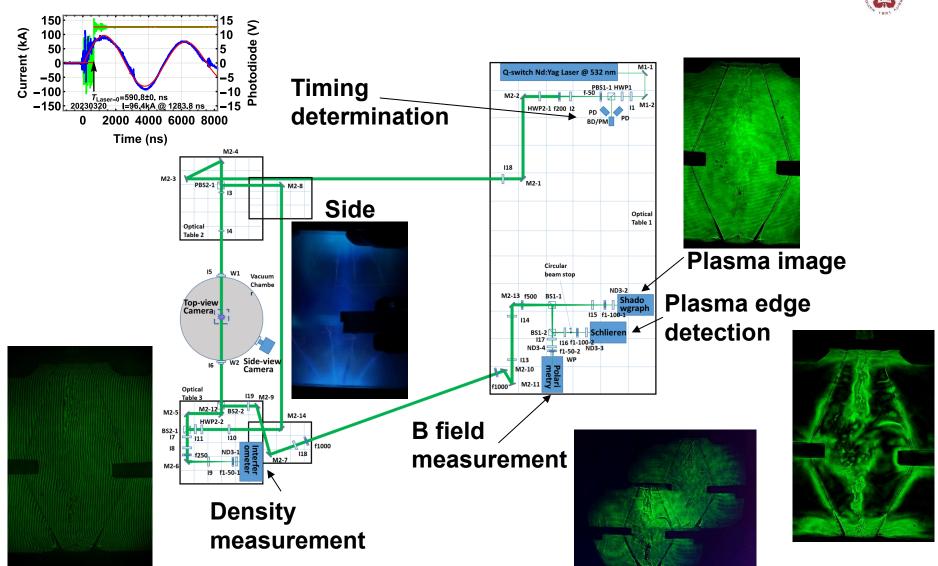

$$\nabla \times \frac{\nabla p_{\rm e}}{n_{\rm e}e} = -\frac{k_{\rm B}}{e} \frac{\nabla n_{\rm e} \times \nabla T_{\rm e}}{n_{\rm e}}$$

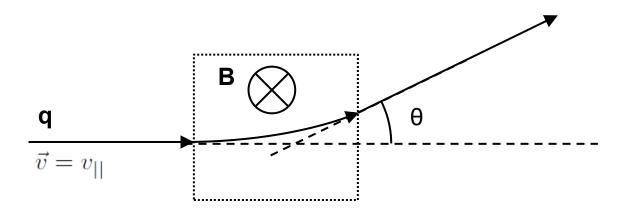


Polarimetry diagnostic can be used to measure the magnetic field



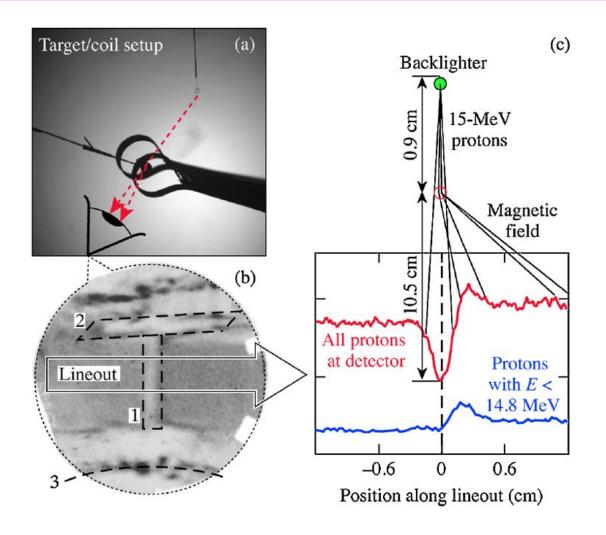



Self-generated field was suggested when multi-kilojoule high-intensity laser beams illuminated on an inhomogeneous plasma



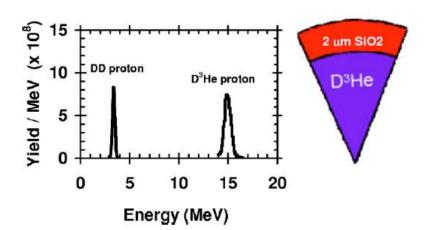
Time-resolved imaging system with temporal resolution in the order of nanoseconds was implemented

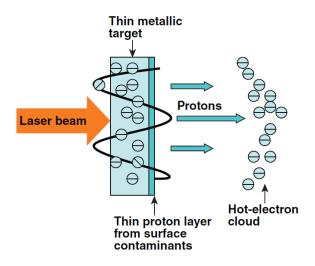
The magnetic field can be measured by measuring the deflected angle of charged particles

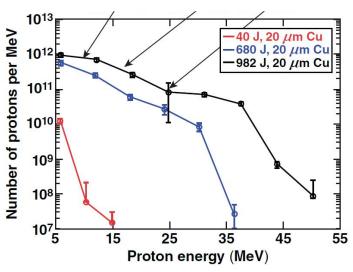

$$F_{\perp} = q\vec{v} \times \vec{B} = qv_{||}B = m\frac{dv_{\perp}}{dt}$$

$$v_{\perp} = \int \frac{qv_{||}B}{m}dt = \frac{qv_{||}}{m} \int Bdt \frac{dx}{dx} = \frac{qv_{||}}{m} \int \frac{B}{v_{||}}dx = \frac{q}{m} \int Bdx$$

$$\tan \theta = \frac{v_{\perp}}{v_{||}} = \frac{q}{mv_{||}} \int B dx = \frac{q}{\sqrt{2mE}} \int B dx \qquad \qquad \int B dx = \frac{\sqrt{2mE}}{q} \tan \theta$$

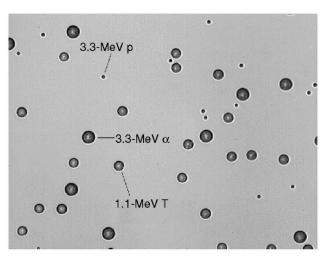

Magnetic field was measured using protons

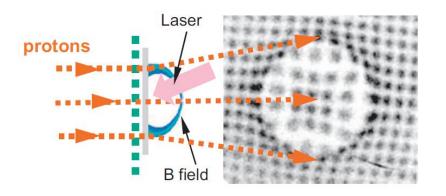

Protons can be generated from fusion product or copper foil illuminated by short pulse laser



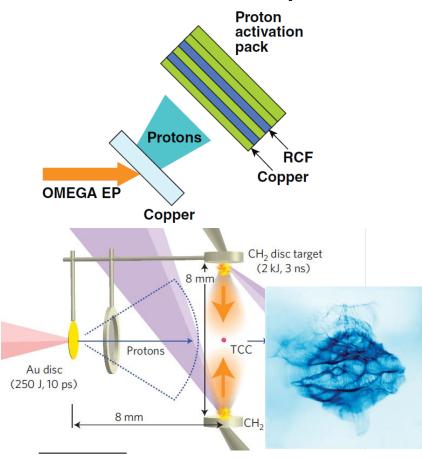
$$D + D \rightarrow T(1.01 \text{MeV}) + p(3.02 \text{MeV})$$

$$D + \mathrm{He^3} \rightarrow \mathrm{He^4}(3.6\mathrm{MeV}) + p(14.7\mathrm{MeV})$$


Target normal sheath acceleration (TNSA)

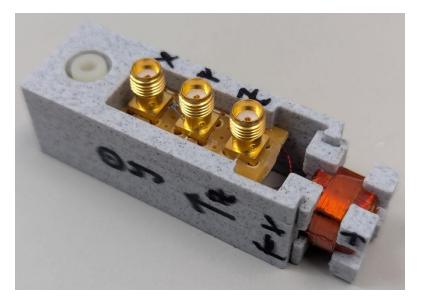

C. K. Li *et al.*, Rev. Sci. Instrum. **77**, 10E725 (2006) L. Gao, PhD Thesis

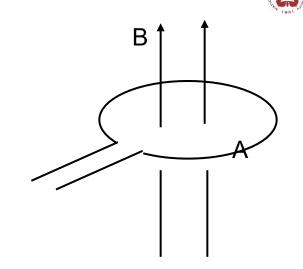
Protons can leave tracks on CR39 or film

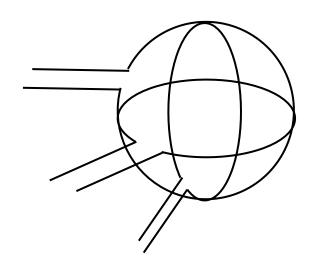


CR 39

Radiochromic film pack

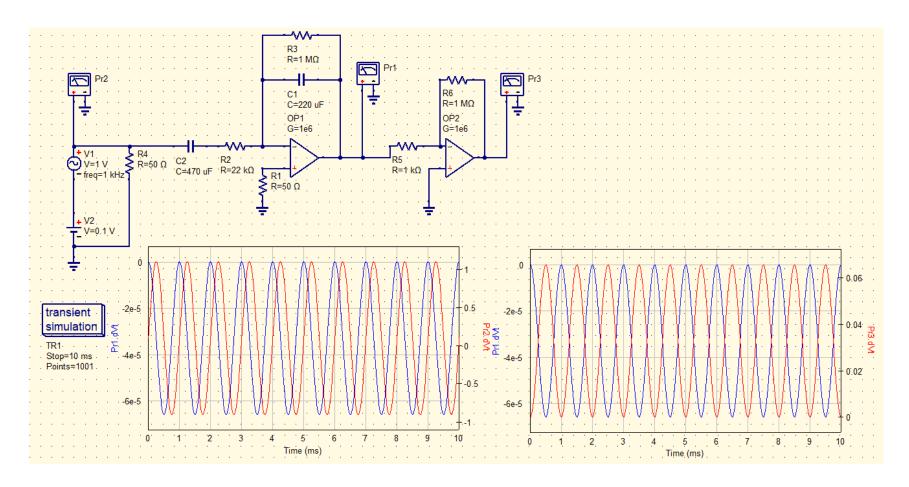

- F. H. Seguin et al., Rev. Sci. Instrum. 74, 975 (2003)
- C. K. Li et al., Phys. Plasmas 16,056304 (2009)
- L. Gao, PhD Thesis
- N. L. Kugland et al., Nature Phys. B, 809 (2012)

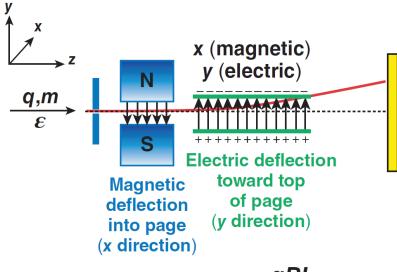

Time dependent magnetic field can be measured using B-dot probe

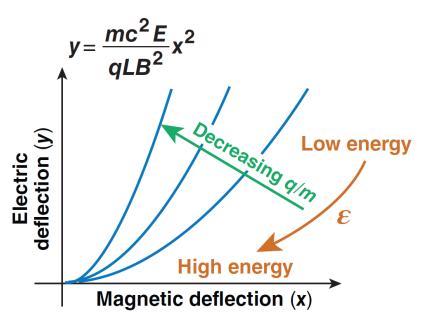

$$B = B(t)$$
 $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

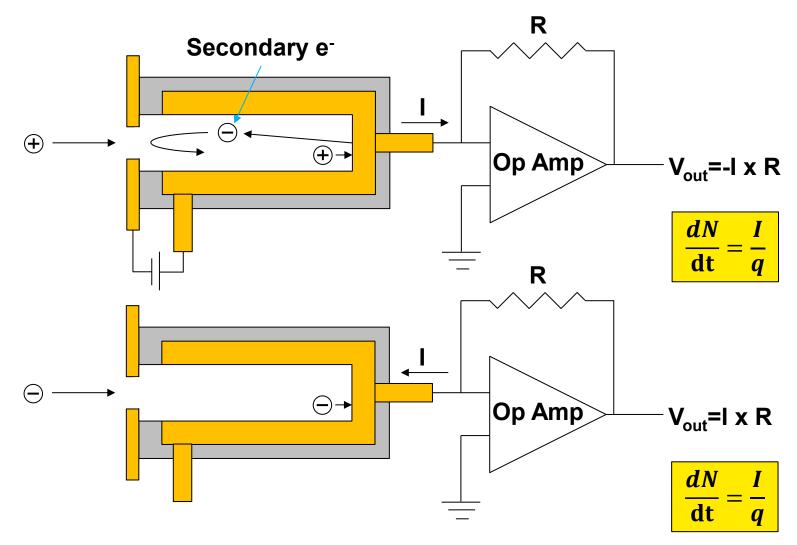
$$\int d\vec{A} \nabla \times \vec{E} = \oint \vec{E} d\vec{l} = V = -\int d\vec{A} \frac{\partial}{\partial t} \vec{B}$$

$$V \sim -A \frac{\partial B}{\partial t}$$
 $B = -\int \frac{V}{A} dt \sim -\frac{1}{A} \int V dt$




The signal from the B-dot probe is integrated and amplified


A Thomson parabola uses parallel electric and magnetic fields to deflect particles onto parabolic curves that resolve q/m

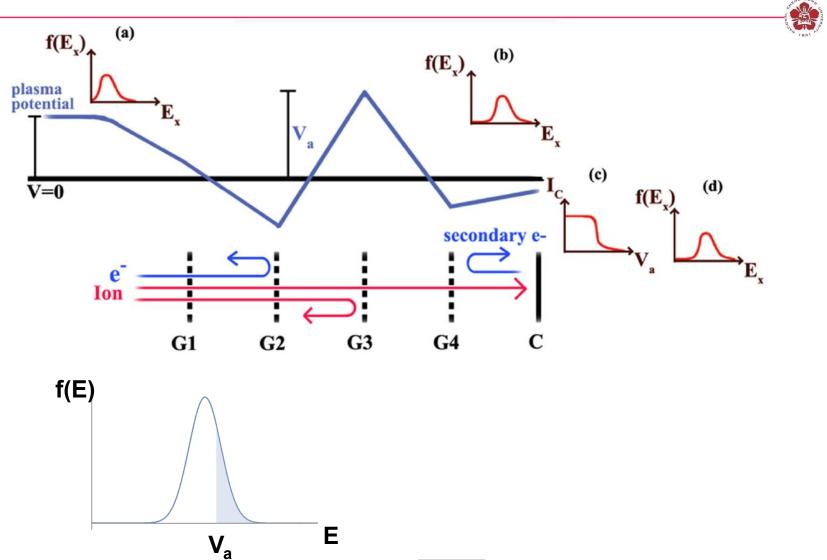

$$\tan \Delta \theta_{\rm X} = \Delta \theta_{\rm X} = \frac{qBL}{c\sqrt{2\,m\varepsilon}}$$
 y deflection
$$F_{\perp} = qE$$

$$\varepsilon = \frac{q^2B^2L^2}{c^22m\Delta\theta_x^2}$$

$$\Delta mV_y = qE\tau = \frac{qEL}{V}$$

$$\tan \theta_y \sim \theta_y = \frac{\Delta mV_y}{mV} = \frac{qEL}{2\varepsilon}$$

- Deflection caused by magnetic field ~q/p
- Deflection caused by electric field ~q/KE
- Ion traces form parabolic curves on detector plane

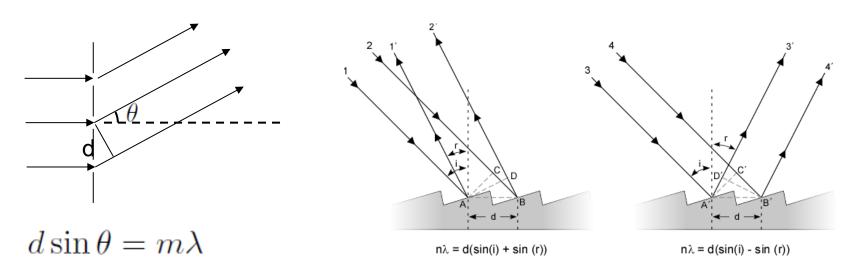


A faraday cup measures the flux of charge particles

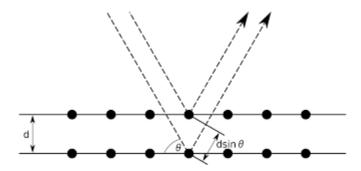
Retarding potential analyzer measures the energy / velocity distribution function

H.-K. Fang, 2015 NCKU Ph. D. Thesis, Ion measurements of ionosphere plasma in space plasma operation chamber

The photon energy spectrum provides valuable information



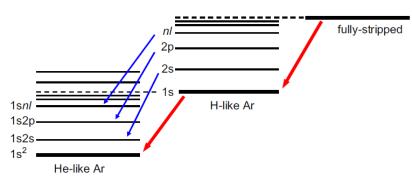
- Plasma conditions can be determined from the photon spectrum
 - visible light: absorption and laser-plasma interactions
 - x rays: electron temperature, density, plasma flow, material mixing
- There are three basic tools for determining the spectrum detected
 - filtering
 - grating spectrometer
 - Bragg spectrometer

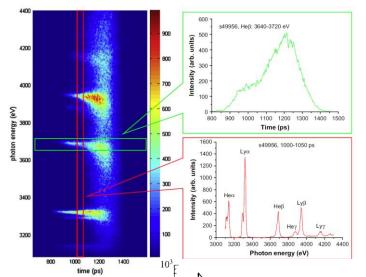

Spectrum can be obtained using grating

Grating is used to disperse the light

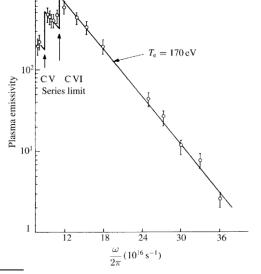


Bragg condition in the crystal is used for X-ray.

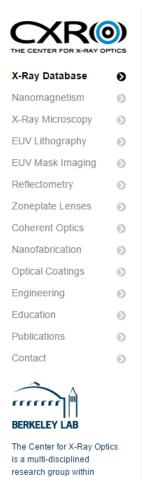



 $2d\sin\theta = m\lambda$

Temperature and density can be obtained from the emission


Line emission

Bremsstrahlung emission


$$\eta_{\nu} = \frac{16\pi}{3\sqrt{6\pi}} \frac{e^6}{m_{\rm e}^2 c^3} \frac{Z_{\rm i}^2 n_{\rm e}}{\sqrt{k_{\rm B} T_{\rm e}/m_{\rm e}} A m_{\rm p}} \exp\left(-\frac{h\nu}{k_{\rm B} T_{\rm e}}\right)$$

R. Florido et al., High Energy Dens. Phys. 6, 70 (2010) 146

Information of x-ray transmission or reflectivity over a surface can be obtained from the Center for X-Ray Optics

http://henke.lbl.gov/optical_constants/

Lawrence Berkeley National

Laboratory's (LBNL)

X-Ray Interactions With Matter

Introduction

Access the atomic scattering factor files.

Look up x-ray properties of the elements.

The index of refraction for a compound material.

The x-ray attenuation length of a solid.

X-ray transmission

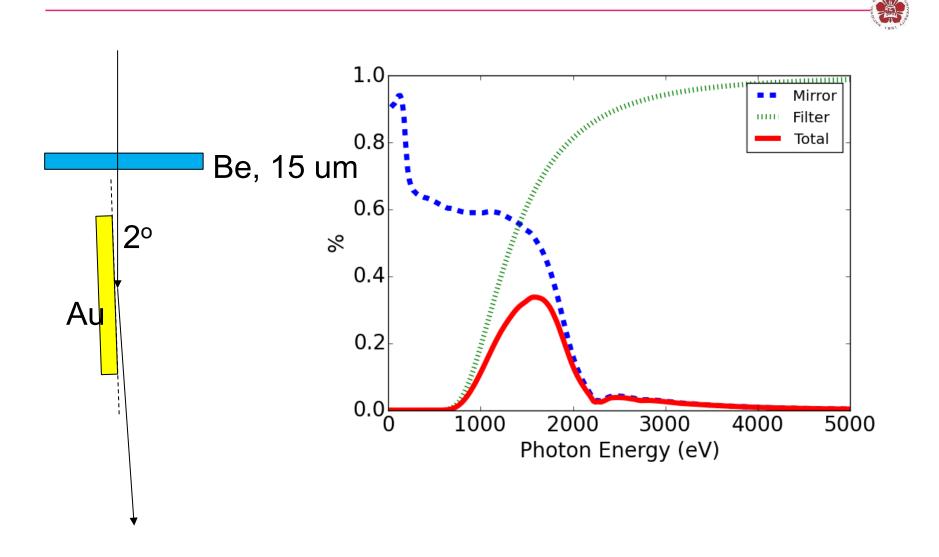
- Of a solid.
- Of a gas.

X-ray reflectivity

- · Of a thick mirror.
- Of a single layer.
- Of a bilayer.
- Of a multilayer.

The diffraction efficiency of a transmission grating.

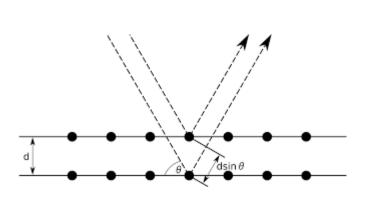
Related calculations:

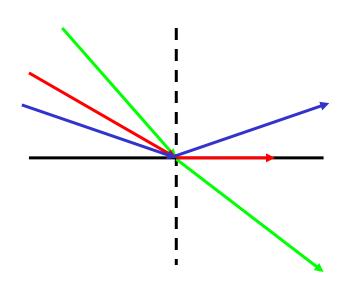

Synchrotron bend magnet radiation.

Other x-ray web resources. X-ray Data Booklet

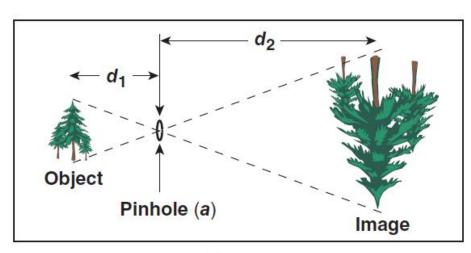
Reference

B.L. Henke, E.M. Gullikson, and J.C. Davis. *X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92*, Atomic Data and Nuclear Data Tables Vol. **54** (no.2), 181-342 (July 1993).

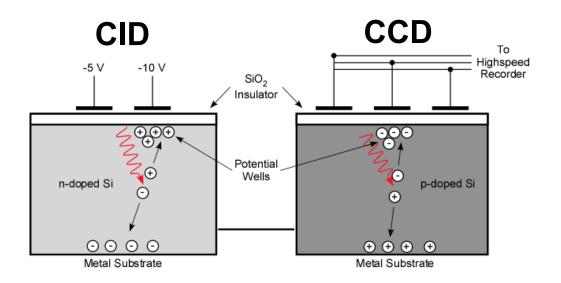

A band pass filter is obtained by combing a filter and a mirror



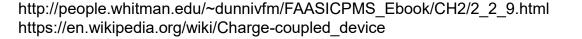
X rays can not be concentrated by lenses


- X-ray refractive indices are less than unity, $n \lesssim 1$
- For those with lower refractive indices, the absorption is also strong
- X-ray mirrors can be made through
 - Bragg reflection
 - External total reflection with a small grazing angle

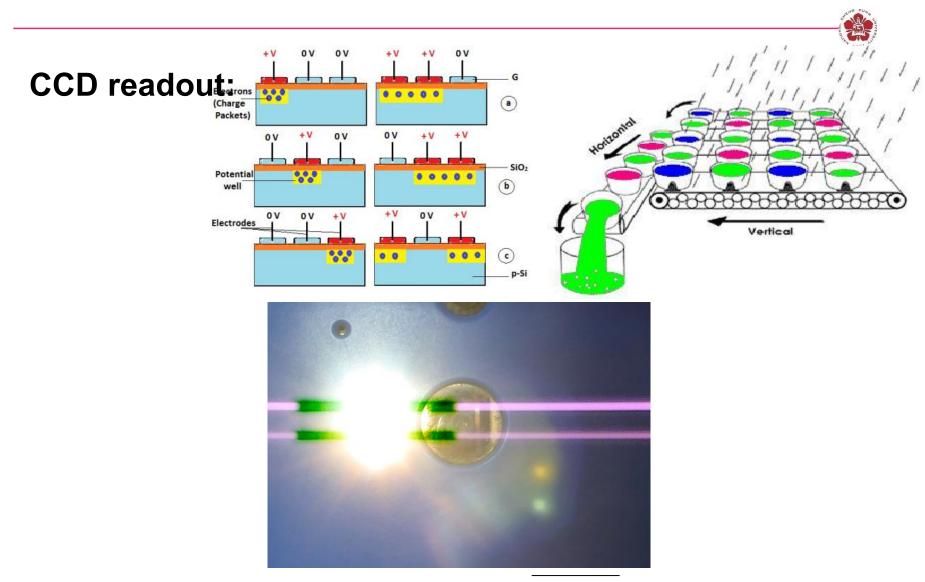
The simplest imaging device is a pinhole camera


Kodak Brownie camera

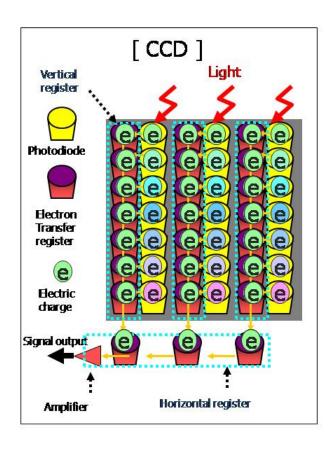
- Magnification = $\frac{d_2}{d_1}$
- Infinite depth of field (variable magnification)
- Pinhole diameter determines
 - resolution ~a
 - light collection: $\Delta\Omega = \frac{\pi}{4} \frac{a^2}{d_1^2}$

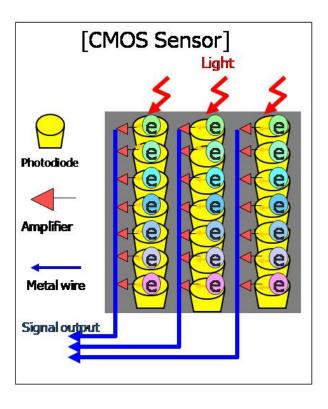

Imaging optics (e.g., lenses) can be used for higher resolutions with larger solid angles.

2D images can be taken using charge injection device (CID) or charge coupled device (CCD)

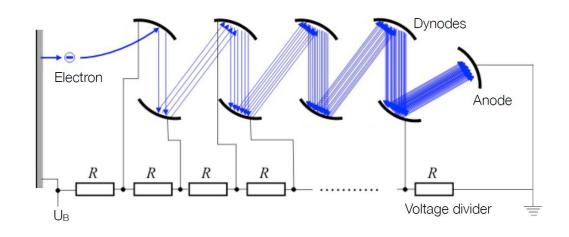


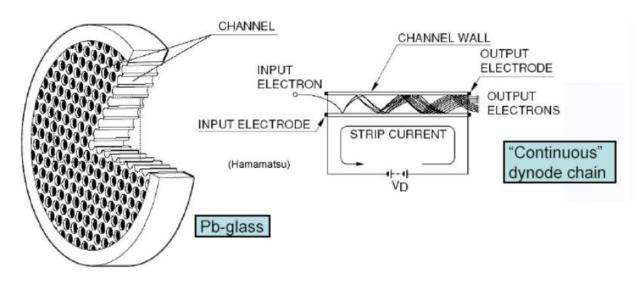
Color mask is used for color image

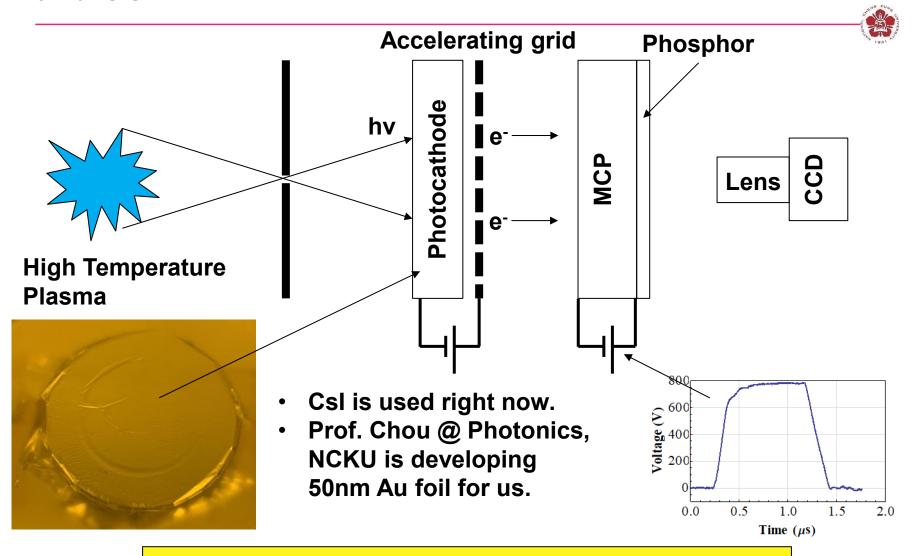



Charges are transferred along the array for readout in CCD

Signal is readout individually in CMOS sensor



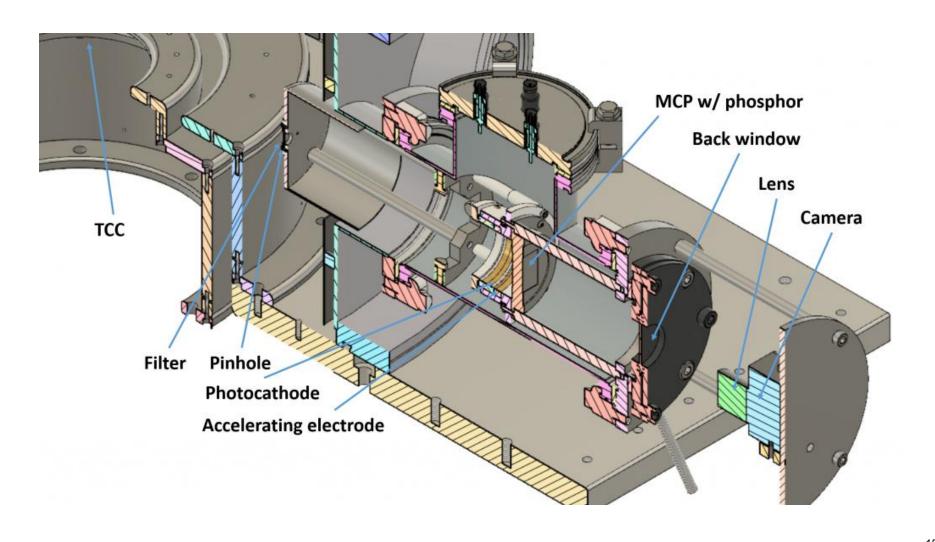



The number of electrons can be increased through photomultipliers or microchannel plate (MCP)

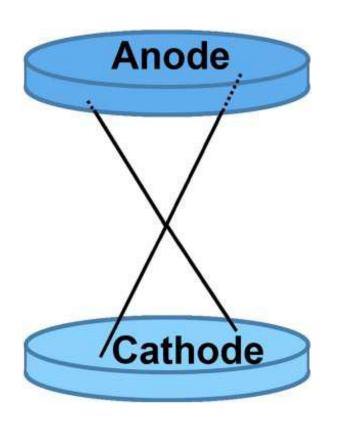


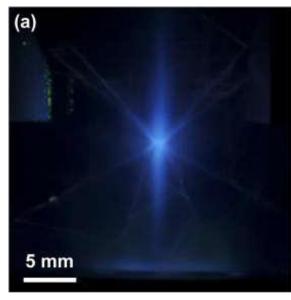
X-rays are imaged using photocathode, MCP, phosphor, and CCD

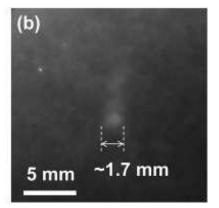
Images can be gated using fast high voltage pulses.


A negative high-voltage pulse is used in our x-ray pinhole camera

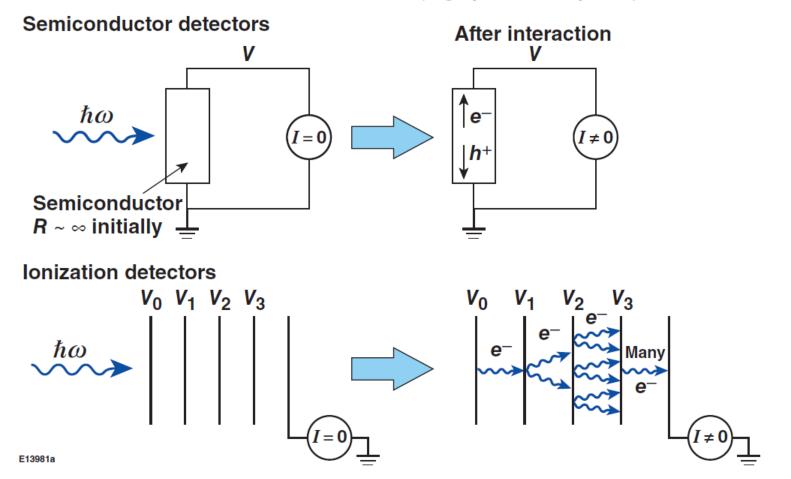
The x-ray camera with a shutter opening time of ≤ 10 ns will be built.


A pinhole camera was designed and was built

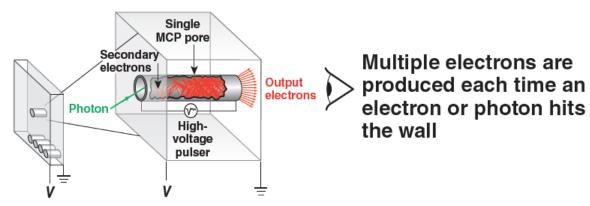


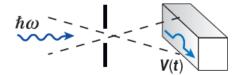


Emission from an x pinch

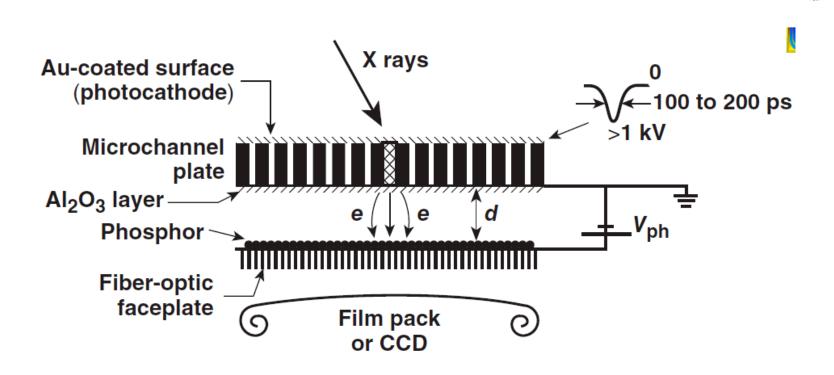


Electronic detectors provide rapid readout


 Electronic detectors are typically semiconductors or ionization-based stacks (e.g., photomultipliers)

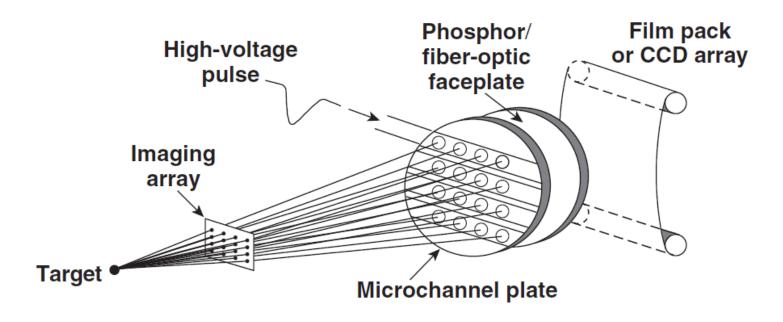

A framing camera provides a series of time-gated 2-D images, similar to a movie camera

- The building block of a framing camera is a gated microchannel-plate (MCP) detector
- An MCP is a plate covered with small holes, each acts as a photomultiplier


A voltage pulse is sent down the plate, gating the detector

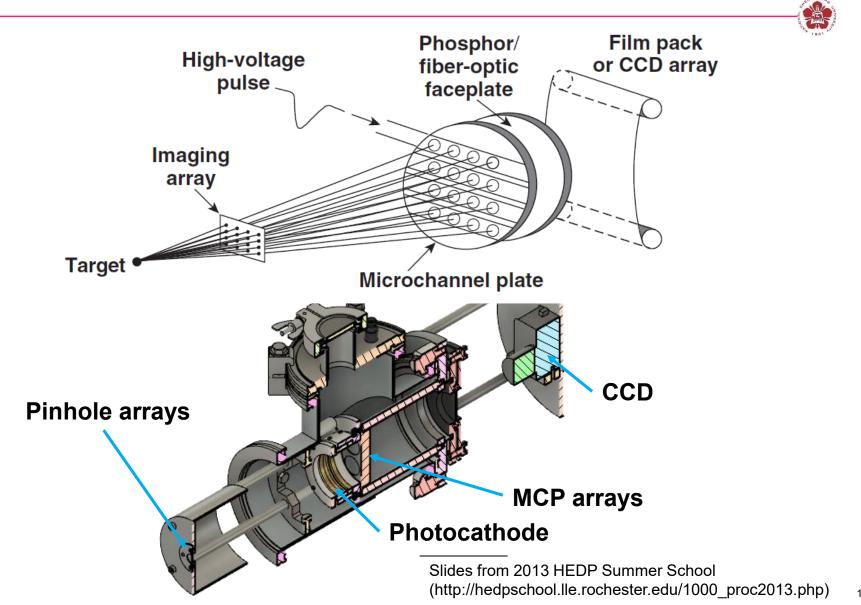
The detector is only on when the voltage pulse is present

E13986b

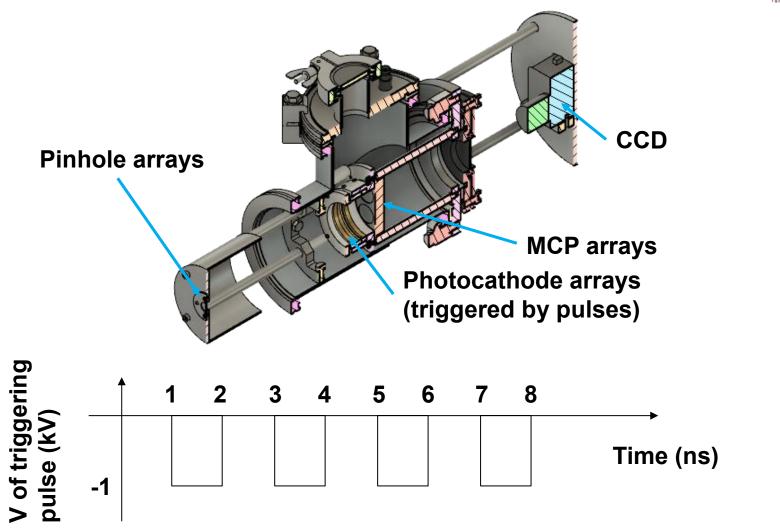

A framing camera detector consists of a microchannel plate (MCP) in front of a phosphor screen

- Electrons are multiplied through MCP by voltage V_c
- Images are recorded on film behind phosphor
- Insulating Al₂O₃ layer allows for V_{ph} to be increased, thereby improving the spatial resolution of phosphor

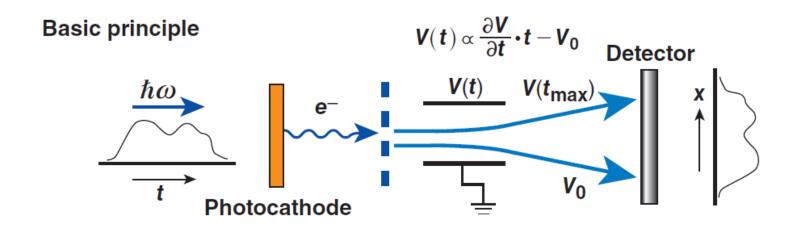
Two-dimensional time-resolved images are recorded using x-ray framing cameras

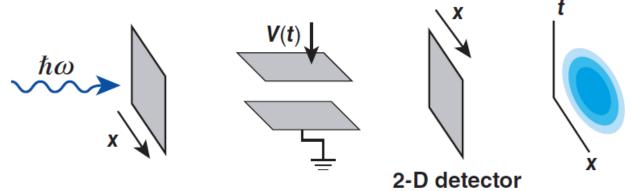


- Temporal resolution = 35 to 40 ps
- Imaging array: Pinholes: 10- to 12- μ m resolution, 1 to 4 keV
- Space-resolved x-ray spectra can be obtained by using Bragg crystals and imaging slits


Framing camera

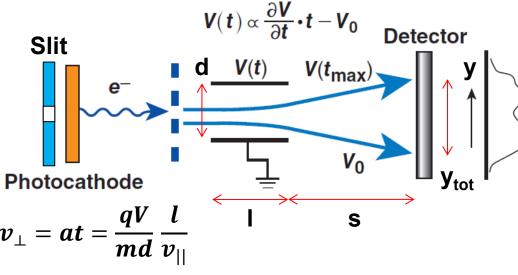
X-ray framing cameras for recording two-dimensional time-resolved images will be built by the end of 2021


Each pinhole camera will be triggered separately



A streak camera provides temporal resolution of 1-D data

A streak camera can provide 2-D information



A temporal resolution higher than 15 ps is expected

Imaging system

- Visible light: regular lens
- X rays: pinhole

$$a = \frac{F}{m} = \frac{qE}{m} = \frac{qV}{md}$$
 $v_{\perp} = at = \frac{qV}{md} \frac{l}{v_{||}}$

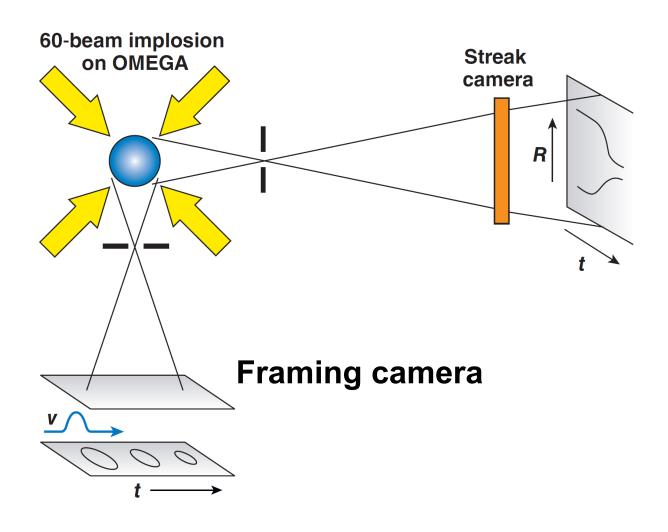
$$y = s \operatorname{Tan}\theta = s \frac{V_{\perp}}{V_{\parallel}} = \frac{1}{2E_{L}} \frac{l}{d} sqV = \frac{1}{2E_{L}} \frac{l}{d} sq(V_{0} + V't)$$

Let d=10 mm, l=20 mm, s=50 mm, E_k=1 keV, V=-200 ~ 200 V

$$V' \equiv \frac{V_{\text{tot}}}{t_{\text{tot}}} = 0.06 \,\text{kV/ns}$$
 $y_{\text{tot}} = 15 \,\text{mm}$ $y_{\text{tot}} = 15 \,\text{mm}$

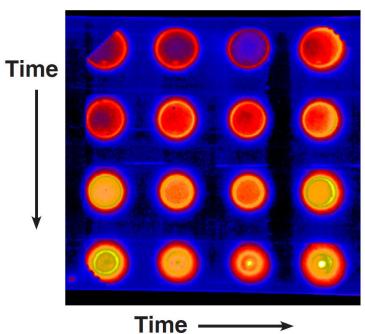
Temporal resolution:

$$\delta t = \delta y \frac{2E_k d}{lsqV'} = 15 \text{ ps for } \delta y = 45 \mu m$$

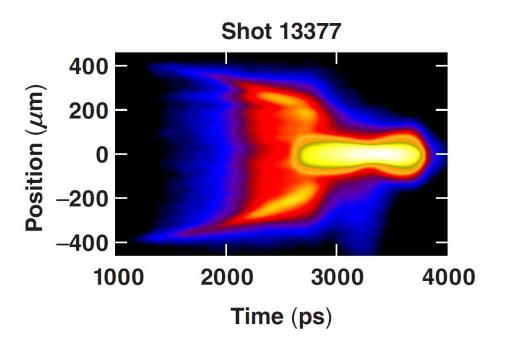

• δt will be adjusted by changing E_k .

A streak camera with temporal resolution of 15 ps has been developed

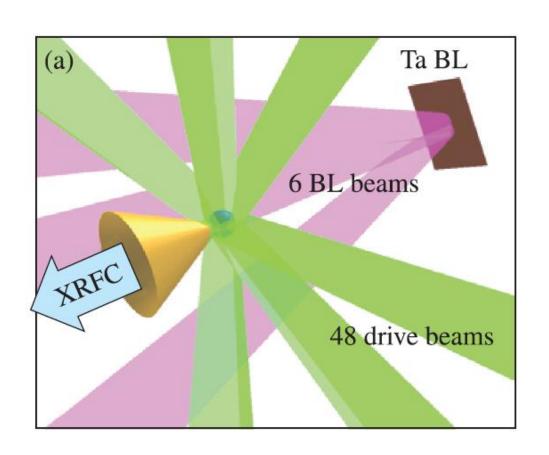
Shell trajectories can be measured using framing camera or streak camera



Comparison of images from framing camera versus streak camera

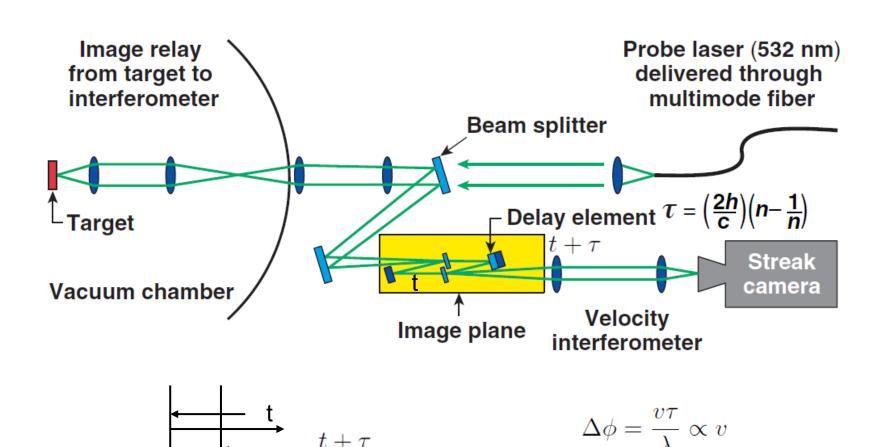


Shot 13377



Streak-camera image

The optical density can be measured using the absorption of a backlighter



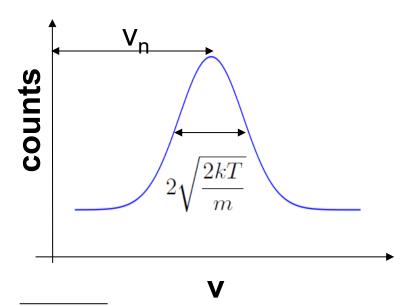
$$I = \int I(\varepsilon) \exp(-\mu(\varepsilon)\rho\delta) d\varepsilon$$


$$I = I_{\rm BL} \exp(-\bar{\mu}\rho\delta)$$

$$\ln I = \ln I_{BL} - \mu\rho r$$

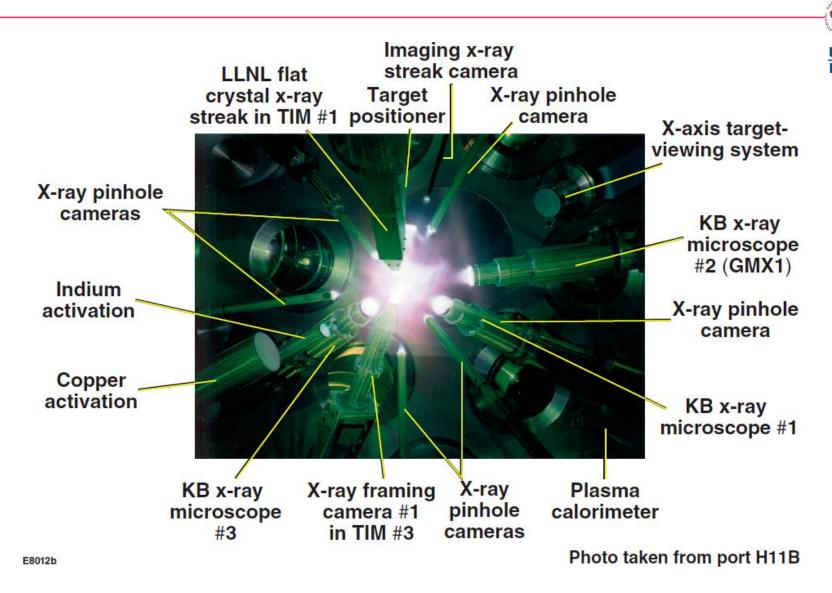
Shock velocities are measured using time-resolved Velocity Interferometer System for Any Reflector (VISAR)

Neutron average temperature is obtained using Neutron Time of Flight (NToF)

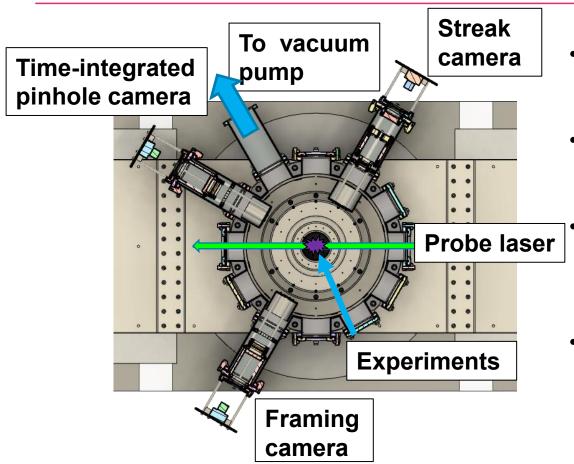


$$D + D \longrightarrow He^3 (0.82 \text{ MeV}) + n (2.45 \text{ MeV})$$

$$D + T \longrightarrow He^4 (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$$


$$s = vt$$
 $v = \frac{s}{t}$

$$f(v) = \sqrt{\left(\frac{m}{2\pi kT}\right)} \exp\left(-\frac{mv^2}{2kT}\right)$$


T. J. Murphy *et al.*, Rev. Sci. Instrum. **72**, 773 (2001) ₁₇₂

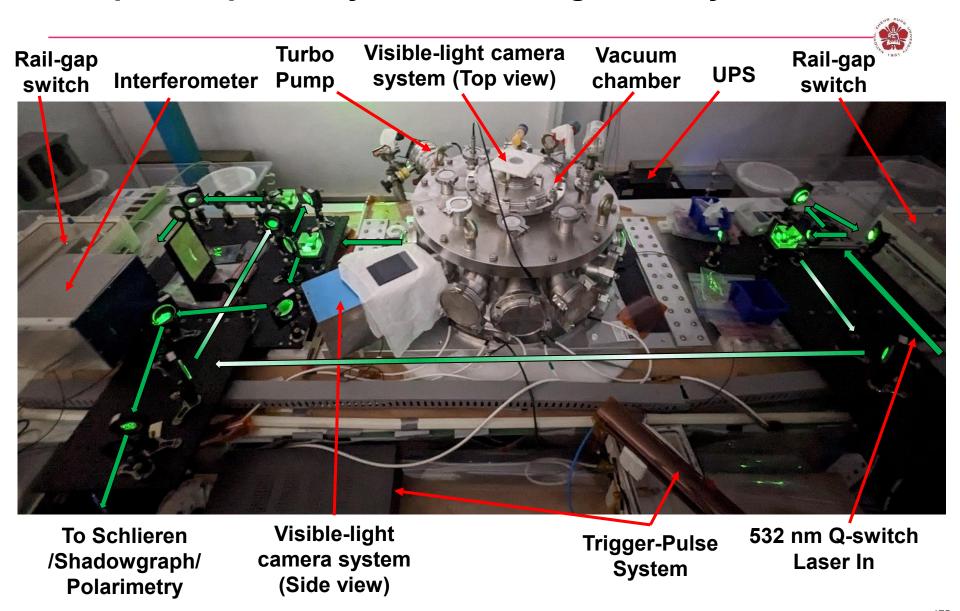
The OMEGA Facility is carrying out ICF experiments using a full suite of target diagnostics

FSC

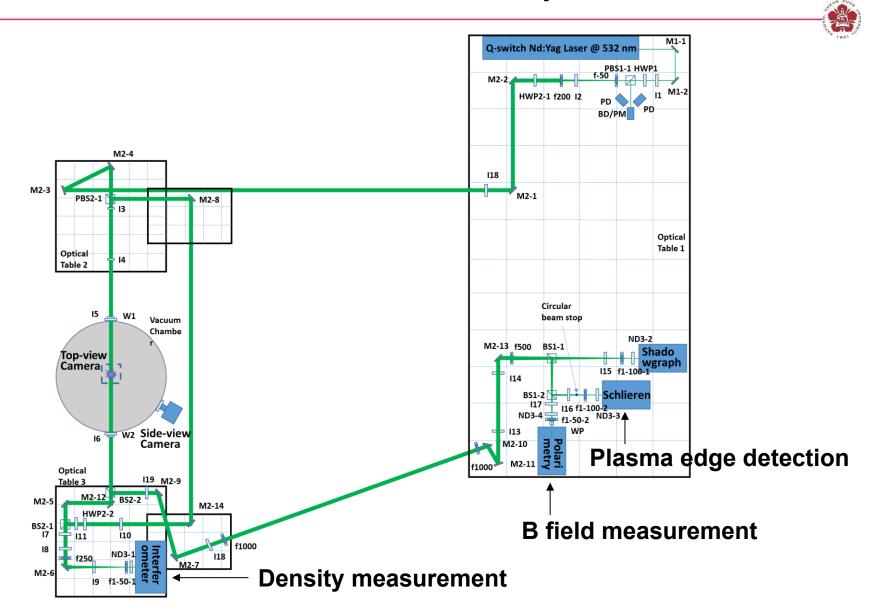
A suit of diagnostics in the range of (soft) x-ray are being built

- Csl are used as the photocathode for all xray imaging system.
- Au photocathode may be used in the future.

Pinhole camera:

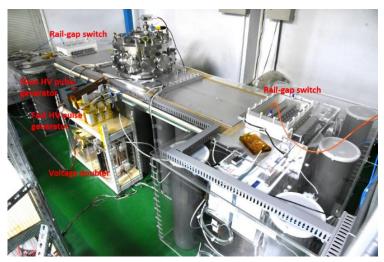

- Magnification: 1x

- Exposure time: 1 us

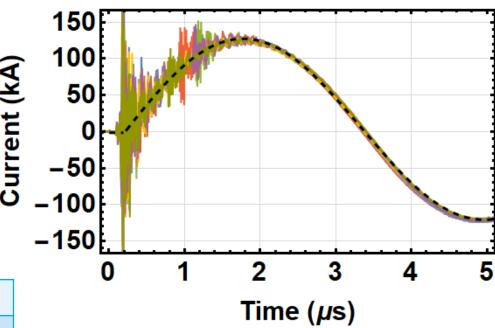

Streak camera:

- Magnification: 1x
- Temporal resolution: 15 ps
- Framing camera:
- Magnification: 0.3x
- Temporal resolution: ~ns using 4 individual MCPs
- Laser probing:
- For interferometer, schlieren, shadowgraphy, Thomson scattering.
- Temporal resolution: ~300 ps using stimulated brillouin scattering (SBS) pulse compression in water

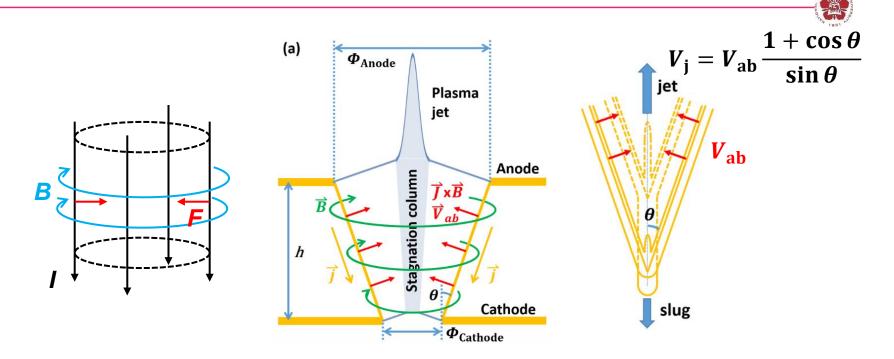
The pulsed-power system with diagnostic system



Time-resolved imaging system with temporal resolution in the order of nanoseconds was implemented



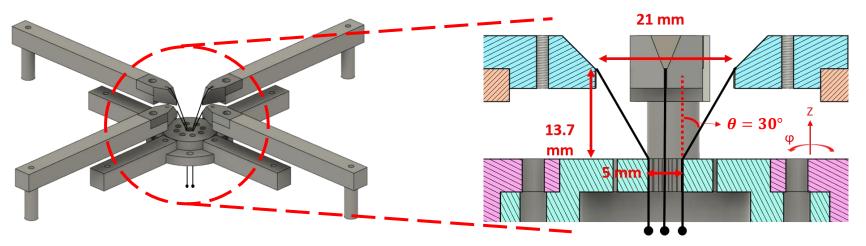
A peak current of ~135 kA with a rise time of ~1.6 us is provided by the pulsed-power system



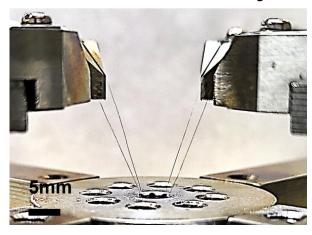
Capacitance (µF)	5
V _{charge} (kV)	20
Energy (kJ)	1
Inductance (nH)	204 ± 4
Rise time (quarter period, ns)	1592 ± 3
I _{peak} (kA)	135 ± 1

- EUV generation using discharged-produced plasma:
 - PP-PP-002 Chenghan Du
 - PP-PP-003 Jia-Kai Liu

A plasma jet can be generated by a conical-wire array due to the nonuniform z-pinch effect



- 1. Wire ablation: corona plasma is generated by wire ablations.
- 2. Precursor : corona plasma is pushed by the $\vec{J} \times \vec{B}$ force and accumulated on the axis forming a precursor.
- 3. Plasma jet is formed by the nonuniform z-pinch effect due to the radius difference between the top and the bottom of the array.


D. J. Ampleforda, et al., Phys. Plasmas 14, 102704 (2007)

G. Birkhoff, et al., J. Applied Physics 19, 563 (1948)

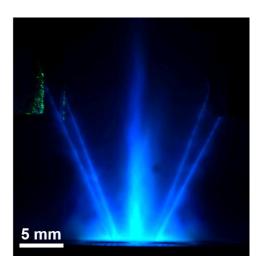
Our conical-wire array consists of 4 tungsten wires with an inclination angle of 30° with respect to the axis

Conical-wire array



- Material : Tungsten.
- Number of wires : 4.
- Diameter : 20 µm.

Self-emission of the plasma jet in the UV to soft x-ray regions was captured by the pinhole camera


Image in UV/soft x ray

(Brightness is increased by 40 %.)

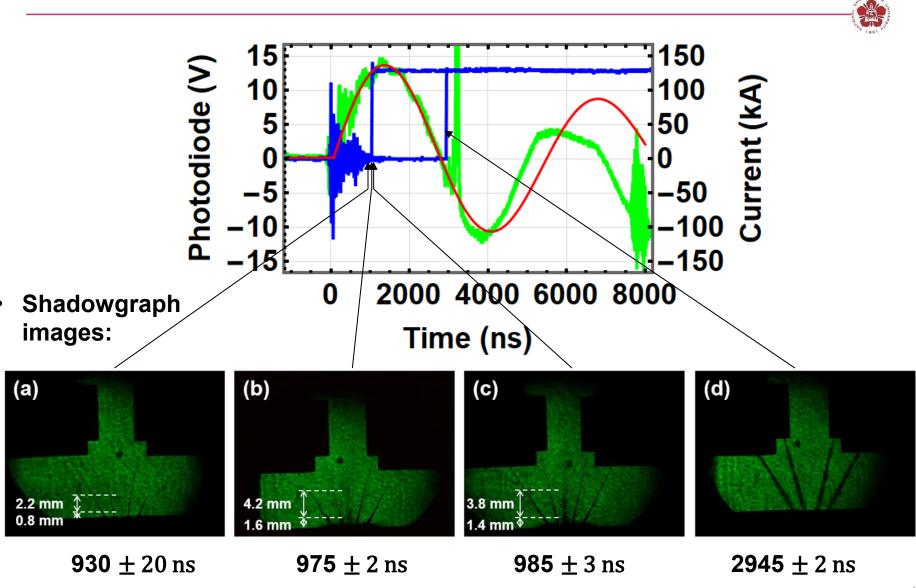
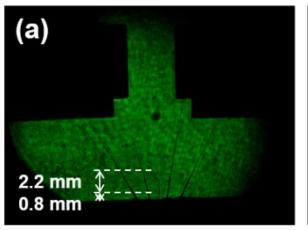
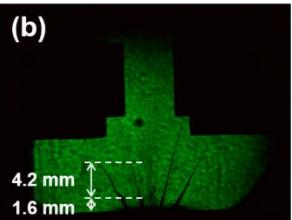
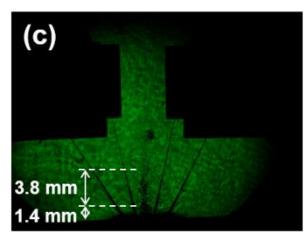

Pinhole diameter:
 0.5 mm, i.e., spatial resolution: 1 mm.

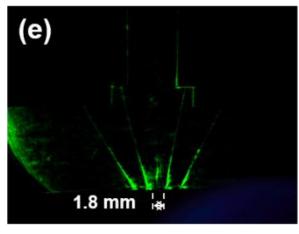
Image in visible light

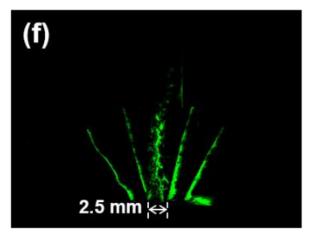

(Enhanced by scaling the intensity range linearly from 0 - 64 to 0 - 255.)

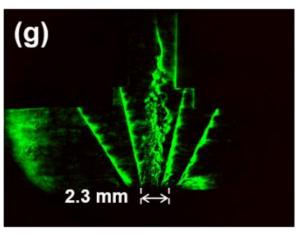

Plasma jet propagation was observed using laser diagnostics



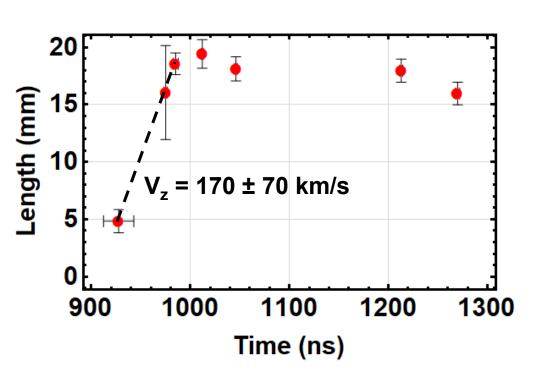
Length of the plasma jet at different time was obtained by the Schlieren images at different times

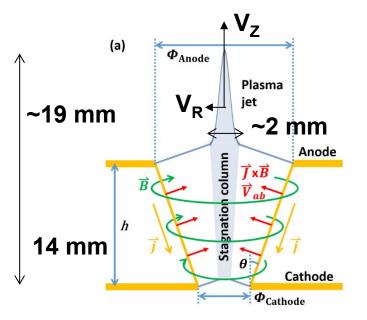

Shadowgraph images:





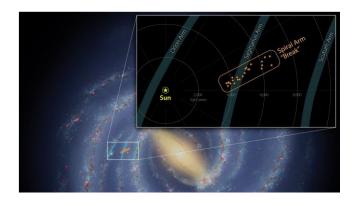
Schlieren images:

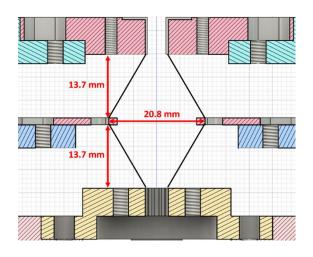

 $930 \pm 20 \, \text{ns}$


 $975 \pm 2 \text{ ns}$

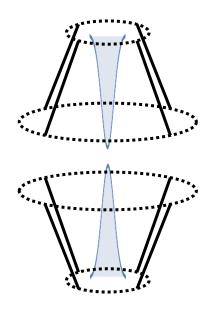
 $985 \pm 3 \text{ ns}$

The measured plasma jet speed is 170 ± 70 km/s with the corresponding Mach number greater than 5

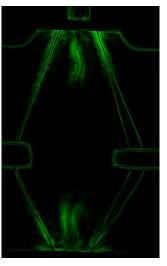


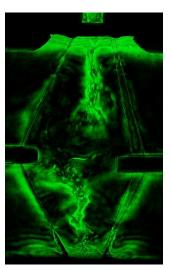

$$M = \frac{V_Z}{V_R} \ge \frac{Z}{r} \approx \frac{(19 - 14) \text{ mm}}{\frac{2 \text{ mm}}{2}} = 5$$

$$V_{ab} = V_{j} \frac{\sin \theta}{1 + \cos \theta} = 50 \pm 20 \text{ km/s}$$

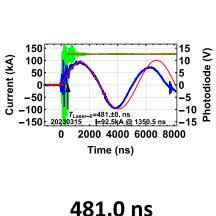

Plasma disk can be formed when two head-on plasma jets collide with each other

 Astronomers Find a 'Break' in One of the Milky Way's Spiral Arms.




Plasma disk can be formed when two head-on plasma jets collide with each other

Schlieren

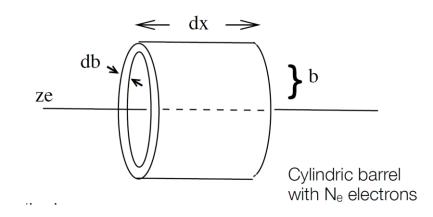


Interferometer

Energetic charged particles losses most of its energy right before it stops

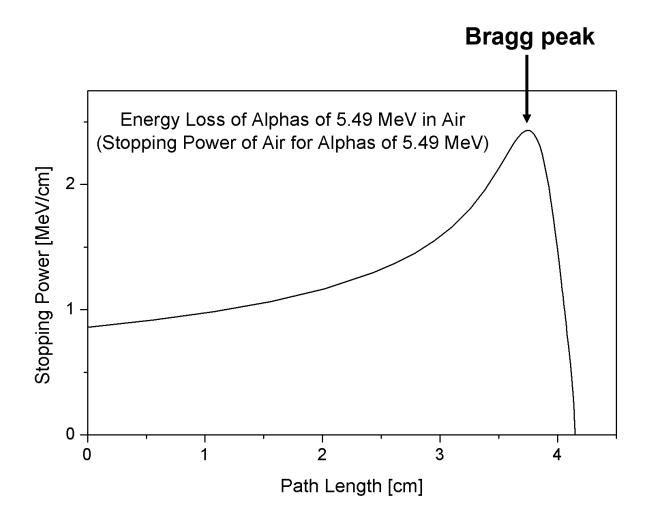
Momentum transfer:

$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dt}{dx} dx = \int F_{\perp} \frac{dx}{v}$$

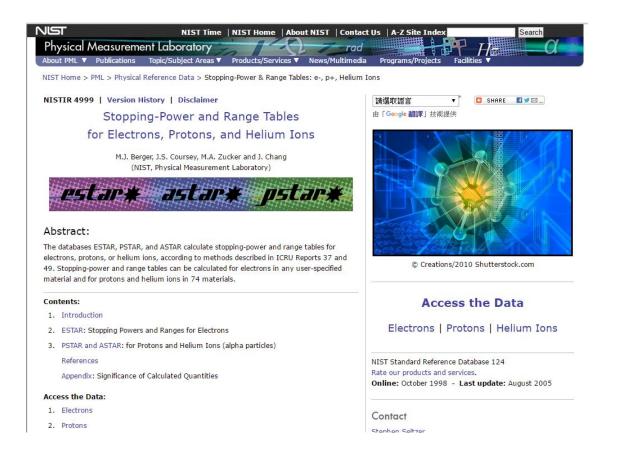

$$= \int_{-\infty}^{\infty} \frac{ze^2}{(x^2 + b^2)} \cdot \frac{b}{\sqrt{x^2 + b^2}} \cdot \frac{1}{v} \, dx = \frac{ze^2b}{v} \left[\frac{x}{b^2 \sqrt{x^2 + b^2}} \right]_{-\infty}^{\infty} = \frac{2ze^2}{bv}$$

 Δp_{\parallel} : averages to zero

$$\Delta E(b) = \frac{\Delta p^2}{2m_{\rm e}} \quad {\rm N_e = n\cdot (2\pi b)\cdot db\, dx}$$

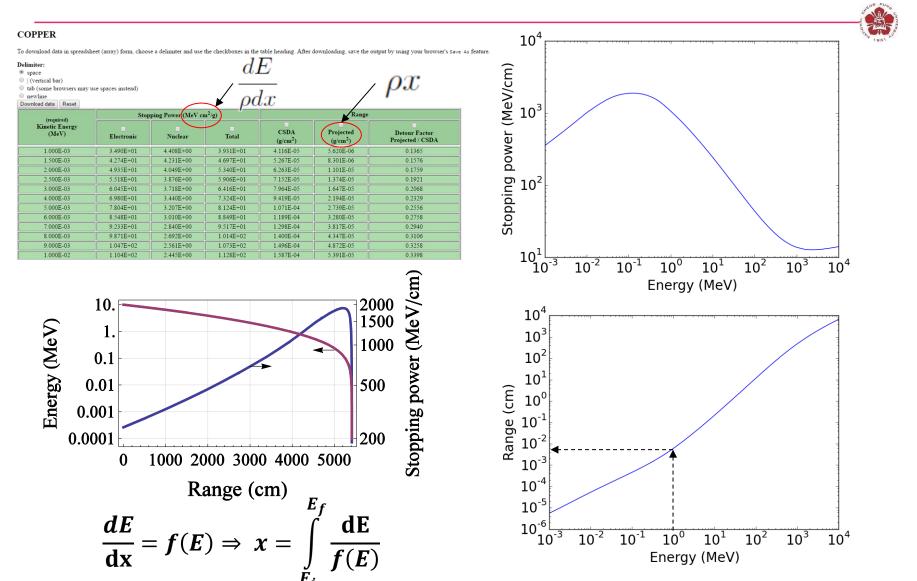

$$-dE(b) = \frac{\Delta p^2}{2m_e} \cdot 2\pi nb \, db \, dx$$

$$-\frac{dE}{dx} = \frac{4\pi \, n \, z^2 e^4}{m_{\rm e} v^2} \cdot \int_{b_{\rm min}}^{b_{\rm max}} \frac{db}{b} = \frac{4\pi \, n \, z^2 e^4}{m_{\rm e} v^2} \, \ln \frac{b_{\rm max}}{b_{\rm min}}$$

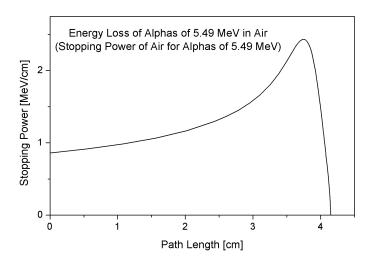

A particle loses most of its energy right before it stops

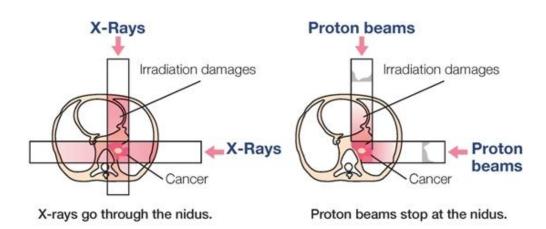
There are two suggested website for getting the information of proton stopping power in different materials

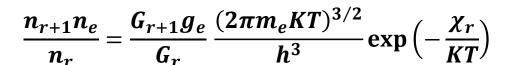
http://www.nist.gov/pml/data/star/



http://www.srim.org/


SRIM Textbook	
Software	Science
SRIM / TRIM Introduction	Historical Review
Download SRIM- 2013	Details of SRIM- 2013
SRIM Install Problems	Experimental Data Plots Stopping of Ions in Matter
SRIM Tutorials	Stopping in Compounds
Download TRIM Manual Part-1, Part-2	Scientific Citations of Experimental Data


The thickness of a filter can be decided from the range data from NIST website


Proton therapy takes the advantage of using Bragg peak

Saha equation gives the relative proportions of atoms of a certain species that are in two different states of ionization in thermal equilibrium

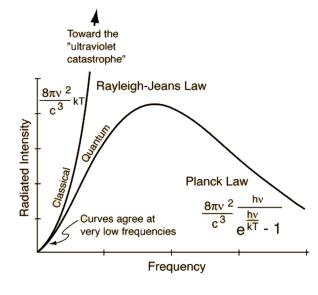
- n_{r+1}, n_r: Density of atoms in ionization state r+1, r (m⁻³)
- n_e: Density of electrons (m⁻³)
- G_{r+1}, G_r: Partition function of ionization state r+1, r
- g_e=2: Statistical weight of the electron
- m_e: Mass of the electron
- χ_r: Ionization potential of ground level of state r to reach to the ground level of state r+1
- T: Temperature
- h: Planck's constant
- K: Boltzmann constant

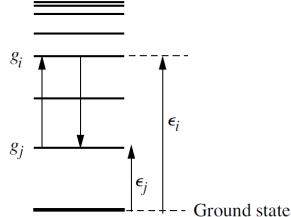
Some backgrounds of quantum mechanics

Planck blackbody function:

$$u(\nu, T) = \frac{8\pi h \nu^3}{c^3} \frac{1}{e^{h\nu/KT} - 1} (W/m^3 Hz)$$

- **Boltzmann formula:**
 - g_i, g_j: statistical weight


$$\frac{n_i}{n_j} = \frac{g_i e^{-\epsilon_i/\text{KT}}}{g_j e^{-\epsilon_j/\text{KT}}} = \frac{g_i}{g_j} e^{-h\nu_{ij}/\text{KT}} \qquad \frac{g_i}{g_j} = \frac{2J_i + 1}{2J_j + 1}$$


(J: angular momenta quantum number)

– Number in the ith state to the total atom:

$$\frac{n_i}{n} = \frac{n_i}{\Sigma n_i} \equiv \frac{g_i e^{-\epsilon_i/\text{KT}}}{G} \qquad G \equiv \Sigma g_j e^{-\epsilon_j/\text{KT}}$$

G: partition function of statistical weight for the atom, taking into account all its excited states.

Einstein coefficient

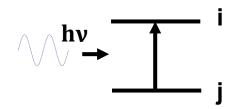
- Probability of electron energy transition:
 - Excitation (\uparrow): $P_{ji} = B_{ji}u(\nu, T)$
 - De-excitation (\downarrow): $P_{ij} = A_{ij} + B_{ij}u(\nu, T)$
- In thermal equilibrium:

$$n_{i}(A_{ij} + B_{ij}u) = n_{j}B_{ji}u$$

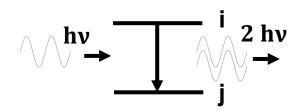
$$\frac{g_{i}}{g_{j}}e^{-x}(A_{ij} + B_{ij}u) = B_{ji}u$$

$$x \equiv \frac{h\nu}{KT}$$

$$u = a(e^{x} - 1)^{-1}$$

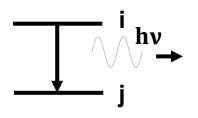

$$a \equiv \frac{8\pi h\nu^{3}}{c^{3}}$$

$$a\left(e^{x}B_{ji} - \frac{g_{i}}{g_{j}}B_{ij}\right) = (e^{x} - 1)\frac{g_{i}}{g_{j}}A_{ij}$$


The Einstein coefficients are independent of T or v.

$$x \to 0, e^x \to 1$$
 $x \to \infty, e^x \to \infty$
$$\frac{B_{ij}}{B_{ii}} = \frac{g_j}{g_i}$$

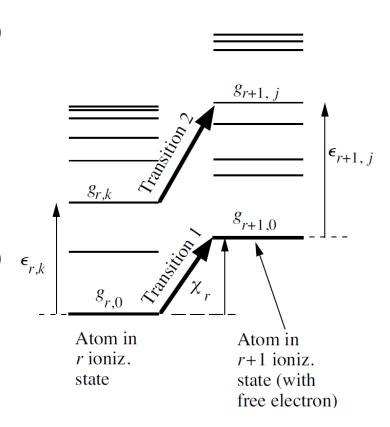
$$aB_{ji} = \frac{g_i}{g_j} A_{ij} \quad \frac{A_{ij}}{B_{ij}} = \frac{8\pi h \nu^3}{c^3}$$


Photoexcitation:

Induced radiation:

Spontaneous radiation:

Saha equation is derived using the transition between different ionization states



 Required photon energy for transition (1) from the ground state of r ionization state to the ground state of r+1 ionization state:

$$hv = \chi_r + \frac{p^2}{2m}$$
 Energy of the free electron

 Required photon energy for transition (2) from the energy level k of r ionization state to the energy level j of r+1 ionization state:

$$hv = \chi_r + \epsilon_{r+1,j} - \epsilon_{r,k} + \frac{p^2}{2m}$$

Saha equation is derived using the transition between different ionization states

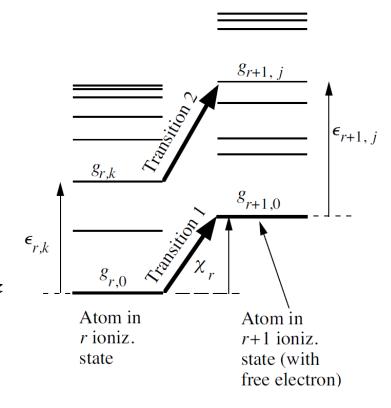
Photoionization:

$$R_{\mathrm{pi}} = n_{r,k} u(\nu) B_{r,k \to r+1,j}$$

Induced radiation:

$$R_{ir} = n_{r+1,j} n_{e,p}(p) u(\nu) B_{r+1,j\to r,k}$$

Spontaneous emission:


$$R_{\rm sr} = n_{r+1,j} n_{e,p}(p) A_{r+1,j\to r,k}$$

In thermal equilibrium:

$$n_{r+1,j}n_{e,p}A_{r+1,j\to r,k} + n_{r+1,j}n_{e,p}uB_{r+1,j\to r,k}$$

= $n_{r,k}uB_{r,k\to r+1,j}$

Einstein coefficients:

$$\frac{B_{r,k\to r+1,j}}{B_{r+1,j\to r,k}} = \frac{g_{r+1,j}}{g_{r,k}} \frac{g_e 4\pi p^2}{h^3}$$

$$\frac{A_{r+1,j\to r,k}}{B_{r+1,j\to r,k}} = \frac{8\pi h \nu^3}{c^3}$$

Saha equation - continued

$$n_{r+1,j}n_{e,p}A_{r+1,j\to r,k} + n_{r+1,j}n_{e,p}uB_{r+1,j\to r,k} = n_{r,k}uB_{r,k\to r+1,j}$$

$$n_{r+1,j}n_{e,p}rac{A_{r+1,j o r,k}}{B_{r+1,j o r,k}}+n_{r+1,j}n_{e,p}u=n_{r,k}urac{B_{r,k o r+1,j}}{B_{r+1,j o r,k}}$$

$$\frac{n_{r+1,j}n_{e,p}}{n_{r,k}} = \left(\frac{A_{r+1,j\to r,k}}{uB_{r+1,j\to r,k}} + 1\right)^{-1} \frac{B_{r,k\to r+1,j}}{B_{r+1,j\to r,k}}$$

$$n_{e,p}(p) = \frac{n_e 4\pi p^2}{(2\pi m KT)^{3/2}} \exp\left(-\frac{p^2}{2m KT}\right)$$

$$\frac{B_{r,k\to r+1,j}}{B_{r+1,j\to r,k}} = \frac{g_{r+1,j}}{g_{r,k}} \frac{g_e 4\pi p^2}{h^3}$$

$$\frac{A_{r+1,j\to r,k}}{B_{r+1,j\to r,k}} = \frac{8\pi h \nu^3}{c^3}$$

$$\frac{n_{r+1,j}n_e}{n_{r,k}} = \frac{(2\pi m KT)^{3/2}}{4\pi p^2} \exp\left(\frac{p^2}{2m KT}\right) \left[\frac{c^3}{8\pi h \nu^3} \left(e^{h\nu/KT} - 1\right) \frac{8\pi h \nu^3}{c^3} + 1\right]^{-1} \frac{g_{r+1,j}}{g_{r,k}} \frac{g_e 4\pi p^2}{h^3}$$

$$\frac{n_{r+1,j}n_e}{n_{r,k}} = \frac{(2\pi m KT)^{3/2}}{h^3} \frac{g_{r+1,j}g_e}{g_{r,k}} \exp\left[\frac{1}{KT} \left(\frac{p^2}{2m} - h\nu\right)\right]$$

Saha equation - continued

$$\begin{split} &\frac{n_{r+1,j}n_e}{n_{r,k}} = \frac{(2\pi \text{mKT})^{3/2}}{h^3} \, \frac{g_{r+1,j}g_e}{g_{r,k}} \exp\left[\frac{1}{\text{KT}} \left(\frac{p^2}{2m} - \text{hv}\right)\right] \\ &\frac{n_{r+1,j}n_e}{n_{r,k}} = \frac{(2\pi \text{mKT})^{3/2}}{h^3} \, \frac{g_{r+1,j}g_e}{g_{r,k}} \exp\left[\frac{1}{\text{KT}} \left(\frac{p^2}{2m} - \chi_r - \epsilon_{r+1,j} + \epsilon_{r,k} - \frac{p^2}{2m}\right)\right] \\ &\frac{n_{r+1,j}n_e}{n_{r,k}} = \frac{(2\pi \text{mKT})^{3/2}}{h^3} \, \frac{g_{r+1,j}\exp\left(-\frac{\epsilon_{r+1,j}}{\text{KT}}\right)g_e}{g_{r,k}\exp\left(-\frac{\epsilon_{r,k}}{\text{KT}}\right)} \exp\left(-\frac{\chi_r}{\text{KT}}\right) \\ &\frac{n_{r,k}}{n_r} = \frac{g_{r,k}e^{-\epsilon_{r,k}/\text{KT}}}{G_r} & G_r = \Sigma g_{r,k}e^{-\epsilon_{r,k}/\text{KT}} \\ &\frac{n_{r+1,j}}{n_{r+1}} = \frac{g_{r+1,j}e^{-\epsilon_{r+1,j}/\text{KT}}}{G_{r+1}} & G_{r+1} = \Sigma g_{r+1,j}e^{-\epsilon_{r+1,j}/\text{KT}} \end{split}$$

$$\frac{n_{r+1}n_e}{n_r} = \frac{G_{r+1}g_e}{G_r} \frac{(2\pi m_e KT)^{3/2}}{h^3} \exp\left(-\frac{\chi_r}{KT}\right)$$

Saha equation – example: hydrogen plasma of the sun

- Photosphere of the sun hydrogen atoms in an optically thick gas in thermal equilibrium at temperature T=6400 K.
 - Neutral hydrogen (r state / ground state)

$$G_r = \Sigma g_{r,k} = g_{r,0} + g_{r,1} \exp\left(-\frac{\epsilon_{r,1}}{KT}\right) + \dots = 2 + 8 \exp\left(-\frac{10.2 \text{ eV}}{0.56 \text{ eV}}\right) + \dots$$

= 2 + 9.8 × 10⁻⁸ + \dots \approx 2

lonized state (r+1 state)

$$G_{r+1} = \Sigma g_{r+1,j} = g_{r+1,0} + g_{r+1,1} \exp\left(-\frac{\epsilon_{r+1,1}}{KT}\right) + \cdots \approx 1$$

– Other information: $g_e=2$ $\chi_r=13.6 \,\mathrm{eV}$; KT $=0.56 \,\mathrm{eV}$ $n_{r+1}=n_e$

$$\frac{n_{r+1}^2}{n_r} = 2.41 \times 10^{21} \frac{1 \times 2}{2} (6400)^{3/2} \exp\left(-\frac{13.6}{0.56}\right) = 3.5 \times 10^{16} m^{-3}$$

It is mostly neutral in the photosphere of the sun

Assuming 50 % ionization:

$$n_{r+1} = n_r = 3.5 \times 10^{16} m^{-3}$$
 $n = n_{r+1} + n_r = 7 \times 10^{16} m^{-3}$

- At lower densities n at the same temperature, there should be fewer collisions leading to recombination and thus the plasma to be more than 50 % ionization.
- In the photosphere of the sun:

$$ho \sim 3 \times 10^{-4} \, \mathrm{kg}/m^3 \rightarrow n = 2 \times 10^{23} m^{-3} \gg 7 \times 10^{16} m^{-3}$$
 \Rightarrow Less than 50 % ionization

Use the total number density to estimate the ionization percentage:

$$n_{r+1} + n_r = 2 \times 10^{23}$$
 $\frac{n_{r+1}}{n_r} = 4 \times 10^{-4} @6400K$