Application of Plasma Phenomena
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Note!

* No class next Tuesday (3/5) !

* Quizin class on 3/12!




Plasma is the 4t" state of matter
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Plasma is everywhere
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In plasma, there are ions, electrons, and neutral gas
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A plasma can be created when the ionization rate Is
higher than the recombination rate
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There are several Important plasma parameters that
need to be considered
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A test ion in the plasma gathers a shielding cloud
that tends to cancel its own charge
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Plasma parameter A is the number of particles in a
sphere with radius of Ag

- Plasma parameter:
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Electron plasma frequency is the characteristic
frequency such that electrons oscillate around their

equilibrium positions
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Mechanism of plasma oscillations.
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Comparison between the mean free path and the
system size L determines the regime of the plasma

 Collisional time:

3yMmg(KT,)3/?
To =
°" 4v2mne*Ina
* Mean free path:
lmfp = VeTe

Intp < L Fluid Theory
Imtp > L Kinetic Theory
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Thermal conduction perpendicular to the magnetic field
can be suppressed when the plasma is magnetized
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Plasma 3 is the ratio between hydro pressure and

magnetic pressure

« Momentum equation in Magnetohydrodynamics (MHD) approach:

AA —_— 1; —_—
pd—+p(v V)v=—Vp+Z] x B
D x B 4T _.

X = —
p J

« Magnetic pressure:

« Magnetic tension:
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lonization process

Collisions play an important role in ionization process

« At the microscopic level, breakdown requires the presence of sufficiently
energy charge particles that have acquired enough energy from the
applied electric field between two energy-dissipating collisions to ionize
the material and to create more charge particles.
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In most cases, electrons dominate the breakdown
process since its mobility is much larger than that of ions
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Mean free path is important in ionization process

« For an electron to acquire enough energy between collisions, its
mean free path in the material must be sufficiently long.

Mean free path, A
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Kinetic energy needs to greater than the ionization
energy to ionize the gas

« Between each collision, the kinetic energy increase.
4—
2eEA I
AeE = Emv2 Y= E
m A
e Mean time between ionization collisions fw)
for electron with velocity v: | 2eEA
A 0.3? m
T=-— .
v 0.2 J
« The rate of ionization is:
1 v 5 ' s : :
—_—= — = v i
T A v
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Collisions can be elastic or inelastic
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« Elastic collisions — NO energy exchanges. Momentum is redistributed.

* Inelastic collisions — energy is exchanged between the collision partners
— production of molecules & particles.

— A portion of the kinetic energy before collision is converted to
potential energy of one of the particles in the system.

— lonization: A+B - A +B*+ e

- The process of ionization is dominated by e~ acceleration in an
electric field and is greatly aided by the appearance of initiatory
electrons: (1) ionization in the gas; (2) emission from the cathode.
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Electron impact ionization is the most important
process in a breakdown of gases

« Electron impactionization: A+e — A*+e +e

— The most important process in the breakdown of gases but is not
sufficient alone to result in the breakdown.

eEAe; = eV; V,: ionization potential

19



Photoionization & collisions with excited molecules

Metastable production (1~10 ms life time):

Electron impact excitation:

Step ionization:

De-excitation:

Radiative recombination:

Dielectronic excitation:

Autoionization:

Dielectronic recombination:

Step photoionization:

Photoionization:
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A+B—-A*+B

A+e - A*+e

A*+e - A+e +hv

At+e —- A+ hv

A* + e — A% + e

AR A¥ + e

A*+hv - At +e

A+hv - At +e
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Photoionization is very complex

* Photons with A=125 nm (UV) @ 9.9 eV can ionize almost all gases despite
that almost all molecules and atom have ionization energy > 9.9 eV!

« Dust or water vapor can emit electrons through photon absorption.

« All photoionization occurs between 6~ 50 eV.

(N B W
S W

,_.
o

1% Tonization energy (eV)
O

S W
S

20 40 60 80 100
Atomic number (Z)

A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team.

NIST Atomic Spectra Database (ver. 5.5.1), [Online]. Available:
https://physics.nist.gov/asd [2017, December 24]. National

Institute of Standards and Technology, Gaithersburg, MD., 2017. 21



Penning ionization — breakdown voltage may reduce

with mixture of inert gas

« A*+B* > A*+B +e

« May be from impurities or engineered mixture called penning mixture.

* A penning mixture is a mixture of an inert gas with a small amount of a
guench gas, which has lower ionization potential than the 18t excited

state of the inert gas.

 Ex: neon lamp: Ne + Ar (<2%)

plasma display: He/Ne + Xe

Gas ionization detector: Ar/Xe, Ne/Ar, Ar/acetylene(Z{#)
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More complex collisions

3-body collision: At+e +te > A*+e
lon impact excitation: A*+B — A* + B*

3-body collision: At+B+e —- A*+B
lon impact ionization: A*+B > A*+B*+e

Total collisional cross section:
0(V) = O¢ + Oex + Ojop + -+ = 2,0,

Excitation Excitation

lonization

1 lonization
6 /17

lonization lonization

Elastic
Inert gas can be ionized easier since there are less exciting state
compared to gas molecules.

Molecules, e.g., SF, dry air (with O,), that capture electron easier
provides a higher breakdown voltage.
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Breakdown voltage of different gas
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Methods of plasma production

« DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases
— DC electrical arc discharges in gases
 AC electrical discharges
— RF electrical discharges in gases
— Microwave electrical discharges in gases
— Dielectric-barrier discharges (DBDs)
« Other mechanism
— Laser produced plasma

— Pulsed-power generated plasma
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Reference

* Industrial plasma engineering, volume 1, by J. Reece Roth, Chapter 8 - 13.

 Plasma physics and engineering, by Alexander Fridman an Lawrence A.
Kennedy.

« Plama medicine, by Alexander Fridman and Gary Frideman.
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Methods of plasma production

« DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases

— DC electrical arc discharges in gases
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DC electrical discharges

Electrical discharge physics was studied using the
classical low pressure electrical discharge tube
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The V-l curve is nonlinear in a DC electrical discharge

tube
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 Depends on the voltage, the adjustable ballast resistor, the voltage-
current characteristic behaves differently in different regime.

— Dark discharge
— Glow discharge

— Arc discharge
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Dark discharge

In a dark discharge, the excitation light is so little and is
not visible

VOLTAGE, V

DARK DISCHARGE | GLOW DISCHARGE ARC DISCHARGE

I I
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I T
| P MA'
|
|
|

corona Be
BREAKDOWN VOLTAGE

______________________
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| [ )
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A e ol I | I | L il . 1 | -

10710 1o-8 Tl 10~ 4 102 | 100 10,000
CURRENT I, AMPS

« In dark discharge, with the exception of the more energetic corona
discharges, the number density of excited species is so small so that
it does not emit enough light to be seen by a human observer.
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In background ionization, ions and electrons are
created by ionization from background radiation
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« Sources of background radiation:

— Cosmic rays

' DARK

— | HigH voLTace oc |+ V 3
POWER SUPPLY e
—(V)
)
IONIZING
RADIATION
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vACUUM | 1
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— Radioactive minerals in the surroundings

— Electrostatic charge
— UV light illumination

— Other sources
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Cosmic rays can be observed by a “cloud chamber”
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« A cloud chamber consists of a sealed environment containing a

glass / =\l//\‘\\\ vapours l/l/——‘/‘\/t——-—/duct

containments

supersaturated vapor of water or alcohol. An energetic charged particle
interacts with the gaseous mixture by knocking electrons off gas
molecules via electrostatic forces during collisions, resulting in a trail of
lonized gas particles. The resulting ions act as condensation centers
around which a mist-like trail of small droplets form if the gas mixture is
at the point of condensation. These droplets are visible as a "cloud"”
track that persists for several seconds while the droplets fall through the

vapor.
/Vhigh voltage '

heating

urated vapours liquid

.. ‘Low energye SR 5 e S
% HEMHENE L lighting W !

v " An —
" ! T Proton with « delta ray »

7 o) (electrons)

r Y : ' ‘
cooling black board "
.

alcohol inflow and outflow

https://en.wikipedia.org/wiki/Cloud_chamber
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A discharge of a gold-leaf electroscope can illustrate the
lonization of air by cosmic rays and background radiation
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Current saturation occurs when all ions and electrons
produced between the electrodes are collected

VOLTAGE, V
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dn
S=— (electrons orions/m3 —s)

I, = eAdS Js =edS
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The region where the current exponentially increases is
called the Townsend discharge

BBBBBBB
VOLTAGE

HIGH VOLTAGE
POWER SUPPLY 6’)

v es* Ve

rz /l L L
CATHODE

T

« Electrons from photo- or secondary electron emission from the cathode:

T'ec = T'eg + I'es(electrons/m? — s)

 Volume ionization source from the ionization of the background gas by
energetic electrons accelerated in the electric field:

Se =R, = nen()(GV)ne
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Chain reaction or avalanche of electron and ion
production occurs in a strong electric field

1. The electrons initially produced in
the creation of ion-electron pairs ] ANODE
by ionizing radiation or from other MWM@
sources are accelerated in the Fea (@
electric field of the discharge tube.

2. If the electric field is high enough,

the electrons can acquire sufficient | FBC=Peo"'r:es
I d
energy before reaching the anode
to ionize another neutral atom. Foo
Cic
3. As the electric field becomes uvi Mes=Mic
stronger, these Secondary ()

CATHODE

electrons may themselves ionize a —
third neutral atom leading to a |
chain reaction, or avalanche of

electron and ion production.



Special case |

« Assumption:
— No recombination or loss of electrons occurs.

— Initiating electrons are emitted from the cathode, with no contribution
by volume ionization.

 Townsend’s first ionization coefficient, a: the number of ionizing
collisions made on the average by an electron as it travels 1 m along the

electric field:
1 Vei _ n0<6ve>ne

A~ — = — -
/1i ve ve
* Differential electron flux: r
N e
dr, = al.dx e =Tpe™
X
I'e X — — ox 2
J dre:J adx Jo = eTe = Jege™ (A/m?) | [re

reO e

0 Ie - IeOeaX = A]eoeaX (A) [ Cathode ]
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Special case |l

« Assumption:
— No recombination or loss of electrons occurs.
— No cathode emission, i.e., I',,=0.

— Significant volume source of electrons throughout the discharge
volume.

* Differential electron flux:

)
>
-]
o
o
D

N

dI', = al'.dx + S.dx

r X Ie
e 1 1 r.+s
f —dre=j dx = ale +Se) gl 4 Te

ro =% (ew — 1) ] R
T a jo=Lremony Ly [re=

d [ Cathode ]
Js = edS,
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Derivation of Townsend’s first ionization coefficient
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1 Vei . n0<o-ve>ne . B (Gv>ne

1 {0V)pe

- - = - =A A -
A v, Ve T v, p T v,

« Number of primary electrons with energy higher than the

lonization potential:
dn, = —ne% = e(X) = exp <— ﬁ)
A; Neg A
#/ ionization collisions

a = X (#/electron with E > ionization potential)
per electron

1 ne(xi) 1 ( xi)
= = —exp|-—=
A ng A P A;

a = Ap exp(—Apx;)

= ae () =aeo (g ) =1(5)  mm T where vy
— = Aexp| — = Aexp| — = — | & — i '
P p E/p p » Xi Ewere > V;

« The parameters A and C must be experimentally determined.
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Phenomenological constants A and C of Townsend's
first ionization coefficient for selected gases

Gas A C
ion pairs/m-Torr V/m-Torr

A 1200 20 000
Air 1220 36 500
CO, 2000%* 46 600
H, 1060 35000
HCl 2500%* 38 000
He 182 5000
Hg 2000 37 000
H,0 1290% 28 900
Kr 1450 22 000
N, 1060 34200
Ne 400 10 000
Xe 2220 31000

* These values may be high by as much as
a factor of two.
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Stoletow point is the pressure for maximum current
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« Stoletow experimentally found that for a given electric field between the
plates, there is an air pressure in the Townsend discharge where the
current is a maximum.

E
Pmax = (Torr)

37200
a C a—f(E>
; = Aexp <— _E/p> » -
da_A1 C Cp _ o %:dipf<g>lz
dp_ pE exp E )" p p p
. . f<E> Ef’<E> a Ef’(E> 0
_E_ . — | PSJ\Z)==—=J \Z]~—
Pmax = ¢ = 3gEqq fOF Alr p/ P \PJ P P \P

a/p\ _ . (E\_
(E—/p>—f <p>—tan0
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The current will be a maximum when the tangent to the
a/p versus E/p curve intersects the origin

1.2A , I 1 I u | . T '
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P
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> 0.6A E . i =
(1 —_ —-—
E P A E)(P( E/p
o
ALY S -
8ja

0.2A i

:
O | I | _I_ 1
o) v 2C 3C ac 5C
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« Stoletow point is the minimum of the Paschen breakdown curve for gases.
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Corona discharge (unipolar discharge) is a very low
current, continuous phenomenon
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 Break down condition for
dry air:
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C

B
BACKGROUND
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}SATURATON VB =3000d + 1.35 kV

CURRENT I, AMPS

« Corona can initiate on sharp points at potentials as low as 5 kV.

* It can initiate from sharp points, fine wires, sharp edges, asperities,
scratches or anything which creates a localized electric field greater than
the breakdown electric field of the medium surrounding it.

« It can be a “glow discharge”, i.e., visible to eyes. For low currents, the
entire corona is dark.
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Phenomenology of corona generated by a fine wire
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ELECTRODE
ACTIVE VOLUME

ACTIVE RADIUS
INNER ELECTRODE

 The point of corona initiation is that point at which the voltage on the
inner conductor of radius ais high enough that corona is just detectable.

* The electric field will drop off to the breakdown value at a radius r, called
the active radius.
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Corona can occur for both positive and negative polarity
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» Positive polarity * Negative polarity

The initiation voltages or coronal current are slightly different between
positive and negative polarity.

A continuous (positive polarity, DC) or intermittent (negative polarity,

usually) current, usually in the order of uA ~ mA per decimeter of length
will flow to the power supply.
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A corona shield is used to suppress corona
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Es = = = - E;b X
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Vo Iny

E, = E; (E@ surface for corona initiation)
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Electrical breakdown occurs when applied voltage is
greater than the breakdown voltage
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DISCHARGE

HIGH VOLTAGE
POWER SUPPLY

CATHODE

* Primary electrons: electrons from the cathode due to photoemission,
background radiation, or other processes.

« Secondary electrons: electrons emitted from the cathode per incident ion
or photon created from ionization in gas.
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Derivation of electrical breakdown

« Secondary electron emission coefficient:

_ #/ of electrons emitted [ Anode }
V= #/ of incident ions or photons A
Ies = VI T T Fea l (Iea)
Fee =Tep + I
Ieg =Iec+Iic > T@gy=Te+ T d
| '
Fea=Tee=Fie =77 (ea = Tece™ ree |deo
— — d
I _Y(rea_rec) —yrec(ea _1) (Iic)lric TreOTreS
2 _
Fee =Teg+Tgp = Yrec(ead - 1) + I'e [ Cathode }
| — reO
€ 1—-y(evd - 1)
ead 5 ad
F.,=T electrons/m~ — s =
ea eol—y(e“d—l)( / ) ] ]0

1— y(e“d — 1) (A/mz)
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The Townsend condition for ignition (avalanche grows)
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« The Townsend condition for ignition or called avalanche grows occurs
when 1 —y(e“d _ 1) —0
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Universal Paschen’s curve
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Collision frequency and electron energy gained from
electric field are both important to electrical breakdown
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« Collision is not frequent
enough even the electrons
gain large energy between
each collision.

 Electrons do not gain enough
energy between each collision
even collisions happen frequently.

« The minimum of the Paschen’s curve corresponds to the Stoletow point,
the pressure at which the volumetric ionization rate is a maximum.
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Experiment

al Paschen’s curve
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Paschen’s curve is used to design different high voltage
high current switches in pulsed-power system
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Driven piles - prefabricated steel, wood or concrete
piles are driven into the ground using impact hammers
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* Driven piles « Hammer

PLACEMENT OF PILE INSTALLATION OF PILE REPETITION OF PROCESS

http://www.saudifoundations.com/driven.html
http://learnhowtowritesongs.com/tag/thesaurus/  sa



Example of short pulses with a controllable repetition rate

https://www.youtube.com/watch?v=5fe8b4MIPYw ss5



Spark-gap switch

Main-Electrode

Insulatin
P, Casing
Gas ! .
Trigger
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Ground Electrode
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A spark gap switch is closed when electron breakdown
OCCurs
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Glow discharge

DC electrical glow discharges in gases

 The internal resistance of the power supply is relatively low, then the gas

will break down at the voltage Vg, and the discharge tube will move from
the dark discharge regime into the low pressure normal glow discharge

regime. VOLTAGE, V
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The plasma is luminous in the glow discharge regime

« The luminosity arises because the electron energy and number density
are high enough to generate visible light by excitation collisions.
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Abnormal glow discharge occurs when the cross section

of the plasma covers the entire surface of the cathode
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 Normal glow discharge:
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 Abnormal glow discharge:
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« Surface cleaning using plasma needs to work in the abnormal glow

discharge region.

60



Plasma cleaning needs to work in the regime of
abnormal glow discharge
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Low pressure normal glow discharge
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Cathode: made of an electrically
conducting metal with 2"d e- emission v,

of which has a significant effect on the
operation of the discharge tube.

Aston dark space: athin region with a
strong electric field and a negative
space charge. The electrons are of too
low a density and/or energy to excite the
gas, So it appears dark.

Cathode glow: has arelatively high ion
number density. The length depends on
the type of gas and the gas pressure.

Cathode (Crookes, Hittorf) dark space:
has a moderate electric field, a positive
space charge, and a relatively high ion
density.

62



Low pressure normal glow discharge
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« Cathode region: most of the voltage

drop (cathode fall) across the
discharge tube appears between the
cathode and the boundary between
the cathode dark space and the
negative glow. Electrons are
accelerated to energies high enough
to produce ionization and
avalanching in this region. The axial
length will adjust itself such that
d.p~(dp).,i, Where (dp) is the Paschen
minimum.
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Low pressure normal glow discharge
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« Negative glow: the brightest light
intensity in the entire discharge. It
has a relatively low electric field and
is usually long compared to the
cathode glow. Electrons carry almost
the entire current in the negative
glow region. Electrons which have
been accelerated in the cathode
region produce ionization and
intense excitation in the negative
glow, hence the bright light output
observed.
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Low pressure normal glow discharge
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Low pressure normal glow discharge
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Low pressure normal glow discharge
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Anode glow: the boundary of the
anode sheath, slightly more intense
than the positive column.

Anode dark space: has a negative
space charge due to electrons
traveling from the positive column to
the anode and a higher electric field
than the positive column. The anode
pulls electrons out of the positive
column and acts like a Langmuir
probe in electron saturation in this
respect.
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Striated discharges
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 Moving or standing striations are, respectively, traveling waves or
stationary perturbations in the electron number density which occur in
partially ionized gases, including the positive columns of DC normal glow
discharge tubes.

* https://youtu.be/Be4RIjMTOWE

https://en.wikipedia.org/wiki/Glow_discharge



Obstructed discharges

PLASMA EDGE
FOLARIZATION L < d
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at the Paschen minimum, i.e., (pd )min

#) - PLASMAT
HQUASINEUTRAL). V>V

Paschen

« The obstructed glow discharge finds
many uses in industry, where the
high electron number densities
generated by such discharge are
desired. It will operate with a higher
anode voltage. Such high voltage
drops are sometimes desirable to
accelerate ions into a wafer for
deposition or etching purposes.




DC glow discharge plasma sources

Cylindrical glow discharge sources

« This configuration is used in lighting devices, such as fluorescent
lights and neon advertising signs.

= | HIGH VOLTAGE +
POWER SUPPLY

DISCHARGE TUBE

CATHODE

NEGATIVE
. GLOW. .




Parallel plate sources are widely used for plasma
processing and plasma chemistry applications

« Unobstructed operation * Obstructed operation
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« The obstructed configuration is used for plasma processing, where
high ion energies bombarding the cathode, over large areas and at
vertical incidence, are desired.
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Magnetron plasma source are used primarily for
plasma-assisted sputtering and deposition
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« When several hundred voltages are applied between the parallel
plates, a glow discharge will form, with a negative glow plasma
trapped in the magnetic mirrors above the magnet pole pieces.
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Penning discharge plasma sources produce a dense plasma
at pressures far below than most other glow discharges
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« Strong axial magnetic fields: to prevent electrons from intercepting

the anode.
« Axial electric fields: electrons are reflected by opposing cathodes.

« Multiple reflection of the electrons along axis.
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Discharge may enter glow-to-arc transition region if the
cathode gets hot enough to emit electrons thermionically
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» If the cathode gets hot enough to emit electrons thermionically and
the internal impedance of the power supply is sufficiently low, the
discharge will make a transition into the arc regime.
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Methods of plasma production

« DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases

— DC electrical arc discharges in gases
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