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Diagnostics

« Single/double Langmuir probe — n_, T,
* Interferometer — n,

* Schlieren — dn_/dx

- Faraday rotator — B

- Bdot probe — B

« Charged particle — B

+ Spectroscopy — T, n,

 Thomson scattering - T, n_, T;, n;

« Faraday cup — dn/dt

* Retarding Potential Analyzer - v,

Intensified CCD - 2D image
Framing camera — 2D image
Streak camera — 1D image
VISAR - shock velocity
Neutron time of flight (NToF)
— Neutron yield, T,
Thomson parabola — e/m

Data analysis using Pulse
Shaping

Stimulated Brillouin scattering

— Laser pulse compression



Electromagnetic wave can be used to measure the
density or the magnetic field in the plasma

 Nonmagnetized isotropic plasma (interferometer needed):
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Faraday rotation: linear polarization rotation caused by the difference
between the speed of LHC and RHC polarized wave.



Electromagnetic wave can be used to measure the
density or the magnetic field in the plasma

 Nonmagnetized isotropic plasma (interferometer needed):
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There are two main style of interferometer

Michelson interferometer Mach-zehnder interferometer
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Interference pattern are due to the phase difference
between two different path
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The intensity on screen depends on the phase different
between two paths
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The phase different depends on the line integral of the
electron density along the path
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The phase is determined by comparing to the pattern

without the phase shift




Fourier transform can be used to retrieve the data from
the interferometer image
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Basic knowledge of Fourier transform
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Procedure of retrieving data
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Example of retrieving data from 1D interferometer
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The retrieved data need to be modified if the phase
change is too much
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The final phase difference needs to be determined
manually since it may exceeds 21
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Example of retrieving data from 2D interferometer
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The retrieved data may need to be modified if the phase

change is too large

Retrieved data
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* Noise came from low spatial resolution.
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Schlieren imaging

Schlieren imaging system can detect density gradient
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Schlieren imaging

Angular spectrum of plane waves can be used for
diagnostic

Lens

rrrrr
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Rays with different angles go through different focal
points on the focal points

Fourier plane

Object plane Lens
Image plane

)

e s s Gl

20



Parallel beams are deflected to different angles with
grating with different spatial frequencies

Grating with low
spatial frequency

Grating with high
spatial frequency
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A pinhole or a dot acts like a low-pass / high-pass filter

* Using pinhole:
Low-pass filter

 Using dot:
High-pass filter

Shadowgraph image
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A symmetric Schlieren image can be obtained if the
knife edge is replaced by a “floating dot”

* Khnife edge
Laser 4><‘ \
Plasma |& Scre_en for
P schlieren

* Floating dot edge
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Angular filter refractometry

Angular filter refractometry (AFR) maps the refraction of
the probe beam at TCC to contours in the image plane

Fourier
Image
TCC plane
object plane

. e, F0|I target N
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The edges of the rings map a certain refraction
angle to the spatial location in the object plane.
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Interferometer

Angular spectrum of plane waves can be used for
diagnostic

Lens

f
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Angular spectrum of plane waves can be used for
diagnostic

Lens
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Rays with different angles go through different focal
points on the focal points

Fourier plane

Object plane Lens
Image plane

)

e s s Gl

27



Rays with different angles can be selected by blocking
different focal points

Fourier plane

Object plane Lens
Image plane
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Rays with different angles go through different focal
points on the focal points

Fourier plane

Object plane Lens
Image plane

.
\
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Rays with different angles go through different focal
points on the focal points

Object plane Lens Fourier plane Image plane
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Angular filter refractometry (AFR) maps the refraction of
the probe beam at TCC to contours in the image plane

Fourier
plane Image
TCC P ) | plane
objectl plane T | ------ . F0|I target N
| -'
. I —
Foil target !
X,¥,0 (x,y) |
o (r)

The edges of the rings map a certain refraction
angle to the spatial location in the object plane.
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Channeling of multi-kilojoule high-intensity laser beams
in an inhomogeneous plasma was observed using AFR
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Electromagnetic wave can be used to measure the
density or the magnetic field in the plasma
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Faraday rotation: linear polarization rotation caused by the difference
between the speed of LHC and RHC polarized wave.
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Faraday rotator

Circular polarization

Ey = Epexp (—iwt)
E, = iFEy = iEyexp (—iwt) = Egexp (zg) exp (—iwt) = Egexp [—*@l (wf — g)]
Ty I TI4
__________ N [
N “ | \/ T \/
‘ 3T/4

v




Linear polarization rotates as the wave propagates with
different speed in LHC and RHC polarization
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A linear polarized wave can be decomposed into one
left-handed circular polarized wave and a righ-handed

circular polarized wave
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The rotation angle of the polarization depends on the
linear integral of magnetic field and electron density
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The rotation angle of the polarization depends on the
linear integral of magnetic field and electron density
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Magnetic field can be generated when the temperature
and density gradients are not parallel to each other
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Polarimetry diagnostic can be used to measure the

magnetic field
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Self-generated field was suggested when multi-kilojoule
high-intensity laser beams illuminated on an

inhomogeneous plasma

0.75-to 2.6-kJ, 10- or 100-ps
1.054-um
channeling pulse

1-kJ, 1-ns
0.351-um
UV drive beam

1-kJ, 1-ns
0.351-um
UV drive beam

0.263-um
10-ps
| probe beam
¥
125 um T

L L

. K
R Uy

& <

P z

g

| g

s &
% &
v 4

rsat

1id 10,000
— 8,000
£ 6.000
o 00F — N
2 4,000
- 2.000
1.1 .y 0
—1.] 0.0 |
Space (mm)
(b)
O | o |
= 0.8
£ 0.6 ‘
g 04
& 0.2 E ‘
]+ 1 . 117G
0.2 0.6 1.0 0.2 0.6
Space (mm) Space (mm)
E23066J1

41



Time-resolved imaging system with temporal resolution
in the order of nanoseconds was implemented
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The magnetic field can be measured by measuring the
deflected angle of charged particles
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Magnetic field was measured using protons
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Protons can be generated from fusion product or
copper foil illuminated by short pulse laser
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Protons can leave tracks on CR39 or film

CR 39
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Track diameter on the CR39 is depended on the particle
energy that incidents
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Time dependent magnetic field can be measured using

B-dot probe
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Time dependent magnetic field can be measured using
B-dot probe
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The signal from the B-dot probe is integrated and

amplified
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B-dot probe experiments
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A Thomson parabola uses parallel electric and
magnetic fields to deflect particles onto parabolic

curves that resolve g/m @
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y (electric) » Deflection caused by magnetic field ~q/p
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Faraday cup

A faraday cup measures the flux of charge particles
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Retarding Potential Analyzer

Retarding potential analyzer measures the energy /
velocity distribution function
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H.-K. Fang, 2015 NCKU Ph. D. Thesis, lon measurements
of ionosphere plasma in space plasma operation chamber
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The photon energy spectrum provides valuable
information

« Plasma conditions can be determined from the photon spectrum

— visible light: absorption and laser-plasma interactions

— X rays: electron temperature, density, plasma flow, material mixing
* There are three basic tools for determining the spectrum detected

— filtering

— grating spectrometer

— Bragg spectrometer
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Spectrum can be obtained using grating

« Grating is used to disperse the light

L
d
|

.---_\.-”"AEK-‘-\./" :‘é’—-—--‘lll.,—-"" ----_L’A‘I: X—EL#’!:E:}--‘II'a-""'
:-l— d —r: :-l— d —lr:
(17. S111 H — 7 ?'?.)\ ni. = d(sin(i) + sin (r)) na. = d(sini) - sin (1))

« Bragg condition in the crystal is used for X-ray.
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Temperature and density can be obtained from the
emission

549956, Hep: 3640-3720 eV

Line emission

3 400
________________ ]
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R. Florido et al., High Energy Dens. Phys. 6, 70 (2010)
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Information of x-ray transmission or reflectivity over a
surface can be obtained from the Center for X-Ray Optics

%
z m
s &
% &
v 4
rsat

 http://henke.lbl.gov/optical_constants/
CXR® X-Ray Interactions With Matter

THE CENTER FOR X-RAY OFTICS

X-Ray Database © Introduction

rerrrrrmr

iﬂ

BERKELEY LAB

The Center for ¥-Ray Optics
is a multi-disciplined
research group within
Lawrence Berkeley National
Laboratory's (LENL)

Access the atomic scattering factor files.
Look up x-ray properties of the elements.
The index of refraction for a compound material.
The x-ray attenuation length of a solid.
X-ray transmission
s Of a solid.
» Of a gas.
X-ray reflectivity
= Of a thick mirror.
» (Of a single layer.
» Of a bilayer.
« Of a multilayer.
The diffraction efficiency of a fransmission grating.
Related calculations:
= Synchrotron bend magnet radiation.

Other x-ray web resources.
X-ray Data Booklet

Reference

B.L. Henke. E.M. Gullikson, and J.C. Davis. X-."ay interactions: .DﬂOfGa-‘JSO-".Df-'Gu’]. SC&IFE-"-‘.’]Q‘. fransmission, and
reflection at E=50-30000 eV, Z=1-92, Atomic Data and Nuclear Data Tables Vol. 54 (no.2), 181-342 (July
1993).
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A band pass filter is obtained by combing a filter and a

mirror

T Be, 15 um
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X rays can not be concentrated by lenses

« X-ray refractive indices are less than unity, n < 1
* For those with lower refractive indices, the absorption is also strong
« X-ray mirrors can be made through

— Bragg reflection

— External total reflection with a small grazing angle

14
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The simplest imaging device is a pinhole camera

. K
R Uy

& <

P z

g

% i

s &
% &
v 4

rsat

Kodak Brownie camera

< do
-« d1 —> ok
R Y T }
i <y
Object T TR
Pinhole (a)
da

* Magnification = —=

dq

e Infinite depth of field (variable magnification)

e Pinhole diameter determines
— resolution ~a

E13982a

- lig

2
2
1

Q

ht collection: AQ = %

Q

Imaging optics (e.g., lenses) can be used
for higher resolutions with larger solid angles.

http://hedpschool.lle.rochester.edu/1000_proc2013.php
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2D images can be taken using charge injection device
(CID) or charge coupled device (CCD)

o xu
one Kuy,
= 3
& <
P H
% i
) 7
3 J
“, 5
v £
e

CID CCD
To
-5V -10W Highspeed
S|02 Recorder
| | / Insulator \
(+)
%@f \ Potential
n-doped Si o Wells

00 00 000 ©
Metal Substrate Metal Substrate

« Color mask is used for color image

http://people.whitman.edu/~dunnivfim/FAASICPMS_Ebook/CH2/2_2_9.html
https://en.wikipedia.org/wiki/Charge-coupled_device 62



Charges are transferred along the array for readout in CCD

VoV oV #V 4V OV / ///' / 17
CCD readout: #ﬁ. b L iy / Ay
i L g8 @ ///’///’ .
Packets) 3 0, ~ femeN
ov +V ov ov +V +V
P“‘T:ﬂ# e @S»IOz
(o | PLOROROROROSOROLOROROROnED)

Vertical

ov + +V ov #V A
Electrodes o v ! ! !
0.... o0 o090 @
| p-si b
a2 50 A
- -

https://www.elprocus.com/know-about-the-working-principle-of-charge-coupled-device/
http://www.siliconimaging.com/ARTICLES/CM0OS%20PRIMER.htm 63



Signal is readout individually in CMOS sensor

[ CCD ] [CMOS Sensor]
Light Light

coianioe
66 6060
(e {eeifee
Lexejfeleliflele

PIBIOICH

|

08 ool

@

{

http://www.digitalbolex.com/global-shutter/ ¢4



Electronic detectors provide rapid readout

e Electronic detectors are typically semiconductors
or ionization-based stacks (e.g., photomultipliers)

Semiconductor detectors After interaction

"4 vV
| I
hw Te-
Kol | @ @
- !
Semiconductor
R ~ - initially = -
lonization detectors
Vo V4 Vo Vg Vo V¢4 Vo Vj
o

E13981a _.1 =—

http://hedpschool.lle.rochester.edu/1000 proc2013.php 65



The number of electrons can be increased through
photomultipliers or microchannel plate (MCP)

Dynodes

Us Voltage divider —

CHANNEL
g CHANNEL WALL
OUTPUT
INPUT / ELECTRODE
ELECTRON ; '
O el OUTPUT
I 4& ELECTRONS
INPUT ELECTRODE #
‘ STRIP CURRENT
" - L “Continuous”
(Hamamatsu — g S— »
! dynode chain

http://www.kip.uni-heidelberg.de/~coulon/Lectures/DetectorsSoSe10/ &6



X-rays are imaged using photocathode, MCP, phosphor,
and CCD

Accelerating grid Phosphor

N

1

hv

Lens

MCP

CCD

Photocathode

High Temperature
Plasma

_|

* Cslis used right now.

* Prof. Chou @ Photonics,
NCKU is developing
50nm Au foil for us.

00 05 10 15 20
Time (us)

 Images can be gated using fast high voltage puilses.
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A negative high-voltage pulse is used in our x-ray
pinhole camera

Accelerating grid Phosphor

N

1°

hv

MCP

CCD

Lens

Photocathode: Csl

High Temperature
Plasma

4 KV

500The voltage of -1 kV generator

01

e

-500 |

Voltage (V)

-1000

-1500 ‘
-0.5 0 0.5 1 1.5

Time(us)

 The x-ray camera with a shutter opening time of < 10 ns will be built.




Response of components of ICCDs

BSpectral Response Characteristics

100 Tl Boo113EA
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ultraviolet region.

_mmm_ Figure 5: Typical Phosphor Spectral Emission Characteristics
Figure 4: Typical Transmittance of Window Materials

TRANSMITTANCE (%)

100 Tl BoogeEC i
e |
| I I
// rd \ } } — —
SYNTHETIC 7
SILICA 'l
/ d1 /
BOROQOSILICATE
MgFz Hies FIBER *
1 OPTIC
10 PLATE —
»
1
100 120 160 200 240 300 400 500
WAVELENGTH (nm)

* Collimated transmission

RELATIVE INTENSITY (%)

100 TH BOO7BEH o . |
EY[ 2 ;t }l EEEPONSE—
B ELAAVIE | WY
AL
o P24 r':, \! \
ST
| I bR
T W
20 'l I / \“. \FE
A TR
/ X LIRS
350 400 450 500 550 600 650 700

WAVELENGTH (nm)

e ‘1
Il

Ll ||H )
Light

Each individual optical fiber transmits light
and this light can be received as an
image.

Figure 6: Typical Decay Characteristics
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* Decay time obtained following to the continuous input light removal.

Hamamatsu Images Intensifiers brochure
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A pinhole camera was designed and was built

MCP w/ phosphor

Back window

~——-—

Lens

Camera

4
\
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TCC \ N
§ / BN
Vi )
N %
\ % N4l
ﬁ| ',4 . .\-,“‘/
Tl 1< > %%
¥’ P ,‘\\\ .
\\\\\\\ : i
Filter Pinhole NN . 5
o WX
Photocathode N §§
’
Accelerating electrode §§
%
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hole camera to capture

<
7]
=
o
S x
Q5
> O
O
r O
X o
(o))
2 E

We demonstrated us
the radiation from an

MCP w/ phosphor

e_

Photocathode

Accelerating electrode
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P.-Y. Chang et al., Rev. Sci. Instrum 93, 043505 (2022)



Electronic detectors provide rapid readout

e Electronic detectors are typically semiconductors
or ionization-based stacks (e.g., photomultipliers)

Semiconductor detectors After interaction

"4 vV
| I
hw Te-
Kol | @ @
- !
Semiconductor
R ~ - initially = -
lonization detectors
Vo V4 Vo Vg Vo V¢4 Vo Vj
o

E13981a _.1 =—

http://hedpschool.lle.rochester.edu/1000_proc2013.php 72



A framing camera provides a series of time-gated 2-D
images, similar to a movie camera

. K
R Uy

& <

> %

2

5 g

s &
% &
) i

rsat

* The building block of a framing camera is a gated
microchannel-plate (MCP) detector

e An MCP is a plate covered with small holes,

each acts as a photomultiplier
N Single -\\
~. MCP pore .
Sal::cmdar';h

/electruns E P MUItlple electrons are

= | Output D produced each time an

= electrons -

electron or photon hits

. b High-

TN vo:?age the wall
~.| pulser

-
=
0

reor ~ | The detector is only on when
A>T~ the voltage pulse is present

E13986b

http://hedpschool.lle.rochester.edu/1000_proc2013.php
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A framing camera detector consists of a microchannel
plate (MCP) in front of a phosphor screen

"
|
Au-coated surface X rays 0
(photocathode) _l %1 00 to 200 ps
4/ >1 kV

LY

Microchannel
plate

Al>,O4 layer
Phosphor —.

I:
<
K
=

Fiber-optic

faceplate 6’7 Film pack w

or CCD

* Electrons are multiplied through MCP by voltage V.
* Images are recorded on film behind phosphor

e Insulating Al,O4 layer allows for V,,, to be increased,
thereby improving the spatial resolution of phosphor

E7T95b

http://hedpschool.lle.rochester.edu/1000_proc2013.php
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Framing camera

Two-dimensional time-resolved images are recorded
using x-ray framing cameras

i Phosphot/ Film pack |
High-voltage fiber-optic .. or CCD array
pulse faceplate [~

Imaging

Microchannel plate

 Temporal resolution = 35 to 40 ps

* Imaging array: Pinholes: 10- to 12-um resolution, 1 to 4 keV

* Space-resolved x-ray spectra can be obtained by using
Bragg crystals and imaging slits

ET105b Ex. At B 3 Cm/3
' ~ 3x101%cm/s

= 33 ps

http://hedpschool.lle.rochester.edu/1000 proc2013.php 75



X-ray framing cameras for recording two-dimensional
time-resolved images will be built by the end of 2021

) Phosphor/ Film pack
High-voltage fiber-optic ~ ..__or CCD array
pulse faceplate [~

Imaging

CCD
Pinhole arrays

MCP arrays
Photocathode

Slides from 2013 HEDP Summer School
(http://hedpschool.lle.rochester.edu/1000_proc2013.php)

s Xy
e K,

3 2
& <
P &
H
% F
Y 4
% &

1,
v 4
et
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Each pinhole camera will be triggered separately

CCD
Pinhole arrays

MCP arrays

Photocathode arrays
(triggered by pulses)

v

Time (ns)

V of triggering
pulse (kV)

7



Streak camera

A streak camera provides temporal resolution of 1-D
data

Basic principle Vit o 2V g _
(1)« ot 0  Detector
ho M 0 Vit) v(t
P Y, /% 1
Photocathode =

A streak camera can provide 2-D information

SR AR

2-D detector

E13984b

http://hedpschool.lle.rochester.edu/1000 proc2013.php 78



A slit is to prevent spatial information at different times
interfering with each other

Imaging system

« Visible light:
regular lens

« Xrays: pinhole

Imaging system

« Visible light:
regular lens

« Xrays: pinhole

Slit

Photocathode

oV

V(f)ccﬁ°t—vo

Detector

/-?ﬁ ;

10 Vi ] Y II
\vo I t3
— ytot t2
| S t,
VooV o
V(1) 5 Vo Detector
d v

Ytot t1

o x
R Uy

& <

> %

2

| g

s &
% ‘s
v Ld
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A temporal resolution higher than 15 ps is expected

ot Detector

d_V(t) V(tmax) y

V(t) t—V,

Slit
Imaging system B 0
* Visible light: &
i
i

regular lens
 Xrays: pinhole

Photoc_athode = Ytot
F qE qV qv 1 | s
= — = = = t=——
¢ m m md vi=4a mdv”
— sTand = st = 11 V= 1! (Vo +V't)
* Let d=10 mm, I=20 mm, s=50 mm, E, =1 keV, V=-200 ~ 200 V
V
V' =—2=0.06kV/ns Yot = 15mm  y;o = 15mm
tot
 Temporal resolution:
st = 5y —2X% _ 15 bs for Sy = 45
- y lSqu - pS or y - l’lm

« &8t will be adjusted by changing E,,.
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A streak camera with temporal resolution of 15 ps has
been developed

s i
s

< <

p 2

z

7 5

2 &
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v 54

Teat

Photocathode

Pinhole
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Shell trajectories can be measured using framing
camera or streak camera

60-beam implosion
on OMEGA Streak

o
g -

. ~. Framing camera
LA
NSNS
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Comparison of images from framing camera versus
streak camera

Time

Framing-camera image
6x magnification

Shot 13377

Streak-camera image

Shot 13377

200 z

-200 -

—400
1000 2000 3000 4000

Time (ps)

Position (um)
o
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The optical density can be measured using the

absorption of a backlighter

1 = | He)exp(=nterpo)ds
I = IgLexp(—[ipo)

Inl =Inlg, — ppr

G. Fiksel et al., Phys. Plasmas 19, 062704 (2012)
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X-ray radiography of an X-pinch by using another
X-pinch or two X-pinches as point sources of probing

radiation

(@

Cathode

Films
(b) 1
o B —
100 um
003 1.7
Time, ns

Fig. 44. X-ray radiographs obtained in the system of three parallel 2 X 12.5-um Mo X-pinches: (a) arrangement of the pinches
and films, (b) temporal positions and relative intensities of probing X-ray pulses, (c) image of X-pinch 1 in the radiation of
X-pinch 2, (d) image of X-pinch 1 in the radiation of X-pinch 3, (e) image of X-pinch 2 in the radiation of X-pinch 1, (f) image
of X-pinch 2 in the radiation of X-pinch 3, (g) image of X-pinch 3 in the radiation of X-pinch 1 emission, and (h) enlarged frag-
ment of the image.

S. A. Pikuz et al., Plasma Phys. Rep. 41, 291 (2015)
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hole camera to capture

ing x-ray pin

We demonstrated us

inch

loded x p

imp

the radiation from an

MCP w/ phosphor

e_

Photocathode

Accelerating electrode
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Shock velocities are measured using time-resolved
Velocity Interferometer System for Any Reflector (VISAR)

Image relay
from target to
interferometer

Probe laser (532 nm)
delivered through
multimode fiber

Beam splitter
/ b_f-—
-
-

— Delay element T = (%’)("_ 1H)

; t+7
t

T—Target

Vacuum chamber

|mag¢:plane intevrr?tle?gli#;ter
—t—1
< ‘_=_t AO — % o v
— s =T

http://hedpschool.lle.rochester.edu/1000_proc2013.php

)
<
i
Z
&
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Shock velocities are measured using time-resolved
Velocity Interferometer System for Any Reflector (VISAR)

overtake e
N K

Time (ns)

P. M. Celliers et al., Rev. Sci. Insytum. 75, 4916 (2004) sgs



Neutron average temperature is obtained using Neutron

Time of Flight (NToF)

Scintillator Microchannelplate

Photomultiplier tube
\ Light guide and P

transition piece

* S > 5Scm

D+ D — He* (0.82 MeV) +n(2.45 MeV) ~ 05em

D+T — He* (3.5 MeV) + n(14.1 MeV) 1 V,
S
s = wt vo= 7
I‘_

i Tri '?'J'?"E’z
flu) = (QﬁA'T) P ( Q.L-T)

v

T. J. Murphy et al., Rev. Sci. Instrum. 72, 773 (2001) g9



The OMEGA Facility is carrying out ICF experiments
using a full suite of target diagnostics

Imaging x-ray UR
LLNL flat streak camera |_|_E§*é
crystal x-ray Target X-ray pinhole FS€
streak in TIM #1 positioner camera

X-axis target-
viewing system

X-ray pinhole
cameras = KB x-ray
‘microscope
#2 (GMX1)
Indium _
activation X-ray pinhole
camera
Copper
activation KB x-ray
microscope #1
KB x-ray X-ray framing A-ray Plasma
microscope camera #1 pinhole calorimeter
#3 in TIM #3 cameras

E8012b Photo taken from port H11B
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A peak current of ~135 kA with a rise time of ~1.6 us is
provided by the pulsed-power system

150¢
~a 100¢
=< 50¢
il
E 0
= —50¢
- O -100¢
-150¢,
Capacitance (pF) 5 Time (us)
Vcharge (kV) 20
Energy (kJ) 1
Inductance (nH) 204 + 4
Rise time 1592 + 3
(quarter period, ns)
Ipeak (kA) 135 i 1




A suit of diagnostics in the range of (soft) x-ray are
being built

egoN
é .
> %
% 3
% &
%, £
e

To vacuum Streak . Pinhol . Sr.
Time-integrated ump i&\camera : I\Inna (:lﬁif:::? 5:1'1 X s
pinhole camera ’ N .
- Exposure time: 1 us
P ‘ ; » Streak camera:
P A Y & - TINEE - Magnification: 1x
NS X & - Temporal resolution: 15 ps
M. =N\  Framing camera:
ﬁ . Pr?.be laser | . Magnification: 0.3x
o - Temporal resolution: ~ns
(4 dide using 4 individual MCPs
S - Laser probing:
y .- Experlme|ntls - For interferometer, schlieren,
: shadowgraphy, Thomson
& | Framing scattering.
camera - Temporal resolution: ~300 ps
« Csl are used as the photocathode for all x- using stimulated brillouin
ray imaging system. scattering (SBS) pulse

« Au photocathode may be used in the future. compression in water
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Time-resolved imaging system with temporal resolution
in the order of nanoseconds was implemented
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PBS1-1 HWP1
50

M2-2, 2

HWP2-1 f200 12

M2-4
118
M2-3
PBS2-1 {4 M2-8 M2-1
] |3
Optical
Optical n Table 1
Table 2

Circular
acuu beam stop

M2-13 500 BS1-1

w2 Side-viewl

"N .. Plasma édge detection

119 m2-9

B field measurement

f1000

«——— Density measurement

19 f1-50-
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Varies diagnostics were integrated to the system

Rail-gap ~ Turbo Visible-light camera Vacuum __  Rail-gap
switch Interferometer Pump  system (Top view) chamber UPS switch

To Schlieren Visible-light Trigger-Pulse 532 nm Q-switch
IShadowgraph/ camera system System Laser In
Polarimetry (Side view)




A plasma jet can be generated by a conical-wire array
due to the nonuniform z-pinch effect

S
o ‘o

& <

> %

Z F

Y P4

;-d)Anode A V] - Vab Sin 0
: ‘ﬂ Plasma : Hiet
______________ ‘ jet Y -
:s ,fj | “\‘ -
------------ : / \ - “J Vab
( > : - : Anode
B 1—— S 7xB
— e § -g Lx ~—
a— D Nl LA 0
—_——— o
~~~~~~~~~~~ e B3
RS N et 4 W
©
I 4 ! v o i ;\
k_/ Cathode ﬁslug
2 2 DCathode

1. Wire ablation : corona plasma is generated by wire ablations.
Precursor : corona plasma is pushed by thef x B force and
accumulated on the axis forming a precursor.

3. Plasma jet is formed by the nonuniform z-pinch effect due to the radius
difference between the top and the bottom of the array.

D. J. Ampleforda, et al., Phys. Plasmas 14, 102704 (2007)
G. Birkhoff, et al., J. Applied Physics 19, 563 (1948)
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Our conical-wire array consists of 4 tungsten wires with
an inclination angle of 30° with respect to the axis

rrrrr

21 mm

« Material : Tungsten.
* Number of wires : 4.
* Diameter : 20 um.

Y.-C. Lin, NCKU Master Thesis 2021 96



Self-emission of the plasma jet in the UV to soft x-ray
regions was captured by the pinhole camera

, Vo
& <
B 3
% 3
% &
Ty 4
T3t

* Image in UV/soft x ray * Image in visible light

(Brightness is increased (Enhanced by scaling the
by 40 %.) intensity range linearly
from 0 - 64 to 0 — 255.)
* Pinhole diameter:
0.5 mm, i.e., spatial
resolution: 1 mm.

Y.-C. Lin, NCKU Master Thesis 2021 97



Plasma jet propagation was observed using
laser diagnostics

—~ 15f 7150
% 10} 1100
T 5 150

5 0 10

S -5} 1-50
2 _10} 1-100
a _ 1-150

. Shadowgraph 0 | 2000 4000 6000 80
images: Time (ns

930 + 20 ns 975 + 2 ns 985 + 3 ns

Current (kA)

2945 + 2 ns
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Length of the plasma jet at different time was obtained

&

by the Schlieren images at different times

« Shadowgraph images:

930 + 20 ns



The measured plasma jet speed is 170 £ 70 km/s with
the corresponding Mach number greater than 5

V;
(a) i<
20F ' i - Panode ||
E E “ ‘] Plasma ;
— § :.Lr : V .| jet
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= 10} ¢ VN e
5 'V, =170 + 70 km/s N LA
h z~ ‘é’ 3
4 51 14 mm k/f’mg“—.’\)
0 1\_1) Cathode
[, ! | i L) € - Dcathod
900 1000 1100 1200 1300
Time (ns)
V Z 19 — 14
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Plasma disk can be formed when two head-on plasma
jets collide with each other

 Astronomers Find a ‘Break’ in One of
the Milky Way’s Spiral Arms.

W]

i
[IIIT:

[II

20.8 mm
17 0E | T

=7 =N

7

Jet Propulsion Laboratory [NASA/JPL] Astronomers Find a ‘Break’ in One of the Milky Way’s Spiral Arms (Aug 17, 2021)

101



Plasma disk can be formed when two head-on plasma

a8 Ku,,

E % ]
% 3
v v
Teat

jets collide with each other

Schlieren

Interferometer

323.8 ns ! l 590.8 ns 658.7 n 774.0 ns




Plasma disk can be formed when two head-on plasma
jets collide with each other
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Energetic charged particles losses most of its energy
right before it stops

e
Momentum transfer: = - ==
| / ,‘rb
| v I
dt d t t J—»x
Apj_ :/Fj_dtZ/FJ_—d.fC:/FJ_—x 1 M'Ze I\ |
dx v \ \ /]
N o e el o

_/OO ze? . b ldac ze?b T  2ze?
) (@20 V2 v v [B2VaR b2 . b

Ap“ . averages to zero - dx =
2 db
AE(b) = AP Ne = n-(2rb)-dbdx M s }b
2Me G I | A
,
—dE(b) = Ap” 2 nb db dr /" Cylindric barrel
2Me o with Ne electrons

— = - In
b mevz bmin

dFE 41 n 2264 /bmax db 4T n 2264 bnmx
dx MeV? b

min

http://www.kip.uni-heidelberg.de/~coulon/Lectures/DetectorsSoSe10/ 104



Proton therapy takes the advantage of using Bragg peak

Energy Loss of Alphas of 5.49 MeV in Air
(Stopping Power of Air for Alphas of 5.49 MeV)

Stopping Power [MeV/cm]

Path Length [cm]

X-Rays Proton beams

Irradiation damages Irradiation damages

Proton

beams
Cancer

X-rays go through the nidus. Proton beams stop at the nidus.

http://www.shi.co.jp/quantum/eng/product/proton/proton.htmi 105



There are two suggested website for getting the
information of proton stopping power in different materials

& Ku,
- Yo
&

http://www.nist.gov/pmli/data/star/

NIST Time | NIST Home | About NIST | ContactUs | A-Z Site Index
; x

Physical Measurement Laboratory ™ = s &

About PML ¥ Publications  Topic/Subject Areas ¥ Pmdﬁdé}Servvces v News/Multimedia

NIST Home > PML > Physical Reference Data > Stopping-Power & Range Tables: e-, p+, Helium Ions

HRRGEE vl (O sHARe EI¥E..
ogle BHEE | 3EHTRE

NISTIR 4999 | Version History | Disclaimer
Stopping-Power and Range Tables B ¢
for Electrons, Protons, and Helium Ions

M.J. Berger, 1.S. Coursey, M.A. Zucker and J. Chang
(NIST, Physical Measurement Laboratory)

27 T,

7 _.lt‘ >

/ LT &= :
HET SRS I I

Abstract:

The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range tables for
electrons, protons, or helium ions, according to methods described in ICRU Reports 37 and
49, Stopping-power and range tables can be calculated for electrons in any user-specified
material and for protons and helium ions in 74 materials.

© Creations/2010 Shutterstock.com

Contents: Access the Data
1. Introduction

2. ESTAR: Stopping Powers and Ranges for Electrons Electrons | Protons | Helium Ions

3. PSTAR and ASTAR: for Protons and Helium Ions (alpha particles)

NIST Standard Reference Database 124
Rate our products and services.
Online: October 1998 - Last update: August 2005
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Appendix: Significance of Calculated Quantities

Access the Data:

1. Electrons
Contact

2. Protons

Gtanhan Qalt7ar

“,
Faannt

Teat

http://www.srim.org/

L

* SRIM Textbook >

Software Science

Historical Review

SRIM Experimental Data Plots

M Stopping of Tons in Matter

SRIM Tutorials Stopping in Compounds

Scientific Citations
_of Experimental Data

Download TRIM Manual
Part-1, Part-2
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The thickness of a filter can be decided from the range
data from NIST website
— Q%

To download data in spreadsheet (array) form. choose a delimiter and use the checkboxes in the table heading. After downloading. save the output by using your browser's Save 4s feature
Delimiter: ( ] E —_
® space _

(vertical bar) ) I * E
tab (some browsers may use spaces instead) S el =
newline S .

e ima pda >
Stopping Power((MeV cm?/ nge
— pping Power((M ) E
Kinetic Energy e reeted
(MeV) < ject Detour Factor —
Electronic Nuclear Total nd) end) Projected / CSDA o
1.000E-03 3.490E=01 $308E-00 3.931E=01 4.116E-05 5.620E-06 0.1365 =
1.500E-03 4.274E-01 4231E-00 4.697E-01 5.267E-05 $301E-06 0.1576 (o]
2.000E-03 4935E-01 4.049E-00 5.340E01 6.263E-05 1.101E-05 0.1759 o
2.500E-03 5.518E=01 3.876E-00 5.906E=01 7.152E-05 1.374E-05 0.1921 @)
3.000E-03 6.045E-01 3.718E-00 6.416E+01 7.964E-05 1.647E-05 02068 c
4.000E-03 6.980E=01 3.440E-00 7.324E+01 9.419E-05 2.194E-05 02329 5_
5.000E-03 7.804E-01 3.207E+00 $.124E-01 1.071E-04 2.739E-05 02556 o
6.000E-03 8 548E=01 3.010E<00 $.849E-01 1.189E-04 3.280E-05 02758 o
7.000E-03 9.233E-01 2.840E-00 9.517E-01 1.298E-04 3.817E-05 02940 5
$.000E-03 9.871E-01 2.692E-00 1.014E=02 1.400E-04 4347E-05 03106
9.000E-03 1.047E-02 2.561E-00 1.073E-02 1.496E-04 4.872E-05 03258
1.000E-02 1.104E-02 2445E-00 1.128E-02 1.587E-04 5.391E-05 10 1
-3

102 10* 10° 10* 10% 10° 10°
Energy (MeV)

10.F 12000
11500

11000

e
[y

0.01} 1500
0.001

0.0001 1, | | | | . 5200
0 1000 2000 3000 4000 5000

Range (cm)
f L
dE dE 10°© s s

—=f(E)> x= 10° 107 100 10° 10° 107 10° 10°

dx B f(E) Energy (MeV)
E;

Energy (MeV)

Stopping power (MeV/cm)
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Proton therapy takes the advantage of using Bragg peak

Energy Loss of Alphas of 5.49 MeV in Air
(Stopping Power of Air for Alphas of 5.49 MeV)

Stopping Power [MeV/cm]

Path Length [cm]

X-Rays Proton beams

Irradiation damages Irradiation damages

Proton

beams
Cancer

X-rays go through the nidus. Proton beams stop at the nidus.

http://www.shi.co.jp/quantum/eng/product/proton/proton.htmi 108



Pulse shaping

A pulse signal is converted to a voltage signal using an
integrator

&€

P

Incident photons/particles

SRS S

€« - ) ) 9 —»
€« Q>
5 0 9 0 ﬁE &
® ' @ 1 J
P-type \ Y ’ N-type
Depletion or intrinsic
region
1 1
5 —> 0o=> =1l4 «— 0 & 0

PIN photodiode

<« ©

<« ©

Integrator Amplifier
A
Ve ~N" ~
+12V +2.5V +2.5V
A A A
20MQ |:| +2.5V A
20MQ
1pF
Test H — i
o T sor | 154k []
5 _—1 N — N S0
-7 OPA1678 200 ~r'OPA1678
=
GND
A Q 3900
GND GND GND
p | p |
-2.5V -2.5V

« The 5-pF capacitor is charged by the current from the PIN detector.
 The 5-pF capacitor is discharged by the 20-MQ resistor.

Height

https://www.quarktwin.com/blogs/diode/the-working-principle-and-applications-of-photodiodes/125
Allan Xi Chen, etc., J. Nucl. Eng. 6, 15 (2025)

s xu,
& Xuy,
3 o
é .
> %
z m
s &
% ‘s
v Ld
rsat

Output
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Pulse Shaping is commonly used in nuclear and
particle physics electronics

SR
4 ‘S
& <
A 3
7 F
C3 &
“, s
o »
T3t

« Improve Signal-to-noise ratio S/N * Improve pulse-pair resolution
- Restrict bandwidth to match
measurement time.

=> Increase pulse width. => Decrease pulse width.

SENSOR PULSE SHAPER OUTPUT

AMPLITUDE
AMPLITUDE

FIGURE 13. A pulse shaper transforms a short sensor pulse into a TIME C TME

longer pulse with a rounded cusp and peaking time Tp.
FIGURE 14. Amplitude pileup when two successive pulses overlap (left). Reducing the shaping time

allows the first pulse to return to the baseline before the second arrives.

H. Spieler, AIP Conf. Proc. 674, 76 (2003) 110



preamp output [V]

Expected data profile

(RS Kl

23

0.02

-0.02

-0.04

-0.06

-0.08

Typical ion beam pulse preamp output signal
and associated pulse shaped output signal
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T T
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Time [s]
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pulse shaping output [arb. unit)
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o
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£ 004 2
(] Q
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-0.08 0
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Time [s]

Allan Xi Chen, etc., Physics Open 21, 100234(2024) 111



CR-RC" pulse shaping combines a high-pass filter and
n low-pass filter

th

Preamp “Differentiator” “Integrator

“ -~ _J \__w—/
High-Pass Filter Low-Pass Filter

Lecture Notes - VII. Heidelberger Graduate Lectures in Physics by H. Spieler (2001)
https://www-physics.Ibl.gov/%7Espieler/Heidelberg_Notes 2001/index.html 112



SHAPER OUTPUT

Pulses become gaussian-like after multiple integrators

* Integrating with the same time
constant 7

04 —
7 n=1
03 — |
n n=2
0.2 4| i n=4
| n=6
Pl I n=8
0.1 — : 1
0.0 I|'||'|||||||||||||||||
0 5 10 15 20
T/tau
T, =nt

P

SHAPER OUTPUT

* Integrating with the reduced
time constant

0.8 —

0.6 —

0.4 —

0.2 —

0.0

Tn_

71
n

Sy
< ‘S
& <
A 3
7 F
C3 &
“, s
it
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CR is the high pass filter while RC is the low pass filter

« CR circuit: * RC circuit:
Gy Ry
_____ R, | .-I- C,
..... TR 1 71 . 1
H o C i R C
V0:V1 1 R _Vi 1 P Vo_Vl 1](0L :Vi ](;-)LL
joty =75 JoRACy joc, PR jerc T
1 1
- 1 _ jwt,,
ijH +1 — Vi 1
joty

For wzy > 1,i.e.,

2nf
—— > 1lorf > fyg or tg>t
H

V, = V; » High-pass filter!

Forwt, K 1,1.e.,

2rtf
——KlorfK<KfL or tKLry
L

V, = V;  Low-pass filter!
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CR is the high pass filter while RC is the low pass filter

« CRcircuit: « RC circuit:
Gy Ry
4 Vo 74 =RuCy Y O—"W\rrovo 7L = R Cy
_____ R, - =c,
Vl_Vc Vo:() VOZlRH Vi_VR_V():O iZCLVO
1 1 o
Vc — C_ idt = C_ R—Odt VR lRL RLCLV()
§ ! 8 Vi = TLVO + VO
v, =Yy
1~ TH 0

t
Vo(t) = e_t/THf Vi(t’)et’/‘tﬂdt/
0

1 t
V,(t) = e—t/TL_j Vi(t’)et'/TLdt’
Ty, 0
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A step function becomes an exponential decay after the
high-pass filter

 CRcircuit:

Gy <

v' | I Vo Ty = RyCy

_____ R,

..... — t.
V,(t) = et/ J V.(t)et /Ty

; t
0 t<O0 Vio p——— Vio e- /tel

Vi(t) = {Vio t=>0

Vi(t) = Vipb(¢)

t
V,(t) = e t/™ j Vigd(t)et'/tudt’ High-Pass Filter
0

— ViOe_t/TH et’/TH — Vioe_t/TH

t'=0

116



CR is the high pass filter while RC is the low pass filter

 RC circuit:

HR,«H&:L_O m L[ o
...... V.(t) = e—t TL_j V. e—tl ‘[Hetl ‘[Ldtl
. =-=C . o
: _T_ — e—t/TL_J Vioetl/‘teffdtl
1 t 1y, 0
V,(t) = e t/tL —j Vi(t’)etr/rLdt’ - Teff Vio(et/TH B 1)
L
Vi(t) = Vige™ /™ 1 1 1 _1
Fort < 1 e t/TLet/TLq Teff T Tn Ty
1 ¢ 1 (¢t ,
Vo()~— | Vi(t)dt' = — | Vipe t/Tudt’ t
0 0 A

L L e /T
T
= _HViO(l - e_t/TH) ﬁ\

Ty,
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CR-RC" pulse shaping combines a high-pass filter and
n low-pass filter

th

Preamp “Differentiator” “Integrator

“ -~ _J \__w—/
High-Pass Filter Low-Pass Filter

Lecture Notes - VII. Heidelberger Graduate Lectures in Physics by H. Spieler (2001)
https://www-physics.Ibl.gov/%7Espieler/Heidelberg_Notes 2001/index.html 118



Finite difference method is used to numerically
applying the CR-RC pulse shaping

e CR circuit:  RC circuit:
C Ry
e N R T I L N ICINCINY
Vio—] Vo 14 =RyCy Vi O_'VVTQVO 7L = R.Cy,
2R T Cy
V,=5+Vo Vi=1Ve+V,
TH
Vi(t) = Vi(ti_1)  Vo(tii1)  Vo(t) — Vo(t-1) av V() -v(tq)
~ + — = lim
At Ty At dt ~ 4t-0 At
Yo(ty) | Volt) — Vo(t-1) V() - v(E-1)
TH At At
Vo(t;) = acrVo(tj-1) + acr|Vi(t;) — Vi(tj—1)] SR .
Ty RyCy ti-1 bt time
_ At T At

@R = Ty ~ RyC
H HlH
At+1 At +1
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Finite difference method is used to numerically
applying the CR-RC pulse shaping

 CR circuit:  RC circuit:
C Ry
. . . . H .......
..... RH . CH
V1=5+V0 Vi=1tV,+V,
TH
Volt;) —V,(ti_
Vl(t]) =~ T 0( ]) AtO( ] 1) + Vo(t]'—l)
Vo(tj) = Vo(tj-1)
I R ~n— Ato — +Vo(t)
| | | g
ti_l t] ti+1 time Vo(t]) = (1 — aRC)VO(ti_l) + aRCVi(t]-)

1 1

ORC =T, T R.C
L LY“L
At+1 At +1
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Iteration can be used to have more orders of CR-RC"
pulse shaping

V2(t) = acrVa(tji-1) + acr|[Vi(t) — Va(tj-1)] %cr = T i RHéII-It

a1 Rulu
Vs, (ti) = (1 - agcz)V3 (tj—l) + agc2V> (ti) 1

. a =
RCm ‘[Z—’;n 11
Vin(t;) = (1 — @rem-1)Vm(tj-1) + @rem-1Vm-1(t;) 7. = R.Cy.
Ty,

TLm = 1T

Vas1(t5) = (1 = aren)Vara(t-1) + @reaVa(t) m>2
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Let’s try using excel first

aCR E 0. 85 -20 ’ 0 20 40 60 80
_ At o
AcRr = T = 0.85 E -40
—*; +1 s .
Arem = 7 =0.15 ]
LLI_,;n +1 " time(us)
1L
e —
Ty = 362.7 ns V2(t;) = acrVa(tj-1) + ac[Va(t;) — Va(tj-1)]
TLm = 362. 7/(m o 1) ns V3 (t]) = (1 - aRC’z)V3 (ti_l) + aRC,2V2 (t])
T 0.85
Al; =015 Vin(t;) = (1 — @rem-1)Vm(tj-1) + @rem-1Vm-1(%;)
1 Var1(t5) = (1 — aren)Vins1(E-1) + arenVa(t;)

ORcm =085 1 1
0.15m—-1
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Let’s try using excel first

At - 64‘ ns -20 ’ 0
AcR = 0.85
Ty = 362.7 ns

20 40 60 80

=20

=30

Voltage (mV)

Tym = 362.7/(m — 1) ns

-50

-60

-70

time(us)

6
—
- =.
=] (1]
‘U —
— m
2 o
S =
= ple]
=3 o
£ £
< <<
-0.1 0.1 0.3 0.5 0.7 0.9
01 Time (us)
Time (us)
-——CR =———R(C2 ==———R(C3 =——RC4 —RC5
-——(CR =—RC2 =——R(C3 ——RC4 —RC5 =R CE e R(C7 o= RC8 e===—=RC9 == RC10
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When the pulse is not sharp enough, no significant
gaussian feature is observed

At = 64 ns
Acr = 085
Ty = 362.7 ns

Tym = 362.7/(m — 1) ns

Orcm =085 1

0.15m-1

+1

=
o

Voltage (mV)

S
L
)
i~
S
_1:_
o
£
<

Time (us)

Time (us)

-—CR —R(C2 =—RC3 ——RC4

What’s the source?
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Saha equation
aha equation gives the relative proportions of atoms

of a certain species that are in two different states of
ionization in thermal equilibrium %

n. 1N, _ Gri19e (aneKT)B/Z ex (_ ﬁ)
n, G, h3 PAUTkT

* n.q, n,: Density of atoms in ionization state r+1, r (m-3)
* n,: Density of electrons (m-3)

* G,,q, G,: Partition function of ionization state r+1, r

« g.=2: Statistical weight of the electron

* m,: Mass of the electron

* X,: lonization potential of ground level of state r to reach to the ground
level of state r+1

T: Temperature

h: Planck’s constant

K: Boltzmann constant
Supplement to Ch. 6 of Astrophysics Processes by Hale Bradt

(http://homepages.spa.umn.edu/~kd/Ast4001-2015/NOTES/n052-saha-bradt.pdf) 125



Some backgrounds of quantum mechanics

 Planck black

body function:

8mhv3 1

u(v,T) =

c3

ehv/KT —

« Boltzmann formula:

— g;, g;: statistical weight

ni _ gie

—€;/KT .
— gl e_hvii/KT

n; ge

—€;/KT =~ .
J j

: (W /m3 Hz)

gi

2 + 1

gj

2J; +1

(J: angular momenta quantum number)

— Number in the ith state to the total atom:

n; n;

gie—ei/KT

n Z‘n]-

G: partition function of statistical weight for

G

G=ZXgje /KT

the atom, taking into account all its excited

states.

Radiated Intensity

Toward the
"ultraviolet
catastrophe”
8y 2 Rayleigh-Jeans Law
3 k
c
(@&
Ky
G
@
5 Planck Law
-‘? hv
o 8mv 2
T+ Curves agree at cd :—.‘I’_
.{ very low frequencies ekt -1
Frequency
¥ —— — — — — —
S B A
€
R N A
8j -
€
)
--+-- Ground state

http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html 126



Einstein coefficient

oS Kl

g 3
& 3
5 %
z m
2 s
. S

et

* Probability of electron energy transition: * Photoexcitation:
— Excitation (1): P;; = B;ju(v,T) " hy i
— De-excitation (|):  P; = A;; + Bu(v,T) ViV ‘ _
 In thermal equilibrium: j
ni(Aii + Biiu) = n;Bju - * Induced radiation:
gi _ = RXT o 1 Hoh
g; e ™(A; + Bjju) = Bjiu KT hv_» _»v
8mhv3
u=a(e*-1)71 as=—s; )
X gi oy 9gi e
al| e*Bj; — g_Bii = (e* — 1)g_Aii « Spontaneous radiation:
J J .
- The Einstein coefficients are independent of T or v. ' hv
x—-0e*-1 X — o,e¥ > o A
B : . A 3 J
_n — & aBii = &Al] U = 871.’;‘,
B;; gi gj B;; c .



Saha equation is derived using the transition between
different ionization states

* Required photon energy for transition 1
from the ground state of r ionization
state to the ground state of r+1

. A
ionization state:

2 _— Energy of the €1

hv =y, + — free electron
2m
* Required photon energy for transition 2 ¢
from the energy level k of r ionization
state to the energy level j of r+1 . _
. . . Atom in Atom in
ionization state: 7 ioniz. r+1 ioniz.
2 state state (with
p free electron)

hv=y, +€41j—€r+7—
Xr r+1,j r.k 2m
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Saha equation is derived using the transition between
different ionization states

Photoionization:

Rpi = nr,ku(V)Br,k—W+1,j
Induced radiation:

Riy = Nyyq1 jNe,(P)UWV)Briq jork

Spontaneous emission:

Ry = NyiqNep (p)Ar+ 1,j-1k

In thermal equilibrium:

n,, 1, 'ne,pAr+ 1,j-rk + n,, 1, 'ne,puBr+ 1,j-rk
J J J J

=n, ,uB, kor+1,j Atom in Atom in
’ ’ ’ r ioniz. r+1 ioniz.
« Einstein coefficients: state state (with

free electron)

2 3
By k-r+1j  Gr+1j geATD Ari1jork  8mhy

3 3
Br+1,j—>r,k Irk h Br+1,j—>r,k c
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Saha equation - continued

nr+1,jne,pAr+1,j—>r,k + nr+1,jne,puBr+1,j—>r,k = nr,kuBr,k—>r+1,j

Nyyq N Arstjork Ny jMep =N uBr’k_)rH’j
r+1,j'%ep r+1,j'"%ep™ — "'rk
J Br+1,j—>r,k Br+1,j—>r,k
N, ;N Aqi 1p ; B i Ori1i g.ATID?
r+1j'%ep r+1,j-rk 11 r.k-r+1,j r.k-r+1,j __Jdr+l e P
o _ 3
n, g uB,., 1,jork B, 1,j-rk B, 1j-rk 9rk h
n, 4mp? 2 3
e p p Ar+1]'_)r k 8mhv
ne p(p): 3/2 exp _ . L =
' (2mmKT) 2mKT Bri1jork c3

3/2 2 3 3 -1 , 2
N, 41rp? 2mKT / |8mhv3 c3 grx  h3

Nyy1Ne  (2mmKT)32 g,11;9 1 (p?
= 3 exp|=—=(—-—hv
nr,k h .gr,k
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Saha equation - continued

nr+1,jne . (ZﬂmKT)B/Z gr+1,jge ex i P_Z — hv
N, h3 rk P KT \2m

Mryijfe _ 2UmKTY2 griyjge 1 (p* - p*
N,k h3 Jrk p _KT 2m Xr r+1,j rk 2m

€ri1,j
Npy1jMe (2mmKT)3/2 gr+1,€Xp (%) Ge

r
exp (— —)
3 €
Tk h grkeXp (1€T" ) -
—€r /KT
n, g _ 9r k€ rk/ G, = Zgr,ke_er'k/KT
n, Gy
—€r4+1,j/ KT
Mri1j _ Grerje T Gri1 = Zgrsq e r+ti/KT
Nyi1 Gr+1

n, 1N, _ Gri19e (znmeKT)g/z ex (_ ﬁ)
n, G, h3 p
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Saha equation — example: hydrogen plasma of the sun

 Photosphere of the sun — hydrogen atoms in an optically thick gas in

thermal equilibrium at temperature T=6400 K.

— Neutral hydrogen (r state / ground state)

€r1
G =28k = gro + gr1exp (—1o0) + = 2+ Bexp (—
=2+9.8x1078+...x 2
— lonized state (r+1 state)
€ri11
Gri1=28r+1j = Ir+1,0 T Ir+1,1€XP (— KT

— Other information: g. =2 xr=13.6eV; KT =0.56eV MNy11 =N,

2
1x2 13.6
=2.41 X 10217(6400)3/2exp (— —) = 3.5 x 1016m3

10.2eV N
0.56eV

)+ x1

nyiq
n,

0.56
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It is mostly neutral in the photosphere of the sun

Assuming 50 % ionization:

n,,.; =n,=3.5x101m3 n=n,.q+n,=7x10%m>3

In the photosphere of the sun:
p~3x10"*kg/m3 ->n=2x103m3>»7x101%m3

At higher densities n at the same temperature, there should be more
collisions leading to higher recombination rate and thus the plasma is
less than 50 % ionization.

— Less than 50 % ionization

Use the total number density to estimate the ionization percentage:

n,.,+n,=2x10%3

n,iq
n,

=4 x10"*@6400K
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A semiconductor device is fabricated by many
repetitive production process

lon implantation

Stripping
\ 2 T ~ @

<M Deposition

J .
=

Developing Photoresist coating

Exposure

Surf. Topogr.: Metrol. Prop. 4 (2016) 023001
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Reference for material processing

* Principles of plasma discharges and materials processing, 2" edition, by
Michael A. Lieberman and Allan J. Lichtenberg

« http://www.eecs.berkeley.edu/~lieber/

« Materials science of thin films, 2"d edition, by Milton Ohring

* Plasma etching, by Dennis M. Manos and Daniel L. Flamm

* Industrial plasma engineering, volume 1, by J. Reece Roth

Rf or microwave
power

:

e, CF3, CFs*, F, 07, O,, CO, SiFy, etc.

—> Pump

CF,/0, =

Si0

ot
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Evolution of etching discharges

1st generation
(1 source, multi-wafer,
low density)

2nd generation
(2 sources, single-wafer,
high density)

3rd generation
(multi-sources, single-
wafer, moderate density)

A
(&}
O

leactive-gas inlet

@

()
L\

Barrel etcher
(Isotropic etch)

Magnetically enhanced

capacitive discharge

Substrate —

Capa

— T

citive

(Anisotropic etch)

Rf antenna z

DC/dual frequency

capacitive discharge
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There are two types of etching: isotropic vs anistropic

& Ku,
o ,
3 o
& <
P iz
1
z K
£y 5
% @
A 43
Teat

* Isotropic etching
Resist
Polysilicon

Substrate

« Anisotropic etching
Resist T ]

Polysilicon

Substrate [
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Plasma etch requirements — etch rate

pr
l  Etch time needs to be
within a few minutes:
500 nm Resist
Epoly E,r = 250 nm/min
|
] | Ej o1y = 50 nm/min
l 100 nm Polysilicon
'b =— Oxide
|
2nm

Principles of plasma discharges and materials processing, 2™ edition,

by Michael A. Lieberman and Allan J. Lichtenberg
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Plasma etch requirements - selectivity

E pr
500 nm Resist
E poly
—
,l 100+nm on Polysilicon
=— Oxide
/r v
2nm

Principles of plasma discharges and materials processing, 2™ edition,

Selectivity between
polysilicon and resist:

Eyoy At  100nm
s=—20 5 =

=0.2
E, At 500nm

Assuming 20% non-
uniformity on the wafer:

E

E,n At 2nm

by Michael A. Lieberman and Allan J. Lichtenberg

At 20% X 100nm
s=Pby— - 277 =10
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Plasma etch requirements — Anisotropy

W

pus

W

Principles of plasma discharges and materials processing, 2™ edition,

* Anisotropy

E, d
({h f— — —
w = Wy, + 20
2d
ap >
u W

* The smallest feature size
where w,_=0:

N 2d

(p

w

by Michael A. Lieberman and Allan J. Lichtenberg
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Plasma etch requirements — Anisotropy including
etching on photoresist

Not
acceptable

0 0.1
. Ep — 1
0~ (En+ Epm)t E, — "pr
d E, E )

t - — h prh _ -1 -1 . —

Ev EV + EV = ap + Spr d- 0.1
)~ d En £ Epm
' Ey » The contribution of the horizontal
En+ Epmn 0 etching is from both E, and E ..

Ev d Principles of plasma discharges and materials processing, 2™ edition,

by Michael A. Lieberman and Allan J. Lichtenberg 141



Plasma etch requirements — Uniformity on selectivity
and anisotropy

Sy
o ‘S
& ¢,
B 3
7 F
s &
“, s
it

(b) 03
-1 r——————
(c) | | X
| W mo =] Not
I I i acceptable
I W I
| | o+p
| L
I EF)"“ |
I I i
I
| ik
I B g En d
| l OXV |
: 0
0 0.3
()OX EOKV . ].

d-d1lta) E,->E,1%p)
6 = (t —t.: ) E
where a, 8 are variations. 0x (dmax min) Eoxv
d(l + a) d = —2(“ + ﬁ)onv
= ~ E

Cmax Ev(l — ﬁ) E, (1 + a + B) v
P d(l1—a) d
" T E.1+pB)  E,

d

EOXV 6OX
2(a+ B) =
1-a-p) Ey

Principles of plasma discharges and materials processing, 2™ edition,
by Michael A. Lieberman and Allan J. Lichtenberg 142



There are four major plasma etching mechanisms

« Sputtering * Pure chemical etching

lon Neutral
Volatile
product

(c) Neutral lon (d) Neutral lon
Volatile Volatile
product product

e Inhibitor

(a)

VBGL/ PRI AT NERL 3 ; po [ AAROR P S s . -
. LAY AL A~ e ¢ ' ’ N i a1 " b s
- o' - . . b Wi’ " 4
PRI T S 2 e N S SRRy g
LYy - { ‘- » " . M % ' " ’
NS . M o 2 P DA B ‘ot Dot e
-fl "q .-" - ’ ’ " . y .’ ". . ' .
o . ‘s £ ) Y ’

* lon energy-driven etching * lon-enhanced inhibitor etching

Principles of plasma discharges and materials processing, 2™ edition,
by Michael A. Lieberman and Allan J. Lichtenberg 143



Sputtering etching

Sputtering is an unselective but anisotropic process

Unselective process.

Anisotropic process, strongly sensitive to the angle of incidence of the
ion.

Sputtering rates of different materials are roughly the same.

Sputtering rates are generally low because the yield is typically of order
one atom per incident ion.

Sputtering is the only one of the four etch processes that can remove
nonvolatile products from a surface.

The process is generally under low pressure since the mean free path of
the sputtered atoms must be large enough to prevent redeposition on the
substrate or target.

R

{ ek : . DDA J Principles of plasma discharges and materials processing, 2" edition,
———————————— by Michael A. Lieberman and Allan J. Lichtenberg 144




Topographical patterns might not be faithfully
transferred during sputter etching

(a) lons
Rl 1 1 T T
1200 - J/ l l l l l
1000 -
800 - Photoresist
B
g 600 . P
3 (b)
g
400 ]
200 X Photoresist _
O Aluminum m————————= |
0 ! I i ] ] I I
0 ib 30 45 60 75 90 | |
Ph i |
6 (degrees) | otoresist

Principles of plasma discharges and materials processing, 2™ edition,
by Michael A. Lieberman and Allan J. Lichtenberg 145



Pure chemical etching

Atoms or molecules chemically react with the surface

to form gas-phase products

o x
R Uy

& <

P z

g

| g

s &
% ‘s
v Ld

rsat

Highly chemically selective, e.g.,

Neutral
Volatile
Si(s) +4F — SiF,(g) product

photoresist + O(g) — COa(g) + H>0(g)

Almost invariably isotropic.
Etch products must be volatile.
The etch rate can be quite large.

Etch rate are generally not limited by the rate of arrival of etchant atoms,
but by one of a complex set of reactions at the surface leading to
formation of etch products.

Principles of plasma discharges and materials processing, 2™ edition,
by Michael A. Lieberman and Allan J. Lichtenberg
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lon-enhanced energy-driven etching
The discharge supplies both etchants and energetic ions

to the surface

s Xy
e K,

3 2
& <
P &
H
% F
Y 4
% &

1,
v 4
et

XeF, Art Art
GAS ION BEAM  ION BEAM
ONLY  + XeF; GAS ONLY
i_. e —tn—-l
‘€ 100 - |
E -
Neutral lon < 80}
Volatile w ~
product = %0 D Y
-:‘”"_-'. .:'" ;'.‘, r -‘~': "a'? 1 ' é 40
———e e g 20 |-
o - .
= ol | 1| | S

100 300 500 700 900
TIME (SECONDS)

« Low chemical etch rate of silicon substrate in XeF2 etchant gas.

« Tenfold increase in etch rate with XeF, + 500 V argon ions, simulating ion-
enhanced plasma etching.

« Very low “etch rate” due to the physical sputtering of silicon by ion

bombardment alone. Plasma etching, by Daniel L. Flamm and G. Kenneth Herb 147



lon-enhanced energy-driven etching has the characteristic
of both sputtering and pure chemical etching

—
& <
3 z
"z m
2 &
%, il
o

« Chemical in nature but with a reaction rate determined by the energetic
ion bombardment.

 Product must be volatile.

* Highly anisotropic.

148



lon-enhanced inhibitor etching

An inhibitor species is used

Inhibitor precursor molecules that absorb or deposit on the substrate
form a protective layer or polymer film.

Etchant is chosen to produce a high chemical etch rate of the substrate
in the absence of either ion bombardment or the inhibitor.

lon bombardment flux prevents the inhibitor layer from forming or clears
it as it forms.

Where the ion flux does not fall, the inhibitor protects the surface (side
wall) from the etchant.

May not be as selective as pure chemical etching.
A volatile etch product must be formed.

Contamination of the substrate and final removal of the protective

inhibitor film are other issues. Neutral lon
C\I Volatile
S

Inhibitor ﬁl: product

539 <— Inhibitor
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Comparison of different processes

Sputtering | Pure chemical | lon energy- Ion-enhanced
etchlng etchlng driven etching | Inhibitor etching

Selectivity
Anisotropic o) X o) (o)
Volatile product X (0) (0) (o)
TABLE 15.1. Etch Chemistries Based on Product
Volatility
Material Etchant Atoms
S1, Ge F. Cl, Br
Si0, F.F+C
Si3Ny, silicides F
Al Cl, Br
Cu Cl (T > 210°C)
C, organics O
W, Ta, Ti, Mo, Nb F, Cl
Au Cl
Cr Cl,Cl1+0O
GaAs Cl, Br
InP Cl,C+H
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Deposition and implementation
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g 5
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et

 Plasma-assisted deposition, implantation, and surface modification are
important material processes for producing films on surfaces and
modifying their properties

« Example processes:
— Plasma-enhanced chemical vapor deposition (PECVD)
— Sputter deposition / physical vapor deposition (PVD)

— Plasma-immersion ion implantation (Plll)
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Chemical Vapor Deposition (CVD)

P e e e e e e e e e e e e e e e e e ]

K ’ 1) Mass transport of .
reactants

¥
!
]

(Gas deliver

-

7) Desorption of . 8) By-product

2) Film precursor 4}— i byproduct\» removal
reactions ' '.B\,r—pmducts I 81/,3-’ —;-( -
3) Diffusion of . '
gas molecule 5) Precursor

diffusion into 6) Surface reactions  Continuous film
4) Adsorption of
precursors ‘ —

-

@

substrate

Substrate

e

http://www.ece.uah.edu/courses/material/EE410-Wms/ 15



Plasma-enhanced chemical vapor deposition (PECVD)

& Ku,
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RF Electrode

Matching Plasma
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H
H o H H
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Films can be deposited in low temperatures using
plasma deposition

* Device structures are sensitive to temperature, high-temperature
deposition processes cannot be used in many cases.

« High-temperature films can be deposited at low temperatures.

* Unique films not found in nature can be deposited, e.g., diamond.
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Working temperature is determined by the desired film
properties

 CVD - consists of a thermally activated set of gas-phase and surface
reactions that produce a solid product at a surface.

« PECVD - gas-phase and the surface reactions are controlled or modified
by the plasma properties.

 Te~2-5 eV in PECVD is much greater than the substrate temperature, the
temperature in PECVD is much less that CVD.

« Deposition rates are usually not very sensitive to the substrate
temperature T.

* Film properties such as composition, stress, and morphology, are
functions of T.

 Low-temperature PECVD films are amorphous, not crystalline, which can
more easily be achieved with chemical vapor deposition (CVD).
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Example of using PECVD — amorphous silicon

« Amorphous silicon thin films are used in solar cells

Monocrystalline Polycrystalline Amorphous
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Example of using PECVD — amorphous silicon

* His required so that SiH, is used
— For the material to be semiconducting.
— Terminate the dangling bonds.

— The dangling bonds are created by ion bombardment (SiH;*) which
also removes hydrogen from the surface.

— SiH; and SiH, radicals are important precursors for film growth while
SiH, also participates in surface reactions.
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ysical vapor deposition can be achieved by heating
the deposited material

 Thermal evaporator » Electron-beam evaporator

Vacuum chamber

Substrate holder Direction of

Path of the

: (\
[—— Substrate
<
i, R Vapor flux
Water Cooled Holder
Crucible T ] p—
containing —_ +
target material | s
To pumping system i ] 3

» Pulsed-laser deposition

Pulsed laser beam

Focusing lens
Chamber window
Vacuum chamber

- Heater
Substrate

T Plasma
Plume

https://en.wikipedia.org/wiki/Pulsed_laser_deposition
Engineered biomimicry by A. Lakhtakia and R. J. Martin-Palma
https://en.wikipedia.org/wiki/Electron-beam_physical_vapor_deposition 158



Sputtering deposition

ANODE ® \j T |
L

SUBSTRATE Py—
@ () FILM
GROWTH
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PLASMA @

CATHODE SPUTTERING TARGET ©
Il

http://Inf-wiki.eecs.umich.edu/wiki/Sputter_deposition 159



Plasma-immersion ion implantation (PlIIl)

matching » tORF

box > generator
B {a) Target

7

RF antenna

; .I IIIIIIIIIIII /
/ / v Mt (%) Plasma t=0t
2’. 4 ‘e’ ‘ 3 Sheath '3 0
4 ce @
A LT Ll Fa :
/ . im
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2 e Ar ) Ao
/ B2 J
/ sample holder ) 2 / d¢ o
/ / 7 :
/7 50 8() %

2 to H/V pulse
relr generator

 Silicon doping — ions such as B, P, As are implanted

« Surface hardening of metals — N, C are implanted

https://www.hzdr.de/db/Cms?pOid=10890&pNid=306 160



Magnetron sputtering provides higher deposition rates
than conventional sputtering

Neutralized g
Atom

Sputtered
Film

Substrate
Holder

\e
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[~ Substrate
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http://www.semicore.com/what-is-sputtering 161



Demonstration experiments — magnetron sputtering

% K,
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* Without magnet « With magnet
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self-aligned quadruple patterning

HARD MANDREL 1 SPACER 1 SPACER 1 ETCH HARD MANDREL 2 SPACER 2 SPACER 2 ETCH PATTERN
ETCH DEP & MANDREL PULL ETCH DEP & MANDREL PULL TRANSFER
ORGANIC SPACER 1 SPACER 1 ETCH SPACER 2 SPACER 2 ETCH PATTERN

MANDREL ETCH DEP & MANDREL PULL DEP & MANDREL PULL TRANSFER

(b)
bl el e AR A

H. C. M. Knoops et al., J. Vac. Sci. Technol. A 37, 030902 (2019)

& Xy
v
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P &
% H
5 3
% &
b 24
Taa
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Plasma can be used for cleaning surface

« Cleaning mechanisms:

— Chemical reactions by free radicals

— Physical sputtering by high energy ions

Chemical Energy

Plasma Cleaning

Hydrogen Plasma Oxygen Plasma
Argon Plasma

Chemical Energy

Physical

BRRAREROHBIRAE

https://www.ecplaza.net/products/plasma-cleaning_111807
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Free radicals are generated and used in chemical reactions

_w® Ku,
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e_+H2—)2H° e_+02—)20° O'+02—>03

* Highly reactive free radicals generated in plasma may react with the
hydrocarbon contaminants of surface oxide.

* Both He and Oe can react with grease or oil on surface to form volatile

hydrocarbons.
H eyt CH3p12(5) = CHygy)

0 ¢yt CrHzp12(s) = COs) + CH 0y, + H20(y)

e Qe is more reactive than He. But Oe may also react with surface metal to form oxide,
deteriorating the material properties. Nevertheless, He can make metal oxide back
to metal.

O+ +Me » MeO

He+ +MeO - Me + H,0
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The effect of chemical reactions is increased as the
pressure increases

« Advantages:
— Stable gas products are formed.
— No redeposition problem.

— High etching selectivity.

« Disadvantages:

— Higher concentration of H, or O, is required to ensure an appropriate
etching rate.

— H, safety or O, strong oxidation ability needs to be monitored.
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High energy ions are used in physical sputtering
cleaning

* lons generated in plasma can be accelerated toward the substrate to
physically bombard away the atoms of contaminants.

« The physical sputtering rate increases as the following quantities
increase:

— Plasma density;

— Accelerating voltage;

— Mass of bombardment atoms.
« The physical sputtering is also enhanced by lowering the pressure.
* High cathode bias is used.

« Ar* has strong sputtering effect.
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The physical sputtering rate increases with higher
cathode bias and Ar concentration and lower pressure
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« Advantages:
— Highly efficient cleaning effect can be achieved.

— Gas consumption rate can be very low.

« Disadvantages:
— Etching problems — non-selective etching by physical sputtering.

— Redeposition problems: the products sputtered out may be highly
unstable and tend to deposit again downstream.
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Plasma cleaning examples

Low-pressure plasma system: Generation with a low-frequency or high-frequency generator

Valve
: Gas flow

2.8 |
‘0
]

Gas bottle

L)

s
g
&
Ventilation valve

@ Oxygen
® Carbon

e.g.: The removal of carbon-particle
matter with Ozplasma

c+o'— co: T

Vacuum chamber
Electrode

%

é
* PLASMA ¢
“%* ;’
'Carbon-particle

0%°0 0 0 0 0%%0 o mMatter ()
Substrate

Lo 4

Gas flow Vacuum pump

HF generator

Diagram 6

Low-pressure plasma system: Cleaning with a microwave generator

Magnetron

Microwave radiation

Microwave window

Valve
<[ e
Gas flow
: —y
o %
\"’ %0 %0
& % «
4 ' ° PLASM.'A Power supply
:: e Gas bottle vv : _—
| - ‘ Photoresist layer |
e $388888888—
| Substrate °
! W & 40
Ventilation valve }
Gas fl )
® Oxygen as flow \ f Vacuum pump
® Carbon
© Hydrogen
e.g.: Removal of photoresist
c+0:— co:z T Diagram 7
HO— H:0 T o

https://www.plasma.com/en/plasmatechnik/low-pressure-plasma/cleaning/
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Plasma cleaning needs to work in the regime of
abnormal glow discharge
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EUV light sources

A semiconductor device is fabricated by many
repetitive production process

lon implantation

Stripping

Deposition

-

Developing Photoresist coating

Exposure

Surf. Topogr.: Metrol. Prop. 4 (2016) 023001
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Ultraviolet lithography (EUVL) is one of the key
technologies in semiconductor manufacturing nowadays

E%f
v 'g”r

 The process technology of Taiwan Semiconductor Manufacturing
Company Limited (TSMC):

3um

» Optical diffraction needs to be taken into account.
« Shorter wavelength is preferred.

« Light source with a center wavelength of 13.5 nm is used.

https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm 172



EUV lithography becomes important for semiconductor
industry

rrrrr

« 0.15 billion USD for each EUV light source.
https://Iwww.youtube.com/watch?v=NHSR6AHNIiDs

http://finance.technews.tw/2019/01/25/euv-asml-2018/ 173



EUV light can only be reflected using multilayer mirrors

Transmizsion
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https://henke.lbl.gov/optical _constants/
Mo/Si multilayer coating technology for EUVL, coating uniformity and time stability; E. Louis
et al.; SPIE 4146-06, Soft X-ray and EUV Imaging Systems, San Diego, 2000. 174



13.5-nm EUV light is picked for EUV lithography
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« A=13.5nm + 1% is required. e Tin:

« At T=35-40 eV (~450,000 K), o 4pS4dN — ApSAdN* + 4ptadN1Af
in-band emission occurs. (1=<N < 6) in ions ranging from
 Xenon: Sn8+ to Sn12+
« 4pS4d® — 4p®4d'5p « UTA@ 13.5 nm

from single ion stage Xe1%*

« UTA@ 11 nm "
« UTA: unresolved transition array

V. Bakshi, EUV sources for lithography
R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012) 175



EUV light is generated from laser-produced plasma (LPP)

Vessel

: » With Collector, Droplet
« Key factors for high source power are: | Generator and Metrology

High input CO, laser power

High conversion efficiency (CO, to EUV energy)
High collection efficiency (reflectivity and lifetime)
Advanced controls to minimize dose overhead

Controllers for Dose | _
and Pre-pulse |

Fab Floor

TN

v

Pre-pulse
requires seed
laser trigger
control

r
J/

Master Oscillator Power Amplifier Sub-Fab Floor

D.-K. Yang, etc., Chip, 1, 100019 (2022) 176



Two laser pulses are used to heat the plasma

Temporal View

Spatial View

Pre-pulse

Time

n(x)~ w2 (x)

IE (x)?

@ Stream of tin droplets, 80 m/s

PreW [ﬂ

9 Droplet diameter ~30um
laser bea )

Target
’ Expansion

Main pulse

Target diameter ~500um
laser bea

EUV 13.5nm

I. Fomenkoy, etc., Synch. Rad. News, 32, 3 (2019)
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Hydrogen buffer gas with a pressure of ~100 Pa is used
to protect the collector mirror

: , * Hydrogen buffer gas (pressure

' DG ~100Pa) causes deceleration of ions

: ’ « Hydrogen flow away from collector
reduces atomic tin deposition rate

EUV collector | i
Temperature controlled .

H, flow

= ; %

Sndroplet/ | - IF
plasma

Laser beam wmmp - W

Reaction of H radicals with Sn to
form SnH,, which can be pumped
away.

Sn (s) + 4H (g) — SnH, (g)

____________________________ * Vessel with vacuum pumping to
remove hot gas and tin vapor

Sn + Internal hardware to collect micro
catcher particles

D.-K. Yang, etc., Chip, 1, 100019 (2022) 178



Laser-produced plasma (LPP) is used in the EUV
lithography
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R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012) 179



High harmonic generation from high-power laser

For |l <107 w/cm?

IR field
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EUV light can be generated using discharged-produced
plasma

« Adiabatic compression:

. water insulator
_1 ro cooling .
TVY™" =const T;=T,|— grounding
r R electrode
“““ *
(a) (b) (c) pre-ionization
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e
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Conical
electrode

(b) electrode

(1) Formation (2) Formation (3) Formation  (4) Break of
of aplasma of a mini-diode of a hot spot  the center
corona and plasma jet (HS) region

. Plasma Physics Reports, 38(5):359-381 (2012).
. Plasma Physics Reports, 34(8):619-638, (2008).
. JPDAP_37 p3254_2004_EUV sources using Xe and Sn discharge plasmas 181



Light source and display systems

Plasma display panel (PDP)

front plate glass

surface
discharge

rear plate glass

‘address electrode £ e
N < fees © 2002 HowStuffWorks

Liquid crystal display (LCD)

/ Un-polarized Light

Polarizing Filters

Substrate Glass
-

\ 4 special polymer

™~
~
/

rubbed on the side of 2 _
the glass substrate U Liquid
- that does not have U U crystal
L!ql"d crystal the polarizing film on director
director it to create U D o
_\ microscopic grooves
in the same direction U D
Light path as the polarizing film. D D Applied
through 96

liquid crystal

\ D Voltar

OFF State

ON State

Cross-Sectional View of an LCD Panel

@ Practical-home theater-guide.com 2006
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Outlines

« Cathode Ray Tube

« Color space (CIE 1931 color spaces )
« History of plasma display panel (PDP)
* Design of PDP

* Liquid crystal display (LCD)

« LCD vs PDP
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CRT

Cathode Ray Tube uses electron beams to light the
fluorescent screen

s i
s

< <

p iz

z

z "

2 &
% &
v 54

Teat

Bright spot
on screen
where

Horizontal

Cathode Aol deflection plates

electrons hit
:
Heater | i { ﬂL __—-————
current =g = fr===r"
| | I =
L. | Fluorescent
\ V screen
Gnid ’ -
Path of
— _ electrons
Vertical
deflection
plates

http://www.sciencefacts.net/cathode-ray-tube-crt.html 184



The image is shown by scanning through the whole

screen with the single electron beam

VEYNC (EVEN FIELD)
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horizontal sync pulses

A vertical sync pulses
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-0.286W

even field | | odd field ,
interlaced video signal
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Honizoethal Coler | ————————— Addive Video ——————

Sy

Euarst

http://www.ni.com/white-paper/3020/en/#toc2
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Color image is formed by using three electron beams
scanning through three different color channels
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Deflection coil (aka yoke): magnetically steers
beam in a left-to-right top-to-bottom pattern.
There are separate H and V coils.

Cathode: separate
beams for R G and B

Shadow mask: ensures R
beam only illuminates R
pixels, etc.

Source: PixTech

Phosphor Screen: emits light
when excited by electron beam,
intensity of beam determines
brightness

Anode

http://web.mit.edu/6.111/www/f2008/handouts/L12.pdf
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Color space

Color can be created using three primary colors

rrrrr

Additive primaries Subtractive primaries

Y

https://en.wikipedia.org/wiki/Primary_color 187



Human retina has three kinds of “cones” that have
different spectral response
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Spectral response of retina “cones” are tested using
light sources with single wavelength
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http://betterphotographytutorials.com/2011/08/01/light-and-colors-%E2%80%93-part-3/
https://en.wikipedia.org/wiki/CIE_1931_color_space 189



The CIE 1931 color space chromaticity diagram is the
standard color space
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History of PDP

Plasma display panel was invented at the University of

lllinois in 1967
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Prof. H. Gene Slottow P;'of. Donald L. Bitzer

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 191



PDP was invented due to a need for Programmed Logic
for Automatic Teaching Operations (PLATO) in 1960s

https://topwallpapers.pw/computer/keyboards-computers-history-teletype-typewriters-desktop-hd-wallpaper-1035981/
https://en.wikipedia.org/wiki/Punched_tape
https://en.wikipedia.org/wiki/PLATO_(computer_system) 192



The positive column in a glow discharge is used to
excite phosphors in color PDP

CATHODE
HITTGRF} DARK SPACE
ASTON DARK SPACE —f ?n%fém DARK SPACE ANODE DARK SP
CATHODE “e ATHODE GLOW . “POSITIVE COLUMN ANCC

NEGATIVE GLOW ANODE GLOW

Majority of monochrome PDPs use the negative glow as the light source
The positive column is used to excite phosphors in fluorescent lamps
and in color PDPs

Industrial plasma engineering, volume 1, by J. Reece Roth
https://en.wikipedia.org/wiki/Neon_lighting 193



Early plasma panel (PD) attached to the glass vacuum
system used for the first plasma displays at Ul
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« It had the same alternating sustain voltage, neon, gas, and dielectric
glass insulated electrodes that are used for plasma TVs today.

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 104



Early plasma panel (PD) attached to the glass vacuum
system used for the first plasma displays at Ul
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« It had the same alternating sustain voltage, neon, gas, and dielectric
glass insulated electrodes that are used for plasma TVs today.

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 195



Early 4x4 pixel panel has achieved matrix addressability
for the first time

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 196



Early 4x4 pixel panel has achieved matrix addressability
for the first time

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 197



A 16x16 pixel PD, developed in 1967, needed to be
addressed manually

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 198



First color PD was three cell prototype with red and
green color phosphors excited by a xenon gas discharge
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Blue (no
phosphors)

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 199



Open-cell structure developed in 1968

PARALLEL
ELECTRODES

DIELECTRIC
GLASS

PARALLEL
ELECTRODES

-

SUBSTRATE
GLASS

y JH.g...-uu.umwn'uu-nnauunwdh
" \direat.view, light-emitling gas discharge matrix display
m‘mmmmm k
combination of good display characteristics with inhers
in a truly digital flat panel.

* A vadwmart of O

* |t could be baked under vacuum at 350 °C to drive out contaminants.
L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 200



More progress

1968, University of lllinois 1971, Owens-lllinois
16x16 pixels 512x512 pixels

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 201



Color PDPs had short display lifetime due to the
degradation of color phosphors caused by ion sputtering
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Design of PDP

A lower breakdown voltages can be obtained with very

Firing Voltage (V)

small amounts of added gas
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AT&T three-electrode patent

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 204



Reflective phosphor geometry is used in most of
today’s plasma TVs

.\ 7 . Front Glass

Visible Light
o +* * %
h’h———"‘——d-h———'_‘——i-’h-——'—‘——di

i

Sustain >

Electrode " &

Address -
Electrode /
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Spectrum of the different phosphors
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The foundation of AC discharge
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Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 207



The plasma can be sustained using ac discharged

ov =+ 220V 1A% =+ 220V
| | | |
— — — — + + + + — — — — + + + +
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-] = — R — s
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| | | |
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« Wall discharge reduced the required discharge voltage
Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Wall discharge reduced the required discharge voltage

VF Vs VF
Optical } Wall Optical
Output Chargeoutp”t ON
OFF | ON ON
OFF
—p
Electrical Electrical
Input Input

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 209



ON/OFF State Selection

VF: 250V
150V GND 150V GND 150V GND
ON Cell =S ooss
- -

G SO0

GND 100V 100V 100V
GND 150V GND 150V GND 150V GND

OFF Cell
GND GND GND

(i)

(ii)

(iifi)

(iv)

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Sustain discharge

ON Cell
GND GND GND 180V GND GND 180V GND
- 000 O || O000 S0 || 008 O000
- B
)
GND GND GND GND
OFF Cell
GND GND GND 180V GND GND 180V GND
GND GND GND GND

(i)

(ii)

(iii)

(iv)

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Address and sustain electrodes are connected to

different drivers

Z Address Driver

Z1919

<

Scan &
Sustain Driver

Z2

>

Common
Sustain Driver

721920

Z Address Driver

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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PDP pixel can only be either ON or OFF

A

° . Optical
Cathode Ray Tube : 2P t;) o

=
Electrical
_ Input
« Plasma Display Panel :
Optical } Optical }
Output Output
OFF | ON
> g
Electrical Pulse
Input Number

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 213



PDP luminance is controlled by using number of light
pulses
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* CRT : Control the Luminance using Electron Beam Intensity

Luminance Ratio
2:1 K

Time Time

\ 4
A

* PDP : Control the Luminance using Number of Light Pulses
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AR, === 111111

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 214
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A single field is divided into 8 subfield

MSB LSB
11111111
1/1/0/1(1|/1|0]0
1/0/1]/1/1/0/|0 1

255 204 153 128 64 32 16 8 4 2 1

SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
1 2 4 8 16 32 64 128

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 215



Composition of each subfield

Reset . ) ]
. Address Period Sustain Period
. Period
1))
S
. |
S
L
5
S
\/
480
0.3msec 1.44msec 0.01~1.28msec

Spec : VGA (6407480)
8 Subfield
0.03msec Address Pulse
100KHz Sustain Freq.

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 216



8 subfield in one TV-Field (ADS)

1 Field (16.67msec)

1
480

SF1 SF2 SF3 SF4 SF5 SF6 SF7  SF8
1 2 4 8 16 32 64 128

Vertical Line

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 217



PDP uses line-by-line scanning

Cathode Ray Tube : Cell-by-Cell Scanning

D
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D
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D
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PDP : Line-by-Line Scanning
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Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Video signal processing

* Analog Video Signal = Digital Pulse Signal

Input Analog
Video Signal

Color
Seperation

A/D
Converter

8Bit/color

255,

Digital
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8bit
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Q= O
e le =Y
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S O—= 0O
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Digital
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Digital
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Digital
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Method

v

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Addressing period

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 220



Displaying period

Original Image

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 221
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LCD

Liquid crystal are a special state of matter between
liquid and crystal

0000 K
: )

M p—t
000 Heating 0 Q OQQ Heating \L\o

= [\ ==

Cooling 0 Cooling <> (2’
Mt Ay 213

Crystal Liquid crystal Liquid

k. Nematic Smectic Columnar F

T. Kato, et. al., Chem. Soc. Rev., 36, 1845, 2007 292



Linear polarization of a light can be rotated by miss
aligned liquid crystal

Un-polarized Light

t"iﬂ

Polarizing Filters

Substrate Gl .
S ass\

e

- '\ /
A special polymer

rubbed on the side of L
the glass substrate U U Liquid
_ that does not have U U crystal
L!ql-“d crystal the polarizing film on director
director it to create U U
H‘““-*-h.‘ microscopic grooves

in the same direction U
Light path as the polarizing film. U
through

liquid crystal

OFF State

ON State

Cross-Sectional View of an LCD Panel

@ Practical-home theater-guide.com 2006

http://www.practical-home-theater-guide.com/Icd-display.html 223



Structure of Liquid crystal display (LCD)

& Transmittance ~ 5%

Color Filters: 30%

*— Wide-view LC: 85%
«“—TFT-Array: 60%

Polarizer: 45%

4 b
[ i \Z \j \<—Optlcalfllms 70%
- \
N R NN

<— Backlight

YB Huang, IDRC 2008 Notes from ST Wu, UCF

http://www6.cityu.edu.hk/cityu25/events/engineering/pdf/proftang.pdf
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Optimistic projection of PDP market

[Inches diagonal] Pead s

100 80 1n. Full HD prototype *=
Mass production i el
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I "--.
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oo L o iPrototype

R ol 00
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20 H21 T L
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Reality

TV Shipment Growth by Technology
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http://www.digitaltvnews.net/?p=22108 226



Too many reasons that PDP died!

« Bright showroom conditions put plasmas at a distinct disadvantage
versus LED-lit LCDs

» Aesthetics may have played a role in hastening plasma's demise
« UHD/4K caught on quickly

« Screen-size limitations also played a part in plasmas plight
 You can't bend a plasma

* Plasmas were harder to deal with than LCDs

« While OLED is still in the early stages of development, there's no
question it offers greater potential than plasma

« Energy efficiency may have played a part in putting plasma out to pasture

« Plasma was the original flat-panel technology, People just thought of it as
old technology.

* Projectors improved in quality and prices dropped

http://www.avsforum.com/forum/40-oled-technology-flat-panels-general/2080650-10-reasons-plasma-died.html 227



Let’s stand up and do exercise!!
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The hydrogen bomb
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The “iron group” of isotopes are the most tightly bound

Binding energy per nuclear
particle (nucleon) in MeV

Fe

-

The "iron group”
of isotopes are the
most tightly bound.

. yield from
. ' nuclear fission

u gg Ni (most tightly bound) *
58 ; _
o F€ ' Elements heavier
56 Fe : than iron can yield
26" have 8.8 MeV! energy by nuclear
per nucleon fission.
yield from binding energy. -
nuclear fusion :
v W
: Average mass
: of fission fragments 235
'is about 118.
!IlI!IIIIIEIIIIIIIIIII
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http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html
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Chain reaction can happen in U?3° fission reaction

O

» ~ 200 million electron volts
(MeV)/fission, ~million times more
than chemical reactions
« Energy for bombs, or for civilian

A 4
power can generate huge amounts of
energy (and toxicity) in a small space
4
e @) B
O O
O

with a modest amount of material
» Source of safety, security issues for
nuclear power

https://en.wikipedia.org/wiki/Uranium-235
Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 231



The neutrons are leaking out and stopping the chain
reaction in a sub-critical mass

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 232



Solution 1: add more material

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 233



Solution2: reflect the neutron back in

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 234



Solution 3: increase the density

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 235



How to get the material together before it blows apart?
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 There are always neutrons around
« Once chain reaction starts, material will heat up, expand, stop reaction
 How to get enough material together fast enough?

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 236



Gun-type bomb

« Simple, reliable — can be built

without testing Active Material
* Highly inefficient — require lots of (Each Two-Thirds Critical)
nuclear material (50-60 kg of 90%
enriched HEU) R *W
« Can only get high yield with HEU, (2 *"”“"””"“*”3}%

/

not plutonium

* Hiroshima bomb: cannon that
fired HEU projectile into HEU
target

Source: NATO

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 237



Implosion design

« A schematic diagram of an « Small-scale slow-motion
implosion bomb cross-section of a shaped
charge implosion design

Initiator: Polonium, Beryllium

Reflector: 100 to 250 Kg of Natural Uranium

7 /NN
Mv

Y/,

Detonators: 32

https://www.wisconsinproject.org/nuclear-weapons/
https://en.wikipedia.org/wiki/Trinity_%28nuclear_test%29 238



The 15t nuclear bomb: Trinity (Bradbury Science
Museum)

* Model of the Trinity Gadget <+ ProjectY Atomic Bomb Detonator
! ~ B —— =3 System

* Project Y Atomic Bomb * Project Y Atomic Bomb Detonator
Detonator System System Spark Gap Switch

https://www.flickr.com/photos/rocbolt/with/8061684482
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The 15t nuclear bomb: Trinity

https://www.theatlantic.com/photo/2015/07/70-years-since-trinity-when-we-tested-nuclear-bombs/398735/
https://saddlebagnotes.com/arts-and-leisure/tucson-seismographs-detected-first-nuclear-test-at-trinity-n-
m/article_b01c5b20-f6fb-11eb-a221-6327df2feaeb.html 240



Trinity explosion on July 16, 1945

100 METERS

0.053 SEC. 100 METERS

by
N

—— 100 METERS

https://www.theatlantic.com/photo/2015/07/70-years-since-trinity-when-we-tested-nuclear-bombs/398735/
https://en.wikipedia.org/wiki/Trinity_%28nuclear_test%29 241



Hiroshima Bomb - “Little Boy”

Gun Type — Easiest to design and build (Hiroshima bomb was never tested)

About 13 kiloton explosive yield

Talk given by Dr. Charles D. Ferguson, President, Federation of American Scientists, Department of Physics,
Colloquium, American University, 2012 242



Atomic bomb is very destructive
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Hiroshima: August 6, 1945 Nagasaki: August 9, 1945

Talk given by Dr. Charles D. Ferguson, President, Federation of American Scientists, Department of Physics,
Colloquium, American University, 2012 243



The fusion process

Deuterium
(H-2) Tritiurn
, - (H-3)

I

4

|

. o
-

3.5 Mev
Alpha Particle 14.1 Mey

(He-4) —q Meutron

Deuterium-Tritium Fusion Reaction

™)

H+H = “He+n+Q = 17.6 MeV
Energy release Q=17.6 MeV

In comparison

’H+°H = 'H+°H +Q = 4.0 MeV
’H+°H = 3He+n +Q = 3.2 MeV
*H+°H = “He+2n+Q = 11.3 MeV
233U+n = X,+Xg+3n +Q = 200 MeV

Fusionable Material, deuterium 2H (D) and tritium 3H (t):

Deuterium: natural occurrence (heavy water) (0.015%).

Tritium: natural occurrence in atmosphere through cosmic ray
bombardment; radioactive with T,,=12.3y.

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf
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“Advantages” of hydrogen bomb

Fusion of 2H+3H: O = L7.6 Me) =3.5 Mel
A (3+2)amu amu
) 200 MeV Mel

Fission of 235U: g = c =().85 c
A 236 amu ami

Fusion is 4 times more powerful than fission
and generates 24 times more neutrons!

e LoLloon
Neutron production: 43

3507 i o2 00085
4 236

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf
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Hydrogen bomb uses a fission bomb to initiate the
fusion reaction

Fuel
Primary Fission Device
Secondary Fusion Device
Core: 239pPy, 235,
plus 2H+°H booster Radiation channel
Shell: 238U tamper 239py sparkplug
High explosive lenses 6Li, 2H, 3H fusion cell

2381 tamper

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf 246



Event sequence

1. Warhead before 2. HE fires in primary, 3. Flseionlng primar'r
firing; primary (fission bomb) compressing plutonium rays which
at top, secondary (fusion  core into supercriticality atong the inside of compressing seoondary deuteride fuel begins
fuel) at bottom, all suspended and beginning a fission the casing, irradiating and plutonium sparkplug  fusion reaction, neutron
in polystyrene foam. reaction, the polystyrene foam. begins to fission. flux causes tamper to fission.
A fireball is starting to form...

Additional pressure from recoil of exploding shell (ablation)!

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf
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You don’t want to build a hydrogen bomb!

Tzar Bomba
(Soviet)

Hiroshima

:
:

Illustration From October 2002
Issue of “"Popular Mechanics” (pg. 69)
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