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Abstract

This thesis presents the design of the central solenoid current profile of the mini-
Tokamak to generate the toroidal loop voltage required for plasma breakdown and to
subsequently drive the plasma current to 10 kA and heat the plasma to 10 eV. The time-
varying current induces eddy currents in the inner and outer vacuum-vessel walls, which in
turn affect the loop voltage. A numerical model is developed to compute the resistance and
inductance of the tokamak components, the induced eddy currents and the loop voltage, with
the effects of eddy currents in the vacuum-vessel wall included. The calculations show that
eddy currents initially suppress the loop voltage but decay rapidly, with their influence
reducing to below 5% after 0.5 ms. Consequently, the solenoid current should be maintained
longer than 0.5 ms to minimize eddy current effects. In addition, a time-dependent plasma
model is constructed to calculate plasma current and temperature evolution due to Ohmic
heating. Plasma resistance is calculated based on neoclassical resistivity, and the ionization
fraction is obtained using a hybrid model that combines collisional model from empirical
formula with coefficients from the ADAS database. This formulation enables estimation of
ionization behavior from the initial weakly ionized state to a fully ionized plasma. To achieve
breakdown at a particle density of n = 10" m™ (corresponding to a pressure of 107> Torr)
with a connection length of 500 m, a loop voltage of approximately 0.046 V is required.
Under these conditions, the central solenoid current change rate must exceed 289 A/ms.
Furthermore, to achieve a plasma temperature of 10 eV in the mini-Tokamak with a major
radius of 85 mm, minor radius of 55 mm, and elongation x« = 1.82, the central solenoid
current should decrease linearly from 5.4 kA to 0 kA in 10 ms, followed by a ramp from 0
kA to —1.5 kA in 40 ms. When the particle losses and the corresponding energy losses are
neglected, the plasma temperature can be maintained at 10 eV for 40 ms.

Keywords: Tokamak, Magnetic confinement fusion, Eddy current, Plasma breakdown
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1. Introduction

Nuclear fusion is a process in which two or more atomic nuclei fuse together forming
a heavier nucleus. The mass reduction of the products compared to the reactants is released
as energy. One example is the process in the Sun, as shown in Figure 1(a). It illustrates the
proton—proton chain reaction, in which hydrogen nuclei fuse through a series of steps to form
helium and release energy. This is the dominant reaction that powers with stars the size of
the Sun or smaller. Another example is the reaction between a deuterium and a tritium, which
generates a helium and a neutron, as shown in Figure 1(b):
‘D + 3T — JHe + {n (+17.6 MeV) . (D
This reaction is considered the most favorable fusion reaction due to the highest cross-
section among all function reactions at achievable temperatures.
This chapter consists of three sections. Brief introduction of nuclear fusion and the goal

of this thesis will be given. Section 1.1 will introduce the two leading methods to achieve

R e
/l\v /l\v (b)

v HY) @) H
IV %

N Y
v/l l\v / \’,
\JBH\eA ABH/eJ ‘}

J 4 He + 3.5 MeV
n + 14.1 MeV
1H 1H
J J Proton )
) Proton iHe \‘) Neutron J

@ Neutron Gamma ray Y
Positron Neutrino V

Figure 1: (a) Proton—proton chain reaction in stellar fusion[1]. (b) Deuterium—tritium

(D-T) fusion reaction[2].
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nuclear fusion in date. Next, Section 1.2 will explain the motivation of this thesis. Finally,
Section 1.3 will present the goal of this thesis.
1.1. Nuclear fusion

To achieve fusion on Earth, it is necessary to create the extreme temperature, pressure,
and confinement conditions required for fusion to occur. Two leading approaches are being
developed: Inertial Confinement Fusion (ICF) and Magnetic Confinement Fusion (MCF).
Each method relies on a different mechanism to confine and heat the fusion fuel to the
required conditions.

1.1.1. Inertial confinement fusion (ICF)

The principle of inertial confinement fusion is shown in Figure 2. When laser beams
are focused onto the surface of a spherical fuel capsule, the outer layer is rapidly heated and
ablated, forming a plasma envelope, as shown by the red-yellow outer layer in Figure 2 (a).
The blowoff of this hot plasma creates a reaction force that compresses the inner fuel
symmetrically. As compression proceeds, the core temperature and density rise rapidly,
eventually reaching the conditions required for fusion ignition. In the ignition phase, the fuel

core reaches approximately 20 times its original density and a temperature of around 108 °C.

- Laser energy Blowoff > Inward transported
~ thermal energy
Y ® - © @
Atmosphere Compression Ignition Buihi
formation
v
" \l " ‘-
! Bad A=A
~4 mm 0 ’ ‘
: Vaard.  VARY
'\"' '\‘,l

Figure 2: Stages of the Inertial Confinement Fusion Process[3].
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Once fusion reactions begin at the center of the compressed target, thermal energy is
transported outward, sustaining a burn wave that spreads outward and releases energy
several times greater than the initial laser input.

1.1.2. Magnetic confinement fusion (MCF)

The configuration of magnetic confinement fusion is shown in Figure 3(a). In a typical
MCF device, such as a tokamak, the plasma is confined in a toroidal (doughnut-shaped)
configuration. These devices typically have an aspect ratio (R/a) larger than 2, where R
is the major radius and a is the minor radius of the plasma, as shown as the outer plasma in
Figure 3(b). In contrast, the spherical tokamak, shown as the inner plasma in Figure 3(b),

features an apple-like shape with a much smaller aspect ratio smaller than 2.

(a) Central solenoid

Poloidal tic field
oloidal magnetic fie Outer poloidal field coils (b) Large aspect ratio

~ (Standard tokamak)

I
1
- !
I
|

i
Low aspectradio |
(Spherical tokamak)

Helical magnetic field Toroidal field coils
Plasma electrical current Toroidal magnetic field

Figure 3: (a) Magnetic field structure in a tokamak[4]. (b) Comparison of spherical tokamak

to standard tokamak[5].

Magnetic confinement in these devices is achieved through the combination of a
toroidal magnetic field, generated by toroidal field coils (TFC), and a poloidal magnetic field,
which is produced by a plasma current in the toroidal direction. This plasma current is
typically induced by a central solenoid. Together, these fields create helical magnetic field

lines, illustrated by the black spiral in Figure 3(a), that effectively traps plasma particles and
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guide their motion within the confined region. At the same time, plasma is heated by varies
sources, e.g., Ohmic heating, RF heating, neutral beam injection, etc. This configuration
allows the plasma to be maintained at high temperature for a sufficiently long period to
enable fusion reactions, in which a large amount of energy is released, such as in the D-T
reaction shown in Figure 1(b). The mini-Tokamak developed in this thesis adopts the
principle of magnetic confinement fusion, and its plasma takes the form of a spherical
tokamak. An image of the mini-Tokamak is shown in Figure 4(a), and detailed information
is provided in Chapter 2. Likewise, the Formosa Integrated Research Spherical Tokamak
(FIRST), as shown in Figure 4(b) and introduced in Appendix A.15, is also a spherical
tokamak, but on a larger scale. It is being developed under the support of National Science

and Technology Council and for more advanced experiments.

(b)
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Figure 4: (a) Cross-sectional CAD drawings of the mini-Tokamak[6]. (b) Cross-sectional

CAD drawings of the FIRST[6].
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1.2. Motivation for developing the mini-Tokamak

The mini-Tokamak developed in this thesis serves as a versatile and accessible
experimental platform for both educational applications and technical validation. Its primary
purpose is to support experimental courses related to plasma physics and nuclear fusion,
providing students with opportunities not only to learn theoretical concepts, but also to
engage in hands-on experience. Through real-time observation, data acquisition, and
analysis of plasma experiments, students can deepen their understanding of fusion
phenomena and enhance their practical skills in diagnostics and experimental techniques.

In addition to its educational value, the mini-Tokamak also plays a key technical role
in supporting the development of the Formosa Integrated Research Spherical Tokamak
(FIRST), the first tokamak being designed and constructed in Taiwan. FIRST is expected to
achieve first plasma by 2026, with the vacuum vessel scheduled for installation in early 2026.
However, several key components, such as the power supplies and the current drivers for the
central solenoid (CS), poloidal field coils (PFCs), and toroidal field coils (TFCs) are
expected to arrive earlier. In this context, the mini-Tokamak can be used as a preliminary
testing platform for FIRST. It allows for early validation of current drivers and magnetic
field measurement systems under tokamak-relevant conditions. By conducting these
preparatory tests in advance, key systems can be properly configured and made ready for
operation. This enables a smooth transition to full-scale testing once FIRST is installed,
maximizing efficiency and minimizing commissioning delays.
1.3. The goal of this thesis

The goal of this thesis is to design the central solenoid (CS) current profile for the mini-
Tokamak. To achieve plasma breakdown and drive the plasma current, the CS current must
be carefully tailored to provide the required loop voltage under constrained conditions. The

time-varying current in the central solenoid not only induces voltage in the vacuum vessel
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to initiate plasma breakdown but also generates eddy currents in the surrounding vacuum-
vessel walls. These eddy currents can significantly alter the distribution of loop voltage and
affect the efficiency of plasma initiation. Furthermore, once the plasma is formed, the
evolution of plasma parameters, such as plasma current and temperature, will further
influence the required CS current profile.

To account for these effects, this thesis develops a sequence of models to calculate and
analyze the various factors influencing the design of the CS current profile. A detailed
description of the mini-Tokamak specifications and geometry will first be provided in
Chapter 2. Next, Chapter 3 introduces the calculation of eddy currents in the vacuum-vessel
walls, based on the chamber’s geometry and material properties. Chapter 4 presents the
computation of the loop voltage induced by the time-varying CS current, with the influence
of eddy currents included. Chapter 5 focuses on the calculation of the evolution of plasma
parameters, such as temperature, resistance, and plasma current, under the designed CS
current profile. Future work and conclusion are presented in Chapters 6 and 7, respectively.
In addition to the mini-Tokamak application, the modeling framework developed in this
thesis is further applied to the preliminary current profile design for the Formosa Integrated

Research Spherical Tokamak (FIRST), with detailed calculations provided in Appendix A.15.
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2. mini-Tokamak specification

Figure 5(a) shows a simplified cross-sectional view of the mini-Tokamak in the xz
plane, while Figure 5(b) presents a schematic of the right half of the vacuum vessel structure,
referenced from the device’s centerline. As illustrated in Figure 5(a) and (b), the vacuum
vessel is a cylinder, with a rectangular cross-section in the xz plane. The inner wall of the
vacuum vessel is made of a standard KF 40 nipple with 1.8 mm in thickness. The inner
edge is located at 17.25 mm from the centerline, and the vertical height is 531 mm. The
outer wall is 3 mm thick, with its inner edge locates at 160 mm from the centerline, and the
vertical height is 531 mm. The top and bottom covers, with a thickness of 16 mm and 15
mm, respectively, connect the inner and outer walls and are treated as part of the outer wall
in eddy current calculations. Therefore, the height of both the inner and outer vacuum-
vessel walls is considered to be 531 mm in the following calculations.

Regarding the plasma geometry, as shown in Figure 5(a), the plasma has a major radius
of 85 mm and a minor radius of 55 mm. The elongation is set to 1.82, resulting in a plasma
cross-section with a long axis of approximately 100.1 mm and a short axis of 55 mm. To
ensure confinement, the gyro radius of the particles in the mini-Tokamak must be smaller

(a) Centt_ar Line b
Center Line

3
1.8 mm fe> ’16mrn

D —
17.25 mm

r'y

"15 mm

\ 4

|
|
|
! 3mm fe»] | 531 mm
I
|
|
|

+—519.05mm

I* » 160 mm

Figure 5: (a) Simplified xz-plane cross-section of mini-Tokamak. (b) Structural schematic

of the vacuum-vessel of the mini-Tokamak.
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than the distances between the plasma edge and the vacuum vessel walls, which are 11 mm
on the inner side and 17 mm on the outer side. Otherwise, the particles will collide with the
wall and be lost. Helium is selected as the working gas, and the plasma temperature is
limited to 10 eV, with detailed calculations provided in Appendix A.1.

There will be four rectangular toroidal field coils with a current of 4 kA, a toroidal
magnetic field of 0.1 T at 85 mm can be produced. It is intended to achieve a plasma current
of up to 10 kA and a plasma temperature of approximately 10 eV. The mini-Tokamak has
six pairs, totaling twelve rectangular poloidal field coils. The position and current of each
coil are given in Appendix A.2.

The mini-Tokamak employs a central solenoid (CS), located inside the inner-vacuum-
vessel wall, as shown in Figure 5(a) and illustrated in detail in Figure 6. The CS consists of
two layers, each comprising 92 turns of copper conductor, giving a total of 184 turns. The
conductor is a solid copper wire with a circular cross-section of 2.6 mm in diameter, and
an insulation layer of 1.7 mm in thickness, resulting in a total outer diameter of 6 mm per
turn. The CS will wrap around the inner legs of the toroidal field coils and be fitted within

the inner-vacuum-vessel wall.

Center Line 14 mm_,
l; 1
8 mm |

92 + 92
=184 turns ‘
Y |O
Isolation thickness

1.7 mm .
\ '
552 mm
Figure 6: Specifications of the central solenoid in the mini-Tokamak.
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3. Calculation of the eddy currents in the inner and outer

vacuum-vessel walls

In the tokamak device, we generate plasma, drive plasma current, and control plasma
shape by adjusting the time-varying currents in coils such as poloidal field coil (PFC),
toroidal field coil (TFC), and central solenoid (CS). However, the time-varying magnetic
fields generated by these coils will induce eddy currents in vacuum-vessel walls, which can
impact the originally calculated magnetic fields. Therefore, before constructing the tokamak
device, it is necessary to include the eddy currents within the device in the design to obtain
more accurate results.

This chapter consists of six sections. Section 3.1 introduces the full circuit equation
used to calculate the induced currents between the central solenoid and vacuum-vessel walls.
Section 3.2 explains the conjugate gradient (CG) method employed to obtain a numerical
stable and converge solution. Section 3.3 describes the components defined in the circuit
model. Section 3.4 presents the calculation of inductance and resistance for each
components. Section 3.5 shows the calculated results, and Section 3.6 provides the
conclusion.

3.1. The full circuit equation

To calculate the eddy currents in the vacuum-vessel walls, we can treat the vacuum-
vessel wall as a “coil”. Then, the eddy currents in the vacuum-vessel walls can be calculated
using the mutual inductance between the vacuum-vessel walls and coils. In particular, the
central solenoid is considered here. To calculate the eddy currents, we consider the vacuum-
vessel wall as many ring coils stacking on top of each other. Then, by calculating the induced
current in each ring coil, called the vacuum-vessel element, we can calculate the eddy

currents at different vacuum-vessel elements using the full circuit equation[7]:
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V=M ar +RI 2
Here, 74 represents the voltage across each element/coil, I represents the current flowing

through each element/coil, M represents inductance of each element/coil, and R

represents resistance of each element/coil. This equation states that the total voltage “V” in

>

a closed loop equals its induced voltage “M % " plus the voltage drop due to resistance “RI”.

In Chapter 5, plasma is treated as a ring coil and can be included in the calculation.

For convenience in calculations, we have V and I in the vector form to represent the
voltage and the current in each coil and each vacuum-vessel element. On the other hand, M
and R are written in the matrix form including the self-inductance and the resistance of
each coil and each vacuum-vessel element, and the mutual inductance between each
component. In addition, we use subscribes c, v, p to represent different types of components.
Subscribe ¢ represents coils in the tokamak device, such as the central solenoid, PFC, and
TFC; subscribe v represents elements in the tokamak device's vacuum vessel; subscribe
p represents the plasma. Therefore, [ is a column vector of size n + 1, representing the
currents of the total n components of coils and vacuum-vessel elements in the tokamak
device plus the plasma current; V is also a column vector of size n + 1, representing the
voltages of the total n components of coils and vacuum-vessel elements in the tokamak
device plus the loop voltage of plasma; R is a diagonal matrix of size (n+ 1) X (n + 1),
representing the resistance of the total n components of coils and vacuum-vessel elements
plus the plasma; M is a symmetric matrix of size (n + 1) X (n + 1), representing the self-
inductance (diagonal) of the total n components of coils and vacuum-vessel elements plus
plasma, and the mutual inductance (off-diagonal) between them. Therefore, Eq. (2) can be

written explicitly as:
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V=ME+RI
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(3)

Notice that no external voltages are applied on the vacuum-vessel elements and the

—

plasma: l7v1 =Vyp = = I_/I; = 0. The only non-zero voltage are I7c1, I7C2,

Eq. (2) can be solved numerically using a finite difference method:

N —_— -

_odl . =
V=M—+RI=>V=M
dt At

+RI

—_ N

_ I I . T M\. M_ _ (M
:V:M——M—qJU:M—q«R——)h»—P=V+Q——R

At At At At At

7= () (-1

At

[N

I

(4)

In Eq. (4), I represents the current in the following time step of I. Notice that matrix M

and R are constant when plasma is not included because coils and vacuum-vessel

elements are fixed once the tokamak is built. By providing I7(t), we can obtain | (t) at

any time.
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When using the full circuit equation to calculate the eddy currents induced by the central
solenoid in the vacuum-vessel walls, the feedback effect of the eddy currents on the induced
current in the central solenoid is negligible. This is because the eddy currents are relatively
small compared to the central solenoid’s driving current. To simplify the calculation and
enhance computational efficiency, we disregard this feedback effect in our calculation as
shown in Eq. (5). Our current calculations only include the central solenoid (subscript cs),
the vacuum-vessel walls (subscript v), and the plasma (subscript p). Therefore, Eq. (5) only

accounts for these components.

Myq cs r Lyq Myiy, Myyys - le,p][f, 1
Mvz,cs di MVZ,Vl LVZ Mv2,v3 MV2,p||1a‘,/1|
cs
- Mv3,cs W= Mv3,v1 Mv3,v2 Lv3 Mv3,p IlVZJI
Mp,CS L Mp,vl Mp,vz Mp,v3 Lp J P
'va 0 0 ”Vl]
q) W' ) s
+ o el 5)
Lo 0 - R|7 |

As mentioned earlier, V represents the external voltage. Since the vacuum-vessel

walls and plasma are passive elements, which don’t have an independent external voltage
source, their voltage is set to V = 0. However, since the feedback effect on the central
solenoid is ignored, we can treat induced effect on the other components as their respective
source term. This induced effect is expressed as the mutual inductance between each
component and central solenoid times the rate of change of the central solenoid’s current.

ICS

For example, as shown in Eq. (5), —Myq ¢ dd—t represents the induced voltage from the

central solenoid on the first vacuum-vessel wall element.
To solve Eq. (5) numerically, conjugate gradient (CG) method is used, which will be

introduced in next section.
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3.2. Conjugate gradient (CG) method

Currently, our calculation involves a matrix composed of 491 components, which will
be described in detail in the next section. This matrix will continue to grow as more
components are included in the model. This increase in matrix size will lead to greater
computational complexity and longer computation times. To efficiently handle these
challenges, instead of using conventional iterative methods, we employ the Conjugate
Gradient (CG) method[8].

Eq. (2) can be written as a simple linear system:

A =D (6)

where A is a symmetric matrix.

To solve X, basic iterative methods proceed as follows:

(1) Initial guess: Start with an initial guess X,.

(2) Residual calculation: Compute the residual 7 = b— AX,, which measures the
difference between the current approximation and the true solution which equals to
b.

(3) Update the solution: Use the residual to update the approximation. For example, in
the Richardson method: Xi,; = X; + w7i, where w is a relaxation parameter
chosen to ensure convergence.

(4) Convergence check: Evaluate the norm of the residual |[|7]|. If it is below a
specified tolerance, the solution is accepted. Otherwise, repeat steps (2)-(4).

In contrast, the CG method, described subsequently, improves upon basic iterative
methods by using not only residuals but also additional conjugate directions to ensure faster
and more reliable convergence.

To apply the CG method, we first reformulate the original linear system AX = b as

an optimization problem. Specifically, we introduce the quadratic functional:
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f@ = leAx —bTR+C. (7)

To better understand this formulation, consider a specific example[8]:

=[{a=[5 J5=[1].c=0 ®

Substituting these into the function f(X):

f— 2 1][ ][] 1 —1] ﬂ+0=5. 9)
This shows that the function f(X) takes a vector input and returns a scalar output.

When X € RZ, the function f(¥) maps each point in the two-dimensional plane to a
single real-valued output, which can be interpreted as height. As a result, the quadratic
function defines a smooth three-dimensional surface, where the shape of the surface reflects
how f(X) varies with respect to X. Figure 7 provides both 2D and 3D visualization of the
function f(X). Specifically, Figure 7(a) shows the contour lines (or level curves) of
constant function values, illustrating the landscape from a top-down perspective, while

Figure 7(b) presents the corresponding 3D surface, where the height at each point

represents the value of f(%).

(b)

L
“\\\\““\\ X0
TARRE S
f SR
A

N ‘\\\\\\\\\ \“ \\
S

et
RS \‘
NN :"

Figure 7: (a) Contour plot of quadratic function[8]. (b) 3D surface plot of quadratic

function[8].
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If we want to find the lowest point on this surface, the minimum occurs when the
gradient of the function equals to zero:

VF(@) =A¥=b=0. (10)
Therefore, solving Eq. (10) is equivalent to finding the minimum of the quadratic functional
given in Eq. (6).

Recall that the residual is defined as 7 = b — AX, which corresponds to the negative
gradient of the objective function, —Vf(¥), evaluated at X. In this sense, the residual
provides a natural direction for descent in the solution space. Moreover, the constant term
C does not affect the location of the minimum, since we are minimizing the gradient
Vf(X). Therefore, C can be ignored without loss of generality.

The CG method is to iteratively approach the minimum of the quadratic function fX,
which corresponds to the true solution X* of the linear system AX = b.

To do this, CG generates a sequence of iterates X, X;, X5,..., where each new point is
computed by moving from the current point Xy in a specific direction py, scaled by a step
size o:

X1 = Xy + Py - (11)
This update rule is visualized in Figure 8. The point ¥ is the current position, and Py is
the direction in which we search. The scalar @) controls how far we move along in that
direction. The red line shows the direction py, and the product a,py gives the step vector

that takes us from Xy to the next point Xy, .

Xy

APy Pr+1

-

Figure 8: Visualization of a single CG iteration step[9].
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In the CG method, we are interested in the iteration error, defined as:
e = X —x*, (12)
where X* is the true solution, X, is the current approximation at iteration k.
Geometrically, e is the vector pointing from the current estimate X toward the true
solution X* (Xgna1), as shown Figure 9(a). If this vector were known, we could jump
directly to the solution in one step. However, since X* is unknown, we must iteratively
reduce the error instead. Once the solution is updated to X, ;, the new error becomes:
€1 = Xipr — X7, (13)
as shown in Figure 9(b). Using Eq. (11) and substituting into the expression for €y, :
€1 = (e + aPi) — X7 = (G — X7) + Py = € + Py - (14)
This relation shows that the error is updated at each step based on the step size ap and the
search direction py. Moving from X, to Xp,; causes the error vector to shorten and
rotate closer to the true solution direction. To accelerate convergence, we want each new
search direction py to avoid retracing the directions used in previous steps. This is
achieved through conjugate directions.

Before we delve further into the CG method, we first need to clarify what the term

"conjugate" means in this context. Two vectors d and b are said to be A-conjugate (or

Figure 9: (a) Error vector at iteration k[8]. (b) Error vector at iteration k + 1[8].
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conjugate with respect to the matrix A), if the following condition holds for a symmetric
positive definite matrix A:

dTAb=0. (15)
As shown in Figure 10(a), the vector Ab canbe thought of as a transformation of b under
the matrix A. The conjugacy condition above implies that this transformed vector Ab is
orthogonal to d. This guarantees that each new direction explores a previously unvisited
subspace of the solution space, avoiding inefficient zig-zagging patterns typical of steepest

descent methods.

(a) (b)
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Figure 10: (a) [llustration of A-conjugacy between vectors[8]. (b) Stopping condition based

on A-orthogonality[8].

Our goal is to determine suitable expressions for the scalars aj in Eq. (11), which is
essential for each step of the CG method iteration. Since the exact solution X* is unknown,
we cannot directly compute the error vector €, = X* — Xj. However, the residual 7, =
b— AXy serves as a measurable proxy for the error, representing the negative gradient of
the objective function at iteration k. The search direction py, which is constructed to be
A-conjugate to direction in the k — 1 step, indicates the direction of the k step. ay can
be defined using 7, and py, as these are the available quantities that provide both

geometric (directional) and numerical (magnitude) information required for the update.
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This leads to a step size that ensures optimal descent along py without requiring
knowledge of the exact solution.
To ensure that the updated error €y, is A-conjugate to the current direction py, we

impose the condition as shown in Figure 10(b):

PrAéy1 = 0. (16)
Notic that Ay = A(Rysq — £°) = ARy — AX¥* = —(b — ARyy1) = —Tics1. Therefore,
DPrA8is1 = Prfier = 0. (17)

In other words, py is orthogonal to 7.

Substituting Eq. (14) into Eq. (16):

PrA(éx + axpi) = 0, (18)
which is simplified to:
ST A =2 ST wq
PxAéx + pxAaypx = 0. (19)
Solving for ay, we obtain:
>T -
P Aey
ok = — Sk (20)
Pk APk

Since €y is not directly accessible in practice, we derive another equation for it, by
combining A%* = b and 7 = b — A%y. By eliminating b:
e = A" — xy) . (21)
According to Eq. (12), the error vector is defined as €, = X — X
Aé, = 7. (22)
Substituted Eq. (22) into Eq. (20) to eliminate &y:
Pr T

Pr APk

ax = (2 3)
This choice of aj guarantees that the new point Xj,, minimizes the function f(X) along

Px» while preserving the A-conjugacy of subsequent directions, ensuring rapid and stable

convergence. The next task is to determine the search direction p) for the next iteration.
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As shown in Figure 11(a), after reaching the new point, we compute the updated
residual 7,1, which points in the direction of the steepest descent. However, we do not
want to simply use 7., alone as the next search direction, as this would cause the method
to revert to the inefficient steepest descent approach, as shown in the black solid line in
Figure 11(b).

Instead, the CG method constructs the new direction as a linear combination of the
current residual 7, and the previous direction py as shown in Figure 11(a):

Pk+1 = Tir1 T+ Br+1Pk - (24)
Once the step along py is taken, we arrive at a new point where the residual 7, defines
the direction of steepest descent, shown as a black dashed arrow pointing upward. Since
Tis1 1 orthogonal to py. However, instead of using 7, alone, the CG method adds a
scaled component By 1Px, depicted as a blue vector pointing in the same general direction
as the previous path. Their vector sum forms the new direction Py, shown in red. The
scalar By, in this process is carefully chosen to ensure that the new direction Py, is
conjugate to the previous direction py, resulting in more efficient convergence, as illustrated

in the red solid line in Figure 11(b).

®)_

(a)

Figure 11: (a) Geometric construction of the new conjugate direction[8]. (b) Conjugate

gradient path (red line)[9].
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To determine the suitable expressions for the scalars Sy, 1, we first recall that the
residual at any iteration is defined as:
Fo=b— A%y (25)
Using the update rule Xy, = X + axPy, we plug this into the residual definition:
Brr = b — A¥yyy = b — AG + ayy) = b — A%y — APy = Fi — @ AP (26)
In CG method, this new search direction py,; must satisfy two essential conditions:
the residual 7, is orthogonal to Py, and it must remain A-conjugate to Py, to maintain
orthogonality under the A-inner product. This requirement can be formally expressed as:
PkAPir1 = 0, (27)
which prevents the search direction from undoing progress made in previous steps and
ensures efficient convergence.
A general form for the new direction is proposed:
ﬁk+1 — 7_:k+1 ' ﬁk+1ﬁk (28)
as shown in Figure 11(a).
To determine [y, q, we impose conjugation conditions. By substituting Eq. (28) into
Eq. (27), we get:
PrA(Firt + Brr1Pi) = PrATisr + PrAPBrs1Pr = 0 . (29)
Solving for [r,q gives the exact expression:

ST A =2
Dk ATi41

Pri1 = — =5 (30)
i PrApy

which ensures the new direction Py, is A-conjugate to p.
The sequence of using the CG method is:
(1) Start from an initial guess X, = X, for k = 0. Define an initial searching vector
Px = Po for k= 0.

(2) 7 is calculated.
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(3) ay is calculated using Eq. (23).

(4) X4, is calculated using Eq. (11).

(5) 41 is calculated.

(6) Check if 7., issmall enough. If not proceed to the next step, or exit the iteration.

(7) Bk4+1 1s calculated using Eq. (30).

(8) Pr4q is calculated using Eq. (28).

(9) Go to step (1) with Xy = X, from step (4) and Py = P4, from step (8), then

repeat step (1) to (9).

Although the conjugate gradient method is obtained above, it involves computing
matrix-vector products with A, which can be computationally costly, especially when
dealing with large sparse systems. In addition, the first search direction p, is not defined.
To improve efficiency, we seek an alternative form of that avoids direct multiplication by
A.

To simplify this process and reduce computational complexity, the CG method
commonly initializes the first direction using B, = 7., where 7, = b — A%, is the initial
residual. This choice is both practical and theoretically justified. In the very first step, the
residual 7, is the negative gradient of the objective function f(X). Therefore, choosing
Do = 7o means that the initial direction aligns with the direction of steepest descent.

This decision not only simplifies the starting step but also provides structural benefits
for subsequent iterations. In particular, the CG method constructs all subsequent directions
P1, By, - in such a way that they are A-conjugate to each other, meaning p{ Ap; = 0 for
i # j. This orthogonality under the A-inner product is what allows the CG method to reach
the exact solution in at most n steps for a n-dimensional system. In fact, this is why the
method is called Conjugate Gradient: the directions P, p,, ... are conjugate with respect

to the initial gradient direction 7.
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Moreover, initializing with p, =7, allows for convenient simplifications in the
derivation of both ay and pPy;,. Because the direction vectors py are recursively
generated using residuals from previous steps, they remain closely aligned, i.e., colinear or
in the same subspace, with the corresponding residuals. As a result, Eq. (23) can be
simplified to:

>T >
Tk Tk
Ay = Z7s - (31D
Pk APk
As for the expression of Sy, we take the inner product of both sides of Eq. (26) with

>T .
Ti+1-
->T - ->T - -
Tier1Tkr1 = i1 (e — xAPK) - (32)

Due to the orthogonality condition #, ;7 = 0:

->T - _ >T -

Ter1Tkd1 = — T 1 APk

>T A—) | | 1 >T - 33
= Ter1 APk = = 7 T Thort (33)

Since A is symmetric, we know A = AT. This property allows us to manipulate the inner
product involving A as follows:
(ﬁEAfkﬂ)T T FkT+1ATﬁk = Fl;r+1Aﬁk 1 (34)

From Eq. (33), we can get:

- - - - - - 1 - -
PrATisr = (BrAfirr)T = i, AD = _a_krkT+1rk+1 : (35)
Substituting this into Eq. (30):
1,7 -
S T U
Pes1=—"—r 35— =— o7 - (36)
Px APk ar  PrADx

Substitute Eq. (31) into Eq. (36), we can derive:

->T - ->T - ->T -
_ PxAPk TipaTks1  TiraTket
ﬁk+1 - STz ' _>TA_, - ST . (37)

At this point, we have obtained all the necessary quantities for performing the CG method,

including the step size ay, the new residual 7., the direction update factor By, and
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the new search direction Py, ;. These quantities can all be computed using inner products
and matrix-vector multiplications, without the need to store or invert the matrix A, which
makes CG method especially efficient for large, sparse, symmetric positive-definite
systems.

The full CG method proceeds starting from an initial guess X,, we compute the initial
residual 7, = b — A%, and set the first direction as Py =7, . In each iteration, we

calculate the optimal step size:

>T >
T 1
oy = —)'Il‘< li (38)
A
P APk
to update the solution
Xiy1 = Xy + P - (39)
Next, we compute the new residual:
Tirr = b — A%y - (40)
Then, we construct the new search direction using the formula:
FI’(I‘-I—l‘Fk'i'l - - -
Bk+1 =575 —»  Pr+1 = Tie1 T Br+1Pk- (41)

This process repeats until the residual norm ||7,1|| falls below a specified tolerance.
The geometric idea behind this method is clearly illustrated in Figure 8. Starting from
the point X, we move along the search direction Py by a distance aj, arriving at a new
position X,,. From there, we calculate the next search direction py,,; which lies in a
different direction but still ensures conjugacy with respect to the previous directions. The
solid arrow from X to X4 represents the step a,py, and the dashed arrow indicates
the new direction pPy,;. By combining information from both the current residual and the
previous search direction, this update ensures both efficient descent and mathematical

orthogonality, driving convergence to the true solution X*.
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3.3. Components defined in the calculation

mini-Tokamak primarily relies on the time-varying current in the central solenoid
(indicated by the blue arrow in Figure 12) for plasma generation and driving plasma currents
(represented by the orange arrow in Figure 12). Consequently, the central solenoid undergoes
significant current variations that induce currents in the surrounding components, e.g. the
vacuum-vessel walls. As the vacuum-vessel walls are the primary components affected and
the main carrier of eddy currents, we first focus on calculating the eddy currents in the inner
and outer vacuum-vessel walls (depicted by the green and yellow arrows, respectively, in

Figure 12) generated by the time-varying current of the central solenoid.

Side view (xz plane)

Inner vacuum vessel wall

| Central solenoid current
outer vacuum vessel wall < . .
(time-varying current)
Eddy current induced in

inner vacuum vessel wall Discharge voltage

induced in the vacuum/

Eddy current induced in ] — i - plasma current
outer vacuum vessel wall : induced in the plasma

Central solenoid

Figure 12: Schematic diagram of currents in the mini-Tokamak.

As shown in Figure 13(a), the central solenoid consists of two layers, each containing
92 turns, for a total of 184 turns. The distances from the centerline to the centers of the
inner and outer layers are 8 mm and 14 mm, respectively. For simplicity, the major radius
of the central solenoid in our calculations is set as their average, 11 mm. The solenoid coil
1s a solid copper wire wrapped with an insulating layer on the outside. The blue circle
represents the insulation layer, which is 1.7 mm thick. The black circle represents the coil,

with a diameter of 2.6 mm.
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Figure 13: (a) Specifications of the central solenoid in mini-Tokamak. (b) Specifications

of the inner and outer vacuum-vessel walls divided for calculation.

For the vacuum vessel, we divide it into four parts: the inner-vacuum-vessel wall and
bottom lid, and the outer-vacuum-vessel wall and top lid, as illustrated in Figure 13(b).
The vacuum-vessel wall is treated as many ring elements stacking on top of or beside each
other. To enhance calculation accuracy, as illustrated in Figure 13(b), the inner-vacuum-
vessel wall is divided into 295 identical ring elements with square cross-sections of 1.8
mm on each side, stacked together. Similarly, the outer-vacuum-vessel wall is divided into
177 ring elements with square cross-sections of 3 mm on each side. For the top and bottom
lids, although they have the same axial length, their thicknesses differ slightly, 15 mm for
the bottom lid and 16 mm for the lid. Due to rounding, both lids are segmented into 9
identical ring coils, each with square cross-sections of 15 mm x 15 mm and 16 mm x 16
mm, respectively. This segmentation allows for precise modeling of the eddy currents
generated within the vacuum-vessel walls.

All components are implemented in MATLAB according to the specifications, and the
detailed code is provided in Appendix A.4. Currently, we only consider the central

solenoid and the vacuum-vessel wall (referred to as the "chamber" in the code). To include
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the plasma or poloidal field coils (PFCs) in the calculation, one simply needs to change
the corresponding flag from false to true at the beginning of the script.
3.4. Calculation of inductance and resistance of each component

Before calculating the induced currents, we first need to compute the resistance and
self-inductance of the central solenoid and vacuum-vessel walls, as well as the mutual
inductance between them.

This section consists of three parts. Section 3.4.1 shows the calculation of the
resistance of each component. Section 3.4.2 presents the calculation of self-inductance of
each component, and Section 3.4.3 demonstrates the calculation of mutual inductance
between the components.

3.4.1. Calculation of resistance

We use the resistance formula to calculate the resistance of the components:

L
R=n3 (42)

where R is the coil resistance, 7 is the resistivity of the material, L is the length of the
coil, A is the cross-sectional area of the coil.
(a) The central solenoid
We first divide the central solenoid into inner and outer layers and treat each turn

within each layer as a single ring coil:

R _ Lcs_each _ 27-”'cs_each 43
cs_each — T]copperA = Ncopper 2 (43)
cs_each MAcs each

where Rcs each 18 the resistance of a single coil in the inner or outer layer, N¢opper 18
the resistivity of copper (1.68 X 1078 Q- m), Acs each is the cross-sectional area of
the coil, and 277c each 1S the coil's circumference, where 7cg eacn being the major

radius of the coil. For all inner layer coils, 7ipper cs each = 8 mm, and for all outer layer

2

coils, Touter cs each = 14 mm , as shown in Figure 13(a). The term mags each
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represents the cross-sectional area of the coil, where acg eacn 1 the radius of the coil.
For all inner and outer layer coils, s each = 1.3 mm, as shown in Figure 13(a).
After obtaining the resistance of each single coil in each layer, we can calculate

the total resistance of the central solenoid (R.s) by summing them up:

Z Rinner_cs_each + Z Router_cs_each = Rcs . (44)

(b) The vacuum-vessel walls
We calculate the resistance of each element of the vacuum-vessel walls in Figure

13(b) separately:

R _ Lvessel_each _ 27”ﬂvessel_each 45
vessel_each — nstainless_steelA = Nstainless_steel 2 ( )
vessel_each vessel_each

where Ryegsel each 1S the resistance of an element of in the vacuum-vessel walls,
Nstainless_steel 1S the resistivity of stainless steel (7 X 1077 Q- m), Ayessel each 1S the
cross-sectional area of the element, and 277y esge] each 1S the element 's circumference,
where Tyessel each 18 the radius of the element. For all elements of inner-vacuum-vessel
wall elements, Tyessel each = 18.15 mm. For all elements of outer-vacuum-vessel wall
elements, Tyessel each = 161.5mm. As for the bottom lid, 7yessel each 1nCreases
linearly from 26.55 mm to 146.55 mm in 15 mm increments. For the top lid, 7yegssel each
decreases linearly from 152mm to 24mm in 16 mm increments. This spatial
arrangement is shown in Figure 13(b). The term a‘z,essel_each represents the cross-
sectional area of the element, where ayegsel each 15 the side length of the square
element. For all inner-vacuum-vessel walls elements, ayegsel each = 1.8 mm; for all
the outer vacuum-vessel walls elements, ayegsel each = 3 mm; for all bottom lid
elements, Ayegsel each = 15 mm; for all top lid elements, Ayessel each = 16 mm; as

shown in Figure 13(b).
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Figure 14 illustrates the calculated resistance of each component. The first isolated
point represents the resistance of the central solenoid, while component numbered 2 to 296
correspond to the inner-vacuum-vessel wall ring elements shown in Figure 13(b), starting
from the bottommost element and sequentially moving upward to the 296'" element. Since
the inner-vacuum-vessel wall ring elements are identical in geometry, except for location
in z, their resistance remains the same.

Component numbered 297 to 305 correspond to the bottom lid wall ring elements in
Figure 13(b). The resistance of these elements increases as the major radius increases. Upon
reaching the outer-vacuum-vessel wall, corresponding to components 306 to 482, the major
radius remains constant while only the vertical position varies, resulting in a flat resistance
profile. At the top lid, corresponding to components 483 to 491, the major radius begins to
decrease inward, leading to a corresponding decrease in resistance. Due to the geometric
symmetry about z = 0, the upper and lower halves of the outer vacuum-vessel wall exhibit
symmetric resistance behavior. This symmetry is evident at the midpoint coil (coil number
392), located approximately at z = 0, where the resistance values on either side are nearly

identical.

Resistance of each components
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Component number

Figure 14: Resistance of each component.
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3.4.2. Calculation of self-inductance

In our calculations of inductance, all equations are from the book Inductance
Calculations: Working Formulas and Tables by Frederick Grover[10]. One important point
to note is that the calculations in the book are performed using units of centimeters, and the
results obtained directly from the equations are in microhenries (uH). Therefore, it is crucial
to ensure that the input units used in the equations and the output units from the results are
consistent and properly accounted for.

(a) The central solenoid

We use the equation of solenoid self-inductance for the calculation[12]:
N N? N?

Les = lio(T)ZAl = Ho TA = Ho 77””2 (46)
where L is the self-inductance of central solenoid, p, is the permeability of free
space (41 x 1077 H /m), N = 184 is the total number of turns in the solenoid,

[ =552 mm is the height of the solenoid, A is the cross-sectional area of the
central solenoid, and r = 11 mm is the average major radius of the central solenoid
as mentioned in section 3.3 and illustrated in Figure 13(a).
(b) The vacuum-vessel walls

The self-inductance of each element can be calculated using the formula for
the inductance of circular coils with square cross-sections, as given in Eq. 91 on
page 95 of Ref. [10]:

L =0.001aN?Pj uH (47)

where L is the element’s self-inductance, and N is the number of turns in the

element. In our calculation, N = 1 since all elements were represented as single

coils. Pj is a variable that can be calculated using Eq. 92 on page 95 of Ref. [10]:
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P, = 4m 1[1 +l(i)2] log, LZ — 0.84834 + 0.2041 (i)z (48)
2 6 \2r a 2r
2r

where 7 is the major radius of the element, and a is the side length of the element.

Figure 15 illustrates the self-inductance of each component. The first isolated point
represents the self-inductance of the central solenoid, which has the highest inductance
among all components due to its large number of turns and compact geometry. The self-
inductance of component numbered 2 to 296, corresponding to the inner-vacuum-vessel
wall ring elements shown in Figure 13(b). These coils are arranged sequentially from the
bottommost coil to the 296" coil. Since the inner-vacuum-vessel wall ring elements are
geometrically identical except for their z-coordinate, their self-inductance values are the
same.

For component numbered 297 to 305, correspond to the bottom lid wall ring elements,
the self-inductance varies primarily with the coil radius. As shown in Figure 15, the self-
inductance increases as the major radius increases from the bottom lid outward. Once reach

the outer-vacuum-vessel wall ring elements, corresponding to components 306 to 482, the

major radius remains constant while only the vertical position changes, resulting in a
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Figure 15: Self-inductance of each component.
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plateau in self-inductance. As the coil sequence continues toward the top lid, corresponding
to components 483 to 491, the major radius decreases inward, causing the self-inductance
to decrease accordingly. Due to the symmetry about z = 0, the self-inductance profile is
nearly symmetric with respect to the middle coil (coil number 392), which lies close to z =
0.
3.4.3. Calculation of mutual inductance

Our calculation consider all components, except for the central solenoid, as ring coils.
Therefore, we calculated: (1) mutual inductance between elements of vacuum-vessel wall
and the central solenoid; (2) mutual inductance between the elements of vacuum-vessel
wall.
3.4.3.1. Mutual inductance between elements of vacuum-vessel wall and the central

solenoid

Due to different vertical locations of elements of the vacuum-vessel wall, we
categorize them into two groups. The first group consists of elements located between the
top and bottom planes of the central solenoid so that the central solenoid is divided into two
parts: the top solenoid and the bottom solenoid, as shown in Figure 16(a). The second group
consists of elements located either above the top plane or below the bottom plane of the
central solenoid, as illustrated in Figure 16(b), which is the case for elements below the
bottom plane of the central solenoid as an example. For these two different cases, we
employ different calculation methods for the mutual inductance between the central

solenoid and the vacuum-vessel walls.
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(1) Elements between the top plane and the bottom plane of the central solenoid

When the single element is positioned between the top plane and the bottom plane of
the central solenoid, as shown in Figure 16(a), the central solenoid can be divided into two
parts: the portion of the solenoid above the element’s plane (referred to as the top solenoid)
with a length of x and the portion below the element’s plane (referred to as the bottom
solenoid) with a length of (I — x), where [ is the length of the central solenoid. We can
calculate the mutual inductance between the single element and the top solenoid, as well as
the mutual inductance between the single element and the bottom solenoid. Finally, the sum
of these two mutual inductances gives the total mutual inductance between the central

solenoid and the element.

(a) (b)

x (Top solenoid)

A

[ — x (Bottom solenoid)

Figure 16: (a) Schematic diagram of coil located within the range of the solenoid.

(b) Schematic diagram of coil located outside the range of the solenoid.

Elements of vacuum-vessel walls are single coils located coaxially with the central
solenoid, Therefore, the mutual inductance between a solenoid and the element located at its
end plane can be calculated using the formula from Eq. 103 on page 115 of Ref [10]:

Mz/p = 0.002m%1r.5apNQ, (49)
where My /g is the mutual inductance between the top/bottom solenoid and a coaxial single
coil at its end plane, as illustrated in Figure 17, Figure 17(a) is the case for the top solenoid
while Figure 17(b) is the case for bottom solenoid. In our calculation, N = 184 is the

number of turns in the top or the bottom solenoid. Q, can be obtained from Table 27 in
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page 115 of Ref [10], as shown in Appendix A.5. 15 is the major radius of the solenoid,
which is 11 mm, as mentioned in section 3.3. The variable a can be calculated using the

following equation:

rC S

50
Tcoil ( )

where 7., 1s the major radius of the coil in Figure 17(a) and (b), corresponding to the r

in Figure 13(b) for each component of the vacuum-vessel wall. The variable p can be

rcoilz
= ’— 51
P rcoilz + 52 ( )

where s = x or s = [ — x is the distance between the top or the bottom of the central

calculated by:

solenoid and the elements plane, respectively, as shown in Figure 17(a) and (b). Finally, the
mutual inductance between the element and the central solenoid is obtained:

M B MT+MB, (52)

(@) | ®) -

A Tcoil
x (Top solenoid) “ | — x (Bottom solenoid)
1
1
1

Figure 17: (a) Coil schematic diagram for top solenoid. (b) Coil schematic diagram for

bottom solenoid.

(2) Mutual inductance between the central solenoid and the elements with a distance D
away from the end of the central solenoid

When calculating the mutual inductance between the central solenoid and the element
with a distance, we can imagine there is a solenoid between the central solenoid and the

element, as illustrated by the light-colored solenoid in Figure 18. We first calculate the
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mutual inductance M;,, between the "solenoid [+ D" with a length of [+ D, and the
element using Eq. (49). Then we calculate the mutual inductance M, of the imaginated
"solenoid D" with a length of D, and the element using Eq. (49) and get Mp. Finally, we
can obtain the mutual inductance between the central solenoid and the element at any

distance away from the central solenoid by:

My = My,p — Mp, (53)

Solenoidl+ D

Teoil

Figure 18: Schematic diagram of coils located outside the range of the solenoid with the

imagined solenoid.

3.4.3.2. Mutual inductance between elements of the vacuum-vessel walls

The mutual inductance between elements of vacuum-vessel walls, including the inner
and outer vacuum-vessel walls, and the top and bottom lids, can be calculated using the
formula for the mutual inductance of coaxial circular filaments, as shown in Figure 19,

which is given in Eq. 77 on page 77 of Ref [10]:

M = f\/ Te1Te2 (54)

Figure 19: Coil schematic diagram of two ring coils.

43



where M represents the mutual inductance of coaxial circular filaments. The value of f
can be obtained from Table 13 to Table 17 of Ref [10], corresponding to different ratios of
1.1 and 7., as shown in Appendix A.6 to A.10. It is a function of the distance x between
two rings, as well as their radius 7.; and 7.,. 7.7 1s the major radius of the smaller single
coil, and 7, is the major radius of the larger single coil, as shown in Figure 19.
3.4.3.3. Calculation results of mutual inductance

Figure 20, as an example, illustrates the mutual inductance between all components and
the 88™ outer-vacuum-vessel wall element (392" component in Figure 20), which
corresponds to the middle outer-vacuum-vessel wall element depicted in Figure 13(b).

The mutual inductance values depend on the spatial relationship between components.
The first data point represents the mutual inductance between the central solenoid and the
392" component. For component numbered 2 to 296, corresponding to elements of the inner-
vacuum-vessel wall, the mutual inductance gradually increases as the z-coordinates of these

elements approach the plane of the 392" component and decrease as the elements move

away from the 392" component.

Mutual inductance between all components
and element of middle outer wall (#392)

Quter vacuum vessel walls

106}

107 ¢ Central solenoid

108} Bottom lid

Top lid

109 /\ .

-

° 0¥
s o o

Inductance (H)

Inner vacuum vessel walls
10-10 2 M )

(1) 100 200 300 400 500
Component number

Figure 20: Mutual inductance between all components and the 88" outer vacuum-vessel

wall ring coil.
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For component numbered 296 to 305, representing the bottom lid elements, the mutual
inductance increases as the z-coordinates of these elements approach the plane of the 392
component. Once reach the outer-vacuum-vessel wall ring elements, corresponding to
components 306 to 482, the mutual inductance keeps increasing as the z-coordinates of these
elements approach the plane of the 392" component and peaks at the 392" ring coil itself,
which is nearly equal to its self-inductance. Beyond this point, the mutual inductance
decreases for elements located farther from the 392" coil, including the top lid for component
numbered 483 to 491, due to increasing spatial separation, as illustrated in Figure 20.

Using Eq. (54), we can calculate not only the mutual inductance between each element
of the inner and the outer vacuum-vessel wall, but also the mutual inductance between
vacuum-vessel elements and other coils, such as poloidal field coils, or the mutual
inductance between two poloidal field coils, provided that the two single coils are coaxial.

Using Eq. (49) to (54), we can calculate the mutual inductance between the central
solenoid and any vacuum-vessel wall element, as well as the mutual inductance between
vacuum-vessel wall elements.

Appendix A.11 provides the detailed code for resistance and inductance calculations.
At present, the model includes only the central solenoid and the vacuum-vessel wall
("chamber"). Plasma can be included by setting the relevant flag from false to true at the
start of the script.

3.5. Calculated results of the eddy currents in the vacuum-vessel walls
In our current calculation, we aim to determine the eddy currents in the inner and the
outer vacuum-vessel walls induced by the time-varying current of the central solenoid by
solving Eq. (5) using the CG method[11] introduced in Section 3.2 with the resistance and
the inductance of components defined in Section 3.3 and calculated in Section 3.4. The

calculation involves 295 ring elements in the inner-vacuum-vessel wall, and 195 ring
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elements in the outer-vacuum-vessel wall, which we include the top and bottom lids from
now, i.e., a total of 490 vacuum-vessel elements. Including the central solenoid, there are
491 components in total. The detailed code for eddy current calculation is provided in
Appendix A.12.

The calculated result fcv will be represented as a column vector with a size of 491, as
shown in Eq. (55). I.; represents the time-varying current for central solenoid. I,; to
I 499 represent the currents in the vacuum-vessel elements, which correspond to the eddy

currents we aim to calculate:

1 Cs

I, = l Ivsl . (55)
Iy490

Notice that I.g is given while I,; to I 49o are eddy currents we obtain.

With M and R calculated in Section 3.4, the eddy currents induced in each ring
element of the inner and outer vacuum-vessel walls can be determined based on the time-
varying current [.s in the central solenoid. Figure 21 is an example illustrating the
calculated results. The current profile of the solenoid, shown by the red curve in Figure
21(a), begins with a linear ramp-up from 0 to 4 kA over the first 20 ms, followed by a flat-
top phase maintaining 4 kA for the next 20 ms. Subsequently, the current linearly ramps
down from 4 kA to 0 within 15 ms, resulting in a total duration of 55 ms.

The calculated results of the eddy currents distribution are presented in Figure 21(b)
and (c). Since the inner and outer vacuum-vessel walls are divided into several ring
elements, Figure 21(b) shows 295 eddy current lines corresponding to the 295 ring elements
of the inner-vacuum-vessel wall. Similarly, Figure 21(c) shows 195 eddy current lines

corresponding to the 195 ring elements of the outer-vacuum-vessel wall.
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By summing up the eddy currents from all 295 elements of the inner-vacuum-vessel
wall, we can calculate the total eddy current generated in the entire inner-vacuum-vessel
wall, represented as the blue solid line in Figure 21(a). Similarly, by summing up the eddy
currents from all 195 elements of outer-vacuum-vessel wall, we can calculate the total eddy

current generated in the entire outer-vacuum-vessel wall, represented as the blue dashed

line in Figure 21(a).
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Figure 21: (a) Current profile of central solenoid and the eddy currents of the inner and
outer vacuum-vessel wall. (b) The eddy current of each element of the inner-vacuum-vessel

wall. (c) The eddy current of each element of the outer-vacuum-vessel wall.
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3.6. Conclusion

We can now calculate the eddy currents in the inner and outer vacuum-vessel walls
induced by the time-varying current of the central solenoid using Conjugate Gradient (CG)
method. This method accelerates convergence by reducing the number of iterations needed
while maintaining numerical stability. This is crucial as our matrix size increases with more
calculated components, ensuring the computation remains scalable and efficient. This allows
us to incorporate the influence of eddy currents into our subsequent design calculations to

achieve more accurate results.
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4. Calculation of required loop voltage for breakdown

mini-Tokamak employs a central solenoid (CS) driven by a time-varying current to
produce a time-varying magnetic field which induces a loop voltage. The loop voltage can
be used to generate the plasma or drive the plasma current. If it exceeds the breakdown
voltage, the gas is ionized, and plasma is generated. The breakdown voltage is influenced
by factors such as background pressure, connection length, and the plasma’s position within
the tokamak. With these factors, the loop voltage and the time-varying current profile can
be determined.

The purpose of this section is to develop an algorithm to calculate the required loop
voltage for breakdown under varying conditions and determine the required central
solenoid current change rate to generate that loop voltage. It is to ensure that the central
solenoid and the current profile that drives the central solenoid can meet the plasma
generation demands, providing a critical basis for validating and optimizing the design. In
addition, it helps identify potential design limitations and guides adjustments to improve
the central solenoid's overall design. This chapter consists of six sections. Section 4.1
explains the breakdown voltage required for plasma generation. Section 4.2 presents the
required rate of change of the central solenoid current to induce sufficient loop voltage for
initiating breakdown. Section 4.3 calculates the eddy currents induced by this current
profile, while Section 4.4 shows the exact loop voltage induced by the same current profile,
including the effect of eddy currents. Section 4.5 discusses the limitations and assumptions,
and Section 4.6 provides the conclusion.

4.1. Breakdown voltage for plasma generation

As shown in Figure 22, plasma breakdown in a DC discharge occurs when the applied

voltage across the anode (positive electrode) and the cathode (negative electrode) becomes

sufficient to ionize the neutral gas molecules between the electrodes. The process begins with
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an initial ionization event near the cathode, where a free electron is liberated. This electron is
accelerated by the electric field. If it has enough kinetic energy and collides with a neutral gas
molecule, it may ionize the neutral gas molecule and release an additional free electron. Both
electrons can be accelerated by the electric field and generate more electrons through the
same process. All electrons including the original electron and the newly liberated electron
continue the process, leading to an exponential increase in the number of charged particles.
The blue lines in the figure represent the paths of ionizing electrons, while the orange lines
represent the paths of liberated electrons. This cascading ionization process is known as the

Townsend avalanche.
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Figure 22: Visualization of Townsend avalanche[13].

The connection length (L), marked by the vertical distance between the anode and
cathode in Figure 22, defines the region within which the electric field acts to sustain the
avalanche. This length directly impacts the number of ionization events that can occur before
the electrons reach the anode. A longer connection length provides more chance for the
avalanche to develop, increasing the total number of electrons and ions generated. Conversely,
a shorter connection length limits the ionization path, reducing the amount of ionization.

In contrast, there is no anode and cathode in the tokamak system to provide the electric

field. Alternatively, loop voltage in the azimuthal direction, i.e., an azimuthal electric field,
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is generated by the central solenoid with time-varying current. Electrons gain energy from
the loop voltage, in the tokamak setup illustrated in Figure 23. On the other hand, the
presence of an external toroidal magnetic field, applied by the toroidal magnetic field coils,
determines the connection length. Unlike the finite connection length in a DC discharge
shown in Figure 22, the tokamak introduces magnetic field lines (represented by the blue
solid line in Figure 23) that forces electrons to gyro around field lines and move freely along
them. Instead of being limited by a physical distance between electrodes, the connection
length in the tokamak becomes theoretically infinite because the electrons follow the closed
magnetic field lines. As a result, in the tokamak, electrons follow toroidal magnetic field
lines and collide with neutral gas molecules. This process ionizes the neutral gas and releases

additional free electrons, sustaining a continuous avalanche.

Central solenoid
Time-varying
magnetic field

Discharge
voltage induced
in the vacuum

/

Figure 23: Stray magnetic field in a tokamak.

In the tokamak, we utilize the central solenoid to induce the discharge voltage, also
known as the loop voltage, as shown in Figure 23. For an ideal solenoid, its magnetic field
should be uniform in the solenoid and aligned along its central axis, as represented by the
black solid line pointing downward in the middle of the solenoid in Figure 23. In reality, the

solenoid produces stray magnetic field lines, as shown by the gray solid lines in Figure 23.

51



The magnetic field lines become helical when the stray magnetic field combines with the
toroidal field. Instead of moving azimuthally along the toroidal magnetic field, electrons
follow a helical path and move upward, as represented by the black solid line in Figure 24.
Eventually, electrons collide with the outer-vacuum-vessel wall and are lost. This results in
a finite connection length, in contrast to the infinite connection length observed in the ideal

scenario.

Figure 24: Electron path in a tokamak.

To calculate the connection length in our tokamak, we can straighten the black helical
curve in Figure 24, as represented by the hypotenuse of the triangle, side c in Figure 25. The
vertical side of the triangle, side b in Figure 25, corresponds to the electron's displacement
in the z-direction in Figure 24. Assuming the electron originates at a point 85 mm from the
centerline at the bottom of the vacuum vessel, which corresponds to the major radius of the
plasma in the mini-Tokamak described in Chapter 2, and maintains the same distance from

the centerline (85 mm) throughout its upward displacement, as shown by the black line in

Chamber height:
500 mm

Figure 25: Electron path in a tokamak.
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Figure 24, it eventually moves to the top of the vacuum vessel and is lost. In this case, since
the internal height of the vacuum vessel can be obtained by subtracting the width of the top
(16 mm) and bottom (15 mm) lids of the total vacuum vessel height of 531 mm, as shown in
Figure 5(b), the vertical displacement is determined to be 500 mm.

The horizontal side of the triangle, side a in Figure 25 corresponds to the electron's
displacement in the toroidal direction. The value 2nR represents the path length of one
complete turn along the toroidal magnetic field line at a distance R from the centerline. In
our case, R is 85 mm. The total toroidal displacement depends on n, which represents the
number of turns the electron completes along the toroidal field line.

The horizontal side (side a) and vertical side (side b) of the triangle in Figure 25
correspond to Bt and Bz in Figure 24, respectively, as they represent the effects of Bt and
Bz on the electron's trajectory. Therefore, the ratio between the horizontal side and the
vertical side equals to the ratio between Bt and Bz. The smaller Bz compared to Br, the
longer connection length L we can get.

Our goal is to ensure that Bz is one-thousandth (1/1000) of Br. Based on this ratio, if
the vertical side length (corresponding to Bz) in our calculation is 500 mm, then the
horizontal side length (corresponding to Br) would be 1000 times greater, which is 500 m.

For the length of the hypotenuse (side c), if 6 in Figure 25 is sufficiently small (less
than 0.1"), the hypotenuse can be approximated to the horizontal side. In our calculation, the
vertical side of the triangle is one-thousandth (1/1000) of the horizontal side, so theta can be

calculated as:

opposite
6 = arctan (L> = arctan(

=0.057", 56
adjacent ) (56)

1000

which satisfies the requirement. Therefore, the length of the hypotenuse can be considered

the same as the length of the horizontal side, which is 500 m.
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After calculating the connection length (L), we can determine the breakdown electric
field (Esp) using the Townsend coefficient (o), which describes the ionization rate of
electrons as they travel through the gas. The physical meaning of a quantifies the number

of ionization events caused by a single electron moving per unit length:

_B'PHe)

a=A-PHe-exp< E

(57)
As mentioned in Chapter 2, the mini-Tokamak uses helium (He) as the working gas. For
helium, the Townsend coefficient parameters are A =2.251/m-Pa and B=
25.5 V/m - Pa. The corresponding parameters for Hz, He, and Ar are shown in Table 1[14].
Pye is the gas pressure of He in Pa, and E is the electric field strength. To achieve plasma
breakdown, the product of the Townsend coefficient (o) and the connection length (L) must
satisfy:

a-L>1, (58)
indicates that the number of ionization events occurring along the connection length is

sufficient to sustain a self-amplifying ionization process, leading to gas breakdown.

Table 1: Townsend coefficient parameters.

Gas A (1/m - Pa) B (V/m - Pa)
H> 3.75 97.5
He 2.25 25.5
Ar 9.00 135.0
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We combine Eq. (57) and Eq. (58) and apply some transformations to derive the

minimum electric field required to achieve breakdown:

— .PH
A-PHe-exp(Te)-L>1
_B.PHe 1
zexp( )>
E APy L
B Py
:>exp( e><A-PHe-L
B - P
= — < In(4Py,L)
B'PH
SE>— e (59)
In(APy, L)

The last term in Eq. (59) represents the condition for achieving breakdown, indicating that
the induced electric field in the vacuum must be greater than (B - Pye)/In(APyL). Based

on this condition, we can define the breakdown electric field (Egp) as:

1 BPy.
BD T In(APy.L)

(60)
where Epp is the breakdown electric field, Py, is the gas pressure of He in Pa, and L is
the connection length.

Using the method described above, we can calculate the breakdown electric field under
different conditions, such as background pressure and connection length, which depend on
factors like the ratio between Bt and Bz , the height of the vacuum vessel, and the distance
from the centerline. Figure 26(a) shows the breakdown curve of the electric field for a gas
pressure range from 107 Pa to 10° Pa, with the ratio between Bt and Bz varying from 0.1 to
0.001.

By calculating the breakdown curve of the electric field, we can further determine
the breakdown voltage (Vgp), i.e., the required loop voltage for breakdown, at our desired

plasma position:

VBD = EBD - 2mR (61)
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Figure 26: (a) Breakdown electric field curve. (b) Breakdown voltage curve.

where R is the distance from the centerline, which is 85 mm in our present calculation.
Figure 26(b) illustrates the breakdown voltage curve corresponding to the breakdown
electric field shown in Figure 26(a).
4.2. The required rate of change of central solenoid current

Using Eq. (60) and (61), we can calculate the breakdown voltage required to achieve
under the target conditions of our experiment. For example, if the target condition is when
Bz is 0.1% of Br, and the vacuum vessel height is 500 mm (at a radius of 85 mm), the
connection length (L) is 500 m. Additionally, if the pressure is 10* Torr (equivalent to
1.3x107 Pa), i.e., the particle density is approximately 10'® m=, the breakdown electric field

calculated using Eq. (60) is

BP 25.5% 1.3 x 1072

B - = v 62
i In(APL) ~ In(2.25 x 1.3 x 10~2 x 500) 0.123 ¥/m. (62)

Based on this electric field, we can calculate the breakdown voltage required to generate
plasma at a distance of 85 mm from the centerline using Eq. (61):

V =E-2nR = 0.123 x 2m x 0.085 = 0.066 V. (63)
Therefore, we can calculate the required central solenoid current rate to induce this voltage

in the vacuum vessel.
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The calculation of the central solenoid current rate required to induce the target loop
voltage is based on Faraday's law of electromagnetic induction. According to Faraday’s law,
the induced voltage (V) in a loop is proportional to the rate of change of magnetic flux
through the loop:

do

V:_d_t

(64)
where V' is the induced voltage (loop voltage), and ¢ is the magnetic flux. The magnetic

flux is defined as:
(pszdAszA (65)

where B is the magnetic field strength, and A is the cross-sectional area of the loop.

For an ideal solenoid, the magnetic field B can be expressed in terms of the current

N
B =Tl (66)

where p, is the permeability of free space (4w x 1077 H/ m), N is the number of turns
in the coil, [ is the length of the solenoid, and [ is the current in the solenoid. Substituting

B into Eq. (65):

N
® = U TI X A. (67)

By substituting Eq. (67) into Eq. (64):

V= d( NIXA) 68
- dt l’[Ol . ( )

Since py, N, [,and A are constants, Eq. (68) is simplified to:

V= N A d 69
- Ho l dt ' ( )
Rearranging the equation, we get the rate of change of current:

dl V-l 70
dt  r2m-N-p, 70)
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To calculate the rate of change of current required to induce the target loop voltage, we
substitute the given values into the derived formula:
* V =0.066V: The target loop voltage that needs to be induced in the vacuum
vessel, as calculated in Eq. (63).
* | =0.552 m: The axial length of the solenoid over which the magnetic field is
distributed, as described in Figure 6.
* 1 =0.011 m: The major radius of the solenoid, which is used to calculate the
cross-sectional area, was given in subsection 3.3.
*  A: The cross-sectional area of the solenoid is calculated as:
A=mnr?=m(0.011)> = 3.8 x 10~* m?. (71D
* N = 184: The number of turns in the solenoid, contributing to the magnetic field
strength.
e Uy=4mx1077 H/ m: The permeability of free space, a physical constant.

We get:

ar 0.066 X 0.552 =N By .
dt  m(0.011)2-184-4wr x 107 > “/ms- (72)

The negative sign indicates that the current is decreasing over time, consistent with the
direction of the induced voltage as described by Faraday’s and Lenz’s laws.

Through calculation, we determined that inducing a loop voltage of 0.066 V in the
vacuum vessel and maintaining it for 15 ms requires a maximum central solenoid current
of 6.22 kA. However, the 0.066 V breakdown voltage calculated in Eq. (63) represents the
ideal conditions required for breakdown. In practice, various factors can influence the
breakdown process. For example, if the actual Bz is greater than one-thousandth of Br,
connection length would decrease, thereby increasing the required breakdown voltage. In
this situation, generating only a 0.066 V loop voltage would not be sufficient to achieve

breakdown and generate plasma.
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As a result, the induced loop voltage is often several times higher than the calculated
breakdown voltage. As shown in Table 2, if we aim to induce a loop voltage of 0.33V,
which is five times the breakdown voltage calculated in Eq.(63) to ensure reliable
breakdown, the required maximum current of the central solenoid would be approximately
20 kA. Alternatively, we can reduce the time duration (tgyratin) While maintaining the
same current rate (Iipax/tquratin) t0 lower the required maximum current of the central
solenoid.

Since the maximum central solenoid current in our system is limited to 10 kA, we
prefer either using the case with an induced loop voltage of 0.1 V for 15 ms, or shortening
the duration to 10ms with the full 10 kA current, which yields a loop voltage of
approximately 0.17 V. This value is about 2.5 times the calculated breakdown voltage of
0.066 V, which should be sufficient to initiate breakdown. However, the detailed solenoid
current profile will be shown in Chapter 5, considering plasma parameters and their time

evolution.

Table 2: Central solenoid current requirements for different loop voltages and durations.

Vioop tduratin Imax dl/dt
0.066 V 15 ms 6.22 kA 415 A/ms

01V 15 ms 9.4 kA 627 A/ms
0.33V 10 ms 20.7 KA 2070 A/ms
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4.3. Calculation of the eddy currents

A simple model given in Section 4.2 provided a guideline for determining the loop
voltage and thus the required current rate of the central solenoid. However, eddy currents
on the vacuum-vessel walls can also influence the loop voltage. They also need to be
considered carefully. Therefore, we developed a program to calculate the breakdown
voltage under specific conditions. We use dI/dt = —415A/ms as an example to
determine the eddy currents calculation. Assuming, it takes 15 ms for current to drop from
6.2 kA to 0. Additionally, the program incorporates calculations from Chapter 3 to

determine the eddy currents induced in the inner and outer vacuum-vessel walls by the
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Figure 27: (a) Current profile of central solenoid and the eddy currents of the inner and
outer vacuum-vessel wall. (b) The eddy current of each element of the inner-vacuum-vessel

wall. (c) The eddy current of each element of the outer-vacuum-vessel wall.
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time-varying current of the central solenoid, based on the current profile. Finally, the
induced voltage can be calculated from all currents including the current of the central
solenoid and eddy currents. It will be introduced in Section 4.4. As shown in Figure 27(a),
the eddy current in the inner vacuum-vessel walls corresponds to the red solid line, while
the eddy current in the outer vacuum-vessel walls corresponds to the red dashed line. Notice
that the program first calculates the eddy current in each inner and outer vacuum-vessel
walls individually as shown in Figure 27(b) and (c), respectively. The currents displayed in
the Figure 27(a) represent the total current, obtained by summing all the contributions from
the inner walls and outer walls, respectively.

4.4. Calculation of the exact induced loop voltage

Using the program described in Section 4.3, we had the current profile of the central
solenoid and the individual element of the inner-and-outer-vacuum-vessel walls. With the
current profile, we can determine the magnetic field distribution produced by each element
and further calculate the total magnetic flux. By using Eq. (64), the loop voltage is calculated
from the rate of change of total magnetic flux. Notice that we only calculate the loop voltage
in the equatorial plane. Therefore, by back-calculating from the magnetic flux variations, we
can verify whether the current profile generated by the program in Section 4.3 can induce
the required loop voltage in the vacuum vessel.

First, we use the Biot-Savart Law to calculate the magnetic field distribution from each
element, which represents the vacuum-vessel-wall elements. It is important to note that since
the tokamak is axisymmetric, the elements are also axisymmetric. Consequently, the
magnetic field distribution only needs to be calculated in the xz-plane along the positive x-

direction, as illustrated in Figure 28.
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Figure 28: (a) Magnetic field Bz in the x-direction at z= 0 and y = 0. (b) Schematic of the

central solenoid.

Similarly, we use the Biot-Savart Law to determine its magnetic field distribution from
the central solenoid. Due to its axisymmetric, the calculation can be restricted to a line on
the equatorial plane (i.e., z=0). In this line, we only calculate the magnetic field
component Bz at different location in X, corresponding to the green line shown in Figure
28(b).

The equatorial plane (i.e., z = 0), represented by the gray circular plane in Figure 28(b),
are chosen because the tokamak’s axisymmetric structure ensures the magnetic field is
symmetric about the central axis, i.e., 0B /d¢ = 0. The magnetic field, originally a function
of x and y, can therefore be simplified to a function of the radial coordinate r =

Vx% +y? ie., B(x,y) = B(r). This allows the magnetic flux calculation to be reduced to

a one-dimensional integral:
fB-dA=fB-2nr-dr=27th-r-dr. (73)

Furthermore, only Bz is calculated because it is the only component of the magnetic field

that is perpendicular to the loop surface and determines the loop voltage in the tokamak.

62



After calculating the time-dependent changes in the magnetic field distribution, the
magnetic flux can be determined by integrating the magnetic field along the green line, as

shown in Figure 28(b). The loop voltage is then calculated:

d

V=- d—(f. 74)

Using the above method, we calculated the loop voltage induced solely by the central
solenoid current rate, as shown in Figure 29. For the case where the current profile dropped
from 6.2 kA to 0 in 15 ms, as shown by the blue line in Figure 27(a), which the resulting
loop voltage calculated by the model is 0.063 V. It is worth noting that the central solenoid
current profile used for this calculation, as determined in Subsection 4.2, was designed to
induce 0.066 V. The reason the induced voltage only 0.063 V is because the calculations in
Subsection 4.2 were based on ideal solenoid equations. However, in practical scenarios,
various factors can reduce the induced loop voltage. Therefore, it is necessary to perform
back-calculations to benchmark the accuracy and reliability of our calculation and to
evaluate the performance of the central solenoid design.

Next, we applied the same approach to calculate the magnetic field distribution

produced by each element of the inner-and-outer-vacuum-vessel-walls along a line of y =

loop

\"} induced by CS and Eddy current
110 v v

100

Va~—%s_ 0063V
gofc%% _ d

80

70

Vloop (%)

60|

50 ——CS and Eddy current]]
——Only CS (100%)

0 5 10 15
Time (ms)

40

Figure 29: Comparison of loop voltage induced by central solenoid and eddy currents in

the vacuum-vessel walls over time.
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z = 0. After summing fields generated from all components, we integrated the total magnetic
field to calculate the magnetic flux. Finally, using Eq. (64), we obtained the loop voltage
induced under the influence of eddy currents in the vacuum-vessel walls, as represented by
the blue line in Figure 29.

From Figure 29, it can be observed that around 0.5 ms, the influence of eddy currents
in the vacuum-vessel walls on the loop voltage reduces to approximately 5%. This is a key
point as it indicates that a central solenoid current profile with a duration longer than 0.5 ms,
the impact of eddy currents in the vacuum-vessel walls on the loop voltage can be ignored.

The detailed code is provided in Appendix A.13, including the calculation of the
required current ramp rate to induce the expected loop voltage, the calculation of eddy
currents induced in the vacuum-vessel walls, and the exact induced loop voltage.

4.5. Discussion

In our current calculation of the breakdown voltage, only direct electron-impact
ionization is considered. However, in practice, the actual breakdown voltage can be very
different from that considered electron-impact ionization alone. This difference arises
because ionization is not solely driven by direct electron collisions; excitation processes and
the formation of metastable states also play important roles.

Moreover, helium gas is inherently difficult to 1onize through electron collisions alone.
This is due to helium’s high first ionization energy (approximately 24.6 eV), which requires
electrons to gain sufficient energy and undergo multiple collisions before effective ionization
can occur. As a result, plasma breakdown in a pure helium environment is often difficult to
achieve with electron impact alone.

To address this limitation, we may consider utilizing the Penning effect in future
experiments to assist the breakdown process. This can be achieved by introducing a small

amount of gas with a lower ionization energy, such as neon or argon. When helium atoms
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are excited to metastable states, collisions with these additives can release enough energy to
ionize them, thereby facilitating the breakdown and effectively reducing the required voltage.

In addition, our current calculation assumes Bz is one-thousandth (1/1000) of Br. That
is, for a toroidal field strength Bt = 0.1 T, the vertical component Bz is set to only 107 T.
This configuration is intended to produce a magnetic null field at R = 85mm, where plasma
breakdown is expected to occur. However, as shown in Figure 23, the central solenoid
inevitably produces a stray vertical magnetic field in the upward direction. To cancel this
field and achieve the desired null point, the poloidal field coils (PFCs) must generate a
downward Bz. However, this magnetic field is different from the equilibrium magnetic field
configuration. Therefore, once the plasma is formed, the PFCs would need to rapidly reverse
their current direction in order to maintain a stable magnetic equilibrium. This rapid current
reversal is technically very difficult to achieve in practice. Consequently, maintaining such
low Bz and dynamically switching the coil polarity poses significant engineering challenges,
and may limit the practical implementation of the idealized null-field scenario used in the
model. As a result, the actual ratio (Bz/Bt) may be closer to 1/100 or even 1/10. This
significantly reduces the connection length of particles from the estimated 500 m to roughly
50 m or even 5 m, which in turn increases the required breakdown voltage by more than an
order of magnitude.

Nevertheless, our current calculation is based on these simplified assumptions, with the
primary goal of obtaining a rough estimate of the required breakdown voltage to support
hardware design and planning. Therefore, we continue to adopt the model calculation results
at this stage. The actual required voltage will be confirmed in the future through more

detailed simulations or experimental validation.
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4.6. Conclusion

In this work, we calculated the required breakdown voltage for the mini-Tokamak and
determined the central solenoid current profile necessary to induce the corresponding loop
voltage. The induced loop voltage was further computed using a model that incorporates the
effects of eddy currents in the vacuum-vessel-walls, in conjunction with the model
developed in Chapter 3. Our results show that the impact of eddy currents on the loop voltage
is negligible under the mini-Tokamak’s conditions. This method allows us to benchmark the
accuracy and reliability of our calculations and to evaluate the performance of the central
solenoid design. It also enables further optimization of the design to meet experimental

requirements.
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5. Calculation of the evolution of plasma parameters

In the previous section, we calculated the breakdown voltage required to generate
plasma, the central solenoid current profile to induce the required loop voltage in the vacuum
for breakdown and calculate the induced loop voltage including the effect of eddy currents
on the vacuum-vessel walls. Based on these calculations, we assume that breakdown has
happened so that plasma has been generated. Then the loop voltage can drive the plasma
current generating the poloidal magnetic field. In addition, plasma is heated by the plasma
current through Ohmic heating. To model the plasma parameters, plasma can be modeled as
a single-turn elliptical coil inside the vacuum vessel as shown in Figure 30. The elliptical
cross-section of the coil is centered on the z = 0 plane, 85 mm from the centerline. The minor
axis of the coil is 55 mm. The elongation factor k = 1.82, which represents the ratio of the
major axis of the ellipse to its minor axis, gives the coil with the major axis of 100.1 mm.

As mentioned in Section 3.1, the full circuit equation, which accounts for mutual
inductance between different components, allows us to calculate the induced currents
between various components within the tokamak device. Similarly, the plasma is modeled
as a single-turn coil, represented by the blue torus shown in Figure 30. The induced current

in the plasma, primarily generated by the central solenoid, is also influenced by eddy currents

Cent(::r Line

Figure 30: Simplified xz-plane cross-section of mini-Tokamak.
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in the vacuum-vessel walls. By determining the plasma’s resistance, self-inductance, and
mutual inductance with other components, we can calculate the induced current within the
plasma, which is referred to as the plasma current.

Once the plasma current is known, we can calculate the energy deposited into the plasma
through Ohmic heating. Plasma parameters such as temperature, ionization fraction, and
plasma density can then be calculated. The plasma resistivity can be updated in every time
step as the feedback to the circuit model. Using this, we can determine the evolution of
plasma parameters over time. This analysis allows us to evaluate whether the designed
central solenoid current profile can achieve our experimental goals, which include a plasma
temperature exceeding 10 eV and a plasma current greater than 10 kA. With the model, we
can design and adjust the central solenoid current profile to ensure the plasma parameters
meet our targets.

This chapter consists of six sections. Section 5.1 explains the plasma parameters that
need to be calculated, including plasma resistivity, temperature, and density. Section 5.2
presents the calculation of the plasma current, and the resulting design of the central solenoid
current profile based on this model. Section 5.3 demonstrates the sensitivity test of the model
with respect to the initial temperature, in order to verify the robustness and physical
consistency of the model. Section 5.4 introduces neoclassical theory, which accounts for
trapped particles and tokamak geometry effects that are not considered in the Spitzer theory.
Section 5.5 presents the designed central solenoid current profile and the resulting calculated
plasma parameters. Section 5.6 discusses the limitations and assumptions, and Section 5.7

provides the conclusion.
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5.1. Calculation of plasma parameters

To calculate the plasma current, we first need to determine the plasma resistance and
inductance. For simplicity, the spatial profile and the location of the plasma are kept fixed.
In other words, plasma geometry shown in Figure 30 is kept fixed in this work. The self-

inductance of the plasma L, can be calculated using the following equation[15]:

L =,uR(ln%+ﬁ—2> (75)
p— 0 a 2

where py = 4m X 1077 H/m is the permeability of free space, R is the distance from
the centerline, which is 85 mm in our calculation and corresponds to R in Figure 30. The
parameter a represents the minor radius of the plasma, which is 55 mm and corresponds
to a in Figure 30. The parameter [;, which represents the internal inductance of the plasma,
is a function of the current distribution in the cross-section. For simplicity in our calculation,
we assume [; = 0.5.

As for the mutual inductance, since Eq. (49) and Eq. (54) depend only on the position
of the coil filaments and is independent of the coil's minor radius, we directly use them to
determine the mutual inductance between the plasma and tokamak components, as the
plasma is coaxial with them in the ideal case. Finally, we obtained the necessary inductance
for matrix M in the full circuit equation.

For matrix R, since plasma parameters that affect plasma resistance change over time
such as temperature and density. Before calculating the plasma current, we must first
determine how these plasma parameters evolve over time.

The plasma resistivity can be calculated using the Spitzer equation[15]:

Nsp =52%x1073-Z-InA-Tg - 1072 (76)
where 7g;, is the Spitzer resistivity, Z is the charge state of the ions; T, is the electron
temperature in electron volts (eV), and InA is the Coulomb logarithm[16], which can be

determined by:
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InA = 23.5 — log

Jne X 1070 B \/105 N (log(T,) — 2)? .

: 5 16 (77)
In our present experiment, we use helium (He), which can exist in charge states Z = 1 and
Z = 2. However, the plasma temperature in the mini-Tokamak does not exceed 10 eV.
Therefore, for simplicity, we assume Z = 1 in our calculation.

The plasma resistance can be calculated using the Spitzer resistivity given in Eq. (76)

as follows:

L 2R
Rp =1sp 1= b (78)

where Ry, is the plasma resistance, L is the effective length of the plasma current path,
which is the length of the plasma coil of the blue toroidal single-coil shown in Figure 30
given by 2mR, R = 85 mm is the major radius of plasma. The parameters a = 55 mm
and b = 100.1 mm represent the minor and major axes of the plasma cross-section,
respectively. The cross-sectional area of the plasma is given by A = mab.

It can be observed that g, and In/ are affected by plasma density and temperature,
both of them vary over time due to ionization and Ohmic heating. Therefore, before
calculating plasma resistance, we must first determine how ionization fraction and plasma
temperature evolve over time.

5.1.1. Calculation of plasma density

Plasma density is determined by the balance between the ionization rate and the
recombination rate. In our model, we use data from the Atomic Data and Analysis Structure
(ADAS)[17] for high temperature and ionization fraction to calculate both the ionization and
recombination rates. ADAS is a comprehensive database and toolset that provides accurate
atomic and ionic data for plasma modeling. It is widely used in fusion energy research,
astrophysics, and laboratory plasma studies to support calculations of key processes such as

ionization, recombination, and radiation emission.
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The electron temperature range covered by ADAS spans from 0.2 eV to 1 X 10* eV,
while the electron density ranges from 5 X 1013 m™ to 2 X 10?! m>. In our current
experiment, the plasma is expected to reach temperature around 10 eV and particle density
between 1017 m=to 10'® m?. Since these values fall well within the range covered by
the ADAS datasets, we are able to apply these data to our model without the need for
extrapolation.

However, ADAS does not provide reliable data for low-temperature and low-density
conditions. This limitation arises because the ionization potentials of hydrogen and helium
are 13.6 eV and 24.6 eV, respectively. At low electron energies, excitation and ionization
events are rare, and the corresponding cross sections become very small, making the
coefficients difficult to measure or compute accurately. Therefore, for low-density and low-
ionization-fraction conditions, we adopt a simplified collisional model:

NeOe—i = (May — Ne)Te_a - (79)
Assuming a balance between ionization and neutralization, this equation defines the
relationship between electron density and neutral atom density during the early phase of
plasma formation. Details are given in the following.
5.1.1.1. ADAS model

There are several methods for calculating the 1onization fraction. However, to save time
and improve efficiency, we use precomputed rate coefficients derived from established
models and theories in ADAS[17] for high temperature and high ionization fraction.

We can calculate the plasma density using the following equation:

dn,
dt

= Rion(Tes ne)NoNe — Rrec(Te, Ne)Nen;. (80)
The variable n, represents the electron density, which is considered equivalent to the

plasma density. The ion density, denoted as n;, is assumed to be equal to the electron density
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(n; = n,) since ionization releases both an electron and an ion in our case. The neutral atom
density (ny) is determined based on our calculation in Subsection 4.2, where the
experimental pressure is 10 Torr (equivalent to 1.3X102 Pa). Given these conditions, the
initial particle density is approximately 10®m™3, so we assume an initial neutral atom
density of ny =10 m™3. Ry, (Te,ne) is the effective ionization coefficient, and
Roc(Te, n.) is the effective recombination coefficient; both can be obtained from the
ADAS database[17]. These correspond to the SCD (effective ionization coefficients) and
ACD (effective recombination coefficients) datasets, respectively.

Eq. (80) represents the rate of change of electron density by accounting for both
ionization and recombination processes. The first term describes electron generation due to
ionization, while the second term accounts for electron loss due to recombination.
5.1.1.2. Collision model

For low temperature and low ionization fraction case, we use collision model to calculate
the ionization fraction. The initial ionization fraction can be calculated using the ratio of
electron-atom to electron-ion collision cross-sections|[15]:

Nebe—i = (Mg — Ne)Oe—a, (81)

3 n, is the total particle density in m~, which is

where n, is the electron density in m
related to the working gas pressure of the experiment and is assumed constant. g,_; and
Oe_a are the electron—ion and electron—atom collision cross-sections in m?, respectively.
T, is the electron temperature in eV.

The left-hand side of Eq. (82) represents the rate of electron-ion collisions, which is
determined by the product of the electron density (n,.) and the electron-ion collision cross-
section (0._;). It means the neutralization rate. The right-hand side represents the rate of

electron-atom collisions, which depends on the neutral atom density (n, —ne) and the

electron-atom collision cross-section (0._,). It means the ionization rate. Assuming the
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ionization rate and the neutralization rate are balanced with each other, this equation defines
the relationship between electron density and neutral atom density during the early plasma

formation phase. By rearranging Eq. (82), we obtain:

~ - (82)

At the early stage of plasma ionization, the neutral gas density (ny —ne) is much
higher than the electron density n, because the ionization process has just begun. Since
only a small fraction of atoms has been ionized, it is reasonable to assume ny > n,.
Therefore, when calculating n, — n,, we can approximate itas n, by neglecting n,. This
allows us to express the ionization fraction as the ratio between n, and ng:

Mo Gea

~
~

= L) Oe—i . (83)
Therefore, once the cross-sections og._, and o._; are expressed as functions of
electron temperature, the ionization fraction y can be directly calculated as a function of
temperature.
(a) Electron-atom collision cross-section

For hydrogen, according to an empirical formula, gt rormuia(Te) =& 3 X 10719 x
T;%5[15]. However, since the mini-Tokamak uses helium as the working gas, we need
an equivalent expression for ¢, formuta(Te)-

Direct empirical formulas for helium are less commonly available, but we can infer
one by analyzing the ratio of ionization cross-sections between hydrogen and helium
over the relevant temperature range. Specifically, by evaluating or interpolating
ool 2 apas(Te) and o3’ apas(Te) from datasets such as ADAS, we can compute the

ratio g¢', apas(Te) /0ot 2 apas(Te) across a range of electron temperatures.

In our study, we use the Effective lonization Coefficients (SCD) for both

hydrogen and helium. These rate coefficients, provided in units of cm?®/s in the raw
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ADAS data, represent the effective ionization reaction rates per unit electron and
target particle density, which are functions of both the electron temperature and the
electron density. To convert these rate coefficients into effective cross sections (in m?),

we use the relation:

R.,, X 107°
Omq = = ——, (84)
e

where R;,, is the rate coefficient in cm?®/s, and v, = \/m is the electron
thermal velocity in m/s. After interpolating the ADAS tables, we compute the
ionization cross sections for both hydrogen and helium, as shown in Figure 31(a).
Assuming this ratio captures the relative magnitude and trend of helium behavior
compared to hydrogen, we can scale the hydrogen formula by the ratio to obtain an

approximate expression for helium, as shown in Figure 31(b):

(o}

(Te)
e— aformula(T ) e aADAS 4 (T )

e—a,formula

5
Ge aADAS(T) (85)

In Figure 31(b), the blue line is the empirical formula of the ionization cross
section of hydrogen from Ref. [15] while the red line is the estimation of that of helium

using Eq. (85). This approach preserves the functional dependence of the hydrogen

0 2 4 6 8 10 0 2 4 6 8 10
Electron Temperature TE [eV] Electron Temperature T.E [eV]

Figure 31: (a) ADAS-based effective cross sections. (b) Empirical formula for hydrogen

and fitted formula for helium.
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formula while adjusting the amplitude and temperature exponent to better match helium
data. We can then fit the scaled expression to a power-law form:
0%, formuta(Te) = A X T72 = 1 x 10712 x T 048, (86)
where A and b are determined through curve fitting.
(b) Electron-ion collision cross-section
We adopt an empirical approach to estimate the electron—ion collision cross
section under low-temperature conditions relevant to our mini-Tokamak system. We
use the empirical formula for hydrogen[15]:
ol (T,) =~ 1.5 x 10710 x T2, (87)
Although this formula is derived specifically for hydrogen, we apply it to helium as
well by assuming that all helium atoms are singly ionized (Z = 1), which is valid in
our case since the plasma temperature remains around 10 eV.
Based on the electron-atom collision cross-sections presented in Figure 31(b), where
the blue solid line corresponds to hydrogen and the red solid line to helium, and the empirical

formula for electron-ion collision cross-sections. The ionization fraction can be calculated

using Eq. (83). For hydrogen:

3x 1071 x T;705
" 1.5 x 10716 x T2

Yu =2x 1073 x TS eV. (88)

For helium:

1x 10719 x T;046
" 1.5 x 10716 x T2

YHe = 6.7 X 107 x T15* eV, (89)

5.1.1.3. Transition from collision model to ADAS model

During the initial phase of plasma breakdown, we apply Eq. (88) and Eq. (89) for
hydrogen and helium, respectively. These are referred to as the collision model and are used
to calculate the initial ionization fraction. As the plasma evolves and becomes more ionized,

we gradually transition to using Eq. (80), known as the ADAS model. This transition is
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implemented using a weighted interpolation method, ensuring a smooth shift between the
two models as a function of electron temperature or ionization fraction.

When y = 0, where y is the ionization fraction, the plasma is in the early stage of
breakdown, and the ionization is calculated using the collision model. As the ionization
fraction increases, the contribution from the ADAS model gradually increases. When y =
0.5, the ADAS model dominates the ionization calculation. The weighting is controlled by

a sigmoid function defined over the interval [0, 0.5]:
1
1+ exp[—s- ((v —vo)/Al

where s = 10 controls the steepness of the transition. A larger value of s leads to a

(90)

Wapas(¥) =

sharper transition between the two models, y, = 0.25 is the center of the transition, and
A= 0.5 is the normalization range. The collision model weight is defined as W¢qjision =
1 — wyupas, ensuring the total contribution remains unity at all times.

At y = 0, the ADAS model contributes approximately 0.67%, while the collision
model dominates with over 99% weight. Around y = 0.25, both models contribute equally,
and by y = 0.5, the ADAS model reaches nearly full weight (~99.3%) while the collision
model becomes negligible (0.67%). This transition is illustrated in Figure 32, which shows

the evolution of model weights as a function of y.
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Figure 32: Weight distribution between collision model and ADAS model.
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This approach allows for a smooth and physically consistent between two methods,
avoiding abrupt changes in source terms and improving the accuracy of time-dependent
plasma ionization modeling. It also ensures that the numerical system remains well-behaved
during rapid changes in plasma parameters, which is particularly important in early-stage
breakdown or startup simulations.

By implementing this approach, we can calculate the time-dependent evolution of
plasma density, maintaining physical consistency across different phases of ionization.
5.1.2. Calculation of plasma temperature

The change in electron energy (thermal energy) is determined by the balance between
heating and power losses. Therefore, to calculate the time-dependent variation of plasma

temperature, we use the following equation[15]:

%% = Pon'— (Pion+ Piine + Porb) (91)
where each term on the right-hand side represents a volumetric power density (W/m?).
The first term, P,}, is the Ohmic heating power density and is considered the main
energy source in the simulation. It is calculated as:
2
Ponh = % (92)
where I, is plasma current (A), R, is plasma resistance ({2) given in Eq. (78), and V}, is
plasma volume (m?).
The ionization power loss P;,, accounts for the energy required to ionize neutral
atoms, thereby diverting energy away from electron heating. It is computed by:
Pion = Rijon X e X g X Ej (93)
where R;,, is the effective ionization coefficient, obtained from ADAS[17] in units of

m3/s, n, is the electron density in units of m3, n, is the neutral atom density in units of

m3, and E; is the ionization energy in ]. The expression reflects that each ionization event
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requires a fixed amount of energy, and the ionization rate depends on the product of electron
and neutral densities.

The line radiation loss Py, arises from bound—bound transitions when excited ions
return to lower energy states, emitting photons. It is given by:

Pline = Rpjt X e X1 (94)
where Ry is the coefficient of line emission from excitation in units of W - m3, obtained
from ADAS[17], and n; = n. under the quasi-neutrality assumption. This equation is
based on the fact that line radiation occurs when electrons excite ions to higher energy levels,
and these ions then emit photons upon returning to lower energy states. The excitation rate
depends on electron-ion interactions, making the emission power proportional to the
electron and ion densities.

In addition to line radiation, the simulation also includes Bremsstrahlung radiation loss,
denoted Rpyy,. Bremsstrahlung, or free—free radiation, is caused by the deceleration of
electrons in the electric field of ions, resulting in photon emission. The power density is
computed using:

Porp = Rprp X Me X 1y (95)
where Ry, is the Bremsstrahlung emission coefficient, interpolated from ADAS[17] in
units of W - m3. This term is generally several orders of magnitude smaller than ionization
and line radiation losses under low-Z, sub-keV conditions, and can often be neglected.
Nevertheless, it is still tracked here for completeness.

By incorporating all these effects, the energy balance equation provides a consistent
framework for simulating the plasma’s thermal behavior. It ensures that the rise in electron
temperature is not only driven by Ohmic heating but also realistically modulated by

competing loss processes including ionization, line radiation, and Bremsstrahlung.
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5.1.3. Government equations for calculating plasma parameters

In summary, the government equations for calculating plasma parameters are the

following. Notice that particle losses and the corresponding energy losses are neglected in

this simple model.

Full circuit equation for the induced current:

-

— d] -
V=M-—+RI.
dt

Equation for plasma inductance:
8R |;
Lp = .MOR (ln;-l‘z— 2)

Equation for plasma resistivity and resistance:

L 2R
Nsp = 52% 1073 Z - InA - Tg15 - 1072,

Energy balance equation for the plasma temperature time evolution:

3d(neT,)
E dete 3 oh_(Pion+P1ine+Pprb)

Rate equation for the plasma density time evolution:

dn,
dt

= Rion(Te: ne)none [ Rrec(Te' ne)neni-

5.2. Calculation of the plasma current

Rp 3 nSpZ =TNsp Tab

(96)

(97)

(98)

(99)

(100)

After getting the equations for calculating plasma density and plasma temperature in

Section 5.1, we can compute the plasma parameters at each time step using the previously

established equations with the initial conditions, including the initial plasma temperature,

experimental gas pressure, and central solenoid current profile.

It is important to note that with higher temperature, the Lamor radius becomes too large

such that ions cannot be confined. Although the expected operating temperature of the mini-

Tokamak is limited to approximately 10 eV due to the gyro-radius constraint discussed in

Appendix A.1, this section intentionally ignores that confinement limit. This is because low-
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temperature conditions, while physically realistic, often result in low ionization fraction and
minimal dynamic changes, which hinder the ability to assess the model's behavior and
performance across a wide range of parameters. Therefore, in this section, we allow the
temperature to rise freely and focus on verifying the model’s internal consistency,
specifically the evolution of plasma current, temperature, input and loss power, and energy
conservation. Once the model has been validated under these conditions, the following
section will incorporate the confinement limit and present a physically feasible central
solenoid current profile tailored to the mini-Tokamak’s operational constraints.

In our simulations, the initial plasma temperature is set to 0.026 eV (approximately
300 K), representing room temperature conditions. The working gas is He. The total neutral
density is taken to be 10'7 m, which corresponds to a gas pressure around 107 Torr. The
applied central solenoid current profile, shown in the blue solid line in Figure 33(a), linearly
ramps down from 10 kA to 0 kA over the first 10 ms, followed by a ramp from 0 to —5 kA
over the next 40 ms. The results for each case are presented in Figure 33 to Figure 36,
illustrating how plasma parameters evolve over time under these conditions.

Figure 33(a) reveals that the plasma current begins to increase after about 4 ms,

eventually reaching approximately 18 kA by the end of the 40 ms simulation, which reaches
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Figure 33: (a) Central solenoid and plasma current. (b) Plasma temperature.
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our intended target of 10 kA. Meanwhile, Figure 33(b) shows that the plasma temperature
climbs sharply after 4 ms and ultimately reaches over 5400e¢V, far exceeding the
confinement-safe regime, which is 10 eV.

This behavior can be understood by considering the dynamics of plasma resistance and
heating. At the beginning of the simulation, when the electron temperature remains at
0.026 eV, the plasma resistivity is extremely high because resistivity scales as 1 « T 1>, as
shown in Figure 34(a). According to Ohm’s law (V = IR), high resistance severely limits the
amount of current that can be induced in the plasma, despite the relatively strong voltage
generated by the initial rapid change in solenoid current. As a result, the Ohmic heating
power, given by Popmic = ISRp, remains negligible, as shown in the blue solid line in Figure
34 (b). This explains why the plasma parameters stays nearly flat during the first 4 ms. Only
when plasma current begins to rise after the plasma resistance drops to a sufficiently low
level. As shown in Figure 33(a), the plasma current starts to increase. Correspondingly, other
plasma parameters, such as temperature, ionization fraction, and Ohmic heating power, also
begin to increase significantly from this point onward.

According to Eq. (76) and Eq. (78), plasma resistance Ry, which is shown in Figure 34
(a), 1s proportional to the Spitzer resistivity 71, and inversely proportional to the plasma

temperature T2->:

Ohmic Heating Power Density
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Figure 34: (a) Plasma resistance. (b) Ohmic heating power density.
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Ry, o ngp o< T 15, (101)
It explains the exponential drop in resistance as temperature rises. Initially, with T, =
0.026 eV, the resistance is around 0.5 Q with the assumption that breakdown occurred t =
0. However, by 50 ms, it falls below 1077 Q.

Figure 35(a) shows that the ionization fraction y reaches full ionization (y = 1)
around 8 ms. The effect of ionization is also evident in the energy loss analysis shown in
Figure 35(b). Ionization loss Py, corresponding to the orange solid line, begins to rise
significantly around 3 ms and peaks near 5 ms, when the plasma is rapidly transitioning from
weakly ionized to partially ionized. This behavior reflects the underlying physics of
ionization loss, which scales as Pjy, & ngne. In the early stage, although the neutral density
ng is high, the electron density n, is still too low to drive substantial ionization. As the
temperature increases and electron density rises, the ionization fraction accelerates sharply,
leading to a rapid increase in energy loss. After full ionization is achieved around 8 ms,
ny — 0, and ionization loss quickly drops to negligible levels.

Following this, the dominant power loss mechanism shifts to line radiation Pjje,
shown in red solid line in Figure 35(b). Line radiation arises from bound—bound transitions

in ions, when electrons in excited states fall to lower energy levels, emitting photons with
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Figure 35: (a) lonization fraction. (b) Energy loss.
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specific energies. This radiation mechanism depends on both electron and ion densities
(Piine % nen;) and remains significant throughout the rest of the simulation.

In contrast, Bremsstrahlung radiation Py, which originates from the deceleration of
electrons in the electric fields of ions, remains negligible throughout the simulation, as
shown by the blue line in Figure 35(b). This is primarily because in our assumption plasma
consists of singly charged helium ions (Z = 1), for which Bremsstrahlung losses are low.
As a result, its contribution is several orders of magnitude smaller than ionization and line
radiation and can be neglected.

In the present simulation, we assume Z =1 for simplicity. This assumption is
reasonable because the mini-Tokamak operates at relatively low temperatures (below 10
eV), where only the first ionization stage of helium is significantly populated. Moreover,
the FIRST device primarily uses hydrogen as the working gas, which naturally has Z = 1,
making the same assumption applicable.

However, if future designs aim to push the mini-Tokamak to higher temperatures, or
if other gases such as helium or argon are used in devices like FIRST, then the assumption
of Z =1 will no longer hold. Higher temperatures can lead to multiple ionization stages
(e.g., He*", Ar** and beyond), and alter both the charge state distribution and the associated
radiation losses. In such cases, line radiations from both higher-Z ions and Bremsstrahlung,
scale more strongly with Z and, would play a more prominent role. Therefore, a more
detailed treatment of ionization stages and the effective charge Z.sr will be necessary to
accurately capture energy loss and transport in future models.

Finally, Figure 36 demonstrates that the energy balance is well preserved in the

simulation. The Ohmic heating from the central solenoid serves as the energy input to the
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Figure 36: Energy conservation check.

plasma, which is the blue solid line. To calculate the total energy input, we first convert Eq.

(92) into total input power (W) by multiplying by the plasma volume (V},):
2R,

%

Poh (W/.3) = Ponly (W) (102)

where I, is plasma current (A), R, is plasma resistance (£2),and Vj, is plasma volume
(m?). Next, to determine the total accumulated energy input over time, we integrate P,y
from t = 0 to the current time t = 40 ms:

t

n
Einput = fo Popdt = sz Pon (i) - At (103)
0 i=1

where Ejppye 18 the total accumulated energy input in Joule to the plasma over time, Pyl
is the Ohmic heating power in Watt, and At is the time step used for numerical integration.

The total energy loss of the plasma, as shown in the red solid line in Figure 36, is
composed of Bremsstrahlung radiation (Ppyp,), line radiation (Pj,e), and ionization loss
(Pion)- The ionization loss corresponds to Eq. (94) and accounts for the energy required to
ionize neutral atoms through electron-neutral collisions. The radiation loss corresponds to
Eq. (95) and represents the energy emitted as photons when excited ions return to lower

energy states via bound—bound transitions. In addition, the Bremsstrahlung radiation loss
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corresponds to Eq. (96) and arises from the deceleration of electrons in the Coulomb field
of ions, producing broadband photon emission.

The net energy retained by the plasma is given by the equation:

3

U= Ene Vo - Te X (eV_to_]) (104)
where U represents the internal energy of the plasma, measured in joules (J), which
quantifies the total thermal energy stored within the plasma. The variable 1}, represents
the plasma volume (m?). The term T, represents the plasma temperature, measured in
electron volts (eV), which describes the thermal energy per particle in the plasma. The final
term, eV_to_], is a conversion factor from electron volts to joules, with a value of
1.6 x 1071 J/eV.

As shown in Figure 36, the input energy from Ohmic heating is equal to the total system
energy, which includes thermal energy and energy losses. This balance ensures that the
program correctly accounts for energy input, dissipation, and conversion, thereby confirming
that energy conservation is maintained within the model.

5.3. Sensitivity test of the program to the initial temperature

Before utilizing the program in Subsection 5.2 to further refine the design of the central
solenoid current profile, we first need to test the program's sensitivity to the initial
temperature. This verification is important because the initial temperature serves as a critical
starting condition for plasma evolution. Since the governing equations for plasma density,
temperature, and resistance all involve temperature-dependent terms, variations in the initial
temperature could impact the overall plasma dynamics. By testing the program's response to
different initial temperatures, we can ensure that the numerical simulation remains stable
and consistent, regardless of the initial condition chosen.

This sensitivity test allows us to evaluate whether small variations in the initial

temperature lead to significantly different plasma behavior, which could indicate potential
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uncertainty in the model. If the simulation remains consistent under different initial
temperature conditions, we can confidently proceed to use the program for further
optimization of the central solenoid current profile. We performed calculations under
different initial temperature conditions, setting T, =0.026 eV, 5 eV, and 20 eV, as shown in
Figure 37(a) and (b).

As observed in Figure 37(a), when the initial plasma temperature is relatively high (e.g.,
20 eV), it first decreases before rising. This occurs because at higher temperature, energy
losses due to line radiation, ionization, or radiation dissipation can exceed Ohmic heating.
Consequently, the net power, defined as Pper = Py, — Pioss, May initially become negative,
leading to a drop in temperature. Over time, as electron density and plasma resistance evolve,
Ohmic heating increases, eventually surpassing the losses and driving the temperature back
up, resulting in the observed downward-then-upward trend.

Additionally, this initial temperature drop reduces the ionization fraction, as shown in
Figure 37(b), since ionization is strongly temperature dependent. Ultimately, as the current
and resistance evolve, Ohmic heating "catches up" with energy losses, stabilizing and

increasing the temperature again.
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Figure 37: (a) Temporal evolution of plasma temperature for different initial temperature.

(b) Temporal evolution of ionization fraction for different initial temperatures
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The plasma temperature and ionization fraction result for the three different initial
temperatures ultimately converge. This convergence occurs because the net heating power
and energy loss in the plasma reaches a dynamic balance over time, driving the system
toward a similar final temperature and ionization fraction regardless of the initial condition.

This behavior can be attributed to several mechanisms. Plasma resistance decreases as
the temperature rises, particularly with higher electron temperatures. At higher temperatures,
the lower resistance reduces the effectiveness of Ohmic heating (P, = Ing / V5), while at
lower initial temperatures, higher resistance leads to stronger Ohmic heating, accelerating
the temperature increase in the early stages.

Additionally, energy loss mechanisms, such as line radiation loss, become more
significant at higher temperatures. For higher initial temperatures, these losses can
temporarily exceed Ohmic heating, resulting in a negative net power (Ppet = Pon — Ploss)
and causing a temperature drop, as shown in the yellow line for 20 eV case in Figure 37(a).
In contrast, for lower initial temperatures, Ohmic heating dominates over losses, leading to
a faster temperature rise.

As plasma evolves, a balance is eventually established between Ohmic heating and
energy losses. This equilibrium determines the final temperature range and is primarily
influenced by the system’s injected power, geometry, density, and radiative properties, rather
than the initial temperature. Therefore, whether the plasma starts at 0.026 eV, 5 eV, or 20 eV,
the temperature trajectories converge, with differences only in the early transitional behavior.
Over longer timescales, the equilibrium between Ohmic heating and energy loss mechanisms
governs the plasma's steady-state temperature.

In conclusion, through this calculation, we have demonstrated that our program has low
sensitivity to the initial plasma temperature. This reliability allows us to proceed further

refining the design of the central solenoid current profile using the program.
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5.4. Neoclassical resistivity

In a toroidal magnetic field, not all charged particles can freely circulate around the
torus. This spatial variation in magnetic field strength resembles the behavior of a magnetic
mirror, causing certain particles to reflect back and become confined between two strong-
field regions. These so-called "trapped particles" cannot contribute effectively to the toroidal
current, as they oscillate locally rather than circulating around the entire torus. This effect is
particularly important for electrons, some of them are trapped and enter so-called banana
orbits due to the mirror-like field structure. As a result, only a fraction of the total electron
population participates in current conduction, leading to a reduction in the overall plasma
conductivity. Consequently, this reduced efficiency must be accounted for estimating
resistivity and heating performance in tokamak plasmas.

To account for these effects, neoclassical theory extends the classical model by
incorporating the geometry of the tokamak and the behavior of trapped particles. It modifies
the effective conductivity and resistivity of the plasma depending on the degree of
collisionality and magnetic geometry. Neoclassical resistivity becomes important when a
significant fraction of particles is trapped, which is often the case in compact or low-aspect-
ratio devices like the mini-Tokamak.

In this study, we employ the neoclassical model developed by O. Sauter et al., published
in Physics of Plasmas (1999)[18], which provides a set of widely used analytical formulas
to compute key transport quantities such as the collisionality, conductivity, and bootstrap
current. The first step involves evaluating the electron collisionality ( vs ), which
characterizes the ratio between the electron collision frequency and the bounce frequency of

trapped particles. The electron collisionality:

qRNeZotrIn A

*
Vo, X
€ Te261'5 ’

(105)
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where g is the safety factor, R is the major radius of plasma, € is the inverse aspect ratio
(e = a/R), Zg 1sthe effective ion charge, which is assumed to be 1 in our assumption, and
In A is the Coulomb logarithm. A high vs indicates strong collisionality and classical
transport behavior, whereas a low v; suggests that neoclassical effect dominates due to the
increased influence of trapped particles.

The safety factor g describes the pitch angle of magnetic field lines in a tokamak and
is defined as the number of toroidal turns a magnetic field line makes for each poloidal turn.
It plays a crucial role in determining the stability and transport properties of the plasma.
Notice that the pitch angle of magnetic field lines may be different at different radial distance
from the plasma center axis. In Eq. (106), the safety factor appears in the numerator, meaning
that higher q values increase the collisionality. To evaluate q(r), we use the following

physics-based relation derived from the magnetic field geometry in a tokamak:

rBr

(R+1)B, (106)

q(r) =
where r represents the radial distance from the plasma center axis, while R is the major

radius of plasma, which is 85 mm for mini-Tokamak. By is the toroidal magnetic field, and

B, is the poloidal magnetic field.
The toroidal magnetic field By is assumed to vary with radius according to the simple
model:
B =B 107
() Rt 7 (107)

where By = 0.1 T is the magnetic field measured at the reference radius of R = 85 mm.
This radial dependence reflects the geometric decay of toroidal field strength as the radius

increases.

89



The poloidal magnetic field B, is derived from Ampere’s law under the assumption of
uniform current distribution within a given radius r. The local poloidal current density is

expressed as:
Jp=—2. (108)
Applying Ampeére’s circuital law over a circular loop of radius 7, we obtain:
$ By, - dl = 2nr - By, = pol, = ponr?j,, (109)

which leads to:

HoT
Y

Jp - (110)
Substituting Eq. (107) and Eq. (110) into Eq. (106):

r BR 1 2ByR
X X = :
+r R+r 'uTOr]p tolp(R +1)?

a() = (111)

After calculating the local safety factor profile q(r) across the plasma radius, the
average safety factor g is computed using a radial weighting:

fya@)-rdr 2 re

= r)-rdr, 112
o ), 10 (112)

C_I:

where a is the minor radius of plasma, which is 55 mm for mini-Tokamak. Although the
plasma cross-section is elliptical, the weighting remains proportional to r because each
magnetic surface is assumed to be a geometrically similar ellipse, causing the elliptical area
factors to cancel out in both numerator and denominator. This average g is then used in Eq.
(105) as q, as shown in the red dash line in Figure 38.

Next, the fraction of trapped particles is estimated. These particles become trapped due
to magnetic field inhomogeneity and are influenced by both the aspect ratio and triangularity
of the plasma cross-section. A refined formula incorporating triangularity corrections is

employed to compute f;:
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Figure 38: Radial profile of safety factor.

1_Eeff . 1—¢€

=1- . 113
T N INIET (113)
where €. 1s the triangularity corrections:
€Eeff = 067(1 = 1462) st (114)

Here, § is the plasma triangularity, which characterizes the D-shape deformation of the
plasma boundary. However, in our present calculation, the plasma is assumed to have an
elliptical cross-section without triangular shaping. Therefore, we set 6 = 0, neglecting
triangularity effects in the estimation of the trapped particle fraction. Since trapped particles
are confined by mirror-like magnetic effects, they contribute less effectively to the toroidal
current. As f; increases, the effective conductivity decreases. This behavior is especially
important in low-aspect-ratio configurations like mini-Tokamak, where geometric effects are
more pronounced. This correction reduces the influence of € in plasmas with non-circular
cross-sections. Using €5 instead of € allows for a more accurate estimate of the trapped
particle fraction, especially in cases with significant triangular shaping. In our case, since

6 = 0, we recover €q¢ = 0.67 - €.
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The neoclassical conductivity oy,e, 1s then obtained by correcting the classical Spitzer

conductivity gpirzer using a term that accounts for trapped particles:

0.36 0.59 0.23
Oneo = Ospitzer [1 - f3€3ff (1 +—-—- f3€3ff ( - fEff>)] . (115)

33
Zefr Zett  Zer

Here, fge; T is an effective trapped particle fraction, defined as:

f3) = J — (116)
1%
1+(0.55 - 0.1f)Vv" + —045(1 = fi) " 15
eff

This effective correction factor is used instead of the raw trapped particle fraction f; to
account for the influence of electron collisionality (v*) and impurity content (Zeg) on the
actual current-carrying capability of the trapped particle population. While f; captures the
geometric tendency for particles to become trapped due to magnetic field inhomogeneity,
not all trapped particles equally suppress conductivity. At low collisionality, these particles
remain trapped and significantly hinder current flow. At higher collisionality, frequent
collisions allow them to scatter into passing orbits, reducing their suppressive effect.
Therefore, f;3f T serves as a refined measure of the effective transport-limiting role of
trapped particles under realistic tokamak conditions.

From Eq. (116) and Eq. (117), we observe that in the limit where the trapped particle
fraction f; — 0, the effective correction f:,gf L 0, and thus the neoclassical conductivity
Oneo approaches the classical Spitzer conductivity ogpitzer, s expected for a fully passing
particle population. Conversely, when f; approaches unity and the collisionality v*
remains moderate, the value of f;{ T becomes significant. This leads to a strong suppression
of 0y, reflecting the fact that trapped particles contribute much less to the net toroidal
current, due to their limited ability to complete toroidal orbits.

The effective neoclassical resistivity is defined as:
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1
Nneo = — - (117)

Gneo

This resistivity is then used to calculate the total plasma resistance via:

L 2nR
Rp = Theo Z = Mneo —_ 7. (118)

nmab
where L = 2mR is the effective length of the plasma current path, which is the length of
the plasma coil of the blue toroidal shape single-coil shown in Figure 30 with R = 85 mm
as the major radius of plasma. A is the cross-sectional area of the plasma column given by
A =mab. The parameters a = 55mm and b = 100.1 mm represent the minor and
major axes of the plasma cross-section, respectively.

By applying this neoclassical framework, we capture key physical mechanisms that the
classical model omits, such as magnetic geometry and trapped particle effects. Then we can
compare plasma resistivity and temperature evolution using both Spitzer and neoclassical
models to highlight the importance of this correction.

The initial conditions are identical to those described in Section 5.2. The plasma
temperature is set to 0.026 eV, and the working gas is helium (He). The total neutral density
is taken to be 10'” m™. The applied central solenoid current profile, shown as the blue solid

line in Figure 39(a), linearly ramps down from 10 kA to 0 kA over the first 10 ms, followed

by a ramp from 0 kA to —5 kA over the subsequent 30 ms. A comparison between the results
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Figure 39: (a) Central solenoid and plasma current. (b) Plasma temperature.
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obtained using neoclassical and Spitzer resistivity models for plasma parameters is presented
in Figure 39 and Figure 40.

As shown in Figure 39(a), when the same central solenoid current is applied, which is
the black solid line, the plasma current evolution differs significantly between the two
models. Under the Spitzer model, corresponding to the blue solid line, plasma current
quickly rises and reaches a steady state of over 10 kA within the first 10 ms. In contrast, the
neoclassical model predicts a peak plasma current of only around 3.2 A. Subsequently, as
the solenoid current change rate decreases from 10 kA over 10 ms to 5 kA over 30 ms, the
induced plasma current also declines. This reduction weakened the Ohmic heating, which in
turn slowed down the increase in plasma temperature, as shown in Figure 39(b). The
resulting temperature stagnation leads to a rise in plasma resistance, as illustrated in Figure
40(a). According to Ohm’s law V = IR, for a given induced voltage, an increase in plasma
resistance leads to a reduction in plasma current. Moreover, the Ohmic heating power, which
determines plasma temperature evolution, is given by Popmic = ISRp. This relationship
introduces a trade-off: increasing plasma resistance tends to increase in Ohmic heating power,
but simultaneously reducing plasma current leads to a potentially greater reduction in Ohmic

heating power overall.
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Figure 40: (a) Plasma resistance. (b) Ionization fraction.
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In this simulation, that trade-off clearly favors current suppression. As seen in Figure
39(a), the plasma current in the Spitzer case reaches it peaks at only around 18 kA by 40 ms,
whereas in the neoclassical case it peaks at only around 3.2 A, a ratio of nearly 5.6x10°. At
the same time, Figure 40(a) shows that the Spitzer resistance is about 1077 Q while the
neoclassical resistance is approximately 1072 Q. At that moment, it yields a resistance ratio
of roughly 107, Despite the higher resistance in the neoclassical case, the suppression in
current is more dominant, leading to a substantial reduction in Ohmic heating.

Figure 39(b) compares the evolution of plasma temperature. With the Spitzer model,
the plasma temperature rapidly increases to nearly 10* eV due to efficient Ohmic heating. In
contrast, the neoclassical model yields much slower temperature growth, reaching less than
10 eV at t =40 ms.

Figure 40(a) shows the time evolution of plasma resistance. The Spitzer model predicts
a steep decrease in resistance as the temperature increases (R, & T;1®), reaching values
below 1077 Q. In contrast, the neoclassical model shows a much more gradual decline, with
resistance stabilizing around 1072 (), consistent with reduced conductivity due to trapped
particle effects.

Figure 40(b) shows a similar trend in ionization behavior. Under the Spitzer model, the
ionization fraction y quickly rises and reaches full ionization (y = 1) by around 8 ms.

However, in the neoclassical model, the ionization fraction reaches only 1% at the final
time step (t =40 ms). This difference arises because neoclassical resistivity leads to a lower
plasma temperature, and the ionization fraction in our model depends strongly on
temperature as shown in Eq. (80) and Eq. (89).

This comparison reveals that relying solely on the Spitzer model can significantly
overestimate both Ohmic heating efficiency and plasma current drive during the startup

phase, potentially leading to unrealistic expectations for successful plasma initiation. In
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contrast, the neoclassical model provides a more accurate description of transport behavior,
particularly in low-aspect-ratio configurations such as our mini-Tokamak, where small
geometric effects strongly influence trapped particle dynamics and reduce effective
conductivity.

Accordingly, in the following section, we employ neoclassical calculations to design
the central solenoid current profile, aiming to achieve a more realistic simulation of plasma
startup, current evolution, and temperature rise.

5.5. Calculation results

The solenoid current profile in the mini-Tokamak was designed with the goal of
achieving a plasma temperature of 10 eV and a plasma current of 10 kA. In our model, the
plasma current is induced by the changing magnetic flux and is therefore highly dependent
on the rate of change of the central solenoid current. However, driving a high plasma current
requires a rapid variation of the solenoid current, which in turn results in stronger Ohmic
heating. This rapid heating can cause the plasma temperature to exceed the 10 eV limitation,
beyond which He" ions may not remain confined. Such a loss of confinement could
potentially lead to serious damage to the vacuum-vessel wall or diagnostic components, due
to energetic particle impacts. To prevent this, the current solenoid profile is designed
primarily to regulate the plasma temperature, ensuring it reaches and maintains around 10
eV. As a result, the target plasma current of 10 kA is not prioritized in present design.

Three cases were considered: (a) Gas density of 10'7 m™, with initial temperature of
0.026 eV; (b) Gas density of 10'7 m™, with initial temperature of 1 eV; (c) Gas density of
10'® m™, with initial temperature of 1 eV. All cases are listed in Table 3. The detailed code

for plasma parameters calculation is provided in Appendix A.14.
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Table 3: Plasma startup scenarios and central solenoid current profiles in mini-Tokamak.

Case Ng Ty Ies max1 | Ates1 | lesmaxz | Ates 2 Vioop_1 Vioop_2
a 107m> | 0.026eV | 10kA 10 ms -7.5 kA 40 ms 0.16 V 003V
b 10 m? 1eV 5.4 kA 10 ms -1.5 kA 40 ms 0.086V | 0.006 V
c 10" m? 1eV 10 kA 10 ms -10 kKA 10 ms 0.16 V 0.16 V

(a) The initial plasma temperature is set to 0.026 eV, and the gas density is assumed to

be 107 m™, corresponding to a pressure of approximately 10 Torr, the results are shown in

Figure 41(a). The applied central solenoid current profile, represented by the blue solid line

in Figure 41(a), decreases linearly from I.s max1 = 10 KA to O KA over the first 10 ms

(4t,), followed by a linear ramp from OKA to I.s max2 = —7.5 KA over the next 40 ms

(4t;). This time-varying current induces a loop voltage of approximately 0.16 V over the

first 10 ms, which exceeds the required breakdown voltage of 0.046 V at R = 85 mm under

a gas pressure of 107> Torr, as calculated with Eq. (62) and Eq. (63). This confirms that the

chosen current profile provides sufficient loop voltage to initiate plasma breakdown under

the target conditions. Figure 41(b) shows the plasma temperature successfully reaches the

target value of 10.9 eV. The plasma current, corresponding to the red solid line in Figure

41(a), peaks at only 4.2 A.
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Figure 41: (a) Central solenoid and plasma current. (b) Plasma temperature.
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Additionally, the ionization fraction remains low throughout the discharge, as shown in
Figure 42(a), reaching only 2.63% by the end of the simulation. While Figure 42(b) shows

the plasma resistance time evolution, which gradually decreases as the temperature increases.
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Figure 42: (a) lonization fraction. (b) Plasma resistance.

(b) The initial plasma temperature is set to 1 eV, and the gas density is assumed to be
10" m™, corresponding to a pressure of approximately 10 Torr, the results are shown in
Figure 43(a). The applied central solenoid current profile, represented by the blue solid line
in Figure 43(a), decreases linearly from 5.4 kA to 0 kA over the first 10 ms, followed by a

linear ramp from 0 kA to —1.5 kA over the next 40 ms. This current profile induces a loop
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Figure 43: (a) Central solenoid and plasma current. (b) Plasma temperature.
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voltage of approximately 0.086V over the first 10 ms, which exceeds the required
breakdown voltage of 0.046 V at R = 85 mm under a gas pressure of 10~ Torr.

With the application of preheating, the plasma temperature can be rapidly raised to
approximately 10 eV even under a reduced peak central solenoid current. It can then be
maintained near this level for an extended period, despite a slower central solenoid current
change rate, thereby providing a longer observation window for studying plasma behavior
under stable conditions. However, the plasma current, represented by the red solid line in
Figure 43(a), exhibits a different evolution. It initially rises to near 9.5 A at 10 ms, but then
drops sharply to approximately 0.8 A, due to the reduced rate of change in the central
solenoid current.

Meanwhile, both the ionization fraction and plasma resistance stabilize shortly after the
temperature plateaus. As shown in Figure 44(a), the ionization fraction reaches 2.58% and
remains steady, while the resistance shown in Figure 44(b) decreases rapidly in the early

stage and flattens out at 6 mQ2, consistent with the temperature profile.
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Figure 44: (a) Ionization fraction. (b) Plasma resistance.
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(c) The initial plasma temperature is set to 1 eV, and the gas density is assumed to be
10'® m?3, corresponding to a pressure of approximately 10 Torr, the results are shown in
Figure 45(a). The applied central solenoid current profile, represented by the blue solid line
in Figure 45(a), decreases linearly from 10 kA to 0 kA during the first 10 ms, followed by a
further linear ramp from 0 kA to —10 kA over the next 10 ms. This current profile induces a
loop voltage of approximately 0.16 V over the first 10 ms, which exceeds the required
breakdown voltage of 0.066 V at R = 85 mm under a gas pressure of 10~ Torr.

Figure 45(b) shows that, under this central solenoid current profile, the plasma
temperature reaches a maximum of only 7.2 eV. This limitation arises from the capacitor-
driven nature of the power supply, which requires that the energy associated with the rapidly
decreasing solenoid current be dissipated elsewhere in the circuit, typically through external
resistive elements. In our current hardware setup, the system is only capable of handling a
linear decrease of the solenoid current from 10 kA to 0 kA within 10 ms, as a faster ramp
could exceed the voltage or thermal limits of the components, posing a risk to system
integrity. Although achieving the target plasma temperature requires a high current change
rate to generate sufficient inductive electric fields for plasma initiation, we adopt this current

profile as a compromise between effective plasma startup and the constraints of our existing
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Figure 45: (a) Central solenoid and plasma current. (b) Plasma temperature.
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hardware. Despite this temperature limit, the sharp current change still enables a strong
inductive drive, pushing the plasma current to a peak value of approximately 14.4 A, as
shown by the red solid line in Figure 45(a).

Figure 46(a) shows that, due to the relatively low plasma temperature, the ionization
fraction reaches a maximum of 1.39%. Similarly, as shown in Figure 46(b), the plasma
resistance remains relatively high, with a minimum value of approximately 1072 Q, also a

result of the insufficient temperature rise.
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Figure 46: (a) lonization fraction. (b) Plasma resistance.

In addition, the model is applied to the Formosa Integrated Research Spherical
Tokamak (FIRST), the first tokamak being constructed in Taiwan, with detailed calculations
provided in Appendix A.15.

5.6. Discussion

Our model primarily simulates the temporal evolution of plasma parameters during the
plasma breakdown phase, influenced by Ohmic heating generated by the central solenoid
current profile. In this simple model, physical mechanisms such as thermal conduction,

particle diffusion, and transport were not included.
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Specifically, for modeling electron density, this study employs a simplified rate

equation:

dn,

ar Rion(Te, ne)none — Rrec(Te, Ne)nen; — V- T. (119)
In Eq. (80), only the first two terms in Eq. (119) were included, which account solely for
local ionization and recombination reactions. The last term in Eq. (119), V- T, which was
omitted in Eq. (80), represents density variations due to particle flow, diffusion, and plasma
expansion or contraction, all of which are neglected in this simplified model. This
simplification implicitly assumes that particle generation and loss occur solely through local
reactions, with no spatial particle transport out of the simulation region. Consequently, this
may introduce several limitations:

o Neglect of mass conservation and plasma flow effects: In actual plasmas, particles
experience flow or expansion driven by electric fields or pressure gradients,
phenomena that the simplified rate equation cannot represent.

o Inability to describe spatial density gradients and non-uniformities: Without a
complete continuity equation, the spatial distribution of density near boundaries or
regions with rapidly varying magnetic fields cannot be accurately depicted.

e Inability to predict plasma volume expansion or contraction: Ignoring changes in
plasma volume may result in overestimated particle density and pressure, affecting
predictions of temperature and energy dissipation.

e Reduced accuracy for long-term simulations: Accumulated errors from neglecting
transport and flow become increasingly significant over extended simulation
periods, thereby reducing the reliability of the model’s predictions.

Furthermore, under ideal conditions, a strong magnetic field effectively confines

plasma particles to magnetic field lines, primarily guiding particle motion along the field

lines (parallel direction) and suppressing perpendicular (transverse) transport due to particle
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gyration. In practice, however, magnetic confinement is imperfect, especially under
conditions of low magnetic fields, non-stationary states, or inadequate boundary conditions,
resulting in gradual particle escape from the plasma region. Common escape mechanisms
include transverse diffusion caused by particle-neutral collisions, ExB drift, and turbulence-
driven anomalous transport.

Since our model does not incorporate these transverse transport mechanisms, it
effectively assumes ideal magnetic confinement, with particles permanently confined within
the plasma region. This assumption can lead to the following inaccuracies:

e Overestimation of electron density: Ignoring particle loss due to transverse diffusion.

e Opverestimation of electron temperature: High-energy electrons are more prone to
escape; neglecting their loss underestimates energy dissipation.

e Misjudgment of plasma sustainment and stability conditions: Particularly in
scenarios of poor confinement or proximity to vacuum-vessel walls, these errors
become more pronounced, potentially resulting in overly optimistic predictions of
steady-state conditions.

The energy balance equation is also affected by the lack of transport and particle loss
mechanisms. To model the time evolution of electron temperature, this study adopts a

simplified energy equation:

3d(neTe) _

2 dt oh — (Pion + Pline + Pprb) - Pconv . (120)

In Eq. (91), only the first four terms in Eq. (120) were included. The last term in Eq. (120),
P.onv = 3neTe/27g, accounting for convective energy losses, where 7y is the energy
confinement time, was omitted in Eq. (91). This term represents the energy carried away by
escaping particles and may become the dominant loss mechanism under weak confinement

conditions. Neglecting this term can lead to an overestimation of plasma temperature and an
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underestimation of total power dissipation, which in turn may cause the required central
solenoid current ramp rate for initiating breakdown to be underestimated.

Additionally, the model does not explicitly account for seed electron generation
mechanisms. Typically, during the initial tokamak breakdown phase, neutral gas molecules
dominate the environment, and stable plasma formation has not yet occurred. Initiating
plasma formation requires a pre-existing population of free electrons (seed electrons) to
undergo collisions with neutral atoms, triggering initial ionization and Townsend avalanche
reactions that rapidly increase electron and ion densities, ultimately establishing stable
plasma.

Seed electrons usually originate from external effects such as microwave-assisted
ionization rather than from the applied electric field or Ohmic heating. Since our model omits
detailed seed electron generation mechanisms and their production rates, it may
underestimate the required electric field strength for plasma initiation and the actual delay
time for breakdown, resulting in overly optimistic simulation outcomes.

Lastly, to more accurately reflect real plasma behavior, this study incorporates the
neoclassical theory for calculating plasma resistivity. Compared to the traditional Spitzer
theory, neoclassical theory is more suitable for tokamak, as it more precisely accounts for
the influence of trapped particles formed by magnetic mirror effects on effective collision
rates, conductivity, and resistivity. However, during the initial low-temperature breakdown
phase, the electron kinetic energy is generally insufficient to form significant trapped orbits,
and the velocity distribution remains approximately Maxwellian. Under such conditions, the
collisionality, as defined in Eq.(105), becomes very high, and the neoclassical model
naturally reduces to the traditional Spitzer theory, as shown in Eq. (115). In other words,
although neoclassical theory is applied throughout, the inclusion of the collisionality

parameter v, ensures that trapped-particle effects are suppressed when not physically
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relevant, thereby avoiding an underestimation of plasma conductivity in the low-temperature
regime. This feature allows the model to remain valid and accurate across both low-
temperature and high-temperature regimes, and enables it to be directly extended to full-
temperature tokamak operations, where reduced collisionality and trapped-particle effects
become significant.

In summary, our model is based on several simplifying assumptions and is intended
primarily as a first-order estimation tool for predicting breakdown parameters and supporting
the preliminary design of the driving circuit. In the future, more comprehensive numerical
simulations and experimental validation will be conducted to refine the predicted values and
enhance the physical accuracy and reliability of the model.

5.7. Conclusion

In this section, we developed a model capable of calculating the evolution of various
plasma parameters, including temperature, current, and resistance. We also tested the
model’s sensitivity to the initial plasma temperature and confirmed its robustness. By using
this model, we can optimize the central solenoid current profile and refine hardware designs
to ensure that the plasma temperature and current meet our experimental objectives. Table 4
presents the three selected scenarios used in this study where particle losses and the
corresponding energy losses were neglected.

Table 4: Plasma startup scenarios and central solenoid current profiles in mini-Tokamak.

Case No Ty Ies max1 | Dtes1 | Iesmaxz | Ates 2 Vioop_1 Vioop_2
a 107m™> | 0.026eV | 10kA 10 ms -7.5 kA 40 ms 0.16 V 0.03V
b 10 m? eV 5.4 kA 10 ms -1.5kA 40ms | 0.086V | 0.006 V
v 10" m™ eV 10 kKA 10 ms -10 kA 10 ms 0.16 V 0.16 V
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Based on our results, case (b) is the most preferable scenario. In this case, the plasma
temperature remains near 10 eV for a longer duration, providing an extended observation
window for studying plasma behavior under quasi-steady conditions. Although case (c)
yields a higher peak plasma current, our current focus is on achieving and sustaining
sufficient electron temperature. Moreover, implementing the central solenoid current profile
required for case (c) involves rapidly reducing the solenoid current from 10 kA to 0 kA
within 10 ms, which may pose significant engineering and safety challenges. Therefore, case

(b) is currently identified as the most practical and preferred scenario.

106



6. Future work

Our models in this study are designed for rapid estimation of plasma parameters and
therefore involve several simplified assumptions. For example, we assume that the plasma
adopts its final equilibrium shape immediately after breakdown, which was modeled as a

single-turn elliptical torus, as illustrated in Figure 47.

Centt_ar Line

Figure 47: Simplified xz-plane cross-section of mini-Tokamak.

The breakdown voltage we compute in Section 4.1 corresponds to a breakdown
occurring precisely at R = 85 mm. However, plasma tends to form initially near the inner
vacuum-vessel wall, where the electric field is stronger under the same induced loop votlage.
As shown in Figure 48(a), the plasma should be initiated near the inner wall and gradually
expands outward.

In future work, we plan to incorporate this expansion behavior into our model by
discretizing the plasma region into multiple radial grids, as illustrated in Figure 48(b). Each
grid will be assigned its own breakdown voltage based on its position. If the induced loop
voltage at a given grid exceeds the local breakdown threshold, that region will be treated as
plasma and included as a coil components in the full circuit model in Chapter 3. Otherwise,
it will remain as neutral gas.
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Figure 48: (a) Plasma expansion process. (b) Grid-based plasma discretization model.

Thermal conduction will be included between neighboring grids, allowing us to account
for heat exchange between plasma and gas regions. A grid that is not initially broken down
may eventually be defined as plasma if its temperature exceeds a threshold.

Using the model introduced in Chapter 3, we can compute the mutual inductive currents
between all components, including those representing plasma grids. This allows us to
determine the evolving plasma current distribution across space and time in a physically
consistent way. Ultimately, this approach will enable more accurate modeling of plasma
parameter evolution and support the optimization of the central solenoid current profile
design.

In addition, particle losses and the corresponding energy losses, as described in Eq. (119)
and Eq. (120) in Section 5.6, will be incorporated to provide a more physically consistent

and accurate simulation of plasma behavior during the breakdown phase.
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7. Conclusion

In this thesis, we developed a series of models to support the design and optimization
of the central solenoid current profile in the mini-Tokamak, including the effects of eddy
currents in the vacuum-vessel walls. This work includes several key physical modules,
including the calculation of component resistance, self-inductance and the mutual inductance
between all the components, the calculation of eddy currents induced by time-varying
magnetic fields from central solenoid, and the time evolution of plasma parameters such as
temperature, ionization fraction, current, and resistivity.

We began by establishing an accurate geometric model of the vacuum vessel. Based on
this geometry, we first calculated the resistance and self-inductance of all components, as
well as the mutual inductance between them. These quantities were assembled into a full
circuit model in matrix form, from which we solved the eddy currents induced in the
vacuum-vessel walls using the conjugate gradient (CG) method to efficiently handle the
large sparse system. Once the eddy currents were obtained, the loop voltage was computed
using the Biot—Savart law, considering the contributions from the central solenoid and the
eddy currents in the vacuum-vessel walls. The calculation shows that eddy current initially
suppresses the loop voltage but decay rapidly, with their influence reducing to below 5%
after 0.5 ms. Consequently, the central solenoid current should be maintained longer than
0.5 ms to minimize eddy current effects.

To model the plasma response, we incorporated Spitzer and neoclassical[ 18] resistivity
models. In addition, we employed atomic data from the ADAS[17] to calculate ionization
and recombination rate coefficients as functions of electron temperature and density. These
physics-based parameters were integrated into a time-dependent plasma evolution solver,
which computes the time evolution profiles of plasma temperature, current, and ionization

fraction. This allows us to evaluate whether a given central solenoid current profile is

109



sufficient to initiate plasma breakdown and sustain current development under specific initial
conditions.

According to our model calculations, achieving breakdown at a particle density of n =
10" m™3 (corresponding to a pressure of 107> Torr) with a connection length of 500 m, a loop
voltage of approximately 0.046 V is required. Under these conditions, the central solenoid
current change rate must exceed 289 A/ms. Furthermore, to achieve a plasma temperature of
10 eV in the mini-Tokamak with a major radius of 85 mm, minor radius of 55 mm, and
elongation k = 1.82, the central solenoid current should decrease linearly from 5.4 kA to 0
kA in 10 ms, followed by a ramp from 0 kA to —1.5 kA in 40 ms. When the particle losses
and the corresponding energy losses are neglected, the plasma temperature can be
maintained at 10 eV for 40 ms.

In conclusion, this work provides comprehensive models for analyzing tokamak startup
physics. The developed models not only support the design of effective central solenoid
current profile but also offer predictive insight into plasma initiation and stability under
various operating conditions. These models are applicable to other tokamak devices and may
serve as a reference for future experimental validation and hardware optimization. As an
example, the model has been applied to FIRST, with detailed calculations presented in

Appendix A.15.
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Table 5: Parameters and preferable initial condition for mini-Tokamak.

Parameters mini — Tokamak
R 85 mm
a 55 mm
K 1.82
P, 107> Torr
ng 1017 m=3
Ty leV
Ies max.1 5.4 kKA
Ates 1 10 ms
Ies max,2 —1.5kA
Ates 2 40 ms
Vioop_1 0.086 V
Vioop_2 0.006 V
Ipmax 9.7 A
Tp,max 10.7 eV

111




Reference

[1]

[2]

[3]

[4]

[3]

[6]
[7]

[8]

[9]

Sarang. Proton—Proton Chain Reaction, Wikimedia Commons, 2016.
https.//en.wikipedia.org/wiki/Nuclear fusion#/media/File:Fusion_in_the Sun.svg.
Wykis. Deuterium—tritium Fusion Reaction [Image], Wikimedia Commons, 2007.
https://commons.wikimedia.org/wiki/File: Deuterium-tritium_fusion.svg.
ChemConnections. Stages of the Inertial Confinement Fusion Process [Image].
https://chemconnections.org/crystals/icf-html.

U.S. Department of Energy. Magnetic field structure in a tokamak [Image].
https://www.energy.gov/science/doe-explainstokamaks.

Zhe Gao. Comparison of spherical tokamak to standard tokamak [Image], Matter
and Radiation at Extremes, 1(3):153—162, June 2016. Fig. 1(a).

Po-Yu Chang. RIf* ¢ #.4 & F L T 3+ H-F % - REFHA.

H.-T. Kim et al. Development of full electromagnetic plasma burn-through model
and validation in MAST. Nuclear Fusion, 62, 126012 (2022).

Fluid Mechanics 101. Conjugate Gradient [Video]. YouTube, 2023.
https://www.youtube.com/watch?v=MdPhVsgTclQ.

O. Alexandrov. Conjugate gradient path [Image], Wikimedia Commons, 2007.
https://en.wikipedia.org/wiki/Conjugate gradient _method#/media/File: Conjugat

e _gradient illustration.svg.

[10] F. W. Grover, Inductance Calculations: Working Formulas and Tables. New York:

D. Van Nostrand Company, 1946.

[11] MathWorks. Preconditioned Conjugate Gradient (pcg) — Solve system of linear

equations. https://www.mathworks.com/help/matlab/ref/pcg.html.

[12] OpenStax. Solenoid self-inductance. Electricity and Magnetism — Section 14.3:

Self-Inductance and Inductors. https.//phys.libretexts.org.

112


https://en.wikipedia.org/wiki/Nuclear_fusion#/media/File:Fusion_in_the_Sun.svg
https://commons.wikimedia.org/wiki/File:Deuterium-tritium_fusion.svg
https://chemconnections.org/crystals/icf.html
https://www.energy.gov/science/doe-explainstokamaks
https://www.youtube.com/watch?v=MdPhVsgTc1Q
https://en.wikipedia.org/wiki/Conjugate_gradient_method#/media/File:Conjugate_gradient_illustration.svg
https://en.wikipedia.org/wiki/Conjugate_gradient_method#/media/File:Conjugate_gradient_illustration.svg
https://www.mathworks.com/help/matlab/ref/pcg.html
https://phys.libretexts.org/

[13] Dougsim. Visualization of Townsend Avalanche [Image]. Wikimedia Commons,
2012. https://commons.wikimedia.org/wiki/File:Electron_avalanche.gif.

[14] A Fridman, A Chirokov and A Gutsol. Non-thermal atmospheric pressure
discharges. Journal of Physics D: Applied Physics, 38, January 2005.

[15] H.-T. Kim ef al. Enhancement of plasma burn-through simulation and validation in
JET. Nuclear Fusion, 52,2012.

[16] F. Trintchouk et al. Measurement of the transverse Spitzer resistivity during
collisional magnetic reconnection. Physics of Plasmas, 10, 2003.

[17] ADAS — Atomic Data and Analysis Structure, ADAS. https.//open.adas.ac.uk/.

[18] NEOS Development Team. NEOS: Open-source neoclassical transport code.
https://gitlab.epfl.ch/spc/public/NEOS.

[19] FreeGS. Free-boundary Grad—Shafranov solver for plasma equilibrium
reconstruction. https://github.com/freegs-plasma/freegs.

[20] COMSOL. Simulate real-world designs, devices, and processes with multiphysics

software from comsol. Attps.//www.comsol.com/.

113


https://commons.wikimedia.org/wiki/File:Electron_avalanche.gif
https://open.adas.ac.uk/
https://gitlab.epfl.ch/spc/public/NEOS
https://github.com/freegs-plasma/freegs
https://www.comsol.com/

A Appendix
A.1 Gyro radius calculation

In a magnetically confined plasma, charged particles undergo gyro-motion around
magnetic field lines. The gyro-radius depends on the particle species, temperature, and local
magnetic field strength. For effective confinement, the gyro-radius must be significantly
smaller than the plasma minor radius, particularly near the plasma edge, to avoid particle
loss to the vacuum-vessel wall.

In our mini-Tokamak design, the magnetic field at the plasma center (R = 85 mm) is
0.1 T. Based on the inverse radial scaling of toroidal field strength B o« 1/R, we estimate
the field to be 0.283 T at the inner edge (R =30 mm) and 0.061 T at the outer edge (R = 140
mm), as shown in Figure 49. The corresponding distances from the inner and outer plasma
boundaries to the vacuum-vessel walls are approximately 11 mm and 17 mm, respectively.

To evaluate whether different species can be confined under these conditions, we
calculate the gyro-radius for electrons, H*, He*, and Ar" ions at three representative positions

of the plasma: the inner side (R = 30 mm), center (R = 85 mm), and outer side (R = 140 mm),
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Figure 49: Spatial variation of toroidal magnetic field in the midplane (z = 0)

114



for temperatures ranging from 1 eV to 30 eV. The gyro radius of a charged particle is given

by the following expression:

J2mksT
T, = B (121)
where m is the particle mass in kg, g is the particle charge, B is the magnetic field
strengthin T, T is the particle temperature in eV, and kg = 1.602 x 10719 J/eV is the
Boltzmann constant. The corresponding results are shown in Figure 50(a) to (c).

From these results, we observe that electrons remain well confined at all radial positions

up to a temperature of 30 eV, with their gyro-radii significantly smaller than the plasma
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Figure 50: (a) Gyro-radius at plasma inner edge. (b) Gyro-radius at plasma center.

(c) Gyro-radius at plasma outer edge.
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minor radius. H ions also remain well confined at all radial positions up to a temperature of
30 eV, with their gyro-radii smaller than the plasma minor radius. He* ions are well confined
at lower temperatures, but at the outer edge, as shown in Figure 50(c), their gyro-radius
exceeds the 17 mm confinement margin when the temperature exceeds 13 eV. In contrast,
Ar" 1ons exhibit substantially larger gyro-radii throughout the plasma. At the inner edge, as
shown in Figure 50(a), Ar* ions exceed the 11 mm confinement limit above 10 eV, and at the
outer edge, they exceed the 17 mm limit even at 2 eV.

Based on these findings, both hydrogen and helium can be used as working gas.
However, due to safety, helium was selected as the working gas for the mini-Tokamak. While
argon is commonly used for diagnostics in larger machines, it cannot be effectively confined
in this device. Additionally, to ensure adequate magnetic confinement of helium ions, the

operational plasma temperature is therefore limited to 10 eV.
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A.2 mini-Tokamak equilibrium

The goal of this section is to verify whether the plasma in the mini-Tokamak can be
magnetically confined under the given hardware constraints. In particular, we aim to
determine the required currents in the poloidal field coils (PFCs) that are needed to achieve
equilibrium. Notice that an equilibrium state will be designed but stabilization check is
beyond the scope of this thesis. This appendix is divided into three parts. Appendix A.2.1
introduces the theoretical foundation of plasma equilibrium in tokamak, starting from the
basic magnetohydrodynamic (MHD) force balance and leading to the Grad—Shafranov
equation. Then, Appendix A.2.2 presents the equilibrium calculation results obtained using
the Grad—Shafranov solver FreeGS[19], applied to the mini-Tokamak configuration. Last,
Appendix A.2.3 investigates how variations in the plasma current spatial profile affect the
equilibrium and safety factor distribution.
A.2.1 Equilibrium theory

To maintain an equilibrium plasma configuration in a tokamak, the forces acting on the
plasma must be in balance. The fundamental condition for this is the MHD force balance
equation:

JxB="p (122)
where ] is the current density, B is the magnetic field, and p is the plasma pressure. This
equation means that the magnetic force acting on the plasma, also known as the Lorentz
force, must be balanced by the internal pressure gradient. In other words, equilibrium is
achieved when the inward magnetic forces are exactly offset by the outward pressure forces.

In axisymmetric configurations such as tokamak or spherical tokamak, the MHD
equilibrium condition can be reformulated into a single partial differential equation known
as the Grad—Shafranov equation. This equation determines the structure of magnetic flux

surfaces and the distribution of plasma current in the poloidal cross-section of the device. Its
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derivation involves decomposing the magnetic field into toroidal and poloidal components,
and applying the assumption of axisymmetry, i.e., d/d¢ = 0.

The Grad—Shafranov equation under axisymmetric assumptions can be expressed as:

0% 19y 9% ,dp 1dF?
o rar ez R T 2 (123)

where Y(r,z) isthe poloidal magnetic flux, which describes the shape of magnetic surfaces
in the cross-section; p(y) is the plasma pressure, assumed to vary along magnetic flux
surfaces; F(y) = rBy represents the toroidal magnetic field contribution, with By, being
the toroidal magnetic field component, and p, is the vacuum permeability. This equation
describes how the electromagnetic force balances the pressure gradient to determine the
equilibrium structure of the plasma. The left-hand side represents the spatial variation of the
poloidal magnetic flux in cylindrical coordinate. The right-hand side contains the source
terms due to plasma pressure and toroidal field contribution.

By solving the Grad—Shafranov equation under specified boundary conditions and
prescribed plasma current and pressure profile, and the required plasma shape, one can
calculate the required coil current to maintain equilibrium. These equilibrium calculations
and results will be presented in the next section.

A.2.2 Equilibrium calculation

Based on the theoretical framework described in the previous section, equilibrium
calculations were performed using the FreeGS code[19]. The objectives of these calculations
were to evaluate whether the designed mini-Tokamak could achieve the desired plasma
shape, as defined by the aspect ratio and elongation specified in Chapter 2, and to determine
the required currents in the PFCs (P1U, PIL, P2U, and P2L) necessary to maintain
equilibrium with a desired plasma current. These PFCs currents are driven by pulse-width
modulation (PWM) in the mini-Tokamak, with further details provided in Appendix A.3.

These calculations were conducted under the constraints of the mini-Tokamak’s hardware
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configuration, including the geometry of the vacuum vessel, the location of the central

solenoid, and the locations of the poloidal field coils, as described in Chapter 2.

The spatial arrangement of the PFCs used in the FreeGS is illustrated in Figure 51. Four
coils were employed:

e PIU and PIL are located at (r =0.20m,z=0.10m) and (r =0.20m,z =
—0.10 m), respectively. These coils are positioned symmetrically above and below the
midplane near the outer edge of the vacuum vessel. They primarily serve to control the
vertical shape of the plasma and help maintain the equilibrium.

*  P2U and P2L are placed inside the vacuum vessel and closed to the plasma, at (r =
0.10m,z =0.15m) and (r = 0.10 m,z = —0.15 m), respectively. These inner coils
are used to adjust the plasma shape near the edge, particularly influencing the location

of the separatrix and the structure of the magnetic flux surfaces.

All four coils were treated as independently controlled in the calculations, allowing
their currents to be automatically adjusted by the equilibrium solver according to a specified

1soflux constraint. This constraint defines the plasma boundary as a closed contour of
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Figure 51: Coil and chamber layout of the mini-Tokamak (rz plane).
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constant poloidal magnetic flux (y), constructed from four connected line segments that
enclose the desired separatrix, the blue dashed line in Figure 52. The calculation was
configured for a plasma current of 10 kA and a central pressure of 0.32 Pa, i.e., n =
7.7 %X 107 m™3 for T = 10 eV, and a vacuum toroidal field strength characterized by
f=RB,=85x%x10"3Tm.
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Figure 52: Equilibrium contours and isoflux constraints in FreeGS.

To define the current distribution within the plasma, a parametric profile for the toroidal

plasma current density /4, was used, expressed as a function of the normalized poloidal flux
Yn:

Jo o< (1= 9p™)™ (124)
where Y, = 0 at the magnetic axis and ¥, = 1 at the plasma edge. In this calculation,
an =2 and a, = 2 were selected, resulting in a moderately broad current profile, as
shown in Figure 53(a). This shape provides a compromise between core peaking and profile
flatness, offering favorable stability and confinement properties, which will be detailed
describe in the next section.
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FreeGS.

The resulting equilibrium is illustrated in Figure 52. The corresponding PFCs currents
were shown in Table 6. These coil currents generated a magnetic configuration capable of
achieving a well-confined plasma, with a safety factor profile ranging from g, = 1.39 at
the core to go5 = 6.32 at the edge, as shown in Figure 53(b). The computed poloidal beta
was B, = 2.49 X 10~*, and the magnetic axis remained centered near the designed plasma
major radius. The results confirmed that the initial PFC positioning and symmetry are
sufficient for achieving equilibrium in the mini-Tokamak configuration. This validated
magnetic structure and corresponding coil currents provide a solid foundation for future
experimental implementation.

Table 6: Currents in the poloidal field coils.

Coil Current (A)
P1U —4295.6
P1L —4295.8
P2U 2252.8
P2L 22531
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A.2.3 Effect of a,, and «a,, on current and safety factor profile
In the FreeGS equilibrium calculation, the toroidal current density profile Jg is
prescribed as a function of the normalized poloidal flux v,,, defined such that ¥, = 0 at

the plasma center and ),, = 1 at the edge. The profile takes the form:

Jo o< (1= ypm)™. (125)
Here, a,, and «, are shaping parameters that control how the current is distributed across
the plasma cross-section. The parameter a, controls the broadness of the profile by
modifying the inner exponent of ,,, which determines how gradually the current density
decreases from the center toward the edge. A larger a,, results in a flatter and broader
current profile. Figure 54(a) shows as a,, increases from 2 to 4 (with a, held constant),
corresponding to the blue, red, and yellow line respectively, the profile transitions from a
steeply declining shape to a much broader and flatter distribution. Specifically, when a,, is
small (e.g., a,, = 2), the current is strongly concentrated near the plasma center and rapidly
drops off toward the edge. As a,, increases, the central plateau becomes wider, and the
gradient near the edge becomes more gradual. This demonstrates how a,, modulates the

“core-flatness” of the profile, controlling the width of the region with high current density.
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Figure 54: (a) Toroidal current density profile in FreeGS. (b) Safety factor profile in
FreeGS.
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In contrast, a, controls the peakness of the profile. As the outer exponent, it governs
how sharply the current density falls off once 1), approaches 1. A larger «, increases the
central current density and produces a more peaked distribution. As shown in Figure 55, as
a, increases from 2 to 4 (with «,, held constant), the current density profile becomes
increasingly peaked near the magnetic axis (i, = 0), while the edge current density drops
more steeply. This demonstrates that «, effectively sharpens the profile, concentrating
more current toward the center and suppressing the edge contribution.

As illustrated in Figure 54(a) and (b), increasing «a,, leads to a broader distribution and
reduces the peak current near the center. This tends to raise the core safety factor gy, which
helps suppress tearing modes. However, overly broad profiles can reduce magnetic shear in
the core, which may weaken internal stability or degrade confinement.

On the other hand, as shown in Figure 55(a) and (b), increasing a, makes the current
profile more peaked, lowering the central g-value while steepening the safety factor gradient
near the edge. This enhances magnetic shear at the boundary, which is favorable for

stabilizing edge-localized modes and supporting the formation of transport barriers.
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Figure 55: (a) Toroidal current density profile in FreeGS. (b) Safety factor profile in
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Nonetheless, excessive edge shear may also alter the overall MHD stability balance and
trigger other instabilities such as peeling-ballooning modes.

In summary, the choice of a, and a, shapes the current profile and directly affects
the safety factor distribution. These parameters must be carefully tuned to balance core and
edge stability and to achieve the desired confinement performance in the mini-Tokamak.
However, due to hardware limitations, the current profile in the mini-Tokamak cannot be
freely adjusted in practice. Therefore, the present calculations serve primarily as a reference,

and the final configuration must be determined based on experimental results.
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A.3 Magnetic ripples from PWM signal

In the mini-Tokamak, the poloidal field coils (PFCs) are driven using a Pulse-Width
Modulation (PWM), which generates magnetic ripples that might penetrate the vacuum-
vessel wall and alter the internal magnetic field configuration. Therefore, it is necessary to
ensure that these ripples do not adversely affect the experiment.

This appendix consists of two parts. Appendix A.3.1 introduces PWM and presents the
magnetic ripple calculation obtained using our model and COMSOL simulations. Appendix
A.3.2 provides the conclusion.

A.3.1 PWM-induced magnetic ripples

From Chapter 5, we now have the central solenoid current profile and the evolution of
plasma parameters. Assuming successful plasma initiation, plasma reaches the desired
equilibrium state, as shown in Figure 52, which illustrates the equilibrium shape calculated
using FreeGS[19]. In this configuration, the central solenoid is responsible for gas
breakdown and driving the plasma current. The toroidal field coils generate a strong toroidal
magnetic field, which causes charged particles to gyrate along the magnetic field lines in the
toroidal direction, as indicated by the light blue arrows in Figure 24. In addition, PFCs are
required to produce vertical magnetic fields (Bz), shaping the overall magnetic configuration
inside the tokamak. These vertical fields are essential for achieving a rational magnetic field
distribution, leading to the desired equilibrium shape shown in Figure 52. The required PFCs
currents that generate this field structure have been computed using FreeGS and are listed in
Table 6 in Appendix A.2.2.

In our system, the currents in the PFCs are supplied using PWM, which operates by
rapidly switching the applied voltage on and off at a fixed frequency. By varying the duty
cycle, the fraction of time that the voltage is “ON” during each cycle varies. Therefore, the

average voltage, and hence the coil current, can be controlled precisely.
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To study the effect on the PWM signal, we provided a simulated current profile with
PWM signal. The current is provided by the circuit shown in Figure 56. When SW; is ON

and SW; is OFF, the circuit can be obtained by solving:

Vo — IR LdI—O 126

When SW; is OFF and SW» is ON, the circuit can be obtained by solving:

dl
—IR — Ld_t =0. (127)
R
oo »
SW,
L
Vo= SWZ/’O

Figure 56: PWM circuit.

In both equations, L is the coil's self-inductance and R is the coil resistance. When
voltage is applied (SW1 is ON, SW2 is OFF), the current ramps up; when the voltage is turned
off (SW is OFF, SW> is ON), the current ramps down, resulting in periodic ripples. These
current ripples can generate fluctuating magnetic fields that may penetrate through the
vacuum-vessel wall and potentially affect the internal magnetic field distribution.

Figure 57 illustrates the typical behavior of a coil driven by PWM. The orange dashed
line shows the applied voltage across the PFC, which alternates between 0 V and 20 V in a
square-wave pattern. The resistance and inductance here is 0.02 Q and 10 pH. This
switching occurs at a fixed frequency 1 kHz and duty cycle, characteristic of PWM control.
The blue solid line represents the resulting current through the coil. Due to the coil's

inductance, the current cannot follow the abrupt voltage changes instantaneously. Instead, it
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increases as one minus an exponential function during each “ON” phase of the voltage (when
the voltage is high) and then decreases exponentially during the “OFF” phase (when the

voltage drops to zero). This produces the characteristic sawtooth-shaped current waveform.
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Figure 57: PWM voltage and current waveforms for 1 kHz.

To mitigate this issue, it is essential to evaluate the frequency range at which the
vacuum-vessel wall can effectively shield out these ripple-induced magnetic fields. This
shielding effect arises due to the eddy current generated in the conductive vacuum-vessel
wall. The induced eddy current in the conducting wall generate opposing magnetic fields,
which cancel out the penetrating magnetic field components. Until the eddy current damp to
zero by the wall resistivity, the field penetrates through the vacuum-vessel wall. For high
frequency ripples, the eddy current doesn’t have enough time to damp out. As a result, the
high frequency ripples are cancelled by the eddy current and thus shielded out. The damping
time strongly depends on the resistance of the eddy current path. In other words, it depends
on the cross section of the eddy current path. The skin depth &, which determines how far a

magnetic field can penetrate into a conductor, is given by:
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where p is the magnetic permeability, ¢ is the electrical conductivity of the wall material,
and w = 2nf is the angular frequency of the PWM ripple. When the skin depth becomes
significantly smaller than the wall thickness, the PWM-generated magnetic field is strongly
cancelled and cannot penetrate the interior of the vacuum vessel. Therefore, by ensuring the
PWM frequency is sufficiently high, the ripple fields can be effectively shielded by the
vacuum-vessel wall, minimizing their impact on the magnetic field.

In addition, as the frequency increases, the amplitude of the PWM ripples in current
also decreases. This is because at higher switching frequencies, each ON-OFF cycle becomes
shorter, leaving less time for the current to rise or fall significantly within each period. As a
result, the ripple magnitude is reduced, as shown in Figure 58. Increasing the frequency not
only enhances the vacuum-vessel wall’s attenuation of the magnetic ripple, but also
intrinsically reduces the ripple amplitude. Therefore, we identify an appropriate high-
frequency range that ensures both effective shielding and minimal ripple-induced

disturbance.
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Figure 58: Simulated PWM-induced current waveforms at 1 kHz, 10 kHz, and 100 kHz.
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To study the shielding effect of the vacuum-vessel wall, we use a single-turn PFC with
a rectangular cross-section of 5 mm x 5 mm to generate a magnetic field with ripples. The
corresponding resistance and inductance of the PFC is 0.02 Q and 10 pH, respectively.
Then the coil current with ripples can be provided using the model in Figure 56. Finally, we
can calculate the magnetic field in the interior of the vacuum vessel with and without the
eddy current of the vacuum-vessel wall for comparison.
(1) COMSOL simulation

We used the "Time-dependent", "Magnetic Fields (mf)", and "2D axisymmetric"
modules in COMSOL[20] to simulate the magnetic field distribution generated by the PWM
current in the PFC within the interior of the vacuum vessel. First, we constructed the
geometry of the mini-Tokamak based on the specifications described in Chapter 2, along
with a test PFC defined as a single-turn circular loop with a rectangular cross-section of 5
mm X 5 mm, located at a major radius of 170 mm and z = 0, as illustrated by the small dot
in Figure 59. A semicircular outer shell was added and defined as an “infinite element

domain” to prevent artificial boundary effects on the simulation, as shown in Figure 59.
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Figure 59: mini-Tokamak configuration in COMSOL.
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The vacuum vessel material was set to 304L stainless steel, the PFC was assigned to
copper, and all other regions, including the interior of the vacuum vessel and the infinite
shell, were set as air. The PFC was defined as a "Coil" domain in COMSOL, and the PWM
current profile (blue solid line in Figure 57) was imported as the time-dependent current
source for the PFC.

To calculate the response of the vacuum-vessel wall to the time-varying magnetic field,
"Ampere’s Law in solids" was applied to the vacuum vessel region. This setting enables the
simulation of eddy current induced in conductive materials by time-varying magnetic fields.
Unlike "Ampere's Law" for non-conductive regions (which only solves for magnetic fields),
the "in solids" variant includes Ohm’s law to account for induced current, making it essential
for capturing the electromagnetic shielding effects of the vacuum-vessel wall.

Figure 60 shows the magnetic field distribution simulated using COMSOL under
different PWM frequencies. In each subplot, the red line represents the magnetic field
generated solely by the PWM current in the PFC, while the blue line includes the
contribution from both the PFC and the eddy current induced in the vacuum-vessel wall. At
1 kHz, as shown in Figure 60(a), the magnetic field exhibits a pronounced ripple pattern with
visible peak-to-peak oscillations, indicating that the vacuum-vessel wall cannot fully cancel
the low-frequency components. However, the blue line still shows noticeable damping
compared to the red one, demonstrating the partial shielding effect of the vessel.

As the frequency increases to 10 kHz in Figure 60(b), the ripple amplitude visibly
decreases, and the magnetic field becomes smoother, although some residual oscillation
remains. By 100 kHz, shown in Figure 60(c), the ripple is almost non-noticeable in the blue
curve, suggesting that no significant high-frequency components occurs in the vacuum

vessel.
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To further quantify the attenuation of magnetic ripple caused by the vacuum-vessel wall
at different PWM frequencies, Figure 61 presents the extracted ripple components for the
same three cases shown in Figure 60. The ripple amplitude is obtained by subtracting the
moving average of each magnetic field signal from its original waveform. The number of
moving-averaged points for 1-kHz case, 10-kHz case, and 100-kHz case are all 50 points. In
Figure 61(a), corresponding to the 1 kHz case, both the “with chamber” and “no chamber”
curves show clear periodic oscillations. However, the blue curve (with chamber) has visibly

reduced amplitude. The peak ripple reaches approximately +2 X 10™* T in the presence of
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Figure 60: (a) Magnetic field comparison at 1 kHz PWM with and without chamber.
(b): Magnetic field comparison at 10 kHz PWM with and without chamber.

(c): Magnetic field comparison at 100 kHz PWM with and without chamber.
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the chamber, whereas the no-chamber case (red curve) exceeds +5 X 107* T. This shows
that while attenuation is present, the ripple still penetrates significantly at 1 kHz.

As the PWM frequency increases to 10 kHz in Figure 61(b), the suppression becomes
much more effective. The blue curve’s ripple amplitude drops to within +5 x 107° T, while
the red curve still exhibits strong oscillations exceeding +7 x 107> T. At 100 kHz, as
shown in Figure 61(c), the difference becomes dramatic. The ripple in the chamber-present
case is nearly flat, remaining within +1 X 1077 T, demonstrating that the eddy current in

the vacuum-vessel wall effectively eliminate high-frequency ripple components.
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Figure 61: (a) Ripple amplitude at 1 kHz PWM with and without chamber. (b): Ripple
amplitude at 10 kHz PWM with and without chamber. (c): Ripple amplitude at 100 kHz

PWM with and without chamber.
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These results provide strong evidence that increasing the PWM frequency not only
reduces the initial amplitude of the magnetic ripple but also significantly enhances the
vacuum-vessel wall’s ability to attenuate it. At higher frequencies, the vacuum-vessel wall,
governed by the skin effect, exhibits greater resistance to time-varying magnetic fields. This
confines the induced eddy current to a thinner surface layer, thereby generating opposing
magnetic fields that effectively cancel out the ripple components. Although we currently lack
experimental data to directly assess the impact of magnetic ripples on plasma equilibrium,
the present system operates at a PWM frequency of 1 kHz. Future adjustments to the PWM
frequency will be considered based on forthcoming experimental observations and their
implications for plasma performance.

(2) MATLAB calculation using our model

Since we have already developed a model capable of calculating the eddy current
induced in the vacuum-vessel wall by the PWM current, as described in Chapter 3, and a
model for computing the magnetic field generated by both the vacuum-vessel wall and the
PFC, as detailed in Chapter 4, we now proceed to validate by comparing results obtained
from our model with the results obtained from COMSOL.

We input the vacuum-vessel wall configuration identical to that used in the previous
COMSOL simulation, namely the mini-Tokamak geometry based on the specifications
described in Chapter 2, along with a test PFC modeled as a single-turn circular loop with a
rectangular cross-section of 5 mm x 5 mm, positioned at a major radius of 170 mm and z =

0, as illustrated in Figure 62.
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Figure 62: mini-Tokamak coil configuration with a test PFC.

Subsequently, using the same PWM current profile at 1 kHz, 10 kHz, and 100 kHz as
described previously, we calculated the eddy current induced in the vacuum-vessel wall.
Based on these results, we further computed the magnetic field generated by both the PFC
and the induced eddy current, as well as their combined total magnetic field distribution, as
shown in Figure 63, which shows the magnetic field Bz at R = 0.45 m for PWM frequencies
of 1 kHz, 10 kHz, and 100 kHz, respectively. For each frequency, we plot the magnetic field
generated by the PFC current alone, the field produced by the eddy current in the vacuum-
vessel wall, and the combined total field.

As shown in Figure 63(a), at 1 kHz, the vacuum-vessel wall has limited shielding
capability, and the eddy current is unable to fully suppress the ripple components from the
PFC, resulting in a large oscillatory component in the total field. At 10 kHz (Figure 63(b)),
the eddy current begin to effectively oppose the PFC-induced field, reducing the ripple
amplitude in the total magnetic field. By 100 kHz, as illustrated in Figure 63(c), the high-

frequency ripple is almost unnoticeable, leaving a smooth and nearly steady magnetic field.
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Figure 63: (a) Ripple amplitude at 1 kHz PWM with and without chamber. (b): Ripple
amplitude at 10 kHz PWM with and without chamber. (¢): Ripple amplitude at 100 kHz

PWM with and without chamber.

These results are consistent with the COMSOL simulation findings presented in
Appendix A.3.1.1 (Figure 60), confirming that the vacuum-vessel wall's shielding
effectiveness improves significantly with increasing PWM frequency. Both our model and
the COMSOL simulations exhibit the same trend of ripple suppression, thereby validating
the accuracy and reliability of our models.

To further assess the model’s accuracy, we performed a direct comparison of the
computed total Bz field from our model with results obtained from COMSOL. As shown in
Figure 64, the two results are in excellent agreement across all PWM frequencies, showing
that the Bz waveforms at 1 kHz, 10 kHz, and 100 kHz are nearly identical between the two
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Figure 64: (a) Comparison of Bz field at 1 kHz PWM frequency. (b): Comparison of Bz

field at 10 kHz PWM frequency. (c): Comparison of Bz field at 100 kHz PWM frequency.

approaches. It indicates the high accuracy of our models for computing both the eddy current
and the magnetic fields.
A.3.2 Conclusion

This appendix confirms that high-frequency PWM ripples is effectively shielded by the
vacuum-vessel wall, thereby preventing its penetration into the plasma region; however, the
precise frequency for effective shielding should ultimately be determined through

experimental validation.
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A.4 mini-Tokamak components setup code

% The code is in Student Thesis/2025 ypi/Code/parameter mini_thesis on the NAS.

%% ---- Enable Components ----
enable chamber = true;
enable solenoid = true;
enable plasma = false;

enable pfc = false;

%% Input Parameters

% Chamber
if enable_chamber
chamber height = 531e-3;

inner_thickness = 1.8e-3;

inner_distance = 17.25e-3 + inner_thickness/2;
outer_thk side = 3e-3;

outer_thk top = 16e-3;
outer thk bottom = 15e-3;

outer x_start = 26.55¢-3;
outer x end = 146.55¢e-3;

outer side length = outer x end - outer x_start;

% Inner wall params
inner_params.height = chamber height;
inner_params.thickness = inner_thickness;

inner_params.distance = inner_distance;

% Generate inner wall
[inner X, inner z, chamber components.inner wall] =

generate inner_wall(inner params);

% Generate outer wall (3 sides only: bottom — left — top)

num_bottom = 9;
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z bot = -chamber height / 2 + outer_thk bottom / 2;
bottom_x = linspace(outer x_start, outer x_end, num_bottom)';

bottom_z =z bot * ones(num_bottom, 1);

x_left = 163e-3 - outer thk side / 2;

z left start =-chamber height /2 + outer thk side /2;
z left end = chamber height/2 - outer thk side/2;
num_left = ceil((chamber_height) / outer thk side);
left x =x_left * ones(num_left, 1);

left z = linspace(z_left start, z left end, num_left)’;

X_top_start = 152e-3;

x_top_end =24e-3;

num_top =9;

z_top = chamber height /2 - outer thk top/2;
top_x = linspace(x_top_start, X_top end, num_top)';

top_z =z top * ones(num_top, 1);

outer x = [bottom_x; left_x; top_x];

outer z = [bottom_z; left z; top_z];

outer thk =1 ...
repmat(outer thk bottom, num_bottom, 1); ...
repmat(outer _thk side, num_left, 1); ...
repmat(outer _thk top, num_top, 1)];

outer_r = repmat(1.5e-3, length(outer x), 1);

chamber components.outer wall = struct();
for 1 = 1:length(outer_x)
chamber components.outer wall(i).r = outer x(i);
chamber components.outer wall(i).z = outer z(1);
chamber components.outer wall(i).thickness = outer thk(i);
chamber components.outer wall(i).radius = outer r(1);
chamber components.outer wall(i).coil length =2 * pi * outer x(i);
end

end

% Solenoid
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if enable_solenoid

2);

solenoid_radius = 1.3e-3;

solenoid_radius cooling = Oe-3;

isolation_thickness = 1.7e-3;

solenoid_total radius = solenoid_radius + isolation_thickness;
solenoid_inner num_coils = 92;

solenoid_layer count = 2;

solenoid outer num_coils = solenoid inner num_coils * (solenoid layer count ==

solenoid_inner distance = 8e-3;
solenoid outer distance = solenoid inner distance + (solenoid layer count ==2) * 2

* solenoid_total radius;

end

solenoid height between turns = solenoid_total radius * 2;
solenoid_height = solenoid total radius * 2 * solenoid inner num_coils;
solenoid coil A = pi * (solenoid_radius”2 - solenoid radius_cooling”2);

solenoid _a = pi * (solenoid inner distance - solenoid radius)"2;

% Plasma

if enable plasma

end

T plasma=1; % eV

n_total plasma=1el7; % m"-3

R _plasma = 85e-3;

a_plasma = 55e-3;

kappa = 1.82;

b plasma =a plasma * kappa;

A plasma=pi*a plasma * b_plasma;

L plasma=2 * pi * R _plasma;

V plasma =2 * pi*2 * R_plasma * a_plasma * b_plasma,;

% PFC

coil_component = struct();

if enable pfc

pfc list={
struct('name’, 'PFC1', 'width', 5e-3, 'radius', 2.5¢-3, ...

'distance', 0.200, 'z_values', 0.100, 'num_coils', 1), ...
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struct('name’, 'PFC2', 'width', 5¢-3, 'radius', 2.5¢-3, ...
'distance’, 0.200, 'z_values', -0.100, 'num_coils', 1), ...
struct('name’, 'PFC3', 'width', S5e-3, 'radius', 2.5¢-3, ...
'distance’, 0.100, 'z_values', 0.150, 'num_coils', 1), ...
struct('name’, 'PFC4', 'width', Se-3, 'radius', 2.5¢-3, ...

'distance’, 0.100, 'z_values', -0.150, 'num_coils', 1)

¥

coil_component.PFC = struct();
pfc_counter = 1;
for k = 1:length(pfc_list)
pfc = pfc_list{k};
[pfc_x, ~, pfc_z] =setup_coil(pfc.num_coils, pfc.radius, pfc.width, ...
pfc.distance, pfc.z_values, pfc.z values, 0, 0);
for i = l:pfc.num_coils
coil_component.PFC(pfc_counter).r = pfc_x(i);
coil_component.PFC(pfc_counter).z = pfc_z(i);
coil_component.PFC(pfc_counter).thickness = pfc.width;
coil_component.PFC(pfc_counter).radius = pfc.radius;
coil_component.PFC(pfc_counter).coil length =2 * pi * pfc.distance;

pfc_counter = pfc_counter + 1;

figure;
hold on;

if enable chamber
plot(outer x, outer z, 'ro', 'MarkerFaceColor', 't', 'DisplayName', 'Outer Wall");
plot(inner_x, inner_z, 'bo', 'MarkerFaceColor', 'b', 'DisplayName', 'Inner Wall');

end

if enable plasma
theta = linspace(0, 2*pi, 200);
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x_plasma =R _plasma + a_plasma * cos(theta);
z plasma =b_ plasma * sin(theta);
plot(x_plasma, z plasma, 'k-', 'DisplayName', 'Plasma’);

end

if enable solenoid
solenoid_z = linspace(-solenoid height/2 + solenoid_total radius, ...
solenoid height/2 - solenoid _total radius,

solenoid inner num_coils)';

plot(repmat(solenoid inner distance, solenoid inner num_coils, 1), solenoid z, ...

'gx', 'DisplayName', 'Solenoid Inner");
if solenoid layer count == 2
plot(repmat(solenoid outer distance, solenoid outer num_coils, 1),
solenoid z, ...
'mx', 'DisplayName', 'Solenoid Outer");
end

end

if enable pfc
for p = 1:length(coil component.PFC)
plot(coil component.PFC(p).r, coil component.PFC(p).z, ...
'go’, 'MarkerSize', 6, 'MarkerFaceColor', 'g', 'DisplayName', 'PFC');
end

end

xlabel("X Position (m)');

ylabel('Z Position (m)");

title('Chamber XZ Plane View');

legend('Location', 'bestoutside');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold");
grid on;

hold off;

saveas(gcf, 'wall rect plot.png");

% Chamber
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if enable chamber

num_inner = length(inner x);

num_outer = length(outer Xx);

names = [arrayfun(@(i) sprintf('Inner Wall %d', 1), 1:num_inner, 'UniformOutput’,
false)'; ...

arrayfun(@(i) sprintf('Outer Wall %d', 1), 1:num_outer, 'UniformOutput’,

false)'];

r_values = [inner_x; outer x];

z values = [inner_z; outer z];

thickness values = [repmat(inner params.thickness, num_inner, 1); outer thk];

radius_values = [repmat(inner params.thickness/2, num_inner, 1); outer rJ;

coil_lengths =2 * pi * r_values;

chamber table = table(names, r_values, z_values, thickness values, radius_values,
coil lengths, ...
"VariableNames', {"Component', 'Distance_m', 'Z Position_m', "Thickness m',
'Radius_m', 'Coil Length m'});
save table with overwrite(chamber table, 'chamber components.xIsx');
end

% Solenoid
if enable_solenoid
solenoid _table = table({"solenoid"}, solenoid radius, solenoid radius cooling,
isolation_thickness, solenoid total radius, ...
solenoid inner num_coils, solenoid outer num_coils, solenoid inner distance,
solenoid outer distance, ...
solenoid_height between_turns, solenoid_height, solenoid coil A,
solenoid a, ...
'"VariableNames', {'Component', 'Radius m', 'Cooling_m', '[solation_Thick m',
"Total Radius m', 'Inner Num_Coils', 'Outer Num_Coils', 'Inner Distance m’',
'Outer Distance m', 'Height Between Turns m', "Total Height m', 'Coil Area m2',
'A_Param'});
writetable(solenoid table, 'solenoid_parameters.xlsx');
end

% Plasma

if enable plasma
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plasma_table = table({"plasma"}, T plasma, n total plasma, a plasma, kappa,
R plasma, A plasma, L plasma, V_plasma, ...

"VariableNames', {'Component', "Temperature eV', 'Particle Density m3',
'Semi_Minor Axis m', 'Kappa', 'Major Radius m', 'Cross_Sectional Area m2',
'"Length m', "Volume m3'});

writetable(plasma_table, 'plasma_parameters.xIsx');
end

% PFC
if enable pfc
coil_names = fieldnames(coil component);
coil table data={[];
for i = 1:length(coil names)
comp name = coil names{i};
coils = coil _component.(comp_ name);
for j = 1:length(coils)
coil table data = [coil table data; {
sprintf('%s %d', comp name, j), ...
coils(j).r, coils(j).z, coils(j).thickness, coils(j).radius,
coils(j).coil length
Ik
end
end
coil table = cell2table(coil table data, ...
'"VariableNames', {'Component', 'Distance m', 'Z Position m', 'Thickness m',
'Radius_m', 'Coil_Length m'});
writetable(coil table, 'coil components.xlsx');
end

function [x_values, z_values, wall struct] = generate _inner wall(params)
radius = params.thickness / 2;
num_coils = ceil(params.height / params.thickness);
z_values = linspace(-params.height/2 + radius, params.height/2 - radius, num_coils)';

x_values = repmat(params.distance, num_coils, 1);
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wall_struct = repmat(struct('r',0,'z',0,'thickness',0,'radius',0,'coil_length',0), num_coils,

1);

fori= l:num_coils
wall_struct(i).r = x_values(i);
wall_struct(i).z = z_values(i);
wall_struct(i).thickness = params.thickness;
wall_struct(i).radius = radius;
wall struct(i).coil length =2 * pi * x_values(i);
end

end

function [x_values, y values, z values] = setup_coil(num_coils, coil radius,
coil_thickness, ...
coil distance, z_start, z_end, theta start, theta end, offset x, use sin z)
if nargin <9, offset x =0; end
if nargin < 10, use sin_z = false; end
theta values = linspace(theta_start, theta end, num_coils)';
x_values = coil_distance * cos(theta values) + offset x;
y_values = coil distance * sin(theta_values);
ifuse sin z
z values = coil_distance * sin(theta_values);
else
z values = linspace(z_start, z_end, num_coils)";
end

end

function save table with overwrite(table data, file name)

writetable(table data, file name);

fprintf('File "%s" has been saved successfully (overwritten if existed).\n', file name);
end
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A.5 Value of Q, for mutual inductance between solenoid and ring coil

(Table 27 in page 115 of Ref [10])

A la=0] 005 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 I
0 1 1 1. 1 1 1 1 1 1 1 1 0
0.05 1 1.0000 | 1,0000 | 1.0000 | 1.0001 | 1.0001 | 1.0001 | 1.0001 | 1,0002 | 1.0002 | 1.0002 | 0.05

.10 1 1.0000 | 1.0000 | 1.0001 | 1.0002 | 1.0002 | 1.0003 | 1.0004 | 1.0006 | 1.0008 | 1.0009 | .10
15 1 1.0000 | 1.0001 | 1.0002 } 1.0004 | 1,0006 | 1.0008 | 1.0010 | 1.0013 | 1.0016 | 1.0020 | .15
.20 1 1.0000 | 1,0002 | 1.0004 | 1.0006 § 1.0010 | 1.0014 | 1,0018 | 1.0024 | 1.0030 | 1.0036 | .20
0.25 1 1.0001 | 1.0003 | 1.0005 | 1.0009 | 1.0014 | 1.0021 | 1.0029 | 1.0038 | 1.0046 | 1.0057 | 0.25
.30 1 1.0001 | 1.0004 | 1.0007 | 1.0013 | 1.0021 { 1.0030 | 1.0041 | L0053 | 1.0067 | 1.0082 | .30
35 1 1.0001 | 1.0005 | 1.0010 | 1.0018 | 1.0028 | 1.0041 | 1.0056 | 1.0072 ] 1.0081 | 1.0111 | .35
40 1 1.0002 | 1.0006 | 1.0014 | 1.0024 | 1.0037 | 1.0054 | 1.0072 | 1.0094 | 1.0119 | 1.0146 | .40
A5 1 1.0002 | 1.0008 | 1.0017 | 1.0030 | 1.0047 | 1.0088 | 1.0002 | 1.0120 | 1.0152 | 1.0186 | .45
0.50 1 1.0002 | 1.0010 | 1.0021 | 1.0037 | 1.0058 | 1.0084 | 1,0114 | 1.0148 | 1,0188 | 1.0231 | 0.50
.55 1 1.0003 | 10012 | 1.0026 | 1.0045 | 1.0071 | 1.0102 | 1.0138 | 1.0180 | 1.0228 | 1.0282 | .55
.60 1 1.0003 | 1.0014 | 1.0031 | 1.0054 | 1.0084 | 1.0122 | 1.0166 | 1.0218 | 1.0274 | 1.0338 | .60
B85 1 1.0004 | 1.0016 | 1.0036 | 1.0084 | 1.0100 | 1.0144 | 1.0196 | 1.0256 | 1.0325.| 1.0402 | .65
J0 1 1.0004 | 1.0018 { 1.0042 | 1.0074 | 1.0116 | 1.0167 | 1,0228 | 1.0300 | 1.0382 } 1.0473 | .70
0.75 1 10005 | 1.0021 | 1.0048 | 1.0085 | 1.0133 | 1.0193 | 1.0264 | 1.0348 { 1.0444 | 1.0552 | 0.75
.80 1 1.0006 | 1.0024 | 1.0054 | 1.0007 | 1.0152 { 1.0221 | 1.0303 | 1.0400 | 1.05612 | 1.0640 | .80
.85 1 1.0006 | 1.0027 | 1.0061 | 1.0110 | 1.0173 | 1.0251 | 1.0345 | 1.0458 | 1.0588 | 1.0739 | .85
80 1 1.0007 | 1.0030 | 1.0068 | 1.0124 | 1.0195 | 1.0284 | 1.0392 | 1.0522 | 1.0573 { 1.0850 | .00
0.95 1 1.0008 | 1.0034 | 1.0077 | 1.0138 | 1,0218 | 1.032¢ | 1.0442 | 1.0592 | 1.0768 | 1.0976 | 0.95
1.00 1 1.0009 | 1.0038 | 1.0086 | 1.0154 | 1.0244 | 1.0358 | 1.0498 | 1.0668 | 1.0873 | 1.1117 | 1.00

# |a=050] 0,55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 095 |a=1.00] 2

0 1 1 1 1 1 1 1 1 1 1 1 0
0.05 | 1.0002 | 1.0002 { 1.0003 | 1.0004 | 1.0005 | 1.0008 { 1.0006 | 1.0007 | 1.0008 | 1.0008 | 1.0008 | 0.05
.10 | 1.0009 | 1.0011 | 1.0013 | 1.0016 | 1.0018 | 1.0020 | 1.0023 | 1.0026 | 1,0029 | 1.0032 | 1.0035 | .10
15 | 1.0020 | 1.0024 | 1.0020 | 1.0034 | 1.0040 | 1.00468 | 1,005) | 1.0057 | 1.0083 | 1.0070 | 1,0077 | .15
.20 | 1.0036 | 1.0044 { 1.0052 | 1.0061 | 1.0070 | 1.0080 | 1.0090 | 1.0101 | 1.0112 [ 1.0123 [ 1.0135 | .20
0.25 | 1.0057 | 1.0058 | 1.0081 | 1.0084 | 1.0108 | 1.0124 | 1.0140 | 1,0156 | 1,0172 | 1.0160 | 1.0208 | 0.25
.30 | 1.0082 | 1.0088 | 1.0116 | 1.0186 | 1.0156 | 1.0178 | 1.0200 | 1.0224 | 1.0248 | 1.0273 | 1.0200 | .30
A5 | 1.0111 | L0134 | 1.0158 | 1.0185 | 1.0213 | 1.0242 | 1.0272 | 1.0304 | 1.0337 | 1.0372 | 1.0406 | .35
40 | 10146 | 1.0176 | 1.0208 | 1.0242 | 1.0279 | 1.0317 | 1.0358 | 1.0400 | 1.0443 | 1.0488 | 1.0534 | .40
46 1 1.0188 [ 1.0224 | 1.0264 [ 1.0308 | 1.0355 | 1.0404 | 1.0456 | 10510 | 1.0566 | 1.0623 | 1.0683 | .45
0.50 | 1,0231 | 1.0278 | 1.0330 | 1.0384 | 1.0444 | 1.0506 | 1.0571 | 1.0640 | 1.0710 | 1.0784 | 1.0858 | 0.50
.55 | 1.0282 | 1.0340 | 1.0404 | 1.0471 | 1.0544 | 1.0622 | 1,0704 | 10700 | 1.0878 | 1.0970 | 1.1064 | .55
.80 } 1.0338 | 1.0410 | 1.0487 | 1.05670 | 1.0860 | 1.0756 | 1.0857 | 1.0964 | 1.1076 | 1.118% | 1.1305 { .60
.65 | 1.0402 | 1.0488 | 1.0582 | 1.0683 | 1.0792 | 1.091¢ | 1.1036 | 1,1168 | 1.1304 | 1.1446 | 1.1593 | .65
70 | 1.0473 | 1,0675 | 1.0688 | 1.0812 | 1.0945 | 1.1086 | 1.1242 | 1,1405 | 1.1576 | 1.1754 | L.1941 | 70
0.75 | 1.0552 | 1.0674 | 1.0810 | 1.0960 | 1.1124 | 1.1301 | 1.1491 | 1.1693 | 1.1908 | 1.2134 | 1.2372 | 0.75
.80 | 1.0840 | 1.0785 | 1.0047 | 1.1126 | 1.1324 | 1.1545 | 1.1786 | 1.2044 | 1.2320 | 1.2612 | 1.2922 | .80

.85 [ 1.0730 | 1.091]1 | 1.1106 | 1.1324 | 1.1868 | 1.1843 | 1,2150 | 1.2490 | 1.2864 85
.90 | 1,0850 | 1.1054 | 1.1289 | 1.1558 | 1.1868 | 1.2220 | 1.2623 | 1.3080 | 1.3589 | 1.4150 | 1.4763 | .90
.95 | 1.0976 | 1.1216 { 1,1502 | 1.1842 | 1.2245 0.95
1,00 | 11117 | 1.1403 | 1.1752 | 1,2157 { 1.2733 | 1.3630 | 1.4978 1.7430 L] 1.00
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A.6 Value of f for mutual inductance between ring coils. (Table 13 in

page 79 of Ref [10])
k2 f Diff. | logf | Diff, k' f Diff. logf | Difi,
0.010 | 0.021474 2.33191 0.260 | 0.003805 3.58034
—4159 —9349 — 156 —1819
020 .017315 .23842 270 | 003649 56215
-2378 —6596 — 149 —1805
030 { .014937 17246 280 | .003500 .54410
-1653 —4913 ~ 141 —1792
040 | .013284 12333 290 | .003359 .52618
—12581| _ —4319 — 135 —1783
0.050 | 0.012026 2.08014 0.300 | 0.003224 3.60835
—1009 —3807 — 129 —-1773
060 | .011017 04207 .310 1 .003095 .49062
— 838| _ —3437 — 124 —1767
.070 | .010179 2.00770 2320 | .002971 47295
— 75| _ —3162 — 118 —1760
080 | .009464 3.97608 330 | .002853 45535
— 621 —2946 - 113 — 1757
090 { .008843 94662 340 | .002740 43778
— 546 _ —2772 — 108| _ —1754
0.100 | 0.008297 3.91890 0.350 } 0.0026317 3.42024
— 487 —2627 —1041 —1753
.110 { .007810 .80263 .360 | .0025276 40271
— 439 —2509 : —1000 —1753
120} .007371 86754 370 | .0024276 38518
— 397 —2407 — 961 —1754
130 | .006974 .84347 .380 | .0023315 .36764
- 363 —2321 — 924 —1756
.140 | .006611 82026 390 | .0022391 .35008
— 333| _ —2246 .— 889 _ —1760
0.150 | 0.006278 3.79780 0.400 | 0.0021502 3.33248
— 308 —2181 ‘ — 850 —1765
.160 | .005970 77599 410 | .0020646 31483
— 285 —2124 — 825 —1769
.170 | .005685 76475 .420 | .0019821 20712
— 265 —-2074 — 795 —1778
.180 } .005420 .73401 .430 | .0019026 .27934
- 247 —2030 - 767 —1786
.190 | .005173 71371 440 | .0018259 .26148
— 232] _ —1991 — 1401 _ —1796
0.200 | 0.004941 3.69380 0.450 | 0.0017519 3.24352
- 218 —1957 - 714 —1807
.210 | .004723 67423 460 | .0016805 22545
— 205 —1926 — 689 —1819
.220 | .004518 .65497 470 | .0016116 20726
— 193 —1899 — 665 —1832
.230 } .004325 635098 480 | .0015451 .18894
— 183 — 1875 — 643 — 1846
.240 | .004142 61723 .490 | .0014808 17048
- 1731 _ —1854 — 622 _ —1862
0.250 | 0.003969 3.59869 0.500 ] 0.0014186 3.15186
— 164 —1835 — 601 —1879
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k2 i Diff. | logf | Diff. || k7 f Diff. | logf | Diff.
0.500 | 0.0014186 3.15186 0.750 | 0.0003805 7.58033

—601 —1879 — 260 —3068
510| .0013585 .13307 760 | 0003545 .54965

—581 — 1808 —~ 250 —3177
520 .0013004 .11409 770 | 0003295 51788

—561 —-1917 - 241 — 3296
530 .0012443 09492 780 { 0003054 .48492

—543 —1939 — 231 —3427
540] .0011900 07553 790 | .0002823 45065

—526| _ —1962 — 223| _ —3570
0.550 | 0.0011374 3.05501 0.800 | 0.00025998 2.41405

— 509 —1987 —-2139 —-3730
560| .0010865 03604 .810 | .00023859 37765

—492| —2012 —2053 —3908
570! .0010373 3.01592 820 .00021806 33859

—476| _ —2041 —~1966 —4105
580 | 0.0000897 4.00551 830 | .00019840 20754

—461 —2071 —1881 —4326
590 0000436 97480 .840 | .00017959 .25428

—448| —2103 -1797| _ — 4577
0.600 | 0.0008990 4.95377 1 0.850 | 0.00016162 4.20851

—432 —2137 —1712 — 4867
610| .0008558 93240 860 | .00014450 .15086

—417 ~2174 —~1629 —5104
620] .0008141 .01066 8701 .00012821 ,10792

—405 ~2213 —~1545| _ — 5577
630 .0007736 88853 880 | 0.00011276 1.05215

—301 —2254“ —14611] _ —6028
640| .0007345 86599 890 | .00009815 5.00187

~379] . —2209 —1377| — 6565
0.650 | 0.0006966 4.84300 0.800 | 0.00008438 5.92622

—366 — 9346 —1292
660 | .0006600 .81954 910 | .00007146 85405

—354 —92308 —1206
870 .0006246 79556 920 | .00005940 77382

—343 —2451 —1116
680| .0005903 77105 030 | .00004824 .68336

—332 —2510 —~1026
£90| .0005571 74595 | .940| .00003798 57950

—320| _ —2573 — 9032|
0.700 | 0.0005251 4.72022 0.950 | 0.00002866 5.45732

—310 —2640 — 831
10! 0004941 .69382 .960 | 00002035 30858

—209 —2714 — 728!
7201 .0004642 66668 .970 | 000001312 5.11782

—9289 —27901 — 604
730 .0004353 63877 980 | 00000708 6.85035

—279 — 2876 — 459
740 .0004074 61001 0.990 | 0.00000249 6.30551

—269| _ —2068 — 249
0.750 | 0.0003805 4.58033 1.000 0

—260 —3068
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A.7 Value of f for mutual inductance between ring coils. (Table 14 in

page 81 of Ref [10])

log k2 f Diff. || log k2 f Diff. |{f log k2 f Diff.

6.0 | 0.079093 4.0 | 0.050163 2.0 [ 0.021478

—1446 —1446 — 1394
6.1 .077647 4.1 048717 2.1 .020084

—1447 —1445 —1384
8.2 .076200 1.2 047272 3.2 .018700

—1447 —1445 —1371
6.3 .074753 i3 .045827 3.3 .017329

—1447 —1445 — 1357
6.4 .073306 4.4 .044382 3.4 .015972

—1446 —1444 —1340
6.5 | 0.071860 4.5 | 0.042038 2.5 | 0.014632

—1447 —1444 —1321
6.6 .070413 4.6 .041494 3.6 .013311

—1447 —1443 —1208
6.7 .068966 4.7 .040051 2.7 .012013

—1446 —1443 —1271
6.8 .067520 38 .038608 2.8 [ 0.010742

—1447 —1441 —1240
8.9 .066073 1.9 .037187 2.9 .009502

—1446 —1440 —1205
5.0 | 0.064626 3.0 | 0.035727 1.0 | 0.008297

: —1447 —1439

5.1 .063180 3.1 .034288

—1447 —1437
5.2 .061733 3.2 .032851

—1446 —1435
5.3 .060287 3.3 .031416

—1447 —1432
5.4 .058840 3.4 .020084

—1446 —1430
5.5 | 0.0573%4 3.5 | 0,028554

—1447 —1426
5.6 .055947 3.6 .027128

—1447 —1421
5.7 .054500 3.7 .025707

—1445 —1416
5.8 .053055 3.8 024291

—1446 —1410
5.9 .051609 3.9 .022881

—1446 —1403
4.0 | 0.050163 2.0 j0.021478
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A.8 Value of f for mutual inductance between ring coils. (Table 15 in

page 82 of Ref [10])

log k2 log f Diff. d; | Diff. dy | log k2 log f Diff. d, | Diff. dg
1.0 §.39227 3.5 7.64327
15001 15027
4.1 .54228 3.6 .79354 7
15001 15034
4.2 .69229 3.7 7.94388 S
15001 15042
4.3 .85230 3.8 6.09430 12
15002 15054
A4 9.99232 3.9 24484 13
15002 15067
1.5 §.14234 2.0 .39551 18
15003 15085
1.6 .29237 2.1 .54636 23
15003 15108
1.7 .44240 1 2.2 .69744 27
15004 15135
1.8 59244 2 2.3 6.84879 37
15006 15172
1.9 74250 1 2.4 5.00051 45
15007 15217
3.0 8.89257 1 2.5 .15268 57
15008 15274
3.1 7.04265 3 2.6 .30542 75
15011 15349
3.2 19276 2 3.7 .45891 04
15013 15443
3.3 .34289 4 2.8 .61334 118
15017 15565
3.4 49306 4 3.9 .76809 158
15021 15723
3.5 7.64327 6 1.0 5.92622

15027
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A.9 Value of f for mutual inductance between ring coils. (Table 16 in

page 83 of Ref [10])

3 I Dif. ] 7 Diff, 3 7/ Difl. s / Difi.

0.01 | 0.08016 0.26 | 0.010723 0.51 { 0.004800 0.76 | 0.0024659
- 869 — 383 —136 — 500

02 | 04147 27| 010340 52| 004864 J7 1 .0024060
— 508 —366 -132 — 581

03| .03639 .28 | 000974 .53 | 004532 | .78 ] 0023479
— 359 —347 —127 —563

04 | .03280 .20 | 009627 54 | .004405 79| .0022916
— 2717 —331 —122 —547

0.05 | 0.03003 0.30 | 0.009206 0.56 | 0.004283 0.80 | 0.0022389
— 228 —314 —118 —531

05 | 02777 .31 | 008980 .56 | .004185 .81 | .0021838
— 189 —301 -114 —515

07 | .02588 32| .oose7o 57| 004081 82 | .0021323
— 164 — 289 —111 — 500

08 | 02424 .33 | .008390 58 .po3sdo .83 | .0020823
— 143 —276 —106 — 486

09 ] .02281 .34 | .008114 .59 | .003834 84 | .0020337
- 127 — 264 - 103 —472

0.10 | 0.021539 0.35 | 0.007850 0.60 | 0.003730 0.85 | 0.0019865
—1143 —253 - 69 — 458

Ja1 | .020398 .36 | .007597 .61 | .003831 .86 | 0019407
— 1035 —243 — 97 — 445

12 | .o19361 37| 007354 .62 | .003534 87| 0018962
— 944 ~233 — 93 —432

13 | 018417 38| .007121 .63 | .003441 .88 | .0018530
- 867 —223 - 90 —-421

14| 017550 1 .39 | .008898 .64 | .003351 89 | .0018109
— 800 -214 — 88 — 408

015 | 0.016750 0.40 | 0.006684 0.65 | 0.003263. 0.90 | 0.0017701
- 741 - 207 - 84 —-397

.16 | 016009 41| .008477 .66 | .003179 91| .0017304
— 690 1 —198 - 82 —388

A7 | 015319 42 | .006279 67 [ 003097 02 | .0016918
— 643 —190 - 79 —~ 376

18 | .014678 | 43| .006089 68 | .003018 93 | .,0016542
— 803 —183 - 77 — 364

A9 ] 014073 .44 | .005906 B89 | 002041 84 | .0016178
— 566 —176 - 75 — 358

0.20 | 0.013507 0.45 | 0.005730 0.70 | 0.002806 0.95 | 0.0015822
— 532 | -170 - 72 —345

21 012975 T .46 | .005560 J1| .002794 96 | 0015477
-~ 802 — 184 - 70} = 336

22| .012473 47| .005398 72 002725 97| 0015141
' — 478 || - 157 - 68 —327

231 .o12000 A48 | .005230 73| .o0z2857 98 | .oo14814
- 449 —152 - 66 —318

24| .011551 49| 005087 74| 002591 0.99 | .0014498
— 425 — 146 - 63 -310

0.25 | 0.011126 0.50 | 0.004941 0.75 | 0.002528 1.00 | o.0014186

- 403 —141 - 62
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A.10 Value of f for mutual inductance between ring coils. (Table 17 in

page 84 of Ref [10])

A ! Dif. || a ! Die. || & ! pig. || a s Diff.
1.00 | 0.0014186 0.75 | 0.0007345 0.50 | 0.00025999 0.256 | 0.00003683

—304 —235 - 1377 - 413
0.99 | .0013882 74 | 0007110 49 | .00024622 24 | 00003270

—302 -~ 231 - 1335 - 382
98 | .0013579% 73| 0006879 .48 | .00023287 .23 | .00002888

—300 —228 — 1203 ~ 383
97 | .0013279 72| 0006651 A7 | 00021994 22 | 00002535

- 207 —224 —1251 ~ 328
96 | .0012982 1| 0006427 46 | .00020743 21| 00002212

~ 296 -221 ~1210 - 206
0.95 | 0.0012686 070 | 0.0006206 0.45 | 0.00019533 0.20 | 0.000019165

—293 -217 —1168 — 2887
94 | 0012393 69 | .0005989 A4 | 00018385 19| 000016478

— 290 - 214 — 1126 ~2429
93 [ .0012103 68 | .0005775 43 | .00017239 .18 | .000014049

- 288 —210 — 1085 —2184
.92 | .0011814 67 | .0005565 .42 | 00016154 .17 | 000011865

—286 —206 - 1044 — 1949
91 | 0011529 .86 | 0005359 41| 00015109 .16 | .000000916

— 283 —202 ~1003 — 1827
0.90 | 0.0011246 0.65 | 0.0005157 0.40 | 0.00014106 0.15 | 0.000008189

— 280 — 198 - 963 - 1517
89 | .0010966 .64 | 0004959 39 | .00013143 14 ,000006873

—278 - 195 - 922 - 1319
.89 | .0010888 63 | 0004764 .38 | .00012221 13 | .000005353

—275 -191 - 883 —1135
87 | .0010413 62 | 0004573 .37 | .00011338 12 | .000004218

—272 -186 ~ 843 — 063
86 | .0010141 61| .0004387 .38 | 0.00010495 11| .000003255

—270 ~183 — 803 — 808
0.85 | 0.0000871 0.60 | 0.0004204 0.35 | 0.00009692 0.10 | 0.000002449

— 266 —179 — 766 — 661
84 | .0009605 59 | 0004025 34| .00008926 .09 | .000001788

- 264 - 175 — 726 — 531
83 | .0009341 58 | .0003850 33 | 00008200 .08 | .000001257

— 260 ~170 - 710 - 414
82 | .0009081 57| .0003680 32| .00007510 07 | .000000843

—258 ~ 167 — 852 - 3n
81 | .0008823 66 | .0003513 31| .00006858 .06 | .000000532

—254 -163 ~ 818 - 224
0.80 | 0.0008569 0.55 | 0.0003350 0.30 | 0.00006242 0.05 | .000000308

— 251 —158 — 580
.79 | .0008318 54 .0003192 29 | .00005662

— 248 - 154 — 546
.78 | 0008070 53 | .0003038 28 | .00005116

~245 ~150 - 51
77 | 0007825 | .52 | .0002888 27 | .00004605

~242 — 146 - 477
76 | .0007583 51| .0002742 .26 | .00004128

~ 238 —142 - 445
0.75 | 0.0007345 0.50 | 0.0002600 0.25 | 0.00003683
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A.11 Resistance and inductance calculation code
% The code is in Student Thesis/2025 ypi/Code/R_and M thesis on the NAS.

enable plasma = false;

% === Read components data ===

% Read chamber components data

chamber data = readtable('chamber components.xlsx");

% Extract the relevant data from the table
component names = chamber data.Component;
r_values = chamber data.Distance m;

z values = chamber data.Z Position m;
thickness values = chamber_data.Thickness m:;
radius_values = chamber data.Radius m;

coil length values = chamber data.Coil Length m;

% Initialize counters for inner and outer walls
num_inner coils = 0;

num_outer coils = 0;

% Initialize chamber components structures
chamber components.inner wall = struct();

chamber components.outer wall = struct();

% Component names
% Distance (r) values
% Z-position values
% Thickness values
% Radius values

% Coil length values

% Iterate through each component and classify into inner or outer wall

for i = 1:height(chamber data)

component_name = component_names{i};

if contains(component_name, 'Inner Wall')
% Increment the inner wall coil counter

num_inner_coils =num_inner coils + 1;

% Assign values to the inner wall structure

chamber components.inner wall(num_inner coils).r =r_values(i);

chamber components.inner wall(num_inner coils).z =z values(i);
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chamber components.inner wall(num_inner coils).thickness =

thickness values(i);
chamber components.inner wall(num_inner coils).radius = radius_values(i);
chamber components.inner wall(num_inner coils).coil length =

coil length values(i);

elseif contains(component name, 'Outer Wall')
% Increment the outer wall coil counter

num_outer coils = num_outer coils + 1;

% Assign values to the outer wall structure
chamber components.outer wall(num_outer coils).r =r_values(i);
chamber components.outer wall(num_outer coils).z =z values(i);
chamber components.outer wall(num_outer coils).thickness =

thickness values(i);
chamber components.outer wall(num_outer coils).radius = radius_values(i);
chamber components.outer wall(num_outer coils).coil length =

coil_length values(i);

end

end
% Display the results
fprintf("Number of inner wall coils: %d\n', num_inner coils);

fprintf('"Number of outer wall coils: %d\n', num_outer coils);

% Read solenoid data

solenoid_data = readtable('solenoid parameters.xlsx');

% Extract the relevant parameters for the solenoid

solenoid radius = solenoid data.Radius_m; % Radius of the solenoid
isolation_thick = solenoid data.Isolation Thick m; % Thickness of isolation
layer

solenoid total radius = solenoid data.Total Radius m:; % Total radius of solenoid

solenoid inner num_coils = solenoid data.Inner Num_Coils; % Number of inner coils
solenoid outer num_coils = solenoid data.Outer Num_Coils; % Number of outer coils
solenoid inner distance = solenoid data.Inner Distance m; % Inner coil distance from

center
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solenoid outer distance = solenoid data.Outer Distance m; % Outer coil distance from
center
solenoid height between turns = solenoid data.Height Between Turns m; % Height

between turns

solenoid height = solenoid data.Total Height m; % Total height of
solenoid

solenoid coil A = solenoid data.Coil Area m2; % Cross-sectional area
of solenoid

solenoid_a = solenoid data.A Param; % Solenoid parameter
1y

% Read plasma data

if enable plasma

plasma data = readtable('plasma_parameters.xIsx');

% Assign the values back to their original variable names

T plasma = plasma_data. Temperature eV(1); % Initial
temperature (K)

n_total plasma = plasma_data.Particle Density m3(1); % Total particle
density (m”-3)

a_plasma = plasma_data.Semi_Minor Axis m(1); % Plasma

cross-section semi-minor axis (m)

kappa = plasma_data.Kappa(1); % Plasma cross-section semi-
major axis (m)

b plasma =a plasma * kappa;

R _plasma = plasma_data.Major Radius m(1); % Major radius
(m)

A plasma = plasma_data.Cross_Sectional Area m2(1); % Plasma cross-
sectional area (m”"2)

L plasma = plasma data.Length m(1);

V plasma = plasma data.Volume m3(1); % Plasma
volume (m”"3) for toroidal geometry

li_plasma=0.5;

mu0 =4 * pi * le-7; % Permeability of vacuum (H/m)

Lp=mu0 * R_plasma * (log(8 * R _plasma/a plasma) + li_plasma/?2 - 2);

Rp=0;
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total num_coils = num_inner coils + num_outer coils + 1 + 1; % +1 for solenoid, +1

for plasma

elseif ~enable plasma
total num_coils = num_inner coils + num_outer coils + 1; % +1 for solenoid

end

% === Collect all components' data ===
coils_distance = zeros(total num_coils, 1);
coils_z values = zeros(total num_coils, 1);
coils_thickness = zeros(total num_coils, 1);

coils_num = zeros(total num_coils, 1);

% Solenoid (index 1)

index = 1; % In case PFC need to put in front of CS

coils_distance(index) = solenoid inner distance; % For mutual inductance calculations,
we can use inner distance

coils_z values(index) = 0; % Assuming solenoid is centered at z=0
coils_thickness(index) = solenoid_radius * 2; % Diameter

coils_ num(index) = 1;

% Inner wall coils (indices 2 to num_inner_coils+1)

fori= l:num inner coils
coils_distance(i+index) = chamber components.inner wall(i).r;
coils_z values(i+index) = chamber components.inner wall(i).z;
coils_thickness(i+index) = chamber components.inner wall(i).thickness;
coils_num(i+index) = num_inner coils;

end

% Outer wall coils (indices num_inner coils+2 to 1+num_inner coilstnum_outer coils)
for 1= 1:num_outer coils
1dx =1+ num_inner coils + index;
coils_distance(idx) = chamber components.outer wall(i).r;
coils_z values(idx) = chamber components.outer wall(1).z;
coils_thickness(idx) = chamber components.outer wall(i).thickness;
coils_num(idx) = num_outer coils;

end
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% Material properties

rho_copper = 1.72¢e-8; % Resistivity of copper [Ohm-m]

chamber resistivity = 6.9e-7; % Resistivity of chamber material [Ohm-m] Stainless
steel 304

copper_permeability = 4e-7*pi; % Permeability of copper [H/m]

chamber permeability = 1.25663706212¢-6 * 1.008; % Permeability of chamber material
[H/m]

current_idx = 1;
% Initialize resistance and inductance matrices
R = zeros(total num_coils, total num_coils);

M = zeros(total num_coils, total num_coils);

% Resistance calculations for solenoid

solenoid inner coil length =2 * pi * solenoid_inner_distance;
solenoid outer coil length =2 * pi * solenoid outer distance;

solenoid inner_resistance = rho_copper * solenoid_inner coil length / solenoid coil A *
solenoid inner num_coils;

solenoid_outer resistance = rho_copper * solenoid outer coil length / solenoid coil A *
solenoid_outer num_coils;

solenoid_resistance = solenoid inner resistance + solenoid outer resistance;

% Inductance calculation for solenoid
solenoid_inductance = copper_permeability * (solenoid inner num_coils +

solenoid outer num_coils)*2 * solenoid a/ solenoid height;

% Place solenoid resistance and inductance in the matrices
R(current_idx,current_idx) = solenoid resistance;

M(current idx,current idx) = solenoid_inductance;

% Initialize current index after solenoid

current_idx = 2; % Solenoid is at index 1
% Calculate resistance and inductance for inner wall components
[R, M] = calculate_self inductance and resistance(chamber components.inner wall,

current_idx, chamber resistivity, R, M);
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% Update current index

current_idx = current_idx +num_inner coils;

% Calculate resistance and inductance for outer wall components

[R, M] = calculate_self inductance and resistance(chamber components.outer wall,

current_idx, chamber_resistivity, R, M);

if enable plasma

end

current_idx = current_idx + num_outer coils;
% Plasma

coils_distance(current idx) = R _plasma;
coils_z values(current idx) = 0;
coils_thickness(current idx) = 0;

coils_num(current_idx) = 1;

R(current idx, current_idx) = Rp;

M(current_idx, current idx) = Lp;

% Function to calculate self-inductance and resistance

function [R, M] = calculate self inductance and resistance(components, start idx,
resistivity, R, M)

% Function to calculate self-inductance and resistance for a set of coils

%

% Inputs:

%  components - Array of component structures with fields:

% .I (radius), .thickness, .radius (coil radius), .coil length
%  start idx - Starting index in the R and M matrices

%  resistivity - Resistivity of the material [Ohm-m]

% R - Resistance matrix to update
% M - Inductance matrix to update
%

% Outputs:

% R - Updated resistance matrix
% M - Updated inductance matrix
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num_coils = length(components);

fori= 1:num_coils
% Resistance calculation
coil_length = components(i).coil length; % Circumference [m]
cross_sectional area = components(i).radius"2 * pi; % [m"2]
resistance = resistivity * coil length / cross_sectional area;
idx = start_ idx +1- I;

R(idx, idx) = resistance;

% Inductance calculation

a_constant = components(i).r * 100; % Convert to cm

c_constant = components(i).thickness * 100; % Convert to cm

c over 2a=c constant/ (2 * a_constant);

P prim =4 *pi * (((1 + (c_over_2a"2)/ 6)*(log(8 / (c_over 2a"2))/
log(exp(1))) * (1/2))-0.84834 + 0.2041 * (c_over_2a"2));

inductance = 0.001 * (components(i).r - components(i).radius) * 100 * P_prim *
le-6; % [H]

M(idx, idx) = inductance;

end

end

% === Mutual inductance calculations ===

% Load mutual inductance tables from Excel files
solenoid mutual table = xlIsread("table27.x1sx");
table13 = xIsread("table13.x1sx");

table14 = xIsread("table14.x1sx");

table15 = xIsread("table15.x1sx");

table16 = xIsread("table16.x1sx");

table17 = xIsread("table17.x1sx");

% Preprocess data from tables
alpha_values = solenoid_mutual table(1, 2:end);
rho_squared values = solenoid mutual table(2:end, 1);

solenoid q values = solenoid mutual table(2:end, 2:end);

q_values = tablel6(:, 1);
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f values = tablel6(:, 2);
t values = tablel7(:, 1);
k values = tablel7(:, 2);

k prim_square values tablel3 = table13(:, 1);
f values_tablel13 = tablel3(:, 2);

log k prim square values table14 = tablel4(:, 1);
f values table14 = tablel4(:, 2);

log k square values tablel5 =tablel5(:, 1);
log f values tablel5 = tablel5(:, 2);

solenoid top z = solenoid height / 2;

solenoid bottom_z = -solenoid_height / 2;

% Mutual inductance between solenoid and ring components
for i = 2:total num_coils
% Alpha parameter

alpha solenoid = solenoid_inner distance / coils_distance(i);

% Compute D and d based on relative positions

z _coil = coils_z values(i);

if z_coil > solenoid top z
D =z coil - solenoid bottom_z;
d =z coil - solenoid_top z;
N_D =solenoid_inner num_coils * 2;
N d=1;

% Calculate rho squared values
rho_squared D = coils_distance(i)"2 / (coils_distance(i)"2 + D"2);
rho_squared d = coils_distance(i)"2 / (coils_distance(i)"2 + d"2);

% Interpolate q values from solenoid mutual table
g_solenoid D = interp2(alpha_values, rho squared values, solenoid q values,

alpha_solenoid, rho squared D, 'linear', 0);

159



g_solenoid d = interp2(alpha_values, rho_squared values, solenoid q values,

alpha solenoid, rho squared d, 'linear', 0);

% Mutual inductance calculation

M D =0.002 * pi*2 * solenoid outer distance * 100 * alpha solenoid *
sqrt(rho_squared D) * N_D * q_solenoid D * 1e-6;

M d=0.002 * pi*2 * solenoid outer distance * 100 * alpha_solenoid *
sqrt(rho_squared d) * N d * q_solenoid d * le-6;

% Compute mutual inductance between solenoid and coil i
M(1,i)=M D-M d;
M(, 1) =M(1, 1); % Symmetric matrix

elseif z_coil < solenoid_bottom z
D = solenoid top z-z coil;
d = solenoid bottom_z -z coil;
N_D = solenoid_inner num_coils * 2;
N d=1;

% Calculate rho squared values
rho_squared D = coils_distance(i)"2 / (coils_distance(i)"2 + D"2);
rho squared d = coils_distance(i)"*2 / (coils_distance(i)"2 + d"2);

% Interpolate q values from solenoid mutual table

g _solenoid D = interp2(alpha values, rho squared values, solenoid q values,
alpha_solenoid, rho squared D, 'linear', 0);

q_solenoid d = interp2(alpha values, rho squared values, solenoid q values,

alpha_solenoid, rho_squared d, 'linear’, 0);

% Mutual inductance calculation

M D =0.002 * pi*2 * solenoid_outer distance * 100 * alpha solenoid *
sqrt(rtho_squared D) * N_D * q _solenoid D * 1e-6;

M d=0.002 * pi*2 * solenoid outer distance * 100 * alpha_solenoid *
sqrt(rtho_squared d) * N _d * q_solenoid d * le-6;

% Compute mutual inductance between solenoid and coil i
M(1,i))=M D-M d;
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M(, 1) = M(1, 1); % Symmetric matrix

elseif z_coil == solenoid bottom_z || z coil == solenoid top z

D =solenoid_height;

N_D = solenoid_inner num_coils * 2;

% Calculate rho squared values
rho squared D = coils_distance(i)"2 / (coils_distance(i)"2 + D*2);

% Interpolate q values from solenoid _mutual table
g_solenoid D = interp2(alpha_values, rho squared values, solenoid q values,

alpha solenoid, rho _squared D, 'linear', 0);

% Mutual inductance calculation
M D =0.002 * pi*2 * solenoid outer distance * 100 * alpha solenoid *
sqrt(rho_squared D) * N_D * q solenoid D * 1e-6;

% Compute mutual inductance between solenoid and coil i
M(1,1)=M _D;
M(, 1) =M(1, 1); % Symmetric matrix

else
% Coil is within the solenoid range
solenoid_z difference top = solenoid top z -z coil;
solenoid z difference bottom =z coil - solenoid_bottom_z;
N_top = (solenoid z difference top / (solenoid total radius * 2)) * 2;
N_bottom = solenoid inner num_coils*2 - N_top;
N D=N_top;
N _d=N_bottom;
D =solenoid z_difference top;

d = solenoid z difference bottom;
% Calculate rho squared values

rho_squared D = coils_distance(i)"2 / (coils_distance(i)"2 + D"2);
rho_squared d = coils_distance(i)"2 / (coils_distance(i)"2 + d*2);
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% Interpolate q values from solenoid _mutual table

g_solenoid D = interp2(alpha_values, rho squared values, solenoid q values,
alpha solenoid, rho _squared D, 'linear', 0);

g_solenoid d = interp2(alpha_values, rho squared values, solenoid q values,

alpha solenoid, rho squared d, 'linear', 0);

% Mutual inductance calculation

M D =0.002 * pi*2 * solenoid outer distance * 100 * alpha solenoid *
sqrt(rho_squared D) * N_D * q_solenoid D * 1e-6;

M d=0.002 * pi*2 * solenoid_outer distance * 100 * alpha_solenoid *
sqrt(rho_squared d) * N d * q_solenoid d * le-6;

% Compute mutual inductance between solenoid and coil i
M(1,i))=M D +M _d;
M(, 1) =M(1, 1); % Symmetric matrix

end

end

% Mutual inductance between each ring components
for i = 2:total num_coils
for j = (i+1):total num_coils
ifi~=]

d = abs(coils_z values(i) - coils_z values(j)) * 100; % Convert to cm

if coils_distance(i) == coils_distance(j) && coils_thickness(i) ==
coils_thickness(j)
% Coaxial coils of equal size
%r = coils_distance(i) * 100; % Radius in cm
r=coils_distance(1) * 10"2 * (1 + (coils_thickness(i) * 10"2)"2 / (24 *
(coils_thickness(i) * 1072)"2));
radio=d/ (2 *r);

if radio <=1
f=interpl(q_values, f values, radio, 'linear', 'extrap');
M ij = coils_distance(i) * 100 * £ * 1e-6; % Mutual inductance in

else
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radio_inv =1/ radio;
f=interpl(t_values, k values, radio_inv, 'linear, 'extrap');

M ij = coils_distance(i) * 100 * £ * 1e-6; % Mutual inductance in

H

end

else

% Coaxial coils of different sizes

A = max(coils_distance(i), coils_distance(j)) * 100; % Larger radius in
cm

a = min(coils_distance(i), coils_distance(j)) * 100; % Smaller radius in
cm

k prim_square = ((A - a)*2 + d"2) / (A + a)"2 + d"2);

k square =1 -k prim_square;

if k prim_square <= 0.1
% Use table14
base = abs(floor(log10(k prim_square)));
correction = base - abs(log10(k_prim_square));

log k prim square = base + correction;

diff values =log k prim_square -
log k prim square values tablel4;
valid_diff indices = find(diff values > 0);

if ~isempty(valid_diff indices)
[~, 1dx] = min(diff values(valid diff indices));
idx = valid_diff indices(idx);

if idx <length(log k prim square values table14)
kl log=1log k prim square values tablel4(idx);
k2 log=1log k prim square values tablel4(idx+1);
fl =f values_tablel14(idx);
f2 =f values_tablel14(idx+1);

numStr = num2str(k1 _log);
dotIndex = strfind(numStr, '.");
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if isempty(dotIndex)
intPart = str2double(numStr);
fracPart = 0;
else
intPart = str2double(numStr(1:dotlndex-1));
fracPart = str2double(['0.'
numStr(dotIndex+1:end)]);
end
difference = -(intPart - fracPart);
k1 = 10"difference;

numStr = num2str(k2 log);
dotIndex = strfind(numStr, ".");

if isempty(dotIndex)
intPart = str2double(numStr);
fracPart = 0;
else
intPart = str2double(numStr(1:dotIndex-1));
fracPart = str2double(['0.'
numStr(dotIndex+1:end)]);
end
difference = -(intPart - fracPart);
k2 = 10~difference;

f=fl + (k_prim_square - k1) * (f2 - f1) / abs(k2 - k1);
M i) =f* sqrt(A * a) * le-6; % Mutual inductance in H
end

end

elseif k_square <= 0.1
% Use table15
base = abs(floor(log10(k _square)));
correction = base - abs(log10(k_square));

log_k square = base + correction;

diff values =log k square - log_k square values tablel5;
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valid_diff indices = find(diff values > 0);

if ~isempty(valid_diff indices)

numStr(dotIndex+1:end)]);

numStr(dotIndex+1:end)]);

[~, idx] = min(diff values(valid_diff indices));
idx = valid_diff indices(idx);

if idx < length(log_k square values tablel5)

k1l log=1log k square values tablel5(idx);
k2 log=1log k square values tablel5(idx+1);
fl log=1log f values tablel5(idx);

f2 log =log f values tablel5(idx+1);
numStr = num2str(k1 _log);
dotIndex = strfind(numStr, ".");

if isempty(dotIndex)
intPart = str2double(numStr);
fracPart = 0;
else
intPart = str2double(numStr(1:dotIndex-1));
fracPart = str2double(['0.'

end
difference = -(intPart - fracPart);
k1 = 10~difference;

numStr = num2str(k2 log);
dotIndex = strfind(numStr, '.");

if isempty(dotIndex)
intPart = str2double(numStr);
fracPart = 0;
else
intPart = str2double(numStr(1:dotlndex-1));
fracPart = str2double(['0.'

end
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difference = -(intPart - fracPart);
k2 = 10"difference;

numStr = num2str(fl_log);

dotIndex = strfind(numStr, '.");

intPart = str2double(numStr(1:dotIndex-1));

fracPart = str2double(['0.' numStr(dotIndex+1:end)]);
difference = -(intPart - fracPart);

f1 = 10"difference;

numStr = num2str(f2_log);

dotIndex = strfind(numStr, '.");

intPart = str2double(numStr(1:dotIndex-1));

fracPart = str2double(['0.' numStr(dotIndex+1:end)]);
difference = -(intPart - fracPart);

2 = 10"difference;

f=fl + (k_square - k1) * (f2 - f1) / (k2 - k1);
M ij =f* sqrt(A * a) * 1e-6; % Mutual inductance in H
end
end
else
% Use table13
f=interpl(k prim _square values tablel3, f values tablel3,
k prim_square, 'linear’, 'extrap');
M i) =f* sqrt(A * a) * le-6; % Mutual inductance in H
end

end

% Assign mutual inductance values
M, j) = M_ij;
M(, 1) = M_1j; % Symmetric matrix
end
end

end

return
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writematrix(R, 'R_matrix.xlsx', 'Sheet', 1, 'Range’', 'A1");

writematrix(M, 'M_matrix.xlsx', 'Sheet', 1, 'Range', 'A1");

disp('R and M matrices have been saved to Excel files.");
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A.12 Eddy current calculation code
% The code is in Student Thesis/2025 ypi/Code/eddy current thesis on the NAS.

% === Read resistance and inductance ===

M origin = readmatrix('M_matrix.xIsx', 'Sheet', 1);
R origin = readmatrix('R_matrix.xIsx', 'Sheet', 1);
R =R origin;

M =M origin;

total num_coils = size(R, 1);

% === Read chamber data =——=

chamber data = readtable('chamber _components.xlIsx');

% Extract the relevant data from the table

component_names = chamber_ data.Component; % Component names

% Initialize counters for inner and outer walls
num_inner coils = 0;

num_outer coils = 0;

% Initialize chamber components structures
chamber components.inner wall = struct();

chamber components.outer wall = struct();
% Iterate through each component and classify into inner or outer wall
for i = 1:height(chamber data)

component_name = component_names{i};

if contains(component_name, 'Inner Wall')

num_inner_coils =num_inner coils + 1;

elseif contains(component _name, 'Outer Wall')

num_outer_coils =num_outer coils + 1;

end

end
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fprintf('Number of inner wall coils: %d\n', num_inner coils);

fprintf('Number of outer wall coils: %d\n', num_outer coils);

% === Central solenoid current profile ===

N =4000 + 1; % Total number of time steps (2 segments of 2000 steps each)
t end = 55¢-3; % Total duration (10 ms)

tspan = linspace(0, t end, N); % Time array

I max =4000; % A

dt = tspan(2) - tspan(1); % Time step

I profile = zeros(1,length(tspan));

tl = 20e-3;

t2 = 20e-3;

t3 = 15e-3;

for i = l:length(tspan)
t = tspan(i);

ift<=tl
I fun=@(t) (I max/tl) *
I profile(i) =1 _fun(t);

elseif t <= t1+t2
I profile(i) = max;

elseif t <= t1+t2+t3

I fun=@(t) (I max/(t3)) * t;

I profile(i) =1 max -1 fun(t - (t1+t2));
end

end

n_solenoid = 1;
V_history_solenoid = zeros(N, n_solenoid);
I history solenoid = zeros(N, n_solenoid);

I prev_solenoid = zeros(1, n_solenoid);

M _solenoid = M(1,1);
R solenoid = R(1,1);
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varl = (M_solenoid / dt);
for t = 2:length(tspan)
I solenoid =1 profile(t);
V_solenoid = varl * (I_solenoid - I prev_solenoid) + R _solenoid * I solenoid,
V_history_solenoid(t,:) = V_solenoid;
I prev_solenoid =1 solenoid;

end

I current = zeros(total num_coils - 1, 1); % Use -1 to exclude the central solenoid
I prev_current = zeros(total num_coils - 1, 1);

I history current = zeros(N, total num_coils - 1);

inner_total I current = zeros(N, 1);

outer total I current = zeros(N, 1);

M_voltage = M(2:end, 1); % Mutual inductance between solenoid and walls
M set =M(2:end, 2:end); % Inductance matrix for walls
R _set =R(2:end, 2:end); % Resistance matrix for walls

dl = (I_profile(2) - I profile(1)) / dt;

tolerance = le-8;

max_iter = 1el0;

% Matrix for wall coil equations
A=(M_set/dt)+ R set;

for t = 2:length(tspan)
% Inform every 1000 steps
if mod(t, 1000) ==
fprintf('"Processing time step %d out of %d\n', t, N);
end
% Voltage induced in wall coils

V_current =M voltage * dI;
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% Right-hand side of wall coil equations
b= (M set/dt) * I prev current-V_current;

% Solve for wall coil currents

[I current, flag] = pcg(A, b, tolerance, max _iter, [], [], | prev_current);
% Store history
I history current(t, :) =1 current;

I prev_current =1 current;

% Sum eddy current

inner_total I current(t) = sum(I_history current(t, 1:num_inner coils));

outer total I current(t) = sum(I_history current(t,

num_inner coils+1:num_inner coilstnum_outer coils));

dl = (I_profile(t) - I profile(t - 1)) / dt;
end

figure;

yyaxis left;

plot(tspan*1000, inner total I current, 'LineWidth', 2.5);

hold on;

plot(tspan*1000, outer total I current, 'LineWidth', 2.5);

ylabel('"Eddy Current (A)', 'FontWeight', 'bold');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');

yyaxis right;
plot(tspan*1000, I profile/1000, 'LineWidth', 2.5);
ylabel('Current (A)', 'FontWeight', 'bold');

xlabel("Time (ms)', 'FontWeight', 'bold');
grid on;
set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold");

legend('Inner wall', 'Outer wall','Solenoid', 'Location', 'southeast')

yyaxis left;
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ylim([-max(abs(inner_total I current))*1.2 max(abs(inner total I current))*1.2]);
yyaxis right;
ylim([-max(abs(I_profile/1000))*1.2 max(abs(I_profile/1000))*1.2]);

figure

plot(tspan*1000, I history current(:, l:num_inner coils), 'LineWidth', 2.5)
title(sprintf('N = %d', N))

grid on

xlabel('Time(ms)', 'FontWeight', 'bold');

ylabel('Current(A)', 'FontWeight', 'bold');

title("Eddy current of each inner vacuum-vessel wall')

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold');

plot(tspan*1000, I history current(:, num_inner coils + 1:num_inner coils +
num_outer_coils), 'LineWidth', 2.5)

title(sprintf('N = %d', N))

grid on

xlabel('"Time(ms)', 'FontWeight', 'bold');

ylabel('"Current(A)', 'FontWeight', 'bold');

title("Eddy current of each outer vacuum-vessel wall')

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold');
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A.13 Loop voltage calculation code

% The code is in Student Thesis/2025 ypi/Code/loop V _eddy thesis on the NAS.
% === Read data ===

% Read chamber data

chamber data = readtable('chamber components.xlsx");

% Extract the relevant data from the table

component_names = chamber data.Component; % Component names
r_values = chamber data.Distance m; % Distance (r) values
z values = chamber data.Z Position m; % Z-position values

% Initialize counters for inner and outer walls
num_inner coils = 0;

num_outer coils = 0;

% Initialize chamber components structures
chamber components.inner wall = struct();

chamber components.outer wall = struct();

% Iterate through each component and classify into inner or outer wall
for i = 1:height(chamber_data)

component_name = component_names{i};

if contains(component_name, 'Inner Wall')

num_inner_coils =num_inner coils + 1;

elseif contains(component_name, 'Outer Wall')
num_outer coils =num_outer coils + 1;
end

end

% Display the results
fprintf('Number of inner wall coils: %d\n', num_inner_coils);

fprintf('Number of outer wall coils: %d\n', num_outer coils);

all coil matrix = [r_values, z values];

173



% Read solenoid parameters from the Excel file

solenoid data = readtable('solenoid_parameters.xlsx');

% Extract the relevant parameters for the solenoid

solenoid_inner num_coils = solenoid data.Inner Num_Coils; % Number of inner coils
solenoid_outer num_coils = solenoid data.Outer Num_Coils; % Number of outer coils
solenoid height = solenoid data.Total Height m; % Total height of
solenoid

solenoid_inner distance = solenoid data.Inner Distance m; % Inner coil distance from
center

solenoid outer distance = solenoid data.Outer Distance m; % Outer coil distance from
center

solenoid num_coils = solenoid_inner num_coils * 2;

% === CS current profile and eddy current in inner and outer walls ===

% Read inductance and resistance matrices
RO = readmatrix('R_matrix.xlsx', 'Sheet', 1);
MO = readmatrix('M_matrix.xlsx', 'Sheet', 1);
M = MO;

R =RO0;

total num_coils = size(R, 1);

% Define solenoid parameters

V _loop_desired = 0.066; % Desired loop voltage (V)

mu0 = 4*pi*le-7; % Vacuum permeability (H/m)

solenoid major radius = (solenoid inner distance + solenoid outer distance)/2;
% Radius of the solenoid [m]

A _solenoid = p1 * solenoid major radius"2;
% Calculate current ramp rate to achieve desired loop voltage
I rate =- (V_loop desired * solenoid height) / (A _solenoid * mu0 * solenoid num_coils);

% Current ramp rate (A/s)

% Time parameters
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N_steps = 500 + 1; % Number of time steps

t end = 15e-3; % Total time (s)

tspan = linspace(0, t end, N_steps); % Time array
dt = tspan(2) - tspan(1); % Time step (s)

% Define current profile (linear ramp)

I profile = abs(t_end * I rate) + (tspan * I rate);

n_solenoid = 1;

V _history solenoid = zeros(N_steps, n_solenoid);
I history solenoid = zeros(N_steps, n_solenoid);

I prev_solenoid = zeros(1, n_solenoid);

M solenoid = M(1,1);
R solenoid = R(1,1);

varl = (M_solenoid / dt);
for t = 2:length(tspan)
I _solenoid =1 profile(t);
V_solenoid = varl * (I_solenoid - I prev_solenoid) + R _solenoid * I solenoid,
V_history_solenoid(t,:) = V_solenoid;
I prev_solenoid =1 _solenoid;

end

I current = zeros(total num coils -1, 1); % Use -1 to exclude the central solenoid
I prev_current = zeros(total num coils-1 , 1);

I history current = zeros(N_steps, total num_coils -1 );

inner_total I current = zeros(N_steps, 1);

outer total I current = zeros(N_steps, 1);

M voltage = M(2:end, 1); % Mutual inductance between solenoid and walls
M_set = M(2:end, 2:end); % Inductance matrix for walls
R _set =R(2:end, 2:end); % Resistance matrix for walls

dl = (I profile(2) - I profile(1))/ dt;
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tolerance = le-8;

max_iter = 1el0;

% Matrix for wall coil equations
A= (M set/dt)+R set;

for t = 2:length(tspan)

% Voltage induced in wall coils

V_current = M_voltage * dI;

% Right-hand side of wall coil equations
b= (M set/dt) * I prev current-V_current;

% Solve for wall coil currents

[I current, flag] = pcg(A, b, tolerance, max_iter, [], [], | prev_current);

% Store history
I history current(t, :) =1 current;

I prev_current =1 current;

% Sum eddy current
inner_total I current(t) = sum(I_history current(t, 1:num_inner coils));
outer total I current(t) = sum(I history current(t,

num_inner coils+1:num_inner coilstnum outer coils));

dl = (I profile(t) - I profile(t- 1))/ dt;
end

figure;

set(gcf, 'Renderer’, 'painters');

yyaxis left

plot(tspan * 1e3, I profile / 1e3, 'LineWidth', 2.5); % kA
ylabel('Current (kA)');

leftMax = max(I_profile) / 1e3;
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ylim([0, leftMax * 1.1]);

yyaxis right

plot(tspan * 1e3, inner total I current, 'LineWidth', 2.5); hold on;
plot(tspan * 1e3, outer total I current, 'LineWidth', 2.5);
ylabel('Eddy Current (A)');

rightMax = max([max(inner total I current), max(outer total I current)]);
ylim([0, rightMax * 1.5]);

xlabel('Time (ms)');

title(['Current profile for V_{loop} =", num2str(V_loop desired, '%.31")]);
legend('Central Solenoid', 'Inner wall', 'Outer wall', 'Location', 'north');

grid on;

box on;

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold');

figure

plot(tspan*1000, I history current(:, 1:num_inner_ coils), 'LineWidth', 2.5)
grid on

xlabel('"Time (ms)', "FontWeight', 'bold');

ylabel('"Current (A)', 'FontWeight', 'bold");

title("Eddy current of each inner chamber wall')

set(gca, 'LineWidth', 1.5, 'FontSize', 14, 'FontWeight', 'bold');

max_inner = max(I_history current(:, 1:num_inner coils), [], 'all');

ylim([0, 1.2 * max_inner]);

figure

plot(tspan®*1000, I history current(:, 1+num_inner coils :
num_inner_ coilstnum_outer coils), 'LineWidth', 2.5)

grid on

xlabel("Time (ms)', 'FontWeight', 'bold');

ylabel('Current (A)', 'FontWeight', 'bold");

title("Eddy current of each outer chamber wall')

set(gca, 'LineWidth', 1.5, 'FontSize', 14, 'FontWeight', 'bold');
max_outer = max(I_history current(:, 1+num_inner coils :

num_inner_ coilstnum_outer coils), [], 'all");
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ylim([0, 1.2 * max_outer]);

% === CS Bz Calculation ===

num_slices = 100;

spatial length =1001;

spatial _grid = 1;

dz = solenoid height / num_slices;

r_values = linspace(0, spatial _grid, spatial length);
z obs =0;

y_obs =0;

Nx_obs = spatial_length;

BZ x_solenoid = zeros(N_steps, Nx_obs);

% Compute the magnetic flux induced by the central solenoid (CS) only, and then obtain
V_loop_time using the gradient

Phi_solenoid = zeros(N_steps, 1);

R _loop =0.085; % Expected location of plasma breakdown

for t_idx = 1:length(tspan)
[ =1 profile(t_idx);

Bz total r= zeros(size(r_values));

for idx = 1:length(r_values)
x_obs =r_values(idx);
Bz total = 0;

% Accumulate Bz from each loop
for n = 1:num_slices
70 = -solenoid height/2 + (n - 0.5) * dz;
I loop =1 * solenoid num_coils / num_slices;
[~, ~, Bz] = magnetic_field loop(solenoid major radius, I loop, x _obs,
y_obs, z_obs - z0);
Bz total = Bz_total + Bz;

end

Bz total r(idx) = Bz_total;
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end

BZ x solenoid(t idx,:) = Bz total r;

% Calculate magnetic flux

indices =r_values <= R _loop;

r_in_loop local =r values(indices);

Bz in_loop local = Bz total r(indices);

Phi_solenoid(t_idx) = trapz(r_in_loop local, Bz in_loop local .* 2 .* pi .
r_in_loop local);

end

% Compute the loop voltage from the central solenoid using the gradient

V_loop_time = -gradient(Phi_solenoid, dt);

%% Bz generated by the solenoid vs radius
figure;

set(gcf, 'Renderer’, 'painters');

plot(r values*1000, BZ x_solenoid(100, :), 'LineWidth', 2.5);

xlabel('X Position (mm)');

ylabel('Magnetic Field B_z (T)");

title('Magnetic Field B_z vs Radius');

grid on;

ylim([-0.1 2.6]);

xlim([0 200]);

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');
print(gcf, 'cs Bz vs radius', '-dpng', -r600');

figure;

plot(tspan*1000, V_loop_time, 'LineWidth', 2.5);
xlabel('time (ms)'); ylabel('"V_{loop} (V)");

title("V_{loop} from only central solenoid");

grid on;

set(gca, 'linewidth', 1.5, 'fontsize', 12, 'FontWeight', 'bold');

% === Inner and Outer Chamber Wall Bz Calculation ===
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total num_wall = length(all coil matrix);

N_segments wall =30;
u0 = 4*pi*le-7;
xp = linspace(0, spatial grid, Nx_obs);

num_wall coils = total num_wall;

spec_matrix = zeros(num_wall_coils, Nx_obs);

fprintf('Starting precomputation of spec_matrix...\n");
for coil = 1:num_wall_coils
R =all _coil matrix(coil, 1);

z0 = all_coil matrix(coil, 2);

phi = linspace(-pi/2, 3*pi/2, N_segments wall);
Xc =R * cos(phi);
Yc =R * sin(phi);

Zc = z0 * ones(size(Xc));

X next = circshift(Xc, -1);
Y next = circshift(Yc, -1);
Z next = circshift(Ze, -1);

dlx = X next - Xc;
dly=Y next- Yc;
dlz =7 next - Zc;

x_mid = 0.5 * (Xc + X_next);
y mid=0.5* (Yc +Y_next);

z mid = 0.5 * (Zc + Z_next);

for a=1:Nx_obs

x_obs = xp(a);
y_obs =0;
z obs =0;
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Rx =x_obs - x mid,
Ry =y obs-y mid;

Rz =1z obs -z mid;

Xcross =dly .* Rz - dlz .* Ry;
Ycross = dlz .* Rx - dlx .* Rz;
Zcross = dIx .* Ry - dly .* Rx;

R _dist = sqrt(Rx.”*2 + Ry."2 + Rz."2);

valid =R_dist ~= 0;

Bz = zeros(size(R_dist));

Bz(valid) = (1 * u0) / (4*pi) .* Zcross(valid) ./ (R _dist(valid).”3);

spec_matrix(coil, a) = sum(Bz);

end

if mod(coil, 100) == 0
fprintf('Completed precomputing coil %d / %d\n', coil, num_wall_coils);
end
end

fprintf('Completed precomputation of spec_matrix.\n');

I all wall matrix =1 history_current; % [time X coils]

BZ x wall =1 all wall matrix * spec_matrix; % [time x Nx_obs]

I all wall reshaped = reshape(I _all wall matrix, [N_steps, num_wall coils, 1]);
spec_matrix_reshaped = reshape(spec_matrix, [1, num_wall coils, Nx_obs]);

BZ x coils wall =1 all wall reshaped .* spec_matrix reshaped;

% === Calculate total loop voltage from CS and Eddy current ===

Bz total =BZ x wall + BZ x_solenoid;

indices =r_values <= R _loop;

r_in_loop =r_values(indices);

Bz in_loop = Bz total(:, indices);
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Phi = trapz(r_in_loop, Bz _in loop .* 2 .* pi .* r_in_loop, 2);
V _loop_total = -gradient(Phi, dt);

% === Plot loop voltage comparison ===
figure;

set(gcf, 'Renderer’, 'painters');

plot(tspan*1000, V_loop _total, 'LineWidth', 2.5);

hold on;

plot(tspan*1000, V_loop_time, 'LineWidth', 2.5);

xlabel('Time (ms)');

ylabel("V_{loop} (V)");

title("V_{loop} induced by CS and Eddy current');

legend('CS and Eddy current', 'Only CS', "Location', 'southeast');

grid on;

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold");

figure;

set(gcf, 'Renderer’, 'painters');

V _loop total percentage = (V_loop total ./ V_loop time) * 100;
V_loop time percentage = (V_loop time ./ V_loop time) * 100;

plot(tspan®*1000, V_loop_total percentage, 'LineWidth', 2.5);
hold on;
plot(tspan®*1000, V_loop time percentage, 'LineWidth', 2.5);

xlabel("Time (ms)');

ylabel("V_{loop} (%)');

ylim([40 110]);

title("V__{loop} induced by CS and Eddy current');

legend('CS and Eddy current', 'Only CS (100%)', 'Location', 'southeast');
grid on;

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');

% === magnetic_field loop Function Definition ===
function [Bx, By, Bz] = magnetic_field loop(R, L, x, y, z)
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mu0 = 4*pi*le-7;
rho = sqrt(x.”2 + y.*2);
phi = atan2(y, x);

rho(rho == 0) = eps;

k squared =4 * R * tho ./ (R + rho)."2 + z."2);
k = sqrt(k_squared);
[K, E] = ellipke(k squared);

Brho = (mu0 * 1) ./ (2 * pi * sqrt((R + tho)."2 + z.*2)) .* (z ./ rho) .* ...
((R"2 +rho"2 +2/2) ./ (R -rho)."2 +z"2) *E-K);
Bz=(mu0 *1I) ./ (2 * pi * sqrt((R + rho)."2 + z."2)) .* ...
((R*2 -1ho"2 -z"2) ./ ((R -1h0)."2 +2z/2) *E+K);

Bx = Brho .* cos(phi);

By = Brho .* sin(phi);

end
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A.14 Plasma parameters calculation code

% The code is in Student Thesis/2025 ypi/Code/plasma_thesis on the NAS.
% === Read data ===

% Plasma

plasma data = readtable('plasma parameters.xlsx');

% Assign the values back to their original variable names

a plasma = plasma_data.Semi_Minor Axis m(1); % Plasma cross-
section semi-minor axis (m)

kappa = plasma_data.Kappa(1); % Plasma cross-section semi-major
axis (m)

b plasma =a_plasma * kappa;

R plasma = plasma data.Major Radius m(1); % Major radius (m)
A plasma = plasma_data.Cross_Sectional Area m2(1); % Plasma cross-
sectional area (m”2)

L plasma = plasma data.Length m(1);

V_plasma = plasma_data.Volume m3(1); % Plasma volume

(m”3) for toroidal geometry

plasma_material = 'He"; % H, He, Ar

n_total plasma = lel7; % Total particle density (m”-3)
readRateData(plasma material);

BO =0.1; % Central magnetic field (T)

T plasma = 0.026; % Initial plasma temperature in eV (300K)
ne = 0;

n0=0;

eV _to J=1.60218e-19; % Conversion factor from eV to J

% Read chamber data

chamber data = readtable('chamber_components.xIsx');

% Extract the relevant data from the table

component_names = chamber data.Component; % Component names

% Initialize counters for inner and outer walls

num_inner_coils = 0;
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num_outer_coils = 0;

% Initialize chamber components structures
chamber components.inner wall = struct();

chamber components.outer wall = struct();

% Iterate through each component and classify into inner or outer wall
for i = 1:height(chamber data)

component_name = component_names{i};

if contains(component_name, 'Inner Wall')

num_inner_coils = num_inner coils + 1;

elseif contains(component name, 'Outer Wall')

num_outer coils = num_outer coils + 1;

end

end

% Display the results

fprintf('Number of inner wall coils: %d\n', num_inner coils);
fprintf('Number of outer wall coils: %d\n', num_outer coils);

% === Calculation ===

% Time range and current profile

n_solenoid = 1;

N=2000 + 1;

N _q=100;

tl = 10e-3; % First segment

t2 = 40e-3; % Second segment

t total =t1 + t2;
tspan = linspace(0, t_total, N); % Time array

dt = tspan(2) - tspan(1); % Time step
I1 =10e3; % Maximum current in the first segment
12 =7.5¢e3; % Maximum current in the second segment
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% Define the current profile
I profile = zeros(size(tspan));
for i = l:length(tspan)
t = tspan(i);
ift<=tl
% First phase: From I1 kA to 0 A
I profile(i) =11 * (1 -t/tl);
elseif t <=tl +t2
% Second phase: From 0 A to -12 kA
I profile(i) = -I12 * ((t - t1) / t2);
end

end

M_origin = readmatrix('M_matrix.xIsx', 'Sheet', 1);
R origin = readmatrix('R_matrix.xlsx', '‘Sheet', 1);
M =M origin;

R =R origin;

total num_coils = size(R, 1);

% Initialization
V_history_solenoid = zeros(N, n_solenoid);
I history_solenoid = zeros(N, n_solenoid);

I prev_solenoid = zeros(1, n_solenoid);

M_solenoid = M(1, 1);
R_solenoid = R(1, 1);
varl = (M_solenoid / dt);

% Plasma parameters to track over time
T eV _array = zeros(1, N);
gamma_array = zeros(1, N);

ne array = zeros(1, N);

n0_array = zeros(1, N);

P_ohmic_array = zeros(1, N);

P_prb array = zeros(1, N);

P ion_array = zeros(1, N);

P line array = zeros(1, N);
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P _loss_array = zeros(1, N);
P_net array = zeros(1, N);
Rp_array = zeros(1, N);
q_array = zeros(1, N);

I _current = zeros(total num_coils - 1, 1);

I prev_current = zeros(total num_coils - 1, 1);

I history current = zeros(N, total num_coils - 1);
inner total I current = zeros(N, 1);

outer total I current = zeros(N, 1);

plasma I current = zeros(N,1);

% Energy tracking
U_array = zeros(1, N); % Total thermal energy (J)
E input array = zeros(1, N); % Cumulative input energy (J)

E loss array = zeros(1, N); % Cumulative loss energy (J)

[Rp, eta N, T next, P_ohmic, P_prb, P_ion, P_line, P_loss, P_net,...
ne, n0, gamma, Lp] = plasma_parameters(0, T plasma, dt, ne, n0, ...

n_total plasma, a plasma, kappa, R plasma, plasma material, BO, N_q);

R(total num_coils, total num_coils) = Rp;

M(total num_coils, total num_coils) = Lp;

M set = M(2:end, 2:end); % Inductance matrix for walls and plasma

R set=R(2:end, 2:end); % Resistance matrix for walls and plasma

M voltage = M(2:end, 1); % Mutual inductance between solenoid and walls
and plasma

A=(M_set/dt)+ R set;

sigma neo_array = zeros(1, N);
ft array = zeros(1, N);
nuestar array = zeros(1, N);

q_profile_array = zeros(N_q, N);

tolerance = le-8;

max_iter = 1el0;
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fort=1:N
if mod(t, 100) ==
fprintf('"Processing time step %d out of %d\n', t, N);

end

ift==
dl=0;
else
dl = (I profile(t) - I profile(t- 1))/ dt;

end

V_current =M voltage * dI;
b= (M set/dt) * I prev current-V_current;

[I current, flag] = pcg(A, b, tolerance, max_iter, [], [], I prev_current);

I history current(t, :) =1 current;

I prev_current =1 current;

inner_total I current(t) = sum(I_current(1:num_inner_ coils));
outer total I current(t) =
sum(l_current(num_inner_coils+1:num_inner coilstnum outer coils));

plasma_ I current(t) =1 current(end);

[Rp, eta N, T next, P_ohmic, P_prb, P_ion, P_line, P_loss, P_net,...
ne, n0, gamma, Lp, q, sigma neo, ft, nuestar, q vals] = ...
plasma_parameters(plasma_I current(t), T plasma, dt, ne, no0, ...

n_total plasma, a plasma, kappa, R plasma, plasma material, BO, N _q);

T plasma =T next;
R set(end, end) = Rp; % update plasma resistance
A=(M_set/dt)+ R set;

T eV array(t) =T next;
gamma_array(t) = gamma;
ne array(t) = ne;

n0_array(t) = n0;
P_ohmic_array(t) = P_ohmic;
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P prb_array(t) =P prb;

P ion array(t) =P _ion;

P line array(t) =P line;

P _loss_array(t) =P loss;

P_net array(t) =P _net;
Rp_array(t) = Rp;

q_array(t) =q;
sigma_neo_array(t) = sigma neo;
ft_array(t) = ft;

nuestar _array(t) = nuestar;

q_profile array(:, t) =q_vals;

U array(t) = 1.5 * n_total plasma * V_plasma * T plasma * eV _to J;
ift==1
E input array(t) =P ohmic * dt * V_plasma;
E loss array(t) =P loss * dt * V_plasma;
else
E input_array(t) = E_input_array(t-1) + P_ohmic * dt * V_plasma;
E loss array(t) = E loss array(t-1) + P _loss * dt * V_plasma,;
end

end

% Eddy current of inner and outer chamber

figure

plot(tspan*1000, inner total I current/1000, 'LineWidth', 2.5);
hold on;

plot(tspan*1000, outer total 1 current/1000, 'LineWidth', 2.5);
grid on;

xlabel('Time(ms)', 'FontWeight', 'bold');

ylabel('Current (kA)', 'FontWeight', 'bold");

title("Eddy current')

legend('Inner wall', 'Outer wall', "Location', 'southeast’)

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');

figure;

yyaxis left
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plot(tspan * 1e3, I profile / 1e3, 'LineWidth', 2.5); % ms vs. kA
ylabel('Central Solenoid Current (kA)');

leftMax = max(I_profile) / 1e3; % kA
leftMin = min(I_profile) / 1e3;

ylim([leftMin, leftMax * 1.1]);

yyaxis right
plot(tspan * 1e3, plasma I current/ 1e3, 'LineWidth', 2.5); hold on;
ylabel('Current (kA)");

rightMax = max([max(plasma I current)])/ 1e3;
ylim([0, rightMax * 1.1]);

xlabel('Time (ms)');

title('Current Profile');

legend('Central Solenoid', 'Plasma current', 'Location’, best");

grid on;

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold");

% Temperature vs. Time

figure;

plot(tspan*1e3, T eV _array, 'LineWidth', 2.5);

xlabel("Time (ms)');

ylabel("Temperature (eV)');

title('"Plasma Temperature');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');

grid on;

% lonization Fraction vs. Time

figure;

plot(tspan*1e3, gamma_array, 'LineWidth', 2.5);

xlabel("Time (ms)');

ylabel('lonization Fraction \gamma');

title('lonization Fraction');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');
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grid on;

% Plasma Resistance vs. Time

plot(tspan * 1e3, Rp_array, 'LineWidth', 2.5);

xlabel('Time (ms)');

ylabel('Resistance R_p (\Omega)');

title('Plasma Resistance');

set(gca, "YScale', 'log');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold");
set(gca, "YMinorGrid','oft")

grid on

% Ohmic Heating Power Density vs. Time

figure;

plot(tspan*1e3, P_ohmic_array, 'LineWidth', 2.5);

xlabel('Time (ms)');

ylabel('P_{ohmic} (W/m"3)');

title("'Ohmic Heating Power Density');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold");

grid on;

% Plot Multiple Power Losses on the Same Figure
figure;
hold on;

plot(tspan®*1000, P_prb_array, 'LineWidth', 2.5, 'DisplayName', 'Bremsstrahlung
(P_{prb})");

plot(tspan®*1000, P_line array, 'LineWidth', 2.5, 'DisplayName', 'Line Radiation
(P_{line})");

plot(tspan®*1000, P_ion_array, 'LineWidth', 2.5, 'DisplayName', 'lonization Loss
(P_{ion})');

plot(tspan*1000, P_loss_array, 'LineWidth', 2.5, 'DisplayName', '"Total Loss (P_{loss})');

xlabel("Time (ms)', 'FontWeight', 'bold');
ylabel('"Power Density (W/m”3)', 'FontWeight', 'bold');
legend('Location', 'best');

title("Energy loss');
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grid on;
box on
set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold");

% Plot Total Power Loss

figure

plot(tspan*1000, P_net_array, 'LineWidth', 2.5);

hold on;

grid on;

xlabel('Time (ms)', 'FontWeight', 'bold');

ylabel('Power Density (W/m”3)', 'FontWeight', 'bold");

title('Power Input');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold");

%% Energy Conservation Check

figure;

plot(tspan * 1e3, E_input_array, 'LineWidth', 2.5);

hold on;

plot(tspan * 1e3, E loss array, 'LineWidth', 2.5);

plot(tspan * 1e3, U_array - U_array(1), 'LineWidth', 2.5);

plot(tspan * 1e3, E loss array + U array - U array(1), '--', 'LineWidth', 2.5);
xlabel('"Time (ms)', "FontWeight', 'bold');

ylabel('"Energy (J)', 'FontWeight', 'bold');

title('"Energy Conservation Check');

legend("Ohmic heating (Input Energy)', 'Total loss', 'Thermal Energy', 'Output Energy’,
'"Location', 'best");

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');

grid on;

function [Rp, eta N, T next, P_ohmic, P_prb, P_ion, P_line, P_loss, P_net, ...
ne, n0, gamma, Lp, q, sigma neo, ft, nuestar, q_vals] = ...
plasma_parameters(I, T plasma, dt, ne, no0, ...
n_total plasma, a plasma, kappa, R_plasma,
plasma_ material, BO, N _q)

%% === Constant Definitions ===

e =1.6e-19; % Elementary charge (C)
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kB =1.38¢e-23; % Boltzmann constant (J/K)

mu0 =4 * pi * le-7; % Permeability of vacuum (H/m)
T e=T plasma; % (eV)
eV _to K=11604.52; % Conversion factor from eV to K

switch plasma material

case 'H'
Z1 use=1;
Ei eV =13.6;
mi=1.67e-27;

sigma_ei=1.5e-16 * T e"(-2);
sigma ea=3e-19 *T e(-0.5);

case 'He'
Ei eV =24.6;
mi = 6.64e-27;

Z1 use=1; % He" — He° dominates
sigma_ei =1.5¢-16 * T e"(-2);
sigma ea=1e-19 *T e"(-0.46);

case 'Ar'
Ei eV =15.76;
mi = 6.63e-26;
Z1 use=1;

sigma _ei=3.0e-16 * T e”(-2);
sigma ea=2.0e-19 * T e"(-0.5);

otherwise

error('Unknown plasma material: %s', plasma material);

end

Ei J=Ei eV *e¢;

%% === Geometric Parameters ===

b_plasma = a_plasma * kappa; % Plasma minor radius a_plasma, major

radius b_plasma

A plasma=pi * a plasma * b_plasma; % Plasma cross-sectional area (m”2)
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L plasma=2 * pi * R plasma; % Effective current path length (m)

V_plasma =2 * pi*2 * R_plasma * a_plasma * b_plasma; % Plasma volume (m"3)

% Calculation of q profile
r_vals = linspace(le-4, a_plasma, N _q);
q_vals = zeros(1, N_q);
fori=1:N_q
r=r_vals(i);
I p=1/(pi*r2);
B T=B0 * R plasma /(R plasma +r);
B P=mu0 *J p/(2*pi*max(r,le-3));
q vals(i)=(r * B_T)/((R_plasma +r)* B_P);
end

q=sum(q vals .*r vals) / sum(r_vals); % scalar q output

gamma_collision = sigma ea / sigma_ei;

gamma_collision = max(min(gamma_collision, 1), 0);

% SCD/ACD rates

R ion = get scd rate(T e, ne, Z1 use); % (cm”3/s)
R rec = get acd rate(T e, ne, Z1 use); % (cm”3/s)
if isempty(R _ion), R_ion = 0; end

if isempty(R_rec), R _rec = 0; end

R ion m3 =R ion* le-6; % (m"3/s)
R rec m3 =R rec * le-6; % (m"3/s)

dne dt =R ion m3 * (n0 * ne) - R_rec m3 * (ne"2);
ne scd =ne+dne dt*dt;

ne scd =max(ne scd, 0);

gamma_scd =ne scd/n_total plasma;

gamma_scd = max(min(gamma scd, 1), 0);

slope = 10;
x_start =0.0;
x_end =0.5;
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x_norm = (gamma_collision - x_start) / (x_end - x_start);

X_norm = min(max(x_norm, 0), 1);

w_scd=1./(1 + exp(-slope * (x_norm - x_end)));

w_collision=1 -w_scd;

gamma = w_collision .* gamma_collision + w_scd .* gamma_scd;

if gamma > 0.9999
gamma = 1;
end

ne = gamma * n_total plasma;

n0 = (1 - gamma) * n_total plasma;

%% === Neoclassical Conductivity Calculation ===
ne for neo =ne;

te for neo=T eg;

ni_for neo =ne for neo;

ti_for neo =te for neo;

Zeff=1.0;

eps_local =a plasma/R_plasma;

[nuestar, nuistar] = nustar(ne_for neo, te_for neo, ni_for neo, ti_for neo, Zeff, q,
R plasma, eps local);

eps =a plasma/R plasma;

delta=0;

ft = ftav_with_delta(eps, delta);

[sigma neo, ~] = sigmaneo(ft, ne, T e, Zeff, nuestar);
eta N=1./sigma neo;

Rp=eta N * (L plasma/A plasma);

%% === Ohmic Heating Power Calculation ===
P_ohmic = (I"2 * Rp) / V_plasma;

%% Bremsstrahlung, lonization Loss, Line Radiation ===
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R _prb = get prb rate(T e, ne, Z1 use);
if isempty(R_prb), R _prb =0; end

R prb m3 =R _prb * le-6;

P prb=R prb m3 * (ne"2);

P ion=R ion m3 * ne * n0 * Ei_J;

R plt = get plt rate(T e, ne, Z1 use);
if isempty(R_plt), R plt=0; end

R plt m3 =R plt * le-6;

P _line =R plt m3 * (ne"2);

P loss=P prb+P ion+ P _line;

P net =P ohmic-P loss;

%% === Heat Capacity Calculation & Temperature Update ===

cv =n_total plasma * (1.5 * kB); % J/K-m?
dT dt =P net/c_ v; % K/s
dT dt eV=dT dt/eV_to K; % eV/s

T next =T plasma+dT dt eV *dt; %eV

T next=max(min(T next, 1e8/ eV _to K), 300/eV to K);

%% Plasma Inductance Calculation ===

li_plasma=0.5;

Lp=mu0 * R _plasma * (log(8 * R _plasma/a plasma) + li_plasma/2 - 2);
end
% === Read ADAS data =—=
function readRateData(material)

material = lower(material);

global rateMatrix_scd Te scd Ne scd
global rateMatrix_acd Te acd Ne acd
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global rateMatrix_prb Te prb Ne prb
global rateMatrix plt Te plt Ne plt

dataFolder = 'ADAS';
types = {'scd', 'acd', 'prb', 'plt'};

for 1 = 1:length(types)
type = types{i};
fname = fullfile(dataFolder, [type ' ' material '.dat']);
if ~isfile(fname), warning('%s file not found', fname); continue; end

lines = readlines(fname, "EmptyLineRule","skip");

meta = sscanf(lines(1), '%f");

num_ Z1 =meta(l);

num_Ne = meta(2);

num_Te = meta(3);

grid header lines = ceil(num_Ne / 8);

temp_header lines = ceil(num_Te / 8);

% Read ne, Te
logNe = [];
for j =3:(2 + grid_header lines)
logNe = [logNe; sscanf{(lines(j), '%f")];
end
logTe = [J;
start te =3 + grid header lines;
for j = start_te:(start te + temp header lines - 1)
logTe = [logTe; sscanf(lines(j), '%f")];
end
Ne = 10."logNe;
Te = 10."ogTe;

idx_z1 = find(contains(lines, '/ Z1="));
idx_z1 =[idx_z1; length(lines) + 1];

rateStruct = struct();

forz=1mum Z1
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startLine = idx_z1(z) + 1;

endLine =idx zl(z+1)- 1;

blockLines = lines(startLine:endLine);

logRate = [];

for k = 1:length(blockLines)
logRate = [logRate; sscanf(blockLines(k), '%f")];

end

if numel(logRate) ~=num_Te * num_Ne
warning("Z1=%d rate matrix size mismatch: expected %d, got %d", ...

z, num_Te * num_Ne, numel(logRate));

continue;

end

mat = reshape(logRate, [num_Te, num_Ne));

rateStruct.(['Z1 ', num2str(z)]) = 10.”mat;

end

% Save by type
switch type
case 'scd’
Te scd =Te; Ne_scd = Ne; rateMatrix_scd = rateStruct;
case 'acd'
Te acd =Te; Ne acd = Ne; rateMatrix_acd = rateStruct;
case 'prb'
Te prb =Te; Ne prb = Ne; rateMatrix_prb = rateStruct;
case 'plt'
Te plt=Te; Ne plt = Ne; rateMatrix_plt = rateStruct;
end
end

end

function R = get scd rate(T e, ne, Z1)
global Te scd Ne scd rateMatrix_scd
key =['Z1 ', num2str(Z1)];
if ~isfield(rateMatrix_scd, key)
warning('No data for Z1 = %d in SCD', Z1); R = 0; return;
end

ne_cm3 =ne/ 1e6;
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end

R = interp2(Ne_scd(:)', Te_scd(:), rateMatrix_scd.(key), ne_cm3, T e, 'linear’, 0);

function R = get acd rate(T e, ne, Z1)

end

global Te_acd Ne_acd rateMatrix_acd
key =['Z1 ', num2str(Z1)];
if ~isfield(rateMatrix_acd, key)
warning('No data for Z1 = %d in ACD', Z1); R = 0; return;
end
ne_cm3 =ne/ 1e6;
R =interp2(Ne_acd(:)', Te acd(:), rateMatrix_acd.(key), ne cm3, T e, 'linear', 0);

function R = get_prb _rate(T e, ne, Z1)

end

global Te prb Ne prb rateMatrix_prb
key =['Z1 ', num2str(Z1)];
if ~isfield(rateMatrix_prb, key)
warning('No data for Z1 = %d in PRB', Z1); R = 0; return;
end
ne_cm3 =ne/ le6;
R = interp2(Ne prb(:)', Te_prb(:), rateMatrix prb.(key), ne cm3, T e, 'linear’, 0);

function R = get plt rate(T e, ne, Z1)

end

global Te plt Ne plt rateMatrix plt
key =['Z1 ', num2str(Z1)];
if ~isfield(rateMatrix_plt, key)
warning('No data for Z1 = %d in PLT', Z1); R = 0; return;
end
ne_cm3 =ne/ 1e6;
R =interp2(Ne_plt(:)', Te_plt(:), rateMatrix_plt.(key), ne cm3, T e, 'linear’, 0);

% === Reference: https://gitlab.epfl.ch/spc/public/NEOS. ===

function [nuestar, nuistar] = nustar(ne,te,ni,ti,zeff,q,R,eps,varargin)
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zion=ones(size(ne));
nargeff=nargin-§;
if nargeft > 0
if ~isempty(varargin{1}); zion=varargin{1}; end

end

ii=find(ne>0 & te>0);
InLam=zeros(size(ne));
InLam(ii) = 31.3 - log(sqrt(ne(ii))./te(ii));

1i=find(ni>0 & ti>0);
InLami=zeros(size(ni));
InLami(ii) = 30. - log(zion(ii)."3.*sqrt(ni(ii))./ti(ii).*1.5);

ii=find(eps~=0);

nuestar=zeros(size(ne));

nuistar=zeros(size(ne));

nuestar(ii) = 6.921E-18 .* q(ii) .* R(ii) .* ne(ii) .* zeff(ii) .* InLam(ii) ./ (te(ii)."2 .*
eps(ii).*1.5);

nuistar(ii) = 4.900E-18 .* q(ii) .* R(ii) .* ni(ii) .* zion(ii)."4 .* InLami(ii) ./ (ti(ii)."2 .*
eps(ii).*1.5);

ii=find(eps==0);

nuestar(ii)=2.*zeff(ii);

nuistar(i1)=2.*zeff(i1);

end

function [signeo, sigspitzer] = sigmaneo(ft,ne,te,varargin)

nuestar=zeros(size(ft));
zeff=3. .* ones(size(ft));

nargeff=nargin-3;
if nargeff> 0
if ~isempty(varargin{1}); zeff=varargin{1}; end
end
if nargeff > 1

if ~isempty(varargin{2}); nuestar=varargin{2}; end
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end

NZ=0.58 +0.74 ./ (0.76 + zeff);
InLam = 17.*ones(size(ft));
ii=find(ne>0 & te>0);
if length(i1)>0

InLam = 31.3 - log(sqrt(ne)./te);

end

sigspitzer = 1.9012E+04 .* te.*1.5 ./ zeff ./ NZ ./ InLam;

ft33eff = ft ./ (1. + (0.55-0.1.*%ft).*sqrt(nuestar) + 0.45.*(1.-ft).*nuestar./zeff.*1.5);
signeo = sigspitzer .* (1. - ft33eff.*(1.+0.36./zeff - {t33eff.*(0.59./zeff -
0.23./zeff. *{t33efY)));

end

function [jB,L31,L.32,L34,alfa] = jdotB_BS(ft,dIn_ne,dIn_te,dIn_ti,peop,varargin)

zeff=3. .* ones(size(ft));
nuestar=zeros(size(ft));
nuistar=zeros(size(ft));
ptot=ones(size(ft));
Tpsi=ones(size(ft));

nargeff=nargin-5;
if nargeff> 0

if ~isempty(varargin{1}); zeff=varargin{1}; end
end
if nargeff > 1

if ~isempty(varargin{2}); nuestar=varargin{2}; end
end
if nargeff > 2

if ~isempty(varargin{3}); nuistar=varargin{3}; end
end
if nargeff > 3

if ~isempty(varargin{4}); ptot=varargin{4}; end
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end
if nargeft > 4
if ~isempty(varargin{5}); Tpsi=varargin{5}; end

end

[L31, L32, L34, alfa] = BScoeff{(ft,zeff,nuestar,nuistar);

jB = - Tpsi.*ptot.* (L31.*dIn_ne + peop.*(L31+L32).*dIn_te + (1.-
peop).*(L31+alfa.*L34).*dIn_ti);

end

function [L31, L32, L34, alfa] = BScoeff{(ft,varargin)

% dim

dims=size(ft);

dimrho=dims(1);

dimt=dims(2);

if dimrho==
dimrho=dimt;
dimt=1;

end

dims=[dimrho dimt];

ft=reshape(ft,dims);

zeff=3. * ones(dims);
nuestar=0.*ones(dims);

nuistar=0.*ones(dims);

nargeff=nargin-1;
if nargeff> 0

if ~isempty(varargin{1}); zeff=reshape(varargin{1},dims); end
end
if nargeff > 1

if ~isempty(varargin{2}); nuestar=reshape(varargin{2},dims); end
end
if nargeff > 2

if ~isempty(varargin{3}); nuistar=reshape(varargin{3},dims); end
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end

% effective trapped fractions

sqnuestar=sqrt(nuestar);

ft31leff = ft ./ (1.+(1.-0.1.*ft).*sqnuestar + 0.5.*(1.-ft). *nuestar./zefY);

ft32ee eff=ft./ (1. + 0.26.*(1.-ft).*sqnuestar + 0.18.*(1.-0.37.*ft). *nuestar./sqrt(zeft));
ft32ei eff=ft./ (1. + (1.40.6.*ft).*sqnuestar + 0.85.*(1.-0.37.*ft). *nuestar.*(1.+zefY));
ft34eff = ft ./ (1.+(1.-0.1.*ft).*sqnuestar + 0.5.*(1.-0.5.*ft).*nuestar./zeff);

alfa0 = - 1.17.*(1.-ft) ./ (1.-0.22.*%{t-0.19.*ft."2);

% coefficients
zeffpl = zeff+1,;
L31 = ft3leff .* ((1.+1.4./zeffpl) ...
- ft3leff .* (1.9./zeffpl - ft3leff .* (0.3./zeffpl + 0.2./zeffpl .* ft31efl)));
L32 = (0.05+0.62.*zefY)./zeff./(1.+0.44 *zeff). *(ft32¢e_eff-ft32ee eff.™4) ...
+ ft32ee eff."2.*(1.-1.2.*%ft32ee_eff+0.2.*ft32ee_eff."2) ./ (1.4+0.22.*zeff) ...
- (0.56+1.93.*zefY)./zeff./(1.+0.44 *zeff) .* (ft32ei_eft-ft32ei_eff."4) ...
+ ft32ei_eff."2.*(1.-0.55.*ft32ei_eff-0.45.*ft32ei eff."2) .* 4.95 ./ (1.+2.48.*zefY) ...
+ 1.2 ./ (1.4+0.5.%zeff) .* (ft32ee_eff.”4-ft32ei_eff."4);
L34 = ft34eff.* ( (1.+1.4./zeffpl) - ft34eff.*(1.9./zeffp1-
ft34eft.*(0.3./zeftp1+0.2./zeftp 1. *{t34efY)) );
sqnui = sqrt(nuistar);
nui2ft6 = nuistar.2 .* {ft.16;
alfa = ((alfa0 + 0.25.*%(1.-ft.*2).*sqnui) ./ (1.4+0.5.*sqnui) + 0.315.*nui2{t6) ./
(1.40.15.*nui2ft6);

end
function ft = ftav_with delta(eps, delta)
if isscalar(delta)
delta = delta .* ones(size(eps));
end
% Step 1: Calculate effective inverse aspect ratio

epsilon_eff =0.67 .* (1 - 1.4 * delta .* abs(delta)) .* eps;
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% Step 2: Calculate ft using refined formula
numerator = (1 - epsilon_eff);

denominator = (1 + 2 .* sqrt(epsilon_eft));
sqrt_term = sqrt((1 - eps) ./ (1 + eps));

ft = 1 - (numerator ./ denominator) .* sqrt_term,;
% Step 3: Ensure ft does not exceed 1
ft = min(ft, 1);

ft = max(ft, 0); % also clip to 0 if any negative due to numerical error

end
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A.15 Formosa Integrated Research Spherical Tokamak (FIRST)

In the study, we developed a series of numerical models for calculating key physical
quantities in the mini-Tokamak, including the resistance and inductance of the components,
the eddy currents in the vacuum-vessel walls, the required and induced loop voltages, as well
as plasma parameters such as temperature, current, ionization fraction, and resistance. These
models were primarily designed to support the optimization of the central solenoid current
profile. Here, we would like to apply the same models to Formosa Integrated Research
Spherical Tokamak (FIRST), the first tokamak that is being built in Taiwan.

This appendix consists of three parts. Appendix 15.1 introduces the specifications of
FIRST, including the vacuum-vessel geometry, the central solenoid configuration, and the
desired plasma shape. Appendix 15.2 presents the calculation of the required breakdown
voltage, and Appendix 15.3 shows the calculation of plasma parameters. Finally, Appendix
15.4 provides the conclusion.

A.15.1 Specification

Formosa Integrated Research Spherical Tokamak (FIRST) is the first tokamak being
developed in Taiwan. The expected date of first tokamak plasma is in 2026. The major and
minor radii of plasma in FIRST are 450 mm and 320 mm, respectively. The elongation will
be 2.4 so that the long and short axis of the plasma cross section is 768 mm and 320 mm,
respectively. The vacuum vessel is approximately elliptical in shape, featuring an arc radius
of 968 mm as shown in Figure 65(a). The center of the arc is 140 mm away from the z axis
of the system as shown in Figure 65(b). The device will provide a toroidal magnetic field
of up to 0.5 T at R = 450 mm, the goal of the plasma current is 100 kA. Achieving a

temperature of 100 eV is the first milestone of the project.
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Figure 65: (a) Simpled xz-plane cross-section of FIRST. (b) Specifications of the vacuum

vessel.

Figure 66(a) shows the central solenoid in FIRST, which consists of two layers with
140 turns each, resulting in a total of 280 turns. The distances from the centerline to the
centers of the inner and outer layers are 88 mm and 100 mm, respectively. For simplicity,
the major radius of the central solenoid in our calculations is set as their average, 94 mm.
The total height of the solenoid is 1680 mm.

The solenoid coil is a hollow copper tube wrapped with an insulating layer on the
outside. The blue circle represents the insulation layer, which is 1 mm thick. The black
circle represents the coil, with a diameter of 10 mm. The gray circle represents the hollow
section for cooling water, with a diameter of 7.6 mm. Including the insulation, the total
diameter of a single turn is therefore 12 mm.

For the vacuum vessel, we divide it into two parts: the inner-vacuum-vessel wall and
the outer-vacuum-vessel wall, as shown in Figure 65(b). The curve of the outer-vacuum-
vessel wall, which is approximately elliptical in shape, centered at x = -140 mm, with an
arc radius of 968 mm, is calculated based on the equation:

(r + 140)? + z2 = 9682, (129)

206



12 mm (b)

Cenzer Line 100 mm LJ— Center Line 188 elements
I- 88 mm L : s I
I 140+140 ' ' R
| - 280 turns I | [
I 937 : 1874 mm
| I elements| —
| ||
| Isolation: 12 mm | 107 mm
I Coil: 10 mm . v r I: 113 mm
Cooling: 7.6 mm * 1680 mm J« » 833 mm

Figure 66: (a) Specifications of the central solenoid. (b) Specifications of the inner and

outer vacuum-vessel walls divided for calculation.

The vacuum-vessel wall is treated as many ring coils stacking on top of each other.
To enhance calculation accuracy, as illustrated in Figure 66(b), we divide the inner-
vacuum-vessel wall into 937 identical ring coils with square cross-sections of 2 mm in
each side, stacked together. Similarly, the outer-vacuum-vessel wall is divided into 188
ring coils with square cross-sections of 10 mm in each side and with different ring radius,
stacked together. The radius of each element is calculated using Eq. (129) This
segmentation allows for precise modeling of the eddy currents generated within the
vacuum-vessel walls. All components are implemented in MATLAB according to the
specifications, and the detailed code is provided in Appendix A.16.
A.15.2 Required loop voltage for breakdown
To design an appropriate solenoid current profile, it is first necessary to determine the
breakdown conditions. With the specifications of the central solenoid and vacuum-vessel
walls, we apply the models developed in the previous chapters to calculate the key physical
quantities in FIRST. Finally, we design the central solenoid current profile for generating
the required loop voltage including considering the eddy current induced in the vacuum-

vessel wall.
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First, we calculate the required loop voltage for breakdown. To do so, we must
determine the connection length in FIRST. This calculation follows the same method
described in Section 4.1. Since the shape of the outer-vacuum-vessel wall is already known
as an arc centered at x = -140 mm with an arc radius of 968 mm, as shown in Figure 67:

(x + 140)? + z2 = 9682, (130)
The vertical side equals the vacuum vessel height at the location 450 mm from the

centerline. It can be calculated as

y = /9682 — (450 + 140)2 = 767 (atx = 450mm),

= 2y = 1534 mm. (131)
A
s>
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> < »|1534mm

<
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Figure 67: Specifications of the vacuum vessel.

This vertical distance of 1534 mm corresponds to the total extent of the electron’s
motion in the z direction, as shown in Figure 67. Assuming a magnetic field ratio Bz/Br=
1/1000, the corresponding connection length is estimated to be 1534 m.

Using the same method described in Section 4.1, the required loop voltage for

breakdown is calculated based on the empirical Townsend criterion:

BP

Epp = In(APL) (132)

where P is the prefill gas pressure, L is the connection length,and A, B are gas-specific

constants. Unlike the mini-Tokamak, which uses helium, FIRST uses hydrogen as the
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prefill gas. Therefore, the constants are taken as A = 3.83m 'Pa! and B =
93.6 V-m !-Pa’l.

Then, we calculate the breakdown electric field under specified conditions, which
depend on parameters such as gas pressure, connection length, and the magnetic field ratio
B1/Bz. Figure 68(a) shows the breakdown curve of the electric field for a gas pressure range
from 10 Pa to 10° Pa, with the ratio between Bt and Bz varying from 0.1 to 0.001.

Multiplying the electric field by the total field line length, we can further determine

the breakdown voltage (Vgp) at our desired plasma position (R =450 mm):

VBD = EBD ' 27'[R, (133)
as shown in Figure 68(b).
(a) 10% Breakdown curve atR = 450 mm (b) 104 Breakdown curve atR= 450 mm
—Case 1: Bz/BT=1.0e-01, L=15.3 m —Case L B2/BT-1.0e-01, L=15.3 m
—Case 2: Bz/BT=1.0e-02, L=153.4 m
—Case 2: Bz/BT=1.0e-02, L=153.4 m 103 1 C 3: Bz/BT=1.0e-03, L=1534 g
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Figure 68: (a) Breakdown electric field curve. (b) Breakdown voltage curve.

Using the previously described method in Section 4.2, we calculate the breakdown
voltage under the target conditions of our experiment. For example, when Bz 1s 0.1% of Br,
and the vacuum vessel height is 1534 mm (at a radius of 450 mm), the connection length (L)

is 1534 m. Additionally, if the pressure is 10 Torr (equivalent to 1.3x10? Pa), i.e., the
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particle density is approximately 10'® m?, the breakdown electric field is calculated using

Eq. (132):

BP 93.6 x 1.3 X 1072

= — _ V
¢ In(APL) ~ In(3.83 X 1.3 X 10~2 X 1534) 0.28 V/m. (134)

Based on this electric field, we can calculate the breakdown voltage required to generate
plasma at a distance of 0.45 m from the centerline using Eq. (133):
V=E-2nR =0.28 X 2 X 0.45 = 0.8 V. (135)
To induce this loop voltage in the vacuum vessel, we calculate the required rate of
change of the central solenoid current using Faraday’s law. Substituting the solenoid
geometry and parameters, length [ = 1.68 m, radius r = 0.094 m, cross-sectional area
A =mr? =m(0.094)? = 0.314 m?, number of turns N = 280, and permeability of free

space Uy = 4w X 1077 H/m, into Eq. (70):

ar 0.8 x 1.68 _ 138 A/ .
dt ~ m(0.094)%2-280-4mw x 10~7 ms - (136)

Once the current rate is determined, a current profile over a specified duration, e.g.,
15 ms, can be generated. As shown by the blue solid line in Figure 69(a), the current drops
from 2.07 kA to 0 kA in 15 ms. This profile is then used in conjunction with the model
developed in Chapter 3 to calculate the eddy currents induced in the inner and outer vacuum-
vessel walls by the time-varying central solenoid current. As illustrated in Figure 69(a), the
total eddy currents in the inner and outer walls are represented by the red solid and red dashed
lines, respectively. The total eddy currents in the inner and outer walls reach ~5 kA and ~4
kA, respectively. These total currents are obtained by summing the contributions from each
individual wall segment, as shown in Figure 69(b) and (c).

The induced loop voltage is often several times higher than the calculated breakdown
voltage since the connecting length we used was an optimistic condition where Bz/Bt= 0.1

%. Using this program, we can quickly calculate the maximum central solenoid current
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required for different loop voltages and durations. As shown in Table 7, if we aim to induce
a loop voltage of 10 V, the maximum current of the central solenoid would need to be 20
kA, which is very challenging. Alternatively, we can reduce the time duration (tgyratin)
while maintaining the same current rate (Ij,ax/tdquratin) to lower the required maximum
current of the central solenoid. For example, if tgyratin 1S 10 ms, the I, = 17 kA. It’s a

more reasonable number.

(a) Current profile for V 0.8
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Figure 69: (a) Current profile of central solenoid and the eddy currents of the inner and outer

vacuum-vessel wall. (b) The eddy current of each element of the inner-vacuum-vessel wall.

(c) The eddy current of each element of the outer-vacuum-vessel wall.
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Table 7: Central solenoid current requirements for different loop voltages and durations.

Vioop tauratin Imax
0.8V 15 ms 2.1 kA
5V 15 ms 13 kA
10V 10 ms 17 kA
10V 15 ms 26 kKA

With this current profile, we then computed the magnetic field distribution produced by
each coil and integrated the resulting fields to obtain the total magnetic flux in the equatorial
plane. Based on the flux variation over time, the loop voltage was derived using Eq. (64), as
shown in Figure 70.

It can be observed that around 6.5 ms, the influence of eddy currents in the vacuum-
vessel walls on the loop voltage reduces to approximately 5%. It indicates that the impact of
eddy currents in the vacuum-vessel walls on the loop voltage can be ignored for a central

solenoid current profile with a duration longer than 6.5 ms.
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Figure 70: Comparison of loop voltage induced by central solenoid and eddy currents in

the vacuum-vessel walls over time.
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A.15.3 Plasma parameters

Lastly, we calculate the plasma parameters by providing the initial conditions, including

the initial plasma temperature, working gas pressure, and the central solenoid current profile.

Using these inputs, the plasma parameters at each time step are computed based on the model

in Chapter 5.

Three cases were considered: (a) Gas density of 10'7 m™, with initial temperature of

0.026 eV; (b) Gas density of 10'7 m™, with initial temperature of 1 eV; (a) Gas density of

10" m, with initial temperature of 5 eV. They are listed in Table 8.

Table 8: Plasma startup scenarios and central solenoid current profiles in FIRST.

Case Ny Ty Ies max1 | Ates1 | lesmax2 | Ales2 Vioop.1 | Vioop.2
a 10"m> | 0.026eV | 1.7kA 10ms | -1.08 kA | 40 ms 1V 0.16 V
b 10¥m> | 0.026eV | 10kA 5 ms -10 kA 45 ms 11.6V 1.3V
c 10" m?3 5eV 10 kA 5 ms -10 kA 45 ms 11.6 V 1.3V

213




~—
o

(a) The initial plasma temperature is set to 0.026 eV, and the gas density is assumed to
be 10'7 m?, corresponding to a pressure of approximately 10 Torr, the results are shown in
Figure 71(a). The applied central solenoid current profile, represented by the blue solid line
in Figure 71(a), decreases linearly from 1.7 kA to 0 kA over the first 10 ms, followed by a
linear ramp from 0 kA to —1.08 kA over the next 40 ms. This time-varying current induces a
loop voltage of approximately 1V over the first 10 ms, which exceeds the required

breakdown voltage of 0.06 V at R = 450 mm under a gas pressure of 10~ Torr.
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Figure 71: (a) Central solenoid and plasma current. (b) Current profile of inner and outer

vacuum-vessel walls.

Figure 71(a) shows the plasma current in the red line, induced by the central solenoid
current profile in the blue line, while Figure 71(b) presents the total eddy currents in the
inner and outer vacuum-vessel walls, respectively. The target plasma parameters for FIRST
are a plasma temperature of 100 eV and a plasma current of 100 kA. However, compared to
achieving high plasma current, our current focus is to reach and sustain the target plasma
temperature at 100 eV, as shown in Figure 72(a). Figure 72(b) shows the time evolution of
the ionization fraction. The plasma becomes fully ionized at approximately 11 ms and
remains at this level.
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Figure 72: Plasma temperature. (b) Ionization fraction.

(b) The initial plasma temperature is set to 0.026 eV, and the gas density of 10'¥ m™,
corresponding to a pressure of approximately 10~* Torr. The applied central solenoid current
profile, represented by the blue solid line in Figure 73(a), decreases linearly from 10 kA to
0 kA over the first 5 ms, followed by a linear ramp from 0 kA to —10 kA over the next 45 ms.
This time-varying current induces a loop voltage of approximately 11.6 V over the first 5 ms,
which exceeds the required breakdown voltage of 0.8 V at R = 450 mm under the same
pressure condition.

As shown in Figure 73(a), the plasma current, represented by the red solid line, driven
by the sharp initial change rate of the central solenoid current reaches its peak value of
approximately 78 kA at around 5.3 ms. However, as the rate of change of the solenoid current
decreases after 5 ms, the induced loop voltage also declines, leading to a gradual reduction
in plasma current. Figure 73(b) presents the total eddy currents in the inner and outer

vacuum-vessel walls induced by the central solenoid current profile.
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Figure 73: (a) Central solenoid and plasma current. (b) Current profile of inner and outer

vacuum-vessel walls.

Figure 74(a) shows the plasma temperature evolution. The red dashed vertical lines
indicate the period during which the plasma remains fully ionized, which lasts for
approximately 10 ms. The plasma temperature reaches a peak value of approximately 125 eV
at around 5.8 ms, due to the sharp initial change rate of the central solenoid current. However,
as the rate of change of the solenoid current decreases after 5 ms, the induced plasma current
declines, resulting in insufficient Ohmic heating and a gradual reduction in plasma
temperature.

Figure 74(b) presents the time evolution of the plasma ionization fraction. The plasma
becomes fully ionized at around 3.65 ms, and maintains this state until approximately 16 ms.
Afterward, the ionization fraction begins to decrease, following the same general trend as

the plasma temperature.
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Figure 74: Plasma temperature. (b) lonization fraction.

(c) The initial plasma temperature is set to 5 eV, and the gas density is assumed to be
10'"® m™. The central solenoid current profile decreases linearly from 10 kA to 0 kA over the
first 5 ms, followed by a linear ramp from 0 kA to —10 kA over the next 45 ms. It is the same
as that in case (b) and is shown in Figure 75(a). Preheating enables the plasma current,
represented by the red solid line, to reach a higher peak value of approximately 93 kA at
around 5.3 ms.

Figure 75(b) presents the total eddy currents in the inner and outer vacuum-vessel walls
for case (b) and (c). There is no significant difference in the eddy current behavior, as it is
primarily determined by the rate of change of the central solenoid current, which remains
the same in both cases. However, a noticeable difference can be observed in the eddy current
of the inner-vacuum-vessel wall. Due to the delayed decay of the plasma current in this case
as shown in Figure 75(a), the secondary rise of the eddy current in the inner-vacuum-vessel
wall, caused by the changing magnetic field from the decaying plasma current, occurs later.
Specifically, the peak of this secondary feature shifts from 20 ms to approximately 31 ms. A
similar trend can also be observed in the eddy current of outer-vacuum-vessel wall, although

the effect is less pronounced due to its larger distance from the plasma.
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Figure 75: (a) Central solenoid and plasma current. (b) Current profile of inner and outer

vacuum-vessel walls.

50

Figure 76(a) and Figure 76(b) show the plasma temperature profile and plasma

ionization fraction, respectively. The results demonstrate that preheating not only increases

the peak plasma temperature, reaching approximately 165 eV at around 6.2 ms due to the

enhanced plasma current and resulting stronger Ohmic heating, but also extends the fully

ionized duration. The temperature increases ~32% compare to the no-preheated case in case

(b). The plasma becomes fully ionized at approximately 3 ms and maintains this state until

around 26.4 ms, representing an extension of about 11 ms compared to the non-preheated

case, 1.., 89% increase. These results highlight the effectiveness and importance of

preheating in achieving and sustaining plasma conditions. Therefore, the initial condition in

case (c) is the most preferable conditio

n.
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Figure 76: Plasma temperature. (b) Ionization fraction.

A.15.4 Conclusion

In this section, we use our model to design the central solenoid current profile for the
Formosa Integrated Research Spherical Tokamak (FIRST) and propose three different cases.
One case targets an initial plasma density of n = 10" m™, aiming to maintain a plasma
temperature of approximately 100 eV for 35 ms. The other two cases are designed for a
higher density of n = 10'® m, both aiming to reach 100 eV. We find that introducing a 5 eV
preheat increases the peak plasma temperature from 125 eV to 165 eV, an improvement of
approximately 32%, and extends the fully ionized duration from 12.35ms to 23.4 ms,
representing an 89% increase. Based on these results, case (c) in Table 9, which includes
preheating, is preferred, as it significantly increases both the peak temperature and the
duration of full ionization. These enhancements contribute to improved plasma startup
quality and stability.

Table 9: Plasma startup scenarios and central solenoid current profiles in FIRST.

Case Ny TO Ics_max,l Atcs_l Ics_max,z Atcs_z Vloop_l Vloop_z

a 107m> | 0.026eV | 1.7kA 10ms | -1.08 kA | 40 ms 1V 0.16 V

b 10¥m= | 0.026eV | 10kA 5 ms -10 kKA 45 ms 11.6 V 13V

c 10" m 5¢eV 10 KA 5 ms -10 kA 45 ms 11.6V 1.3V
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A.16 Formosa Integrated Research Spherical Tokamak (FIRST)

% The code is in Student Thesis/2025 ypi/Code/parameter FIRST thesis on the NAS.

%% ---- Enable Components ----
enable chamber = true;

enable solenoid = true;

enable plasma = true;

enable pfc = false;

%% Input Parameters

% Chamber
if enable chamber
% Arc chamber parameters
offset x = 140e-3;
thickness = 10e-3;
inner_radius = 968e-3 + thickness/2;
radius = thickness/2;
inner_thickness = 2e-3;
inner_distance = 100e-3 + inner_thickness/2;
% Arc geometry
x_target = inner_distance + thickness / 2;
cos_theta = (x_target + offset x)/inner radius;
theta start = -acos(cos_theta);
theta end = acos(cos_theta);
z top = inner_radius * sin(theta end);
z bottom = inner_radius * sin(theta_start);

chamber height = abs(z_top - z_bottom);

% Inner wall params

inner_params.height = chamber height;
inner_params.thickness = inner_thickness;
inner_params.distance = inner_distance;
% Outer wall params

outer params = struct( ...
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"height", chamber height, ...
"radius", radius, ...

"thickness", thickness, ...
"inner_radius", inner radius, ...
"offset x", offset x, ...

"theta start", theta_ start, ...
"theta _end", theta_end);

% Generate wall geometry

[inner X, inner z, chamber components.inner wall] =
generate inner wall(inner params);

[outer x, outer z, chamber components.outer wall] =

generate outer wall arc(outer params);

% Chamber export table (same format as Rec Mode)

num_inner = length(inner x);

num_outer = length(outer x);

names = [arrayfun(@(i) sprintf('Inner Wall %d', i), 1:num_inner, 'UniformOutput’,
false)'; ...

arrayfun(@(i) sprintf('Outer Wall %d', 1), l:num_outer, "UniformOutput’,

false)'];

r_values = [inner_x; outer x];

z_values = [inner_z; outer_z];

thickness_values = [repmat(inner params.thickness, num_inner, 1);
repmat(outer params.thickness, num_outer, 1)];

radius_values = [repmat(inner params.thickness/2, num_inner, 1);
repmat(outer params.radius, num_outer, 1)];

coil lengths =2 * pi * r_values;

chamber table = table(names, r_values, z values, thickness values, radius_values,
coil lengths, ...
'VariableNames', {'Component', 'Distance_m', 'Z Position_m', 'Thickness m',
'Radius_m', 'Coil_Length m'});
save table with overwrite(chamber table, 'chamber components.xlIsx');

end

% Solenoid
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if enable_solenoid

solenoid_radius = 5e-3;

solenoid radius_cooling = 3.8e-3;

isolation_thickness = le-3;

solenoid_total radius = solenoid_radius + isolation_thickness;

solenoid inner num_coils = 140;

solenoid_layer count = 2;

solenoid outer num_coils = solenoid inner num_coils * (solenoid layer count ==
2);

solenoid_inner distance = 82¢-3;

solenoid outer distance = solenoid inner distance + (solenoid layer count ==2) * 2
* solenoid_total radius;

solenoid height between turns = 12e-3;

solenoid_height = solenoid total radius * 2 * solenoid inner num_coils;

solenoid coil A = pi * (solenoid_radius”2 - solenoid radius_cooling”2);

solenoid _a = pi * (solenoid inner distance - solenoid radius)"2;

solenoid_table = table({"solenoid"}, solenoid radius, solenoid radius cooling,
isolation_thickness, solenoid_total radius, ...
solenoid_inner num_coils, solenoid outer num_coils, solenoid inner distance,
solenoid outer distance, ...
solenoid height between_turns, solenoid height, solenoid coil A,
solenoid a, ...
'VariableNames', {'Component', 'Radius m', 'Cooling_m', '[solation_Thick m',
"Total Radius m', 'Inner Num_Coils', 'Outer Num_Coils', '[Inner Distance m',
'Outer Distance_m', 'Height Between Turns m', "Total Height m', 'Coil Area m2',
'A_Param'});
writetable(solenoid table, 'solenoid parameters.xlsx');

end

% Plasma
if enable plasma
T plasma=1; % eV
n_total plasma=1el7; % m"-3
a plasma =0.32;
kappa = 2.4;
b plasma =a plasma * kappa;
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R plasma = 0.45;

A plasma=pi * a plasma * b_plasma,;

L plasma=2 * pi * R plasma;

V plasma =2 * pi*2 * R_plasma * a_plasma * b_plasma;

plasma_table = table({"plasma"}, T plasma, n_total plasma, a plasma, kappa,
R plasma, A plasma, L plasma, V_plasma, ...

"VariableNames', {'Component', "Temperature eV', 'Particle Density m3',
'Semi_Minor Axis m', 'Kappa', 'Major Radius m', 'Cross_Sectional Area m2',
'"Length m', "Volume m3'});

writetable(plasma_table, 'plasma_parameters.xIsx');
end

% PFC
coil_component = struct();
if enable pfc
pfc_list= {
struct('name’, 'PFC1', 'width', 11e-3, 'radius', inner_thickness/2, ...
'distance’, 850e-3 + inner thickness/2, 'z values', 0, num_coils', 1)
K
coil_component.PFC = struct();
pfc_counter = 1;
for k = 1:length(pfc_list)
pfc =pfc_list{k};
[pfc_x, ~, pfc_z] = setup_coil(pfc.num_coils, pfc.radius, pfc.width, ...
pfc.distance, pfc.z_values, pfc.z _values, 0, 0);
for 1= 1:pfc.num_coils
coil_component.PFC(pfc_counter).r = pfc_x(i);
coil_component.PFC(pfc_counter).z = pfc_z(i);
coil_component.PFC(pfc_counter).thickness = pfc.width;
coil_component.PFC(pfc_counter).radius = pfc.radius;
coil_component.PFC(pfc_counter).coil length =2 * pi * pfc.distance;
pfc_counter = pfc_counter + 1;
end
end
% Export table (same as Rec Mode)

coil names = fieldnames(coil component);
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coil table data=T[];
for i = 1:length(coil names)
comp name = coil names{i};
coils = coil_component.(comp_ name);
for j = 1:length(coils)
coil table data = [coil table data; {
sprintf('%s %d', comp name, j), ...
coils(j).r, coils(j).z, coils(j).thickness, coils(j).radius,
coils(j).coil length
31;
end
end
coil _table = cell2table(coil table data, ...
"VariableNames', {'Component', 'Distance m', 'Z Position_m', 'Thickness m',
'Radius_m', 'Coil Length m'});
writetable(coil _table, 'coil components.xIsx');

end

figure;
hold on;

if enable chamber
plot(outer x, outer z, 'ro', 'MarkerFaceColor', 't', 'DisplayName', 'Outer Wall");
plot(inner_x, inner_z, 'bo', 'MarkerFaceColor', 'b', 'DisplayName', 'Inner Wall');

end

if enable plasma
theta = linspace(0, 2*pi, 200);
x_plasma =R plasma + a plasma * cos(theta);
z plasma =Db_plasma * sin(theta);
plot(x_plasma, z_plasma, 'k-', 'DisplayName', 'Plasma’);

end

if enable solenoid

solenoid z = linspace(-solenoid height/2 + solenoid total radius, ...
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solenoid height/2 - solenoid total radius,
solenoid inner num_coils)';
plot(repmat(solenoid inner distance, solenoid inner num_coils, 1), solenoid z, ...
'gx', 'DisplayName', 'Solenoid Inner');
if solenoid layer count ==
plot(repmat(solenoid outer distance, solenoid outer num_coils, 1),
solenoid z, ...
'mx', 'DisplayName', 'Solenoid Outer");
end

end

if enable pfc
for p = 1:length(coil component.PFC)
plot(coil component.PFC(p).r, coil component.PFC(p).z, ...
'go’, 'MarkerSize', 6, 'MarkerFaceColor', 'g', 'DisplayName', 'PFC');
end

end

xlabel('X Position (m)');

ylabel('Z Position (m)");

title("Chamber XZ Plane View');

legend('Location’, 'bestoutside');

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold');
grid on;

hold off;

saveas(gcf, 'wall arc_plot.png');

function [x_values, z_values, wall struct] = generate _inner wall(params)

radius = params.thickness / 2;

num_coils = ceil(params.height / params.thickness);

z_values = linspace(-params.height/2 + radius, params.height/2 - radius, num_coils)';

x_values = repmat(params.distance, num_coils, 1);

wall_struct = repmat(struct('r',0,'z',0,'thickness',0,'radius',0,'coil_length',0), num_coils,
1);

for 1= 1:num_coils

wall_struct(i).r = x_values(i);
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wall_struct(i).z = z_values(i);

wall_struct(i).thickness = params.thickness;

wall_struct(i).radius = radius;

wall struct(i).coil length =2 * pi * x_values(i);
end

end

function [x_values, z_values, wall struct] = generate outer wall arc(params)
radius = params.radius;
num_coils = ceil(params.height / params.thickness);
theta values = linspace(params.theta start, params.theta end, num_coils)';
x_values = params.inner radius * cos(theta values) - params.offset x;
z values = params.inner radius * sin(theta values);
wall_struct = repmat(struct('r',0,'z',0,'thickness',0,'radius',0,'coil_length',0), num_coils,
1);
fori= l:num_coils
wall_struct(i).r = x_values(i);
wall_struct(i).z = z_values(i);
wall_struct(i).thickness = params.thickness;
wall_struct(i).radius = radius;
wall_struct(i).coil length =2 * pi * x_values(i);
end

end

function [x_values, y values, z values] = setup coil(num_coils, coil radius,
coil_thickness, ...
coil _distance, z_start, z end, theta start, theta end, offset x, use sin z)
if nargin <9, offset_ x =0; end
if nargin < 10, use_sin_z = false; end
theta values = linspace(theta_start, theta_end, num_coils)';
x_values = coil_distance * cos(theta values) + offset x;
y_values = coil_distance * sin(theta_values);
if use sin z
z values = coil_distance * sin(theta_values);
else
z values = linspace(z_start, z_end, num_coils)";

end
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end

function save table with overwrite(table data, file name)
if isfile(file_name)
delete(file name);
end
writetable(table data, file name);
fprintf('File "%s" has been saved successfully (overwritten if existed).\n', file_name);

end
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