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摘要 

 本論文旨在設計 mini-Tokamak 的中心螺線管電流波形，以產生電漿擊穿所需的

環形迴路電壓，並進一步驅動電漿電流至 10 kA，，時將電電漿熱至至 10 eV，隨時將 

變化的中心螺線管電流會在真空腔的內外壁中誘發渦電流，而這些渦電流電影響迴路

電壓隨為此，我們建立了一套數值模型，可用來計算托克馬克各組件的電阻與電感，

並求得真空腔壁中感應的渦電流及其對迴路電壓的影響隨模擬結果顯示，渦電流在初

期會抑制迴路電壓，但其效應電迅速衰減，在 0.5 ms 後影響降至 5% 以下隨因此，

中心螺線管電流的作用將 應超過 0.5 ms，，以降渦渦電流擾。隨此外，我們建立了一

個模型，用以計算電漿電流與溫度在歐姆熱至下的變化隨電漿電阻採用新古典理論計

算，而電離率則使用一套混合模型求得，此模型結合經驗公式與 ADAS 資料庫中的

係數，可描述從弱電離狀態至完全電離過程中的電離行為隨為在粒子密度 n = 10¹⁷ m⁻³

（對應氣壓約 10⁻⁵ Torr）且磁力線連接長度為 500 m 的條件下實現擊穿，所需的環

形迴路電壓約為 0.046 V，隨在此條件下，中心螺線管的電流變化率需大於 289 A/ms，隨

為使 mini-Tokamak（主半徑 85 mm、短半徑 55 mm、橢圓延展率 κ = 1.82）中的電

漿溫度達到 10 eV，，中心螺線管電流應於於 10 ms 內線性由 5.4 kA 降至 0 kA，，於於

接續 40 ms 內由 0 kA 緩降至 −1.5 kA，隨在不考慮粒子流失及其所造成的能量流失的

條件下，此中心螺線管電流波形可使電漿溫度在 40 ms 內維持於 10 eV隨 

關鍵字：托克馬克、磁約束核融合、渦電流、電漿擊穿 
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Abstract 

This thesis presents the design of the central solenoid current profile of the mini-

Tokamak to generate the toroidal loop voltage required for plasma breakdown and to 

subsequently drive the plasma current to 10 kA and heat the plasma to 10 eV. The time-

varying current induces eddy currents in the inner and outer vacuum-vessel walls, which in 

turn affect the loop voltage. A numerical model is developed to compute the resistance and 

inductance of the tokamak components, the induced eddy currents and the loop voltage, with 

the effects of eddy currents in the vacuum-vessel wall included. The calculations show that 

eddy currents initially suppress the loop voltage but decay rapidly, with their influence 

reducing to below 5% after 0.5 ms. Consequently, the solenoid current should be maintained 

longer than 0.5 ms to minimize eddy current effects. In addition, a time-dependent plasma 

model is constructed to calculate plasma current and temperature evolution due to Ohmic 

heating. Plasma resistance is calculated based on neoclassical resistivity, and the ionization 

fraction is obtained using a hybrid model that combines collisional model from empirical 

formula with coefficients from the ADAS database. This formulation enables estimation of 

ionization behavior from the initial weakly ionized state to a fully ionized plasma. To achieve 

breakdown at a particle density of n = 1017 m−3 (corresponding to a pressure of 10−5 Torr) 

with a connection length of 500 m, a loop voltage of approximately 0.046 V is required. 

Under these conditions, the central solenoid current change rate must exceed 289 A/ms. 

Furthermore, to achieve a plasma temperature of 10 eV in the mini-Tokamak with a major 

radius of 85 mm, minor radius of 55 mm, and elongation κ = 1.82, the central solenoid 

current should decrease linearly from 5.4 kA to 0 kA in 10 ms, followed by a ramp from 0 

kA to –1.5 kA in 40 ms. When the particle losses and the corresponding energy losses are 

neglected, the plasma temperature can be maintained at 10 eV for 40 ms. 

 Keywords: Tokamak, Magnetic confinement fusion, Eddy current, Plasma breakdown 
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1. Introduction 

Nuclear fusion is a process in which two or more atomic nuclei fuse together forming 

a heavier nucleus. The mass reduction of the products compared to the reactants is released 

as energy. One example is the process in the Sun, as shown in Figure 1(a). It illustrates the 

proton–proton chain reaction, in which hydrogen nuclei fuse through a series of steps to form 

helium and release energy. This is the dominant reaction that powers with stars the size of 

the Sun or smaller. Another example is the reaction between a deuterium and a tritium, which 

generates a helium and a neutron, as shown in Figure 1(b): 

D1
2 + T1

3 → He2
4 + n0

1  (+17.6 MeV) . (1) 

This reaction is considered the most favorable fusion reaction due to the highest cross-

section among all function reactions at achievable temperatures. 

This chapter consists of three sections. Brief introduction of nuclear fusion and the goal 

of this thesis will be given. Section 1.1 will introduce the two leading methods to achieve 

Figure 1: (a) Proton–proton chain reaction in stellar fusion[1]. (b) Deuterium–tritium    

(D–T) fusion reaction[2]. 
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nuclear fusion in date. Next, Section 1.2 will explain the motivation of this thesis. Finally, 

Section 1.3 will present the goal of this thesis. 

1.1. Nuclear fusion 

To achieve fusion on Earth, it is necessary to create the extreme temperature, pressure, 

and confinement conditions required for fusion to occur. Two leading approaches are being 

developed: Inertial Confinement Fusion (ICF) and Magnetic Confinement Fusion (MCF). 

Each method relies on a different mechanism to confine and heat the fusion fuel to the 

required conditions. 

1.1.1.  Inertial confinement fusion (ICF) 

The principle of inertial confinement fusion is shown in Figure 2. When laser beams 

are focused onto the surface of a spherical fuel capsule, the outer layer is rapidly heated and 

ablated, forming a plasma envelope, as shown by the red-yellow outer layer in Figure 2 (a). 

The blowoff of this hot plasma creates a reaction force that compresses the inner fuel 

symmetrically. As compression proceeds, the core temperature and density rise rapidly, 

eventually reaching the conditions required for fusion ignition. In the ignition phase, the fuel 

core reaches approximately 20 times its original density and a temperature of around 108 ℃. 

Figure 2: Stages of the Inertial Confinement Fusion Process[3]. 
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Once fusion reactions begin at the center of the compressed target, thermal energy is 

transported outward, sustaining a burn wave that spreads outward and releases energy 

several times greater than the initial laser input. 

1.1.2. Magnetic confinement fusion (MCF) 

The configuration of magnetic confinement fusion is shown in Figure 3(a). In a typical 

MCF device, such as a tokamak, the plasma is confined in a toroidal (doughnut-shaped) 

configuration. These devices typically have an aspect ratio (𝑅/𝑎) larger than 2, where 𝑅 

is the major radius and 𝑎 is the minor radius of the plasma, as shown as the outer plasma in 

Figure 3(b). In contrast, the spherical tokamak, shown as the inner plasma in Figure 3(b), 

features an apple-like shape with a much smaller aspect ratio smaller than 2. 

Magnetic confinement in these devices is achieved through the combination of a 

toroidal magnetic field, generated by toroidal field coils (TFC), and a poloidal magnetic field, 

which is produced by a plasma current in the toroidal direction. This plasma current is 

typically induced by a central solenoid. Together, these fields create helical magnetic field 

lines, illustrated by the black spiral in Figure 3(a), that effectively traps plasma particles and 

Figure 3: (a) Magnetic field structure in a tokamak[4]. (b) Comparison of spherical tokamak 

to standard tokamak[5]. 
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guide their motion within the confined region. At the same time, plasma is heated by varies 

sources, e.g., Ohmic heating, RF heating, neutral beam injection, etc. This configuration 

allows the plasma to be maintained at high temperature for a sufficiently long period to 

enable fusion reactions, in which a large amount of energy is released, such as in the D–T 

reaction shown in Figure 1(b). The mini-Tokamak developed in this thesis adopts the 

principle of magnetic confinement fusion, and its plasma takes the form of a spherical 

tokamak. An image of the mini-Tokamak is shown in Figure 4(a), and detailed information 

is provided in Chapter 2. Likewise, the Formosa Integrated Research Spherical Tokamak 

(FIRST), as shown in Figure 4(b) and introduced in Appendix A.15, is also a spherical 

tokamak, but on a larger scale. It is being developed under the support of National Science 

and Technology Council and for more advanced experiments. 

  

Figure 4: (a) Cross-sectional CAD drawings of the mini-Tokamak[6]. (b) Cross-sectional 

CAD drawings of the FIRST[6]. 
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1.2. Motivation for developing the mini-Tokamak 

The mini-Tokamak developed in this thesis serves as a versatile and accessible 

experimental platform for both educational applications and technical validation. Its primary 

purpose is to support experimental courses related to plasma physics and nuclear fusion, 

providing students with opportunities not only to learn theoretical concepts, but also to 

engage in hands-on experience. Through real-time observation, data acquisition, and 

analysis of plasma experiments, students can deepen their understanding of fusion 

phenomena and enhance their practical skills in diagnostics and experimental techniques. 

In addition to its educational value, the mini-Tokamak also plays a key technical role 

in supporting the development of the Formosa Integrated Research Spherical Tokamak 

(FIRST), the first tokamak being designed and constructed in Taiwan. FIRST is expected to 

achieve first plasma by 2026, with the vacuum vessel scheduled for installation in early 2026. 

However, several key components, such as the power supplies and the current drivers for the 

central solenoid (CS), poloidal field coils (PFCs), and toroidal field coils (TFCs) are 

expected to arrive earlier. In this context, the mini-Tokamak can be used as a preliminary 

testing platform for FIRST. It allows for early validation of current drivers and magnetic 

field measurement systems under tokamak-relevant conditions. By conducting these 

preparatory tests in advance, key systems can be properly configured and made ready for 

operation. This enables a smooth transition to full-scale testing once FIRST is installed, 

maximizing efficiency and minimizing commissioning delays. 

1.3. The goal of this thesis 

The goal of this thesis is to design the central solenoid (CS) current profile for the mini-

Tokamak. To achieve plasma breakdown and drive the plasma current, the CS current must 

be carefully tailored to provide the required loop voltage under constrained conditions. The 

time-varying current in the central solenoid not only induces voltage in the vacuum vessel 
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to initiate plasma breakdown but also generates eddy currents in the surrounding vacuum-

vessel walls. These eddy currents can significantly alter the distribution of loop voltage and 

affect the efficiency of plasma initiation. Furthermore, once the plasma is formed, the 

evolution of plasma parameters, such as plasma current and temperature, will further 

influence the required CS current profile. 

To account for these effects, this thesis develops a sequence of models to calculate and 

analyze the various factors influencing the design of the CS current profile. A detailed 

description of the mini-Tokamak specifications and geometry will first be provided in 

Chapter 2. Next, Chapter 3 introduces the calculation of eddy currents in the vacuum-vessel 

walls, based on the chamber’s geometry and material properties. Chapter 4 presents the 

computation of the loop voltage induced by the time-varying CS current, with the influence 

of eddy currents included. Chapter 5 focuses on the calculation of the evolution of plasma 

parameters, such as temperature, resistance, and plasma current, under the designed CS 

current profile. Future work and conclusion are presented in Chapters 6 and 7, respectively. 

In addition to the mini-Tokamak application, the modeling framework developed in this 

thesis is further applied to the preliminary current profile design for the Formosa Integrated 

Research Spherical Tokamak (FIRST), with detailed calculations provided in Appendix A.15. 
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2. mini-Tokamak specification 

Figure 5(a) shows a simplified cross-sectional view of the mini-Tokamak in the xz 

plane, while Figure 5(b) presents a schematic of the right half of the vacuum vessel structure, 

referenced from the device’s centerline. As illustrated in Figure 5(a) and (b), the vacuum 

vessel is a cylinder, with a rectangular cross-section in the xz plane. The inner wall of the 

vacuum vessel is made of a standard KF 40 nipple with 1.8 mm in thickness. The inner 

edge is located at 17.25 mm from the centerline, and the vertical height is 531 mm. The 

outer wall is 3 mm thick, with its inner edge locates at 160 mm from the centerline, and the 

vertical height is 531 mm. The top and bottom covers, with a thickness of 16 mm and 15 

mm, respectively, connect the inner and outer walls and are treated as part of the outer wall 

in eddy current calculations. Therefore, the height of both the inner and outer vacuum-

vessel walls is considered to be 531 mm in the following calculations. 

Regarding the plasma geometry, as shown in Figure 5(a), the plasma has a major radius 

of 85 mm and a minor radius of 55 mm. The elongation is set to 1.82, resulting in a plasma 

cross-section with a long axis of approximately 100.1 mm and a short axis of 55 mm. To 

ensure confinement, the gyro radius of the particles in the mini-Tokamak must be smaller 

Figure 5: (a) Simplified xz-plane cross-section of mini-Tokamak. (b) Structural schematic 

of the vacuum-vessel of the mini-Tokamak. 
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than the distances between the plasma edge and the vacuum vessel walls, which are 11 mm 

on the inner side and 17 mm on the outer side. Otherwise, the particles will collide with the 

wall and be lost. Helium is selected as the working gas, and the plasma temperature is 

limited to 10 eV, with detailed calculations provided in Appendix A.1. 

There will be four rectangular toroidal field coils with a current of 4 kA, a toroidal 

magnetic field of 0.1 T at 85 mm can be produced. It is intended to achieve a plasma current 

of up to 10 kA and a plasma temperature of approximately 10 eV. The mini-Tokamak has 

six pairs, totaling twelve rectangular poloidal field coils. The position and current of each 

coil are given in Appendix A.2. 

The mini-Tokamak employs a central solenoid (CS), located inside the inner-vacuum-

vessel wall, as shown in Figure 5(a) and illustrated in detail in Figure 6. The CS consists of 

two layers, each comprising 92 turns of copper conductor, giving a total of 184 turns. The 

conductor is a solid copper wire with a circular cross-section of 2.6 mm in diameter, and 

an insulation layer of 1.7 mm in thickness, resulting in a total outer diameter of 6 mm per 

turn. The CS will wrap around the inner legs of the toroidal field coils and be fitted within 

the inner-vacuum-vessel wall. 

Figure 6: Specifications of the central solenoid in the mini-Tokamak. 
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3. Calculation of the eddy currents in the inner and outer 

vacuum-vessel walls  

In the tokamak device, we generate plasma, drive plasma current, and control plasma 

shape by adjusting the time-varying currents in coils such as poloidal field coil (PFC), 

toroidal field coil (TFC), and central solenoid (CS). However, the time-varying magnetic 

fields generated by these coils will induce eddy currents in vacuum-vessel walls, which can 

impact the originally calculated magnetic fields. Therefore, before constructing the tokamak 

device, it is necessary to include the eddy currents within the device in the design to obtain 

more accurate results. 

This chapter consists of six sections. Section 3.1 introduces the full circuit equation 

used to calculate the induced currents between the central solenoid and vacuum-vessel walls. 

Section 3.2 explains the conjugate gradient (CG) method employed to obtain a numerical 

stable and converge solution. Section 3.3 describes the components defined in the circuit 

model. Section 3.4 presents the calculation of inductance and resistance for each 

components. Section 3.5 shows the calculated results, and Section 3.6 provides the 

conclusion. 

3.1. The full circuit equation  

To calculate the eddy currents in the vacuum-vessel walls, we can treat the vacuum-

vessel wall as a “coil”. Then, the eddy currents in the vacuum-vessel walls can be calculated 

using the mutual inductance between the vacuum-vessel walls and coils. In particular, the 

central solenoid is considered here. To calculate the eddy currents, we consider the vacuum-

vessel wall as many ring coils stacking on top of each other. Then, by calculating the induced 

current in each ring coil, called the vacuum-vessel element, we can calculate the eddy 

currents at different vacuum-vessel elements using the full circuit equation[7]: 
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𝑉⃗ = 𝐌
𝑑𝐼 

𝑑𝑡
+ 𝐑𝐼  . (2) 

Here, 𝑉⃗  represents the voltage across each element/coil, 𝐼  represents the current flowing 

through each element/coil, 𝐌  represents inductance of each element/coil, and 𝐑 

represents resistance of each element/coil. This equation states that the total voltage “𝑉⃗ ” in 

a closed loop equals its induced voltage “𝐌
𝑑𝐼 

𝑑𝑡
” plus the voltage drop due to resistance “𝐑𝐼 ”. 

In Chapter 5, plasma is treated as a ring coil and can be included in the calculation. 

For convenience in calculations, we have 𝑉⃗  and 𝐼  in the vector form to represent the 

voltage and the current in each coil and each vacuum-vessel element. On the other hand, 𝐌 

and 𝐑 are written in the matrix form including the self-inductance and the resistance of 

each coil and each vacuum-vessel element, and the mutual inductance between each 

component. In addition, we use subscribes c, v, p to represent different types of components. 

Subscribe c represents coils in the tokamak device, such as the central solenoid, PFC, and 

TFC; subscribe v represents elements in the tokamak device's vacuum vessel; subscribe 

p represents the plasma. Therefore, 𝐼  is a column vector of size 𝑛 + 1, representing the 

currents of the total 𝑛 components of coils and vacuum-vessel elements in the tokamak 

device plus the plasma current; 𝑉⃗  is also a column vector of size 𝑛 + 1, representing the 

voltages of the total 𝑛 components of coils and vacuum-vessel elements in the tokamak 

device plus the loop voltage of plasma; 𝐑 is a diagonal matrix of size (𝑛 + 1) × (𝑛 + 1), 

representing the resistance of the total 𝑛 components of coils and vacuum-vessel elements 

plus the plasma; 𝐌 is a symmetric matrix of size (𝑛 + 1) × (𝑛 + 1), representing the self-

inductance (diagonal) of the total 𝑛 components of coils and vacuum-vessel elements plus 

plasma, and the mutual inductance (off-diagonal) between them. Therefore, Eq. (2) can be 

written explicitly as: 
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𝑉⃗ = 𝐌
𝑑𝐼 

𝑑𝑡
+ 𝐑𝐼 

⇒

[
 
 
 
 
 
 
 𝑉⃗
 
c1

𝑉⃗ c2
⋮

𝑉⃗ v1

𝑉⃗ v2

⋮

𝑉⃗ p ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

 

𝐿c1 𝑀c1,c2 𝑀c1,c3 ⋯ 𝑀c1,v1 𝑀c1,v2 𝑀c1,v3 ⋯ 𝑀c1,p

𝑀c2,c1 𝐿c2 𝑀c2,c3 ⋯ 𝑀c2,v1 𝑀c2,v2 𝑀c2,v3 ⋯ 𝑀c2,p

𝑀c3,c1 𝑀c3,c2 𝐿c3 ⋯ 𝑀c3,v1 𝑀c3,v2 𝑀c3,v3 ⋯ 𝑀c3,p

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑀v1,c1 𝑀v1,c2 𝑀v1,c3 ⋯ 𝐿v1 𝑀v1,v2 𝑀v1,v3 ⋯ 𝑀v1,p

𝑀v2,c1 𝑀v2,c2 𝑀v2,c3 ⋯ 𝑀v2,v1 𝐿v2 𝑀v2,v3 ⋯ 𝑀v2,p

𝑀v3,c1 𝑀v3,c2 𝑀v3,c3 ⋯ 𝑀v3,v1 𝑀v3,v2 𝐿v3 ⋯ 𝑀v3,p

⋮ ⋮ ⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑀p,c1 𝑀p,c2 𝑀p,c3 ⋯ 𝑀p,v1 𝑀p,v2 𝑀p,v3 ⋯ 𝐿p ]

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝑑𝐼 c1

𝑑𝑡

𝑑𝐼 c2
𝑑𝑡
⋮

𝑑𝐼 v1

𝑑𝑡

𝑑𝐼 v2

𝑑𝑡
⋮

𝑑𝐼 p

𝑑𝑡 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 

 

𝑅c1 0 ⋯ 0 0 ⋯ 0
0 𝑅c2 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝑅v1 0 ⋯ 0
0 0 ⋯ 0 𝑅v2 ⋯ 0
⋮ ⋮  ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 𝑅p]

 
 
 
 
 
 

[
 
 
 
 
 
 
 𝐼
 
c1

𝐼 c2
⋮

𝐼 v1

𝐼 v2

⋮

𝐼 p ]
 
 
 
 
 
 
 

 . (3)

 

Notice that no external voltages are applied on the vacuum-vessel elements and the 

plasma: 𝑉⃗ v1 = 𝑉⃗ v2 = ⋯ = 𝑉⃗ p = 0. The only non-zero voltage are 𝑉⃗ c1, 𝑉⃗ c2, ⋯. 

Eq. (2) can be solved numerically using a finite difference method: 

𝑉⃗ = 𝐌
𝑑𝐼 

𝑑𝑡
+ 𝐑𝐼 ⇒ 𝑉⃗ = 𝐌

𝐼′⃗⃗ − 𝐼 

∆𝑡
+ 𝐑𝐼 

⇒ 𝑉⃗ = 𝐌
𝐼′⃗⃗ 

∆𝑡
− 𝐌

𝐼 

∆𝑡
+ 𝐑𝐼 = 𝐌

𝐼′⃗⃗ 

∆𝑡
+ (𝐑 −

𝐌

∆𝑡
) 𝐼 ⇒

𝐌

∆𝑡
𝐼′⃗⃗ = 𝑉⃗ + (

𝐌

∆𝑡
− 𝐑) 𝐼 

⇒ 𝐼′⃗⃗ = (
𝐌

∆𝑡
)
−1

[𝑉⃗ + (
𝐌

∆𝑡
− 𝐑) 𝐼 ] . (4)

 

In Eq. (4), 𝐼′⃗⃗  represents the current in the following time step of 𝐼 . Notice that matrix 𝐌 

and 𝐑  are constant when plasma is not included because coils and vacuum-vessel 

elements are fixed once the tokamak is built. By providing 𝑉⃗ (𝑡), we can obtain 𝐼 (𝑡) at 

any time. 
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When using the full circuit equation to calculate the eddy currents induced by the central 

solenoid in the vacuum-vessel walls, the feedback effect of the eddy currents on the induced 

current in the central solenoid is negligible. This is because the eddy currents are relatively 

small compared to the central solenoid’s driving current. To simplify the calculation and 

enhance computational efficiency, we disregard this feedback effect in our calculation as 

shown in Eq. (5). Our current calculations only include the central solenoid (subscript cs), 

the vacuum-vessel walls (subscript v), and the plasma (subscript p). Therefore, Eq. (5) only 

accounts for these components. 

−

[
 
 
 
 
𝑀v1,cs

𝑀v2,cs

𝑀v3,cs

⋮
𝑀p,cs ]

 
 
 
 
𝑑𝐼 𝑐𝑠
𝑑𝑡

=

[
 
 
 
 
 

 

𝐿v1 𝑀v1,v2 𝑀v1,v3 ⋯ 𝑀v1,p

𝑀v2,v1 𝐿v2 𝑀v2,v3 ⋯ 𝑀v2,p

𝑀v3,v1 𝑀v3,v2 𝐿v3 ⋯ 𝑀v3,p

⋮ ⋮ ⋮ ⋮ ⋮
𝑀p,v1 𝑀p,v2 𝑀p,v3 ⋯ 𝐿p ]

 
 
 
 
 

[
 
 
 
 𝐼
 
v1
′

𝐼 v2
′

⋮

𝐼 p
′
]
 
 
 
 

+ [ 

𝑅v1 0 ⋯ 0
0 𝑅v2 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝑅p

]

[
 
 
 
 𝐼
 
v1

𝐼 v2

⋮

𝐼 p ]
 
 
 
 

 . (5)

 

As mentioned earlier, 𝑉⃗   represents the external voltage. Since the vacuum-vessel 

walls and plasma are passive elements, which don’t have an independent external voltage 

source, their voltage is set to 𝑉 = 0. However, since the feedback effect on the central 

solenoid is ignored, we can treat induced effect on the other components as their respective 

source term. This induced effect is expressed as the mutual inductance between each 

component and central solenoid times the rate of change of the central solenoid’s current. 

For example, as shown in Eq. (5), −𝑀v1,cs ∙
𝑑𝐼𝑐𝑠

𝑑𝑡
 represents the induced voltage from the 

central solenoid on the first vacuum-vessel wall element.  

To solve Eq. (5) numerically, conjugate gradient (CG) method is used, which will be 

introduced in next section. 
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3.2. Conjugate gradient (CG) method  

Currently, our calculation involves a matrix composed of 491 components, which will 

be described in detail in the next section. This matrix will continue to grow as more 

components are included in the model. This increase in matrix size will lead to greater 

computational complexity and longer computation times. To efficiently handle these 

challenges, instead of using conventional iterative methods, we employ the Conjugate 

Gradient (CG) method[8]. 

Eq. (2) can be written as a simple linear system: 

𝐀𝑥 = 𝑏⃗ (6) 

where 𝐀 is a symmetric matrix. 

To solve 𝑥 , basic iterative methods proceed as follows: 

(1) Initial guess: Start with an initial guess 𝑥 0. 

(2) Residual calculation: Compute the residual 𝑟 0 = 𝑏⃗ − 𝐀𝑥 0 , which measures the 

difference between the current approximation and the true solution which equals to 

𝑏⃗ .  

(3) Update the solution: Use the residual to update the approximation. For example, in 

the Richardson method: 𝑥 i+1 = 𝑥 i + 𝜔𝑟 i , where 𝜔  is a relaxation parameter 

chosen to ensure convergence. 

(4) Convergence check: Evaluate the norm of the residual ||𝑟 i|| . If it is below a 

specified tolerance, the solution is accepted. Otherwise, repeat steps (2)-(4). 

In contrast, the CG method, described subsequently, improves upon basic iterative 

methods by using not only residuals but also additional conjugate directions to ensure faster 

and more reliable convergence. 

To apply the CG method, we first reformulate the original linear system 𝐀𝑥 = 𝑏⃗  as 

an optimization problem. Specifically, we introduce the quadratic functional: 
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𝑓(𝑥 ) =
1

2
𝑥 T𝐀𝑥 − 𝑏⃗ T𝑥 + 𝐶 . (7) 

To better understand this formulation, consider a specific example[8]: 

𝑥 = [
2
1
] , 𝐀 = [

2 0
0 4

] , 𝑏⃗ =  [
1

−1
] , 𝐶 = 0 . (8) 

Substituting these into the function 𝑓(𝑥 ): 

𝑓 =
1

2
[2 1] [

2 0
0 4

] [
2
1
] − [1 −1] [

2
1
] + 0 = 5 . (9) 

This shows that the function 𝑓(𝑥 ) takes a vector input and returns a scalar output. 

 When 𝑥 ∈ ℝ𝟐, the function 𝑓(𝑥 ) maps each point in the two-dimensional plane to a 

single real-valued output, which can be interpreted as height. As a result, the quadratic 

function defines a smooth three-dimensional surface, where the shape of the surface reflects 

how 𝑓(𝑥 ) varies with respect to 𝑥 . Figure 7 provides both 2D and 3D visualization of the 

function 𝑓(𝑥 ) . Specifically, Figure 7(a) shows the contour lines (or level curves) of 

constant function values, illustrating the landscape from a top-down perspective, while 

Figure 7(b) presents the corresponding 3D surface, where the height at each point 

represents the value of 𝑓(𝑥 ). 

Figure 7: (a) Contour plot of quadratic function[8]. (b) 3D surface plot of quadratic 

function[8]. 
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If we want to find the lowest point on this surface, the minimum occurs when the 

gradient of the function equals to zero: 

∇𝑓(𝑥 ) = 𝐀𝑥 = 𝑏⃗ = 0 . (10) 

Therefore, solving Eq. (10) is equivalent to finding the minimum of the quadratic functional 

given in Eq. (6).  

Recall that the residual is defined as 𝑟 = 𝑏⃗ − 𝐀𝑥 , which corresponds to the negative 

gradient of the objective function, −∇𝑓(𝑥 ),  evaluated at 𝑥  . In this sense, the residual 

provides a natural direction for descent in the solution space. Moreover, the constant term 

𝐶  does not affect the location of the minimum, since we are minimizing the gradient 

∇𝑓(𝑥 ). Therefore, 𝐶 can be ignored without loss of generality. 

The CG method is to iteratively approach the minimum of the quadratic function 𝑓𝑥 , 

which corresponds to the true solution 𝑥 ∗ of the linear system 𝐀𝑥 = 𝑏⃗ .  

 To do this, CG generates a sequence of iterates 𝑥 0, 𝑥 1, 𝑥 2,…, where each new point is 

computed by moving from the current point 𝑥 k in a specific direction 𝑝 k, scaled by a step 

size α𝑘: 

𝑥 k+1 = 𝑥 k + αk𝑝 k . (11) 

This update rule is visualized in Figure 8. The point 𝑥 k is the current position, and 𝑝 k is 

the direction in which we search. The scalar 𝛼k controls how far we move along in that 

direction. The red line shows the direction 𝑝 k, and the product 𝛼k𝑝 k gives the step vector 

that takes us from 𝑥 k to the next point 𝑥 k+1.  

Figure 8: Visualization of a single CG iteration step[9]. 
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In the CG method, we are interested in the iteration error, defined as: 

𝑒 k = 𝑥 k − 𝑥 ∗ , (12) 

where  𝑥 ∗  is the true solution, 𝑥 k  is the current approximation at iteration k . 

Geometrically, 𝑒 k  is the vector pointing from the current estimate 𝑥 k  toward the true 

solution  𝑥 ∗ (𝑥 final) , as shown Figure 9(a). If this vector were known, we could jump 

directly to the solution in one step. However, since 𝑥 ∗ is unknown, we must iteratively 

reduce the error instead. Once the solution is updated to 𝑥 k+1, the new error becomes: 

𝑒 k+1 = 𝑥 k+1 − 𝑥 ∗ , (13) 

as shown in Figure 9(b). Using Eq. (11) and substituting into the expression for 𝑒 k+1: 

𝑒 k+1 = (𝑥 k + 𝛼k𝑝 k) − 𝑥 ∗ = (𝑥 k − 𝑥 ∗) + 𝛼k𝑝 k = 𝑒 k + 𝛼k𝑝 k . (14) 

This relation shows that the error is updated at each step based on the step size 𝛼k and the 

search direction 𝑝 k . Moving from 𝑥 k  to 𝑥 k+1  causes the error vector to shorten and 

rotate closer to the true solution direction. To accelerate convergence, we want each new 

search direction 𝑝 k  to avoid retracing the directions used in previous steps. This is 

achieved through conjugate directions.  

Before we delve further into the CG method, we first need to clarify what the term 

"conjugate" means in this context. Two vectors 𝑎  and 𝑏⃗  are said to be A-conjugate (or 

Figure 9: (a) Error vector at iteration k[8]. (b) Error vector at iteration k + 1[8]. 
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conjugate with respect to the matrix 𝐀), if the following condition holds for a symmetric 

positive definite matrix 𝐀: 

𝑎 T𝐀𝑏⃗ = 0 . (15) 

As shown in Figure 10(a), the vector 𝐀𝑏⃗  can be thought of as a transformation of 𝑏⃗  under 

the matrix 𝐀. The conjugacy condition above implies that this transformed vector 𝐀𝑏⃗  is 

orthogonal to 𝑎 . This guarantees that each new direction explores a previously unvisited 

subspace of the solution space, avoiding inefficient zig-zagging patterns typical of steepest 

descent methods. 

 Our goal is to determine suitable expressions for the scalars 𝛼𝑘 in Eq. (11), which is 

essential for each step of the CG method iteration. Since the exact solution 𝑥 ∗ is unknown, 

we cannot directly compute the error vector 𝑒 k = 𝑥 ∗ − 𝑥 k. However, the residual 𝑟 k =

𝑏⃗ − A𝑥 k serves as a measurable proxy for the error, representing the negative gradient of 

the objective function at iteration k. The search direction 𝑝 k, which is constructed to be 

A-conjugate to direction in the k − 1 step, indicates the direction of the k step. 𝛼k can 

be defined using 𝑟 k  and 𝑝 k, as these are the available quantities that provide both 

geometric (directional) and numerical (magnitude) information required for the update. 

Figure 10: (a) Illustration of A-conjugacy between vectors[8]. (b) Stopping condition based 

on A-orthogonality[8]. 
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This leads to a step size that ensures optimal descent along 𝑝 k  without requiring 

knowledge of the exact solution. 

To ensure that the updated error 𝑒 k+1 is A-conjugate to the current direction 𝑝 k, we 

impose the condition as shown in Figure 10(b): 

𝑝 k
T𝐀𝑒 k+1 =  0 . (16) 

Notic that 𝐀𝑒 k+1 = 𝐀(𝑥 k+1 − 𝑥 ∗) = 𝐀𝑥 k+1 − 𝐀𝑥 ∗ = −(𝑏⃗ − 𝐀𝑥 k+1) = −𝑟 𝑘+1. Therefore, 

𝑝 k
T𝐀𝑒 k+1 = 𝑝 k

T𝑟 k+1 =  0 . (17) 

In other words, 𝑝 k is orthogonal to 𝑟 k+1. 

Substituting Eq. (14) into Eq. (16): 

𝑝 k
T𝐀(𝑒 k + 𝛼k𝑝 k) =  0 , (18) 

which is simplified to: 

𝑝 k
T𝐀𝑒 k + 𝑝 k

T𝐀𝛼k𝑝 k =  0 . (19) 

Solving for 𝛼k, we obtain: 

𝛼k = −
𝑝 k

T𝐀𝑒 k

𝑝 k
T𝐀𝑝 k

 . (20) 

Since 𝑒 k is not directly accessible in practice, we derive another equation for it, by 

combining 𝐀𝑥 ∗ = 𝑏⃗  and 𝑟 k = 𝑏⃗ − 𝐀𝑥 k. By eliminating 𝑏⃗ : 

𝑟 k = 𝐀(𝑥 ∗ − 𝑥 k) . (21) 

According to Eq. (12), the error vector is defined as 𝑒 k = 𝑥 k − 𝑥 ∗: 

𝐀𝑒 k = −𝑟 k . (22) 

Substituted Eq. (22) into Eq. (20) to eliminate 𝑒 k: 

𝛼k =
𝑝 k

T𝑟 k

𝑝 k
T𝐀𝑝 k

 . (23) 

This choice of 𝛼k guarantees that the new point 𝑥 k+1 minimizes the function 𝑓(𝑥 ) along 

𝑝 k, while preserving the A-conjugacy of subsequent directions, ensuring rapid and stable 

convergence. The next task is to determine the search direction 𝑝 k for the next iteration. 
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As shown in Figure 11(a), after reaching the new point, we compute the updated 

residual 𝑟 k+1, which points in the direction of the steepest descent. However, we do not 

want to simply use 𝑟 k+1 alone as the next search direction, as this would cause the method 

to revert to the inefficient steepest descent approach, as shown in the black solid line in 

Figure 11(b). 

Instead, the CG method constructs the new direction as a linear combination of the 

current residual 𝑟 k+1 and the previous direction 𝑝 k as shown in Figure 11(a): 

𝑝 k+1 = 𝑟 k+1 + 𝛽k+1𝑝 k . (24) 

Once the step along 𝑝 k is taken, we arrive at a new point where the residual 𝑟 k+1 defines 

the direction of steepest descent, shown as a black dashed arrow pointing upward. Since 

𝑟 k+1 is orthogonal to 𝑝 k. However, instead of using 𝑟 k+1 alone, the CG method adds a 

scaled component 𝛽k+1𝑝 k, depicted as a blue vector pointing in the same general direction 

as the previous path. Their vector sum forms the new direction 𝑝 k+1, shown in red. The 

scalar 𝛽k+1 in this process is carefully chosen to ensure that the new direction 𝑝 k+1 is 

conjugate to the previous direction 𝑝 k, resulting in more efficient convergence, as illustrated 

in the red solid line in Figure 11(b).  

Figure 11: (a) Geometric construction of the new conjugate direction[8]. (b) Conjugate 

gradient path (red line)[9]. 
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To determine the suitable expressions for the scalars 𝛽k+1 , we first recall that the 

residual at any iteration is defined as: 

𝑟 k = 𝑏⃗ − 𝐀𝑥 k . (25) 

Using the update rule 𝑥 k+1 = 𝑥 k + 𝛼k𝑝 k, we plug this into the residual definition: 

𝑟 k+1 = 𝑏⃗ − 𝐀𝑥 k+1 = 𝑏⃗ − 𝐀(𝑥 k + 𝛼k𝑝 k) = 𝑏⃗ − 𝐀𝑥 k − 𝛼k𝐀𝑝 k = 𝑟 k − 𝛼k𝐀𝑝 k . (26) 

In CG method, this new search direction 𝑝 k+1 must satisfy two essential conditions: 

the residual 𝑟 k+1 is orthogonal to 𝑝 k, and it must remain A-conjugate to 𝑝 k, to maintain 

orthogonality under the A-inner product. This requirement can be formally expressed as: 

𝑝 k
T𝐀𝑝 k+1 =  0 , (27) 

which prevents the search direction from undoing progress made in previous steps and 

ensures efficient convergence. 

A general form for the new direction is proposed: 

𝑝 k+1 = 𝑟 k+1 + 𝛽k+1𝑝 k (28) 

as shown in Figure 11(a). 

To determine 𝛽k+1, we impose conjugation conditions. By substituting Eq. (28) into 

Eq. (27), we get: 

𝑝 k
T𝐀( 𝑟 k+1 + 𝛽k+1𝑝 k) = 𝑝 k

T𝐀𝑟 k+1 + 𝑝 k
T𝐀𝛽k+1𝑝 k = 0 . (29) 

Solving for 𝛽k+1 gives the exact expression: 

𝛽k+1 = −
𝑝 k

T𝐀𝑟 k+1

𝑝 k
T𝐀𝑝 k

 , (30) 

which ensures the new direction 𝑝 k+1 is A-conjugate to 𝑝 k.  

The sequence of using the CG method is: 

(1) Start from an initial guess 𝑥 k = 𝑥 0 for k = 0. Define an initial searching vector 

𝑝 k = 𝑝 0 for k = 0. 

(2) 𝑟 k is calculated. 
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(3) 𝛼k is calculated using Eq. (23). 

(4) 𝑥 k+1 is calculated using Eq. (11). 

(5) 𝑟 k+1 is calculated. 

(6) Check if 𝑟 k+1 is small enough. If not proceed to the next step, or exit the iteration. 

(7) 𝛽k+1 is calculated using Eq. (30). 

(8) 𝑝 k+1 is calculated using Eq. (28). 

(9) Go to step (1) with 𝑥 k = 𝑥 k+1 from step (4) and 𝑝 k = 𝑝 k+1 from step (8), then 

repeat step (1) to (9). 

Although the conjugate gradient method is obtained above, it involves computing 

matrix-vector products with 𝐀 , which can be computationally costly, especially when 

dealing with large sparse systems. In addition, the first search direction 𝑝 0 is not defined. 

To improve efficiency, we seek an alternative form of that avoids direct multiplication by 

𝐀. 

To simplify this process and reduce computational complexity, the CG method 

commonly initializes the first direction using 𝑝 0 = 𝑟 0, where 𝑟 0 = 𝑏⃗ − 𝐀𝑥 0 is the initial 

residual. This choice is both practical and theoretically justified. In the very first step, the 

residual 𝑟 0 is the negative gradient of the objective function 𝑓(𝑥 ). Therefore, choosing 

𝑝 0 = 𝑟 0 means that the initial direction aligns with the direction of steepest descent. 

This decision not only simplifies the starting step but also provides structural benefits 

for subsequent iterations. In particular, the CG method constructs all subsequent directions 

𝑝 1, 𝑝 2, … in such a way that they are A-conjugate to each other, meaning 𝑝 i
T 𝐀𝑝 j = 0 for 

i ≠ j. This orthogonality under the A-inner product is what allows the CG method to reach 

the exact solution in at most 𝑛 steps for a 𝑛-dimensional system. In fact, this is why the 

method is called Conjugate Gradient: the directions 𝑝 1, 𝑝 2, … are conjugate with respect 

to the initial gradient direction 𝑟 0. 
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Moreover, initializing with 𝑝 0 = 𝑟 0  allows for convenient simplifications in the 

derivation of both 𝛼k  and 𝛽k+1 . Because the direction vectors 𝑝 k  are recursively 

generated using residuals from previous steps, they remain closely aligned, i.e., colinear or 

in the same subspace, with the corresponding residuals. As a result, Eq. (23) can be 

simplified to:  

𝛼𝑘 =
𝑟 k

T𝑟 k

𝑝 k
T𝐀𝑝 k

 . (31) 

 As for the expression of 𝛽k+1, we take the inner product of both sides of Eq. (26) with 

𝑟 k+1
T : 

𝑟 k+1
T 𝑟 k+1 = 𝑟 k+1

T (𝑟 k − 𝛼k𝐀𝑝 k) . (32) 

Due to the orthogonality condition 𝑟 k+1
T 𝑟 k = 0: 

𝑟 k+1
T 𝑟 k+1 = −𝛼𝑘𝑟 k+1

T 𝐀𝑝 k

⇒ 𝑟 k+1
T 𝐀𝑝 k = −

1

𝛼k
𝑟 k+1

T 𝑟 k+1 . (33)
 

Since 𝐀 is symmetric, we know 𝐀 = 𝐀T. This property allows us to manipulate the inner 

product involving 𝐀 as follows: 

(𝑝 k
T𝐀𝑟 k+1)

T = 𝑟 k+1
T 𝐀T𝑝 k = 𝑟 k+1

T 𝐀𝑝 k . (34) 

From Eq. (33), we can get: 

𝑝 k
T𝐀𝑟 k+1 = (𝑝 k

T𝐀𝑟 k+1)
T = 𝑟 k+1

T 𝐀𝑝 k = −
1

𝛼k
𝑟 k+1

T 𝑟 k+1 . (35) 

Substituting this into Eq. (30): 

𝛽k+1 = −
−

1
𝛼k

𝑟 k+1
T 𝑟 k+1

𝑝 k
T𝐀𝑝 k

=
1

𝛼𝑘
∙
𝑟 k+1

T 𝑟 k+1

𝑝 𝑘
T𝐀𝑝 k

 . (36) 

Substitute Eq. (31) into Eq. (36), we can derive: 

𝛽k+1 =
𝑝 k

T𝐀𝑝 k

𝑟 k
T𝑟 k

∙
𝑟 k+1

T 𝑟 k+1

𝑝 k
T𝐀𝑝 k

=
𝑟 k+1

T 𝑟 k+1

𝑟 k
T𝑟 k

 . (37) 

At this point, we have obtained all the necessary quantities for performing the CG method, 

including the step size 𝛼k, the new residual 𝑟 k+1, the direction update factor 𝛽𝑘+1, and 



32 

 

the new search direction 𝑝 𝑘+1. These quantities can all be computed using inner products 

and matrix-vector multiplications, without the need to store or invert the matrix 𝐀, which 

makes CG method especially efficient for large, sparse, symmetric positive-definite 

systems. 

The full CG method proceeds starting from an initial guess 𝑥 0, we compute the initial 

residual 𝑟 0 = 𝑏⃗ − 𝐀𝑥 0  and set the first direction as 𝑝 0 = 𝑟 0 . In each iteration, we 

calculate the optimal step size: 

𝛼𝑘 =
𝑟 k

T𝑟 k

𝑝 k
T𝐀𝑝 k

(38) 

to update the solution 

𝑥 k+1 = 𝑥 k + 𝛼k𝑝 k . (39) 

Next, we compute the new residual: 

𝑟 k+1 = 𝑏⃗ − 𝐀𝑥 k+1 . (40) 

Then, we construct the new search direction using the formula: 

𝛽𝑘+1 =
𝑟 k+1

T 𝑟 k+1

𝑟 k
T𝑟 k

, 𝑝 k+1 = 𝑟 k+1 + 𝛽𝑘+1𝑝 k . (41) 

This process repeats until the residual norm ||𝑟 k+1|| falls below a specified tolerance. 

The geometric idea behind this method is clearly illustrated in Figure 8. Starting from 

the point 𝑥 k, we move along the search direction 𝑝 k by a distance 𝛼𝑘 arriving at a new 

position 𝑥 k+1. From there, we calculate the next search direction 𝑝 k+1 which lies in a 

different direction but still ensures conjugacy with respect to the previous directions. The 

solid arrow from 𝑥 k to 𝑥 k+1 represents the step 𝛼𝑘𝑝 k, and the dashed arrow indicates 

the new direction 𝑝 k+1. By combining information from both the current residual and the 

previous search direction, this update ensures both efficient descent and mathematical 

orthogonality, driving convergence to the true solution 𝑥 ∗. 
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3.3. Components defined in the calculation  

mini-Tokamak primarily relies on the time-varying current in the central solenoid 

(indicated by the blue arrow in Figure 12) for plasma generation and driving plasma currents 

(represented by the orange arrow in Figure 12). Consequently, the central solenoid undergoes 

significant current variations that induce currents in the surrounding components, e.g. the 

vacuum-vessel walls. As the vacuum-vessel walls are the primary components affected and 

the main carrier of eddy currents, we first focus on calculating the eddy currents in the inner 

and outer vacuum-vessel walls (depicted by the green and yellow arrows, respectively, in 

Figure 12) generated by the time-varying current of the central solenoid. 

 As shown in Figure 13(a), the central solenoid consists of two layers, each containing 

92 turns, for a total of 184 turns. The distances from the centerline to the centers of the 

inner and outer layers are 8 mm and 14 mm, respectively. For simplicity, the major radius 

of the central solenoid in our calculations is set as their average, 11 mm. The solenoid coil 

is a solid copper wire wrapped with an insulating layer on the outside. The blue circle 

represents the insulation layer, which is 1.7 mm thick. The black circle represents the coil, 

with a diameter of 2.6 mm. 

Figure 12: Schematic diagram of currents in the mini-Tokamak. 
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For the vacuum vessel, we divide it into four parts: the inner-vacuum-vessel wall and 

bottom lid, and the outer-vacuum-vessel wall and top lid, as illustrated in Figure 13(b). 

The vacuum-vessel wall is treated as many ring elements stacking on top of or beside each 

other. To enhance calculation accuracy, as illustrated in Figure 13(b), the inner-vacuum-

vessel wall is divided into 295 identical ring elements with square cross-sections of 1.8 

mm on each side, stacked together. Similarly, the outer-vacuum-vessel wall is divided into 

177 ring elements with square cross-sections of 3 mm on each side. For the top and bottom 

lids, although they have the same axial length, their thicknesses differ slightly, 15 mm for 

the bottom lid and 16 mm for the lid. Due to rounding, both lids are segmented into 9 

identical ring coils, each with square cross-sections of 15 mm × 15 mm and 16 mm × 16 

mm, respectively. This segmentation allows for precise modeling of the eddy currents 

generated within the vacuum-vessel walls.  

All components are implemented in MATLAB according to the specifications, and the 

detailed code is provided in Appendix A.4. Currently, we only consider the central 

solenoid and the vacuum-vessel wall (referred to as the "chamber" in the code). To include 

Figure 13: (a) Specifications of the central solenoid in mini-Tokamak. (b) Specifications 

of the inner and outer vacuum-vessel walls divided for calculation. 
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the plasma or poloidal field coils (PFCs) in the calculation, one simply needs to change 

the corresponding flag from false to true at the beginning of the script.  

3.4. Calculation of inductance and resistance of each component  

 Before calculating the induced currents, we first need to compute the resistance and 

self-inductance of the central solenoid and vacuum-vessel walls, as well as the mutual 

inductance between them. 

This section consists of three parts. Section 3.4.1 shows the calculation of the 

resistance of each component. Section 3.4.2 presents the calculation of self-inductance of 

each component, and Section 3.4.3 demonstrates the calculation of mutual inductance 

between the components. 

3.4.1. Calculation of resistance  

We use the resistance formula to calculate the resistance of the components: 

𝑅 = 𝜂
𝐿

𝐴
(42) 

where 𝑅 is the coil resistance, 𝜂 is the resistivity of the material, 𝐿 is the length of the 

coil, 𝐴 is the cross-sectional area of the coil. 

(a) The central solenoid 

We first divide the central solenoid into inner and outer layers and treat each turn 

within each layer as a single ring coil: 

𝑅cs_each = 𝜂copper

𝐿cs_each

𝐴cs_each
= 𝜂copper

2𝜋𝑟cs_each

𝜋𝑎cs_each
2 (43) 

where 𝑅cs_each is the resistance of a single coil in the inner or outer layer, 𝜂copper is 

the resistivity of copper (1.68 × 10−8 Ω ⋅ m), 𝐴cs_each is the cross-sectional area of 

the coil, and 2𝜋𝑟cs_each is the coil's circumference, where 𝑟cs_each being the major 

radius of the coil. For all inner layer coils, 𝑟inner_cs_each = 8 mm, and for all outer layer 

coils, 𝑟outer_cs_each = 14 mm , as shown in Figure 13(a). The term 𝜋𝑎cs_each
2  
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represents the cross-sectional area of the coil, where 𝑎cs_each is the radius of the coil. 

For all inner and outer layer coils, 𝑎cs_each = 1.3 mm, as shown in Figure 13(a). 

After obtaining the resistance of each single coil in each layer, we can calculate 

the total resistance of the central solenoid (𝑅cs) by summing them up: 

∑𝑅inner_cs_each + ∑𝑅outer_cs_each = 𝑅cs . (44) 

(b) The vacuum-vessel walls 

We calculate the resistance of each element of the vacuum-vessel walls in Figure 

13(b) separately: 

𝑅vessel_each = 𝜂stainless_steel

𝐿vessel_each

𝐴vessel_each
= 𝜂stainless_steel 

2𝜋𝑟vessel_each

𝑎vessel_each
2 (45) 

where 𝑅vessel_each  is the resistance of an element of in the vacuum-vessel walls, 

𝜂stainless_steel is the resistivity of stainless steel (7 × 10−7 Ω ⋅ m), 𝐴vessel_each is the 

cross-sectional area of the element, and 2𝜋𝑟vessel_each is the element 's circumference, 

where 𝑟vessel_each is the radius of the element. For all elements of inner-vacuum-vessel 

wall elements, 𝑟vessel_each = 18.15 mm. For all elements of outer-vacuum-vessel wall 

elements, 𝑟vessel_each = 161.5 mm . As for the bottom lid, 𝑟vessel_each  increases 

linearly from 26.55 mm to 146.55 mm in 15 mm increments. For the top lid, 𝑟vessel_each 

decreases linearly from 152 mm to 24 mm in 16 mm increments. This spatial 

arrangement is shown in Figure 13(b). The term 𝑎vessel_each
2   represents the cross-

sectional area of the element, where 𝑎vessel_each  is the side length of the square 

element. For all inner-vacuum-vessel walls elements, 𝑎vessel_each = 1.8 mm; for all 

the outer vacuum-vessel walls elements, 𝑎vessel_each = 3 mm ; for all bottom lid 

elements, 𝑎vessel_each = 15 mm ; for all top lid elements, 𝑎vessel_each = 16 mm ; as 

shown in Figure 13(b). 
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 Figure 14 illustrates the calculated resistance of each component. The first isolated 

point represents the resistance of the central solenoid, while component numbered 2 to 296 

correspond to the inner-vacuum-vessel wall ring elements shown in Figure 13(b), starting 

from the bottommost element and sequentially moving upward to the 296th element. Since 

the inner-vacuum-vessel wall ring elements are identical in geometry, except for location 

in z, their resistance remains the same.  

Component numbered 297 to 305 correspond to the bottom lid wall ring elements in 

Figure 13(b). The resistance of these elements increases as the major radius increases. Upon 

reaching the outer-vacuum-vessel wall, corresponding to components 306 to 482, the major 

radius remains constant while only the vertical position varies, resulting in a flat resistance 

profile. At the top lid, corresponding to components 483 to 491, the major radius begins to 

decrease inward, leading to a corresponding decrease in resistance. Due to the geometric 

symmetry about 𝑧 = 0, the upper and lower halves of the outer vacuum-vessel wall exhibit 

symmetric resistance behavior. This symmetry is evident at the midpoint coil (coil number 

392), located approximately at 𝑧 = 0, where the resistance values on either side are nearly 

identical. 

Figure 14: Resistance of each component. 
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3.4.2. Calculation of self-inductance   

In our calculations of inductance, all equations are from the book Inductance 

Calculations: Working Formulas and Tables by Frederick Grover[10]. One important point 

to note is that the calculations in the book are performed using units of centimeters, and the 

results obtained directly from the equations are in microhenries (μH). Therefore, it is crucial 

to ensure that the input units used in the equations and the output units from the results are 

consistent and properly accounted for. 

(a) The central solenoid 

  We use the equation of solenoid self-inductance for the calculation[12]: 

𝐿cs = 𝜇0(
𝑁

𝑙
)2𝐴𝑙 = 𝜇0

𝑁2

𝑙
𝐴 = 𝜇0

𝑁2

𝑙
𝜋𝑟2 (46) 

where 𝐿cs is the self-inductance of central solenoid, 𝜇0 is the permeability of free 

space (4𝜋 × 10−7  𝐻 𝑚⁄ ) , 𝑁 = 184  is the total number of turns in the solenoid, 

𝑙 = 552 mm  is the height of the solenoid, 𝐴  is the cross-sectional area of the 

central solenoid, and 𝑟 = 11 mm is the average major radius of the central solenoid 

as mentioned in section 3.3 and illustrated in Figure 13(a). 

(b) The vacuum-vessel walls 

 The self-inductance of each element can be calculated using the formula for 

the inductance of circular coils with square cross-sections, as given in Eq. 91 on 

page 95 of Ref. [10]: 

𝐿 = 0.001𝑎𝑁2𝑃0
′  𝜇𝐻 (47) 

where 𝐿  is the element’s self-inductance, and 𝑁  is the number of turns in the 

element. In our calculation, 𝑁 = 1  since all elements were represented as single 

coils. 𝑃0
′ is a variable that can be calculated using Eq. 92 on page 95 of Ref. [10]: 
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𝑃0
′ = 4𝜋 {

1

2
[1 +

1

6
(
𝑎

2𝑟
)
2

] 𝑙𝑜𝑔𝑒 [
8

(
𝑎
2𝑟)

2] − 0.84834 + 0.2041 (
𝑎

2𝑟
)
2

} (48) 

where 𝑟 is the major radius of the element, and 𝑎 is the side length of the element. 

Figure 15 illustrates the self-inductance of each component. The first isolated point 

represents the self-inductance of the central solenoid, which has the highest inductance 

among all components due to its large number of turns and compact geometry. The self-

inductance of component numbered 2 to 296, corresponding to the inner-vacuum-vessel 

wall ring elements shown in Figure 13(b). These coils are arranged sequentially from the 

bottommost coil to the 296th coil. Since the inner-vacuum-vessel wall ring elements are 

geometrically identical except for their z-coordinate, their self-inductance values are the 

same.  

For component numbered 297 to 305, correspond to the bottom lid wall ring elements, 

the self-inductance varies primarily with the coil radius. As shown in Figure 15, the self-

inductance increases as the major radius increases from the bottom lid outward. Once reach 

the outer-vacuum-vessel wall ring elements, corresponding to components 306 to 482, the 

major radius remains constant while only the vertical position changes, resulting in a 

Figure 15: Self-inductance of each component. 
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plateau in self-inductance. As the coil sequence continues toward the top lid, corresponding 

to components 483 to 491, the major radius decreases inward, causing the self-inductance 

to decrease accordingly. Due to the symmetry about 𝑧 = 0, the self-inductance profile is 

nearly symmetric with respect to the middle coil (coil number 392), which lies close to 𝑧 =

0. 

3.4.3. Calculation of mutual inductance    

Our calculation consider all components, except for the central solenoid, as ring coils. 

Therefore, we calculated: (1) mutual inductance between elements of vacuum-vessel wall 

and the central solenoid; (2) mutual inductance between the elements of vacuum-vessel 

wall. 

3.4.3.1. Mutual inductance between elements of vacuum-vessel wall and the central 

solenoid 

Due to different vertical locations of elements of the vacuum-vessel wall, we 

categorize them into two groups. The first group consists of elements located between the 

top and bottom planes of the central solenoid so that the central solenoid is divided into two 

parts: the top solenoid and the bottom solenoid, as shown in Figure 16(a). The second group 

consists of elements located either above the top plane or below the bottom plane of the 

central solenoid, as illustrated in Figure 16(b), which is the case for elements below the 

bottom plane of the central solenoid as an example. For these two different cases, we 

employ different calculation methods for the mutual inductance between the central 

solenoid and the vacuum-vessel walls. 
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(1) Elements between the top plane and the bottom plane of the central solenoid 

 When the single element is positioned between the top plane and the bottom plane of 

the central solenoid, as shown in Figure 16(a), the central solenoid can be divided into two 

parts: the portion of the solenoid above the element’s plane (referred to as the top solenoid) 

with a length of 𝑥 and the portion below the element’s plane (referred to as the bottom 

solenoid) with a length of (𝑙 − 𝑥), where 𝑙 is the length of the central solenoid. We can 

calculate the mutual inductance between the single element and the top solenoid, as well as 

the mutual inductance between the single element and the bottom solenoid. Finally, the sum 

of these two mutual inductances gives the total mutual inductance between the central 

solenoid and the element. 

 Elements of vacuum-vessel walls are single coils located coaxially with the central 

solenoid, Therefore, the mutual inductance between a solenoid and the element located at its 

end plane can be calculated using the formula from Eq. 103 on page 115 of Ref [10]: 

𝑀T/𝐵 = 0.002𝜋2𝑟cs𝛼𝜌𝑁𝑄0 (49) 

where 𝑀T/B is the mutual inductance between the top/bottom solenoid and a coaxial single 

coil at its end plane, as illustrated in Figure 17. Figure 17(a) is the case for the top solenoid 

while Figure 17(b) is the case for bottom solenoid. In our calculation, 𝑁 = 184  is the 

number of turns in the top or the bottom solenoid. 𝑄0 can be obtained from Table 27 in 

Figure 16: (a) Schematic diagram of coil located within the range of the solenoid.  

(b) Schematic diagram of coil located outside the range of the solenoid. 
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page 115 of Ref [10], as shown in Appendix A.5. 𝑟cs is the major radius of the solenoid, 

which is 11 mm, as mentioned in section 3.3. The variable 𝛼 can be calculated using the 

following equation: 

𝛼 =
𝑟cs
𝑟coil

(50) 

where 𝑟coil is the major radius of the coil in Figure 17(a) and (b), corresponding to the 𝑟 

in Figure 13(b) for each component of the vacuum-vessel wall. The variable 𝜌  can be 

calculated by: 

𝜌 = √
𝑟coil

2

𝑟coil
2 + 𝑠2

(51) 

where 𝑠 = 𝑥  or 𝑠 = 𝑙 − 𝑥 is the distance between the top or the bottom of the central 

solenoid and the elements plane, respectively, as shown in Figure 17(a) and (b). Finally, the 

mutual inductance between the element and the central solenoid is obtained: 

𝑀 = 𝑀T + 𝑀B, (52) 

(2) Mutual inductance between the central solenoid and the elements with a distance D 

away from the end of the central solenoid 

When calculating the mutual inductance between the central solenoid and the element 

with a distance, we can imagine there is a solenoid between the central solenoid and the 

element, as illustrated by the light-colored solenoid in Figure 18. We first calculate the 

Figure 17: (a) Coil schematic diagram for top solenoid. (b) Coil schematic diagram for 

bottom solenoid. 
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mutual inductance 𝑀𝑙+𝐷  between the "solenoid 𝑙 + 𝐷 " with a length of 𝑙 + 𝐷 , and the 

element using Eq. (49). Then we calculate the mutual inductance 𝑀𝐷 of the imaginated 

"solenoid 𝐷" with a length of 𝐷, and the element using Eq. (49) and get 𝑀D. Finally, we 

can obtain the mutual inductance between the central solenoid and the element at any 

distance away from the central solenoid by: 

𝑀x = 𝑀x+D − 𝑀D, (53) 

 

3.4.3.2. Mutual inductance between elements of the vacuum-vessel walls 

The mutual inductance between elements of vacuum-vessel walls, including the inner 

and outer vacuum-vessel walls, and the top and bottom lids, can be calculated using the 

formula for the mutual inductance of coaxial circular filaments, as shown in Figure 19, 

which is given in Eq. 77 on page 77 of Ref [10]: 

𝑀 = 𝑓√𝑟c1𝑟c2 (54) 

Figure 19: Coil schematic diagram of two ring coils. 

Figure 18: Schematic diagram of coils located outside the range of the solenoid with the 

imagined solenoid. 
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where 𝑀 represents the mutual inductance of coaxial circular filaments. The value of 𝑓 

can be obtained from Table 13 to Table 17 of Ref [10], corresponding to different ratios of 

𝑟c1 and 𝑟c2 as shown in Appendix A.6 to A.10. It is a function of the distance 𝑥 between 

two rings, as well as their radius 𝑟c1 and 𝑟c2. 𝑟c1 is the major radius of the smaller single 

coil, and 𝑟c2 is the major radius of the larger single coil, as shown in Figure 19. 

3.4.3.3. Calculation results of mutual inductance 

Figure 20, as an example, illustrates the mutual inductance between all components and 

the 88th outer-vacuum-vessel wall element (392th component in Figure 20), which 

corresponds to the middle outer-vacuum-vessel wall element depicted in Figure 13(b). 

The mutual inductance values depend on the spatial relationship between components. 

The first data point represents the mutual inductance between the central solenoid and the 

392th component. For component numbered 2 to 296, corresponding to elements of the inner-

vacuum-vessel wall, the mutual inductance gradually increases as the z-coordinates of these 

elements approach the plane of the 392th component and decrease as the elements move 

away from the 392th component. 

Figure 20: Mutual inductance between all components and the 88th outer vacuum-vessel 

wall ring coil. 
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For component numbered 296 to 305, representing the bottom lid elements, the mutual 

inductance increases as the z-coordinates of these elements approach the plane of the 392th 

component. Once reach the outer-vacuum-vessel wall ring elements, corresponding to 

components 306 to 482, the mutual inductance keeps increasing as the z-coordinates of these 

elements approach the plane of the 392th component and peaks at the 392th ring coil itself, 

which is nearly equal to its self-inductance. Beyond this point, the mutual inductance 

decreases for elements located farther from the 392th coil, including the top lid for component 

numbered 483 to 491, due to increasing spatial separation, as illustrated in Figure 20. 

Using Eq. (54), we can calculate not only the mutual inductance between each element 

of the inner and the outer vacuum-vessel wall, but also the mutual inductance between 

vacuum-vessel elements and other coils, such as poloidal field coils, or the mutual 

inductance between two poloidal field coils, provided that the two single coils are coaxial. 

 Using Eq. (49) to (54), we can calculate the mutual inductance between the central 

solenoid and any vacuum-vessel wall element, as well as the mutual inductance between 

vacuum-vessel wall elements. 

 Appendix A.11 provides the detailed code for resistance and inductance calculations. 

At present, the model includes only the central solenoid and the vacuum-vessel wall 

("chamber"). Plasma can be included by setting the relevant flag from false to true at the 

start of the script. 

3.5. Calculated results of the eddy currents in the vacuum-vessel walls 

In our current calculation, we aim to determine the eddy currents in the inner and the 

outer vacuum-vessel walls induced by the time-varying current of the central solenoid by 

solving Eq. (5) using the CG method[11] introduced in Section 3.2 with the resistance and 

the inductance of components defined in Section 3.3 and calculated in Section 3.4. The 

calculation involves 295 ring elements in the inner-vacuum-vessel wall, and 195 ring 
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elements in the outer-vacuum-vessel wall, which we include the top and bottom lids from 

now, i.e., a total of 490 vacuum-vessel elements. Including the central solenoid, there are 

491 components in total. The detailed code for eddy current calculation is provided in 

Appendix A.12. 

The calculated result 𝐼 cv will be represented as a column vector with a size of 491, as 

shown in Eq. (55). 𝐼c1  represents the time-varying current for central solenoid. 𝐼v1  to 

𝐼v490 represent the currents in the vacuum-vessel elements, which correspond to the eddy 

currents we aim to calculate: 

 𝐼 cv = [

𝐼cs
𝐼v1

⋮
𝐼v490

] . (55) 

Notice that 𝐼cs is given while 𝐼v1 to 𝐼v490 are eddy currents we obtain. 

With 𝐌  and 𝐑  calculated in Section 3.4, the eddy currents induced in each ring 

element of the inner and outer vacuum-vessel walls can be determined based on the time-

varying current 𝐼cs  in the central solenoid. Figure 21 is an example illustrating the 

calculated results. The current profile of the solenoid, shown by the red curve in Figure 

21(a), begins with a linear ramp-up from 0 to 4 kA over the first 20 ms, followed by a flat-

top phase maintaining 4 kA for the next 20 ms. Subsequently, the current linearly ramps 

down from 4 kA to 0 within 15 ms, resulting in a total duration of 55 ms. 

The calculated results of the eddy currents distribution are presented in Figure 21(b) 

and (c). Since the inner and outer vacuum-vessel walls are divided into several ring 

elements, Figure 21(b) shows 295 eddy current lines corresponding to the 295 ring elements 

of the inner-vacuum-vessel wall. Similarly, Figure 21(c) shows 195 eddy current lines 

corresponding to the 195 ring elements of the outer-vacuum-vessel wall. 
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By summing up the eddy currents from all 295 elements of the inner-vacuum-vessel 

wall, we can calculate the total eddy current generated in the entire inner-vacuum-vessel 

wall, represented as the blue solid line in Figure 21(a). Similarly, by summing up the eddy 

currents from all 195 elements of outer-vacuum-vessel wall, we can calculate the total eddy 

current generated in the entire outer-vacuum-vessel wall, represented as the blue dashed 

line in Figure 21(a). 

  

Figure 21: (a) Current profile of central solenoid and the eddy currents of the inner and 

outer vacuum-vessel wall. (b) The eddy current of each element of the inner-vacuum-vessel 

wall. (c) The eddy current of each element of the outer-vacuum-vessel wall. 
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3.6. Conclusion  

We can now calculate the eddy currents in the inner and outer vacuum-vessel walls 

induced by the time-varying current of the central solenoid using Conjugate Gradient (CG) 

method. This method accelerates convergence by reducing the number of iterations needed 

while maintaining numerical stability. This is crucial as our matrix size increases with more 

calculated components, ensuring the computation remains scalable and efficient. This allows 

us to incorporate the influence of eddy currents into our subsequent design calculations to 

achieve more accurate results.  
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4. Calculation of required loop voltage for breakdown  

 mini-Tokamak employs a central solenoid (CS) driven by a time-varying current to 

produce a time-varying magnetic field which induces a loop voltage. The loop voltage can 

be used to generate the plasma or drive the plasma current. If it exceeds the breakdown 

voltage, the gas is ionized, and plasma is generated. The breakdown voltage is influenced 

by factors such as background pressure, connection length, and the plasma’s position within 

the tokamak. With these factors, the loop voltage and the time-varying current profile can 

be determined. 

 The purpose of this section is to develop an algorithm to calculate the required loop 

voltage for breakdown under varying conditions and determine the required central 

solenoid current change rate to generate that loop voltage. It is to ensure that the central 

solenoid and the current profile that drives the central solenoid can meet the plasma 

generation demands, providing a critical basis for validating and optimizing the design. In 

addition, it helps identify potential design limitations and guides adjustments to improve 

the central solenoid's overall design. This chapter consists of six sections. Section 4.1 

explains the breakdown voltage required for plasma generation. Section 4.2 presents the 

required rate of change of the central solenoid current to induce sufficient loop voltage for 

initiating breakdown. Section 4.3 calculates the eddy currents induced by this current 

profile, while Section 4.4 shows the exact loop voltage induced by the same current profile, 

including the effect of eddy currents. Section 4.5 discusses the limitations and assumptions, 

and Section 4.6 provides the conclusion. 

4.1. Breakdown voltage for plasma generation 

 As shown in Figure 22, plasma breakdown in a DC discharge occurs when the applied 

voltage across the anode (positive electrode) and the cathode (negative electrode) becomes 

sufficient to ionize the neutral gas molecules between the electrodes. The process begins with 
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an initial ionization event near the cathode, where a free electron is liberated. This electron is 

accelerated by the electric field. If it has enough kinetic energy and collides with a neutral gas 

molecule, it may ionize the neutral gas molecule and release an additional free electron. Both 

electrons can be accelerated by the electric field and generate more electrons through the 

same process. All electrons including the original electron and the newly liberated electron 

continue the process, leading to an exponential increase in the number of charged particles. 

The blue lines in the figure represent the paths of ionizing electrons, while the orange lines 

represent the paths of liberated electrons. This cascading ionization process is known as the 

Townsend avalanche. 

 The connection length (𝐿), marked by the vertical distance between the anode and 

cathode in Figure 22, defines the region within which the electric field acts to sustain the 

avalanche. This length directly impacts the number of ionization events that can occur before 

the electrons reach the anode. A longer connection length provides more chance for the 

avalanche to develop, increasing the total number of electrons and ions generated. Conversely, 

a shorter connection length limits the ionization path, reducing the amount of ionization.  

 In contrast, there is no anode and cathode in the tokamak system to provide the electric 

field. Alternatively, loop voltage in the azimuthal direction, i.e., an azimuthal electric field, 

Figure 22: Visualization of Townsend avalanche[13]. 
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is generated by the central solenoid with time-varying current. Electrons gain energy from 

the loop voltage, in the tokamak setup illustrated in Figure 23. On the other hand, the 

presence of an external toroidal magnetic field, applied by the toroidal magnetic field coils, 

determines the connection length. Unlike the finite connection length in a DC discharge 

shown in Figure 22, the tokamak introduces magnetic field lines (represented by the blue 

solid line in Figure 23) that forces electrons to gyro around field lines and move freely along 

them. Instead of being limited by a physical distance between electrodes, the connection 

length in the tokamak becomes theoretically infinite because the electrons follow the closed 

magnetic field lines. As a result, in the tokamak, electrons follow toroidal magnetic field 

lines and collide with neutral gas molecules. This process ionizes the neutral gas and releases 

additional free electrons, sustaining a continuous avalanche. 

 In the tokamak, we utilize the central solenoid to induce the discharge voltage, also 

known as the loop voltage, as shown in Figure 23. For an ideal solenoid, its magnetic field 

should be uniform in the solenoid and aligned along its central axis, as represented by the 

black solid line pointing downward in the middle of the solenoid in Figure 23. In reality, the 

solenoid produces stray magnetic field lines, as shown by the gray solid lines in Figure 23. 

Figure 23: Stray magnetic field in a tokamak. 
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The magnetic field lines become helical when the stray magnetic field combines with the 

toroidal field. Instead of moving azimuthally along the toroidal magnetic field, electrons 

follow a helical path and move upward, as represented by the black solid line in Figure 24. 

Eventually, electrons collide with the outer-vacuum-vessel wall and are lost. This results in 

a finite connection length, in contrast to the infinite connection length observed in the ideal 

scenario. 

To calculate the connection length in our tokamak, we can straighten the black helical 

curve in Figure 24, as represented by the hypotenuse of the triangle, side c in Figure 25. The 

vertical side of the triangle, side b in Figure 25, corresponds to the electron's displacement 

in the z-direction in Figure 24. Assuming the electron originates at a point 85 mm from the 

centerline at the bottom of the vacuum vessel, which corresponds to the major radius of the 

plasma in the mini-Tokamak described in Chapter 2, and maintains the same distance from 

the centerline (85 mm) throughout its upward displacement, as shown by the black line in 

Figure 24: Electron path in a tokamak. 

Figure 25: Electron path in a tokamak. 
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Figure 24, it eventually moves to the top of the vacuum vessel and is lost. In this case, since 

the internal height of the vacuum vessel can be obtained by subtracting the width of the top 

(16 mm) and bottom (15 mm) lids of the total vacuum vessel height of 531 mm, as shown in 

Figure 5(b), the vertical displacement is determined to be 500 mm.  

The horizontal side of the triangle, side a in Figure 25 corresponds to the electron's 

displacement in the toroidal direction. The value 2πR represents the path length of one 

complete turn along the toroidal magnetic field line at a distance R from the centerline. In 

our case, R is 85 mm. The total toroidal displacement depends on n, which represents the 

number of turns the electron completes along the toroidal field line. 

The horizontal side (side a) and vertical side (side b) of the triangle in Figure 25 

correspond to BT and BZ in Figure 24, respectively, as they represent the effects of BT and 

BZ on the electron's trajectory. Therefore, the ratio between the horizontal side and the 

vertical side equals to the ratio between BT and BZ. The smaller BZ compared to BT, the 

longer connection length 𝐿 we can get. 

Our goal is to ensure that BZ is one-thousandth (1/1000) of BT. Based on this ratio, if 

the vertical side length (corresponding to BZ) in our calculation is 500 mm, then the 

horizontal side length (corresponding to BT) would be 1000 times greater, which is 500 m.  

 For the length of the hypotenuse (side c), if 𝜃 in Figure 25 is sufficiently small (less 

than 0.1°), the hypotenuse can be approximated to the horizontal side. In our calculation, the 

vertical side of the triangle is one-thousandth (1/1000) of the horizontal side, so theta can be 

calculated as: 

𝜃 = arctan (
opposite

adjacent
) = arctan (

1

1000
) = 0.057° , (56) 

which satisfies the requirement. Therefore, the length of the hypotenuse can be considered 

the same as the length of the horizontal side, which is 500 m. 
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After calculating the connection length (L), we can determine the breakdown electric 

field (EBD) using the Townsend coefficient (α), which describes the ionization rate of 

electrons as they travel through the gas. The physical meaning of 𝛼 quantifies the number 

of ionization events caused by a single electron moving per unit length: 

𝛼 = 𝐴 ∙ 𝑃He ∙ exp (
−𝐵 ∙ 𝑃He

𝐸
) . (57) 

As mentioned in Chapter 2, the mini-Tokamak uses helium (He) as the working gas. For 

helium, the Townsend coefficient parameters are 𝐴 = 2.25 1 m ∙ Pa⁄   and B =

25.5 V m ∙ Pa⁄ . The corresponding parameters for H₂, He, and Ar are shown in Table 1[14]. 

𝑃He is the gas pressure of He in Pa, and 𝐸 is the electric field strength. To achieve plasma 

breakdown, the product of the Townsend coefficient (α) and the connection length (𝐿) must 

satisfy: 

𝛼 ∙ 𝐿 > 1 , (58) 

indicates that the number of ionization events occurring along the connection length is 

sufficient to sustain a self-amplifying ionization process, leading to gas breakdown.  

 

Table 1: Townsend coefficient parameters. 

Gas A (1 m ∙ Pa⁄ ) B (V m ∙ Pa⁄ ) 

H2 3.75 97.5 

He 2.25 25.5 

Ar 9.00 135.0 
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We combine Eq. (57) and Eq. (58) and apply some transformations to derive the 

minimum electric field required to achieve breakdown: 

𝐴 ∙ 𝑃He
∙ exp (

−𝐵 ∙ 𝑃He

𝐸
) ∙ 𝐿 > 1

⇒ exp (
−𝐵 ∙ 𝑃He

𝐸
) >

1

𝐴 ∙ 𝑃He
∙ 𝐿

⇒ exp (
𝐵 ∙ 𝑃He

𝐸
) < 𝐴 ∙ 𝑃He

∙ 𝐿

⇒
𝐵 ∙ 𝑃He

𝐸
< ln(𝐴𝑃He

𝐿)

⇒ 𝐸 >
𝐵 ∙ 𝑃He

ln(𝐴𝑃He
𝐿)

(59)

 

The last term in Eq. (59) represents the condition for achieving breakdown, indicating that 

the induced electric field in the vacuum must be greater than (𝐵 ∙ 𝑃He) ln(𝐴𝑃He𝐿)⁄ . Based 

on this condition, we can define the breakdown electric field (𝐸𝐵𝐷) as: 

𝐸BD =
𝐵𝑃He

ln(𝐴𝑃He𝐿)
(60) 

where 𝐸BD is the breakdown electric field, 𝑃He is the gas pressure of He in Pa, and 𝐿 is 

the connection length. 

Using the method described above, we can calculate the breakdown electric field under 

different conditions, such as background pressure and connection length, which depend on 

factors like the ratio between BT and BZ , the height of the vacuum vessel, and the distance 

from the centerline. Figure 26(a) shows the breakdown curve of the electric field for a gas 

pressure range from 10-3 Pa to 100 Pa, with the ratio between BT and BZ varying from 0.1 to 

0.001. 

 By calculating the breakdown curve of the electric field, we can further determine 

the breakdown voltage (𝑉BD), i.e., the required loop voltage for breakdown, at our desired 

plasma position: 

𝑉BD = 𝐸BD ∙ 2𝜋𝑅 (61) 
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where 𝑅 is the distance from the centerline, which is 85 mm in our present calculation. 

Figure 26(b) illustrates the breakdown voltage curve corresponding to the breakdown 

electric field shown in Figure 26(a). 

4.2. The required rate of change of central solenoid current  

Using Eq. (60) and (61), we can calculate the breakdown voltage required to achieve 

under the target conditions of our experiment. For example, if the target condition is when 

BZ is 0.1% of BT, and the vacuum vessel height is 500 mm (at a radius of 85 mm), the 

connection length (L) is 500 m. Additionally, if the pressure is 10-4 Torr (equivalent to 

1.3×10-2 Pa), i.e., the particle density is approximately 1018 m-3, the breakdown electric field 

calculated using Eq. (60) is 

𝐸 =
𝐵𝑃

ln(𝐴𝑃𝐿)
=

25.5 × 1.3 × 10−2

ln(2.25 × 1.3 × 10−2 × 500)
= 0.123V

m⁄ . (62) 

Based on this electric field, we can calculate the breakdown voltage required to generate 

plasma at a distance of 85 mm from the centerline using Eq. (61): 

𝑉 = 𝐸 ∙ 2𝜋𝑅 = 0.123 × 2𝜋 × 0.085 = 0.066 V. (63) 

Therefore, we can calculate the required central solenoid current rate to induce this voltage 

in the vacuum vessel.  

Figure 26: (a) Breakdown electric field curve. (b) Breakdown voltage curve. 
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 The calculation of the central solenoid current rate required to induce the target loop 

voltage is based on Faraday's law of electromagnetic induction. According to Faraday’s law, 

the induced voltage (𝑉) in a loop is proportional to the rate of change of magnetic flux 

through the loop: 

𝑉 = −
𝑑𝜑

𝑑𝑡
(64) 

where 𝑉 is the induced voltage (loop voltage), and 𝜑 is the magnetic flux. The magnetic 

flux is defined as: 

𝜑 = ∫𝐵𝑑𝐴 ≈ 𝐵 × 𝐴 (65) 

where 𝐵 is the magnetic field strength, and 𝐴 is the cross-sectional area of the loop. 

 For an ideal solenoid, the magnetic field 𝐵 can be expressed in terms of the current 

𝐼: 

𝐵 = 𝜇0

𝑁

𝑙
𝐼 (66) 

where 𝜇0 is the permeability of free space (4𝜋 × 10−7  H m⁄ ), 𝑁 is the number of turns 

in the coil, 𝑙 is the length of the solenoid, and 𝐼 is the current in the solenoid. Substituting 

𝐵 into Eq. (65): 

𝜑 = 𝜇0

𝑁

𝑙
𝐼 × 𝐴. (67) 

By substituting Eq. (67) into Eq. (64): 

𝑉 = −
𝑑

𝑑𝑡
(𝜇0

𝑁

𝑙
𝐼 × 𝐴) . (68) 

Since 𝜇0, 𝑁, 𝑙, and 𝐴 are constants, Eq. (68) is simplified to: 

𝑉 = −𝜇0

𝑁

𝑙
𝐴

𝑑𝐼

𝑑𝑡
. (69) 

Rearranging the equation, we get the rate of change of current: 

𝑑𝐼

𝑑𝑡
= −

𝑉 ∙ 𝑙

𝑟2𝜋 ∙ 𝑁 ∙ 𝜇0
. (70) 
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To calculate the rate of change of current required to induce the target loop voltage, we 

substitute the given values into the derived formula: 

 𝑉 = 0.066 V: The target loop voltage that needs to be induced in the vacuum 

vessel, as calculated in Eq. (63). 

 𝑙 = 0.552 m: The axial length of the solenoid over which the magnetic field is 

distributed, as described in Figure 6. 

 𝑟 = 0.011 m: The major radius of the solenoid, which is used to calculate the 

cross-sectional area, was given in subsection 3.3. 

 𝐴: The cross-sectional area of the solenoid is calculated as: 

𝐴 = 𝜋𝑟2 = 𝜋(0.011)2 = 3.8 × 10−4 m2. (71) 

 𝑁 = 184: The number of turns in the solenoid, contributing to the magnetic field 

strength. 

 𝜇0 = 4𝜋 × 10−7  H m⁄ : The permeability of free space, a physical constant. 

We get: 

𝑑𝐼

𝑑𝑡
= −

0.066 × 0.552

𝜋(0.011)2 ∙ 184 ∙ 4𝜋 × 10−7
= −414.5 A ms⁄ . (72) 

The negative sign indicates that the current is decreasing over time, consistent with the 

direction of the induced voltage as described by Faraday’s and Lenz’s laws. 

Through calculation, we determined that inducing a loop voltage of 0.066 V in the 

vacuum vessel and maintaining it for 15 ms requires a maximum central solenoid current 

of 6.22 kA. However, the 0.066 V breakdown voltage calculated in Eq. (63) represents the 

ideal conditions required for breakdown. In practice, various factors can influence the 

breakdown process. For example, if the actual BZ is greater than one-thousandth of BT, 

connection length would decrease, thereby increasing the required breakdown voltage. In 

this situation, generating only a 0.066 V loop voltage would not be sufficient to achieve 

breakdown and generate plasma. 
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As a result, the induced loop voltage is often several times higher than the calculated 

breakdown voltage. As shown in Table 2, if we aim to induce a loop voltage of 0.33 V, 

which is five times the breakdown voltage calculated in Eq. (63) to ensure reliable 

breakdown, the required maximum current of the central solenoid would be approximately 

20 kA. Alternatively, we can reduce the time duration (𝑡duratin)  while maintaining the 

same current rate (𝐼max/𝑡duratin) to lower the required maximum current of the central 

solenoid. 

Since the maximum central solenoid current in our system is limited to 10 kA, we 

prefer either using the case with an induced loop voltage of 0.1 V for 15 ms, or shortening 

the duration to 10 ms with the full 10 kA current, which yields a loop voltage of 

approximately 0.17 V. This value is about 2.5 times the calculated breakdown voltage of 

0.066 V, which should be sufficient to initiate breakdown. However, the detailed solenoid 

current profile will be shown in Chapter 5, considering plasma parameters and their time 

evolution. 

 

Table 2: Central solenoid current requirements for different loop voltages and durations. 

𝑉loop 𝑡duratin 𝐼max 𝑑𝐼/𝑑𝑡 

0.066 V 15 ms 6.22 kA 415 A/ms 

0.1 V 15 ms 9.4 kA 627 A/ms 

0.33 V 10 ms 20.7 kA 2070 A/ms 
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4.3. Calculation of the eddy currents  

A simple model given in Section 4.2 provided a guideline for determining the loop 

voltage and thus the required current rate of the central solenoid. However, eddy currents 

on the vacuum-vessel walls can also influence the loop voltage. They also need to be 

considered carefully. Therefore, we developed a program to calculate the breakdown 

voltage under specific conditions. We use 𝑑𝐼/𝑑𝑡 = −415 A/ms  as an example to 

determine the eddy currents calculation. Assuming, it takes 15 ms for current to drop from 

6.2 kA to 0. Additionally, the program incorporates calculations from Chapter 3 to 

determine the eddy currents induced in the inner and outer vacuum-vessel walls by the 

Figure 27: (a) Current profile of central solenoid and the eddy currents of the inner and 

outer vacuum-vessel wall. (b) The eddy current of each element of the inner-vacuum-vessel 

wall.  (c) The eddy current of each element of the outer-vacuum-vessel wall. 
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time-varying current of the central solenoid, based on the current profile. Finally, the 

induced voltage can be calculated from all currents including the current of the central 

solenoid and eddy currents. It will be introduced in Section 4.4. As shown in Figure 27(a), 

the eddy current in the inner vacuum-vessel walls corresponds to the red solid line, while 

the eddy current in the outer vacuum-vessel walls corresponds to the red dashed line. Notice 

that the program first calculates the eddy current in each inner and outer vacuum-vessel 

walls individually as shown in Figure 27(b) and (c), respectively. The currents displayed in 

the Figure 27(a) represent the total current, obtained by summing all the contributions from 

the inner walls and outer walls, respectively. 

4.4. Calculation of the exact induced loop voltage 

Using the program described in Section 4.3, we had the current profile of the central 

solenoid and the individual element of the inner-and-outer-vacuum-vessel walls. With the 

current profile, we can determine the magnetic field distribution produced by each element 

and further calculate the total magnetic flux. By using Eq. (64), the loop voltage is calculated 

from the rate of change of total magnetic flux. Notice that we only calculate the loop voltage 

in the equatorial plane. Therefore, by back-calculating from the magnetic flux variations, we 

can verify whether the current profile generated by the program in Section 4.3 can induce 

the required loop voltage in the vacuum vessel.  

First, we use the Biot-Savart Law to calculate the magnetic field distribution from each 

element, which represents the vacuum-vessel-wall elements. It is important to note that since 

the tokamak is axisymmetric, the elements are also axisymmetric. Consequently, the 

magnetic field distribution only needs to be calculated in the xz-plane along the positive x-

direction, as illustrated in Figure 28. 
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Similarly, we use the Biot-Savart Law to determine its magnetic field distribution from 

the central solenoid. Due to its axisymmetric, the calculation can be restricted to a line on 

the equatorial plane (i.e., 𝑧 = 0 ). In this line, we only calculate the magnetic field 

component BZ at different location in x, corresponding to the green line shown in Figure 

28(b). 

The equatorial plane (i.e., 𝑧 = 0), represented by the gray circular plane in Figure 28(b), 

are chosen because the tokamak’s axisymmetric structure ensures the magnetic field is 

symmetric about the central axis, i.e., 𝜕𝐵⃗ 𝜕𝜙⁄ = 0. The magnetic field, originally a function 

of 𝑥  and 𝑦 , can therefore be simplified to a function of the radial coordinate 𝑟 =

√𝑥2 + 𝑦2, i.e., 𝐵(𝑥, 𝑦) = 𝐵(𝑟). This allows the magnetic flux calculation to be reduced to 

a one-dimensional integral: 

∫𝐵 ∙ 𝑑𝐴 = ∫𝐵 ∙ 2𝜋𝑟 ∙ 𝑑𝑟 = 2𝜋 ∫𝐵 ∙ 𝑟 ∙ 𝑑𝑟 . (73) 

Furthermore, only BZ is calculated because it is the only component of the magnetic field 

that is perpendicular to the loop surface and determines the loop voltage in the tokamak. 

Figure 28: (a) Magnetic field BZ in the x-direction at z = 0 and y = 0. (b) Schematic of the 

central solenoid. 
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After calculating the time-dependent changes in the magnetic field distribution, the 

magnetic flux can be determined by integrating the magnetic field along the green line, as 

shown in Figure 28(b). The loop voltage is then calculated: 

𝑉 = −
𝑑𝜑

𝑑𝑡
. (74) 

Using the above method, we calculated the loop voltage induced solely by the central 

solenoid current rate, as shown in Figure 29. For the case where the current profile dropped 

from 6.2 kA to 0 in 15 ms, as shown by the blue line in Figure 27(a), which the resulting 

loop voltage calculated by the model is 0.063 V. It is worth noting that the central solenoid 

current profile used for this calculation, as determined in Subsection 4.2, was designed to 

induce 0.066 V. The reason the induced voltage only 0.063 V is because the calculations in 

Subsection 4.2 were based on ideal solenoid equations. However, in practical scenarios, 

various factors can reduce the induced loop voltage. Therefore, it is necessary to perform 

back-calculations to benchmark the accuracy and reliability of our calculation and to 

evaluate the performance of the central solenoid design. 

Next, we applied the same approach to calculate the magnetic field distribution 

produced by each element of the inner-and-outer-vacuum-vessel-walls along a line of 𝑦 =

Figure 29: Comparison of loop voltage induced by central solenoid and eddy currents in 

the vacuum-vessel walls over time. 
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𝑧 = 0. After summing fields generated from all components, we integrated the total magnetic 

field to calculate the magnetic flux. Finally, using Eq. (64), we obtained the loop voltage 

induced under the influence of eddy currents in the vacuum-vessel walls, as represented by 

the blue line in Figure 29. 

From Figure 29, it can be observed that around 0.5 ms, the influence of eddy currents 

in the vacuum-vessel walls on the loop voltage reduces to approximately 5%. This is a key 

point as it indicates that a central solenoid current profile with a duration longer than 0.5 ms, 

the impact of eddy currents in the vacuum-vessel walls on the loop voltage can be ignored. 

The detailed code is provided in Appendix A.13, including the calculation of the 

required current ramp rate to induce the expected loop voltage, the calculation of eddy 

currents induced in the vacuum-vessel walls, and the exact induced loop voltage. 

4.5. Discussion 

In our current calculation of the breakdown voltage, only direct electron-impact 

ionization is considered. However, in practice, the actual breakdown voltage can be very 

different from that considered electron-impact ionization alone. This difference arises 

because ionization is not solely driven by direct electron collisions; excitation processes and 

the formation of metastable states also play important roles. 

Moreover, helium gas is inherently difficult to ionize through electron collisions alone. 

This is due to helium’s high first ionization energy (approximately 24.6 eV), which requires 

electrons to gain sufficient energy and undergo multiple collisions before effective ionization 

can occur. As a result, plasma breakdown in a pure helium environment is often difficult to 

achieve with electron impact alone. 

To address this limitation, we may consider utilizing the Penning effect in future 

experiments to assist the breakdown process. This can be achieved by introducing a small 

amount of gas with a lower ionization energy, such as neon or argon. When helium atoms 
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are excited to metastable states, collisions with these additives can release enough energy to 

ionize them, thereby facilitating the breakdown and effectively reducing the required voltage. 

In addition, our current calculation assumes BZ is one-thousandth (1/1000) of BT. That 

is, for a toroidal field strength BT = 0.1 T, the vertical component BZ is set to only 10-4
 T. 

This configuration is intended to produce a magnetic null field at R = 85mm, where plasma 

breakdown is expected to occur. However, as shown in Figure 23, the central solenoid 

inevitably produces a stray vertical magnetic field in the upward direction. To cancel this 

field and achieve the desired null point, the poloidal field coils (PFCs) must generate a 

downward BZ. However, this magnetic field is different from the equilibrium magnetic field 

configuration. Therefore, once the plasma is formed, the PFCs would need to rapidly reverse 

their current direction in order to maintain a stable magnetic equilibrium. This rapid current 

reversal is technically very difficult to achieve in practice. Consequently, maintaining such 

low BZ and dynamically switching the coil polarity poses significant engineering challenges, 

and may limit the practical implementation of the idealized null-field scenario used in the 

model. As a result, the actual ratio (BZ/BT) may be closer to 1/100 or even 1/10. This 

significantly reduces the connection length of particles from the estimated 500 m to roughly 

50 m or even 5 m, which in turn increases the required breakdown voltage by more than an 

order of magnitude. 

Nevertheless, our current calculation is based on these simplified assumptions, with the 

primary goal of obtaining a rough estimate of the required breakdown voltage to support 

hardware design and planning. Therefore, we continue to adopt the model calculation results 

at this stage. The actual required voltage will be confirmed in the future through more 

detailed simulations or experimental validation. 
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4.6. Conclusion  

In this work, we calculated the required breakdown voltage for the mini-Tokamak and 

determined the central solenoid current profile necessary to induce the corresponding loop 

voltage. The induced loop voltage was further computed using a model that incorporates the 

effects of eddy currents in the vacuum-vessel-walls, in conjunction with the model 

developed in Chapter 3. Our results show that the impact of eddy currents on the loop voltage 

is negligible under the mini-Tokamak’s conditions. This method allows us to benchmark the 

accuracy and reliability of our calculations and to evaluate the performance of the central 

solenoid design. It also enables further optimization of the design to meet experimental 

requirements. 
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5. Calculation of the evolution of plasma parameters 

 In the previous section, we calculated the breakdown voltage required to generate 

plasma, the central solenoid current profile to induce the required loop voltage in the vacuum 

for breakdown and calculate the induced loop voltage including the effect of eddy currents 

on the vacuum-vessel walls. Based on these calculations, we assume that breakdown has 

happened so that plasma has been generated. Then the loop voltage can drive the plasma 

current generating the poloidal magnetic field. In addition, plasma is heated by the plasma 

current through Ohmic heating. To model the plasma parameters, plasma can be modeled as 

a single-turn elliptical coil inside the vacuum vessel as shown in Figure 30. The elliptical 

cross-section of the coil is centered on the z = 0 plane, 85 mm from the centerline. The minor 

axis of the coil is 55 mm. The elongation factor 𝜿 = 1.82, which represents the ratio of the 

major axis of the ellipse to its minor axis, gives the coil with the major axis of 100.1 mm. 

 As mentioned in Section 3.1, the full circuit equation, which accounts for mutual 

inductance between different components, allows us to calculate the induced currents 

between various components within the tokamak device. Similarly, the plasma is modeled 

as a single-turn coil, represented by the blue torus shown in Figure 30. The induced current 

in the plasma, primarily generated by the central solenoid, is also influenced by eddy currents 

Figure 30: Simplified xz-plane cross-section of mini-Tokamak. 



68 

 

in the vacuum-vessel walls. By determining the plasma’s resistance, self-inductance, and 

mutual inductance with other components, we can calculate the induced current within the 

plasma, which is referred to as the plasma current. 

Once the plasma current is known, we can calculate the energy deposited into the plasma 

through Ohmic heating. Plasma parameters such as temperature, ionization fraction, and 

plasma density can then be calculated. The plasma resistivity can be updated in every time 

step as the feedback to the circuit model. Using this, we can determine the evolution of 

plasma parameters over time. This analysis allows us to evaluate whether the designed 

central solenoid current profile can achieve our experimental goals, which include a plasma 

temperature exceeding 10 eV and a plasma current greater than 10 kA. With the model, we 

can design and adjust the central solenoid current profile to ensure the plasma parameters 

meet our targets. 

This chapter consists of six sections. Section 5.1 explains the plasma parameters that 

need to be calculated, including plasma resistivity, temperature, and density. Section 5.2 

presents the calculation of the plasma current, and the resulting design of the central solenoid 

current profile based on this model. Section 5.3 demonstrates the sensitivity test of the model 

with respect to the initial temperature, in order to verify the robustness and physical 

consistency of the model. Section 5.4 introduces neoclassical theory, which accounts for 

trapped particles and tokamak geometry effects that are not considered in the Spitzer theory. 

Section 5.5 presents the designed central solenoid current profile and the resulting calculated 

plasma parameters. Section 5.6 discusses the limitations and assumptions, and Section 5.7 

provides the conclusion. 
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5.1. Calculation of plasma parameters 

 To calculate the plasma current, we first need to determine the plasma resistance and 

inductance. For simplicity, the spatial profile and the location of the plasma are kept fixed. 

In other words, plasma geometry shown in Figure 30 is kept fixed in this work. The self-

inductance of the plasma 𝐿p can be calculated using the following equation[15]: 

𝐿p = 𝜇0𝑅 (ln
8𝑅

𝑎
+

𝑙i
2

− 2) (75) 

where 𝜇0 = 4𝜋 × 10−7 H/m is the permeability of free space, 𝑅 is the distance from 

the centerline, which is 85 mm in our calculation and corresponds to R in Figure 30. The 

parameter 𝑎 represents the minor radius of the plasma, which is 55 mm and corresponds 

to a in Figure 30. The parameter 𝑙i, which represents the internal inductance of the plasma, 

is a function of the current distribution in the cross-section. For simplicity in our calculation, 

we assume 𝑙𝑖 = 0.5. 

As for the mutual inductance, since Eq. (49) and Eq. (54) depend only on the position 

of the coil filaments and is independent of the coil's minor radius, we directly use them to 

determine the mutual inductance between the plasma and tokamak components, as the 

plasma is coaxial with them in the ideal case. Finally, we obtained the necessary inductance 

for matrix 𝐌 in the full circuit equation.  

For matrix 𝐑, since plasma parameters that affect plasma resistance change over time 

such as temperature and density. Before calculating the plasma current, we must first 

determine how these plasma parameters evolve over time. 

The plasma resistivity can be calculated using the Spitzer equation[15]: 

𝜂Sp = 5.2 × 10−3 ∙ 𝑍 ∙ ln𝛬 ∙ 𝑇e
−1.5 ∙ 10−2 (76) 

where 𝜂Sp is the Spitzer resistivity, 𝑍 is the charge state of the ions; 𝑇e is the electron 

temperature in electron volts (eV), and ln𝛬 is the Coulomb logarithm[16], which can be 

determined by: 
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ln𝛬 = 23.5 − log(
√𝑛e × 10−6

𝑇e

5
4

) − √10−5 +
(𝑙𝑜𝑔(𝑇e) − 2)2

16
. (77) 

In our present experiment, we use helium (He), which can exist in charge states 𝑍 = 1 and 

𝑍 = 2 . However, the plasma temperature in the mini-Tokamak does not exceed 10 eV. 

Therefore, for simplicity, we assume 𝑍 = 1 in our calculation. 

 The plasma resistance can be calculated using the Spitzer resistivity given in Eq. (76) 

as follows: 

𝑅p = 𝜂Sp

𝐿

𝐴
= 𝜂Sp

2𝜋𝑅

𝜋𝑎𝑏
(78) 

where 𝑅p is the plasma resistance, 𝐿 is the effective length of the plasma current path, 

which is the length of the plasma coil of the blue toroidal single-coil shown in Figure 30 

given by 2𝜋𝑅, 𝑅 = 85 mm is the major radius of plasma. The parameters 𝑎 = 55 mm 

and 𝑏 = 100.1 mm  represent the minor and major axes of the plasma cross-section, 

respectively. The cross-sectional area of the plasma is given by 𝐴 = 𝜋𝑎𝑏. 

It can be observed that 𝜂Sp and ln𝛬 are affected by plasma density and temperature, 

both of them vary over time due to ionization and Ohmic heating. Therefore, before 

calculating plasma resistance, we must first determine how ionization fraction and plasma 

temperature evolve over time. 

5.1.1. Calculation of plasma density 

 Plasma density is determined by the balance between the ionization rate and the 

recombination rate. In our model, we use data from the Atomic Data and Analysis Structure 

(ADAS)[17] for high temperature and ionization fraction to calculate both the ionization and 

recombination rates. ADAS is a comprehensive database and toolset that provides accurate 

atomic and ionic data for plasma modeling. It is widely used in fusion energy research, 

astrophysics, and laboratory plasma studies to support calculations of key processes such as 

ionization, recombination, and radiation emission. 



71 

 

The electron temperature range covered by ADAS spans from 0.2 eV to 1 × 104 eV, 

while the electron density ranges from 5 × 1013  m-3 to 2 × 1021  m-3. In our current 

experiment, the plasma is expected to reach temperature around 10 eV and particle density 

between 1017 m-3 to 1018 m-3. Since these values fall well within the range covered by 

the ADAS datasets, we are able to apply these data to our model without the need for 

extrapolation. 

However, ADAS does not provide reliable data for low-temperature and low-density 

conditions. This limitation arises because the ionization potentials of hydrogen and helium 

are 13.6 eV and 24.6 eV, respectively. At low electron energies, excitation and ionization 

events are rare, and the corresponding cross sections become very small, making the 

coefficients difficult to measure or compute accurately. Therefore, for low-density and low-

ionization-fraction conditions, we adopt a simplified collisional model: 

𝑛e𝜎e−i = (𝑛a − 𝑛e)𝜎e−a . (79) 

Assuming a balance between ionization and neutralization, this equation defines the 

relationship between electron density and neutral atom density during the early phase of 

plasma formation. Details are given in the following. 

5.1.1.1. ADAS model 

There are several methods for calculating the ionization fraction. However, to save time 

and improve efficiency, we use precomputed rate coefficients derived from established 

models and theories in ADAS[17] for high temperature and high ionization fraction.  

We can calculate the plasma density using the following equation: 

𝑑𝑛e

𝑑𝑡
= 𝑅ion(𝑇e, 𝑛e)𝑛0𝑛e − 𝑅rec(𝑇e, 𝑛e)𝑛e𝑛i. (80) 

The variable 𝑛e represents the electron density, which is considered equivalent to the 

plasma density. The ion density, denoted as 𝑛i, is assumed to be equal to the electron density 
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(𝑛i = 𝑛e) since ionization releases both an electron and an ion in our case. The neutral atom 

density (𝑛0) is determined based on our calculation in Subsection 4.2, where the 

experimental pressure is 10-4 Torr (equivalent to 1.3×10-2 Pa). Given these conditions, the 

initial particle density is approximately 1018m−3 , so we assume an initial neutral atom 

density of 𝑛0 = 1018 m−3 . 𝑅ion(𝑇e, 𝑛e)  is the effective ionization coefficient, and 

𝑅rec(𝑇e, 𝑛e)  is the effective recombination coefficient; both can be obtained from the 

ADAS database[17]. These correspond to the SCD (effective ionization coefficients) and 

ACD (effective recombination coefficients) datasets, respectively. 

Eq. (80) represents the rate of change of electron density by accounting for both 

ionization and recombination processes. The first term describes electron generation due to 

ionization, while the second term accounts for electron loss due to recombination. 

5.1.1.2. Collision model 

For low temperature and low ionization fraction case, we use collision model to calculate 

the ionization fraction. The initial ionization fraction can be calculated using the ratio of 

electron-atom to electron-ion collision cross-sections[15]: 

𝑛e𝜎e−i = (𝑛0 − 𝑛e)𝜎e−a, (81) 

where 𝑛e  is the electron density in m-3, 𝑛0  is the total particle density in m-3, which is 

related to the working gas pressure of the experiment and is assumed constant. 𝜎𝑒−𝑖 and 

𝜎e−a  are the electron–ion and electron–atom collision cross-sections in m2, respectively. 

𝑇e is the electron temperature in eV.  

The left-hand side of Eq. (82) represents the rate of electron-ion collisions, which is 

determined by the product of the electron density (𝑛e) and the electron-ion collision cross-

section (𝜎e−i). It means the neutralization rate. The right-hand side represents the rate of 

electron-atom collisions, which depends on the neutral atom density (𝑛0 − 𝑛e)  and the 

electron-atom collision cross-section (𝜎e−a ). It means the ionization rate. Assuming the 
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ionization rate and the neutralization rate are balanced with each other, this equation defines 

the relationship between electron density and neutral atom density during the early plasma 

formation phase. By rearranging Eq. (82), we obtain: 

𝑛e

𝑛0 − 𝑛e
≈

𝜎e−a

𝜎e−i
 . (82) 

At the early stage of plasma ionization, the neutral gas density (𝑛0 − 𝑛e) is much 

higher than the electron density 𝑛e because the ionization process has just begun. Since 

only a small fraction of atoms has been ionized, it is reasonable to assume 𝑛0 ≫ 𝑛e . 

Therefore, when calculating 𝑛0 − 𝑛𝑒, we can approximate it as 𝑛0 by neglecting 𝑛𝑒. This 

allows us to express the ionization fraction as the ratio between 𝑛e and 𝑛0: 

𝛾 ≈
𝑛e

𝑛0
≈

𝜎e−a

𝜎e−i
. (83) 

Therefore, once the cross-sections 𝜎e−a  and 𝜎e−i  are expressed as functions of 

electron temperature, the ionization fraction 𝛾 can be directly calculated as a function of 

temperature. 

(a) Electron-atom collision cross-section 

For hydrogen, according to an empirical formula, 𝜎e−a,formula
H (𝑇e) ≈ 3 × 10−19 ×

𝑇𝑒
−0.5[15]. However, since the mini-Tokamak uses helium as the working gas, we need 

an equivalent expression for 𝜎e−a,formula
He (𝑇e). 

Direct empirical formulas for helium are less commonly available, but we can infer 

one by analyzing the ratio of ionization cross-sections between hydrogen and helium 

over the relevant temperature range. Specifically, by evaluating or interpolating 

𝜎e−a,ADAS
H (𝑇e) and 𝜎e−a,ADAS

He (𝑇e) from datasets such as ADAS, we can compute the 

ratio 𝜎e−a,ADAS
He (𝑇e)/𝜎e−a,ADAS

H (𝑇e) across a range of electron temperatures. 

In our study, we use the Effective Ionization Coefficients (SCD) for both 

hydrogen and helium. These rate coefficients, provided in units of cm³/s in the raw 
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ADAS data, represent the effective ionization reaction rates per unit electron and 

target particle density, which are functions of both the electron temperature and the 

electron density. To convert these rate coefficients into effective cross sections (in m²), 

we use the relation: 

𝜎e−a =
𝑅ion × 10−6

𝑣e
, (84) 

where 𝑅ion  is the rate coefficient in cm³/s, and 𝑣e = √2𝑒𝑇e 𝑚e⁄   is the electron 

thermal velocity in m/s. After interpolating the ADAS tables, we compute the 

ionization cross sections for both hydrogen and helium, as shown in Figure 31(a). 

Assuming this ratio captures the relative magnitude and trend of helium behavior 

compared to hydrogen, we can scale the hydrogen formula by the ratio to obtain an 

approximate expression for helium, as shown in Figure 31(b): 

𝜎e−a,formula
He (𝑇e) ≈

𝜎e−a,ADAS
He (𝑇e)

𝜎e−a,ADAS
H (𝑇e)

∙ 𝜎e−a,formula
H (𝑇e). (85) 

In Figure 31(b), the blue line is the empirical formula of the ionization cross 

section of hydrogen from Ref. [15] while the red line is the estimation of that of helium 

using Eq. (85). This approach preserves the functional dependence of the hydrogen 

Figure 31: (a) ADAS-based effective cross sections. (b) Empirical formula for hydrogen 

and fitted formula for helium. 
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formula while adjusting the amplitude and temperature exponent to better match helium 

data. We can then fit the scaled expression to a power-law form: 

𝜎e−a,formula
He (𝑇e) ≈ 𝐴 × 𝑇𝑒

−𝑏 ≈ 1 × 10−19 × 𝑇𝑒
−0.46, (86) 

where 𝐴 and 𝑏 are determined through curve fitting. 

(b) Electron-ion collision cross-section 

We adopt an empirical approach to estimate the electron–ion collision cross 

section under low-temperature conditions relevant to our mini-Tokamak system. We 

use the empirical formula for hydrogen[15]: 

𝜎e−i
H (𝑇e) ≈ 1.5 × 10−16 × 𝑇e

−2, (87) 

Although this formula is derived specifically for hydrogen, we apply it to helium as 

well by assuming that all helium atoms are singly ionized (Z = 1), which is valid in 

our case since the plasma temperature remains around 10 eV. 

Based on the electron-atom collision cross-sections presented in Figure 31(b), where 

the blue solid line corresponds to hydrogen and the red solid line to helium, and the empirical 

formula for electron-ion collision cross-sections. The ionization fraction can be calculated 

using Eq. (83). For hydrogen: 

𝛾H ≈
3 × 10−19 × 𝑇e

−0.5

1.5 × 10−16 × 𝑇e
−2

= 2 × 10−3 × 𝑇e
1.5 eV. (88) 

For helium: 

𝛾He ≈
1 × 10−19 × 𝑇e

−0.46

1.5 × 10−16 × 𝑇e
−2

= 6.7 × 10−4 × 𝑇e
1.54 eV. (89) 

5.1.1.3. Transition from collision model to ADAS model 

During the initial phase of plasma breakdown, we apply Eq. (88) and Eq. (89) for 

hydrogen and helium, respectively. These are referred to as the collision model and are used 

to calculate the initial ionization fraction. As the plasma evolves and becomes more ionized, 

we gradually transition to using Eq. (80), known as the ADAS model. This transition is 
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implemented using a weighted interpolation method, ensuring a smooth shift between the 

two models as a function of electron temperature or ionization fraction. 

When 𝛾 = 0, where 𝛾 is the ionization fraction, the plasma is in the early stage of 

breakdown, and the ionization is calculated using the collision model. As the ionization 

fraction increases, the contribution from the ADAS model gradually increases. When 𝛾 =

0.5, the ADAS model dominates the ionization calculation. The weighting is controlled by 

a sigmoid function defined over the interval [0, 0.5]: 

𝑤ADAS(𝛾) =
1

1 + exp[−𝑠 ∙ ((𝛾 − 𝛾0)/∆]
. (90) 

where 𝑠 = 10  controls the steepness of the transition. A larger value of 𝑠  leads to a 

sharper transition between the two models, 𝛾0 = 0.25 is the center of the transition, and 

∆= 0.5 is the normalization range. The collision model weight is defined as 𝑤collision =

1 − 𝑤ADAS, ensuring the total contribution remains unity at all times. 

At 𝛾 = 0 , the ADAS model contributes approximately 0.67%, while the collision 

model dominates with over 99% weight. Around 𝛾 = 0.25, both models contribute equally, 

and by 𝛾 = 0.5, the ADAS model reaches nearly full weight (~99.3%) while the collision 

model becomes negligible (0.67%). This transition is illustrated in Figure 32, which shows 

the evolution of model weights as a function of 𝛾. 

Figure 32: Weight distribution between collision model and ADAS model. 



77 

 

This approach allows for a smooth and physically consistent between two methods, 

avoiding abrupt changes in source terms and improving the accuracy of time-dependent 

plasma ionization modeling. It also ensures that the numerical system remains well-behaved 

during rapid changes in plasma parameters, which is particularly important in early-stage 

breakdown or startup simulations. 

By implementing this approach, we can calculate the time-dependent evolution of 

plasma density, maintaining physical consistency across different phases of ionization.  

5.1.2. Calculation of plasma temperature 

 The change in electron energy (thermal energy) is determined by the balance between 

heating and power losses. Therefore, to calculate the time-dependent variation of plasma 

temperature, we use the following equation[15]: 

3

2

𝑑(𝑛e𝑇e)

𝑑𝑡
= 𝑃oh − (𝑃ion + 𝑃line + 𝑃prb) (91) 

where each term on the right-hand side represents a volumetric power density (W/m³).  

The first term, 𝑃oh, is the Ohmic heating power density and is considered the main 

energy source in the simulation. It is calculated as: 

𝑃oh =
𝐼p
2𝑅p

𝑉p
(92) 

where 𝐼p is plasma current (A), 𝑅p is plasma resistance (Ω) given in Eq. (78), and 𝑉p is 

plasma volume (m³). 

The ionization power loss 𝑃ion accounts for the energy required to ionize neutral 

atoms, thereby diverting energy away from electron heating. It is computed by: 

𝑃ion = 𝑅ion × 𝑛e × 𝑛0 × 𝐸i (93) 

where 𝑅ion  is the effective ionization coefficient, obtained from ADAS[17] in units of 

m3/𝑠, 𝑛e is the electron density in units of m3, 𝑛0 is the neutral atom density in units of 

m3, and 𝐸i is the ionization energy in J. The expression reflects that each ionization event 
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requires a fixed amount of energy, and the ionization rate depends on the product of electron 

and neutral densities. 

The line radiation loss 𝑃line arises from bound–bound transitions when excited ions 

return to lower energy states, emitting photons. It is given by: 

𝑃line = 𝑅plt × 𝑛e × 𝑛i (94) 

where 𝑅plt is the coefficient of line emission from excitation in units of W ∙ m3, obtained 

from ADAS[17], and 𝑛i ≈ 𝑛e  under the quasi-neutrality assumption. This equation is 

based on the fact that line radiation occurs when electrons excite ions to higher energy levels, 

and these ions then emit photons upon returning to lower energy states. The excitation rate 

depends on electron-ion interactions, making the emission power proportional to the 

electron and ion densities. 

 In addition to line radiation, the simulation also includes Bremsstrahlung radiation loss, 

denoted 𝑅prb. Bremsstrahlung, or free–free radiation, is caused by the deceleration of 

electrons in the electric field of ions, resulting in photon emission. The power density is 

computed using: 

𝑃prb = 𝑅prb × 𝑛e × 𝑛i (95) 

where 𝑅prb is the Bremsstrahlung emission coefficient, interpolated from ADAS[17] in 

units of W ∙ m3. This term is generally several orders of magnitude smaller than ionization 

and line radiation losses under low-Z, sub-keV conditions, and can often be neglected. 

Nevertheless, it is still tracked here for completeness. 

By incorporating all these effects, the energy balance equation provides a consistent 

framework for simulating the plasma’s thermal behavior. It ensures that the rise in electron 

temperature is not only driven by Ohmic heating but also realistically modulated by 

competing loss processes including ionization, line radiation, and Bremsstrahlung. 
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5.1.3. Government equations for calculating plasma parameters  

In summary, the government equations for calculating plasma parameters are the 

following. Notice that particle losses and the corresponding energy losses are neglected in 

this simple model. 

Full circuit equation for the induced current: 

𝑉⃗ = 𝐌
𝑑𝐼 

𝑑𝑡
+ 𝐑𝐼  . (96) 

Equation for plasma inductance: 

𝐿p = 𝜇0𝑅 (ln
8𝑅

𝑎
+

𝑙i
2

− 2) (97) 

Equation for plasma resistivity and resistance: 

𝜂Sp = 5.2 × 10−3 ∙ 𝑍 ∙ ln𝛬 ∙ 𝑇e
−1.5 ∙ 10−2, 𝑅p = 𝜂Sp

𝐿

𝐴
= 𝜂Sp

2𝜋𝑅

𝜋𝑎𝑏
(98) 

Energy balance equation for the plasma temperature time evolution: 

3

2

𝑑(𝑛e𝑇e)

𝑑𝑡
= 𝑃oh − (𝑃ion + 𝑃line + 𝑃prb) (99) 

Rate equation for the plasma density time evolution: 

𝑑𝑛e

𝑑𝑡
= 𝑅ion(𝑇e, 𝑛e)𝑛0𝑛e − 𝑅rec(𝑇e, 𝑛e)𝑛e𝑛i. (100) 

5.2. Calculation of the plasma current 

After getting the equations for calculating plasma density and plasma temperature in 

Section 5.1, we can compute the plasma parameters at each time step using the previously 

established equations with the initial conditions, including the initial plasma temperature, 

experimental gas pressure, and central solenoid current profile. 

It is important to note that with higher temperature, the Lamor radius becomes too large 

such that ions cannot be confined. Although the expected operating temperature of the mini-

Tokamak is limited to approximately 10 eV due to the gyro-radius constraint discussed in 

Appendix A.1, this section intentionally ignores that confinement limit. This is because low-
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temperature conditions, while physically realistic, often result in low ionization fraction and 

minimal dynamic changes, which hinder the ability to assess the model's behavior and 

performance across a wide range of parameters. Therefore, in this section, we allow the 

temperature to rise freely and focus on verifying the model’s internal consistency, 

specifically the evolution of plasma current, temperature, input and loss power, and energy 

conservation. Once the model has been validated under these conditions, the following 

section will incorporate the confinement limit and present a physically feasible central 

solenoid current profile tailored to the mini-Tokamak’s operational constraints. 

In our simulations, the initial plasma temperature is set to 0.026 eV (approximately 

300 K), representing room temperature conditions. The working gas is He. The total neutral 

density is taken to be 1017 m-3, which corresponds to a gas pressure around 10-5 Torr. The 

applied central solenoid current profile, shown in the blue solid line in Figure 33(a), linearly 

ramps down from 10 kA to 0 kA over the first 10 ms, followed by a ramp from 0 to −5 kA 

over the next 40 ms. The results for each case are presented in Figure 33 to Figure 36, 

illustrating how plasma parameters evolve over time under these conditions.  

Figure 33(a) reveals that the plasma current begins to increase after about 4 ms, 

eventually reaching approximately 18 kA by the end of the 40 ms simulation, which reaches 

Figure 33: (a) Central solenoid and plasma current. (b) Plasma temperature. 



81 

 

our intended target of 10 kA. Meanwhile, Figure 33(b) shows that the plasma temperature 

climbs sharply after 4 ms and ultimately reaches over 5400 eV, far exceeding the 

confinement-safe regime, which is 10 eV. 

This behavior can be understood by considering the dynamics of plasma resistance and 

heating. At the beginning of the simulation, when the electron temperature remains at 

0.026 eV, the plasma resistivity is extremely high because resistivity scales as 𝜂 ∝ 𝑇e
−1.5, as 

shown in Figure 34(a). According to Ohm’s law (V = IR), high resistance severely limits the 

amount of current that can be induced in the plasma, despite the relatively strong voltage 

generated by the initial rapid change in solenoid current. As a result, the Ohmic heating 

power, given by 𝑃ohmic = 𝐼p
2𝑅p, remains negligible, as shown in the blue solid line in Figure 

34 (b). This explains why the plasma parameters stays nearly flat during the first 4 ms. Only 

when plasma current begins to rise after the plasma resistance drops to a sufficiently low 

level. As shown in Figure 33(a), the plasma current starts to increase. Correspondingly, other 

plasma parameters, such as temperature, ionization fraction, and Ohmic heating power, also 

begin to increase significantly from this point onward. 

According to Eq. (76) and Eq. (78), plasma resistance 𝑅𝑝, which is shown in Figure 34 

(a), is proportional to the Spitzer resistivity 𝜂Sp and inversely proportional to the plasma 

temperature 𝑇e
1.5: 

Figure 34: (a) Plasma resistance. (b) Ohmic heating power density. 
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𝑅p ∝ 𝜂Sp ∝ 𝑇𝑒
−1.5. (101) 

It explains the exponential drop in resistance as temperature rises. Initially, with 𝑇e =

0.026 eV, the resistance is around 0.5 Ω with the assumption that breakdown occurred 𝑡 =

0. However, by 50 ms, it falls below 10−7 Ω. 

Figure 35(a) shows that the ionization fraction 𝛾  reaches full ionization (𝛾 ≈ 1 ) 

around 8 ms. The effect of ionization is also evident in the energy loss analysis shown in 

Figure 35(b). Ionization loss 𝑃ion , corresponding to the orange solid line, begins to rise 

significantly around 3 ms and peaks near 5 ms, when the plasma is rapidly transitioning from 

weakly ionized to partially ionized. This behavior reflects the underlying physics of 

ionization loss, which scales as 𝑃ion ∝ 𝑛0𝑛e. In the early stage, although the neutral density 

𝑛0 is high, the electron density 𝑛e is still too low to drive substantial ionization. As the 

temperature increases and electron density rises, the ionization fraction accelerates sharply, 

leading to a rapid increase in energy loss. After full ionization is achieved around 8 ms, 

𝑛0 → 0, and ionization loss quickly drops to negligible levels. 

Following this, the dominant power loss mechanism shifts to line radiation 𝑃line, 

shown in red solid line in Figure 35(b). Line radiation arises from bound–bound transitions 

in ions, when electrons in excited states fall to lower energy levels, emitting photons with 

Figure 35: (a) Ionization fraction. (b) Energy loss. 



83 

 

specific energies. This radiation mechanism depends on both electron and ion densities 

(𝑃line ∝ 𝑛e𝑛i) and remains significant throughout the rest of the simulation.  

In contrast, Bremsstrahlung radiation 𝑃prb, which originates from the deceleration of 

electrons in the electric fields of ions, remains negligible throughout the simulation, as 

shown by the blue line in Figure 35(b). This is primarily because in our assumption plasma 

consists of singly charged helium ions (𝑍 = 1), for which Bremsstrahlung losses are low. 

As a result, its contribution is several orders of magnitude smaller than ionization and line 

radiation and can be neglected. 

In the present simulation, we assume 𝑍 = 1  for simplicity. This assumption is 

reasonable because the mini-Tokamak operates at relatively low temperatures (below 10 

eV), where only the first ionization stage of helium is significantly populated. Moreover, 

the FIRST device primarily uses hydrogen as the working gas, which naturally has 𝑍 = 1, 

making the same assumption applicable. 

However, if future designs aim to push the mini-Tokamak to higher temperatures, or 

if other gases such as helium or argon are used in devices like FIRST, then the assumption 

of 𝑍 = 1 will no longer hold. Higher temperatures can lead to multiple ionization stages 

(e.g., He²⁺, Ar³⁺ and beyond), and alter both the charge state distribution and the associated 

radiation losses. In such cases, line radiations from both higher-Z ions and Bremsstrahlung, 

scale more strongly with Z and, would play a more prominent role. Therefore, a more 

detailed treatment of ionization stages and the effective charge Zeff will be necessary to 

accurately capture energy loss and transport in future models. 

Finally, Figure 36 demonstrates that the energy balance is well preserved in the 

simulation. The Ohmic heating from the central solenoid serves as the energy input to the 



84 

 

plasma, which is the blue solid line. To calculate the total energy input, we first convert Eq. 

(92) into total input power (W) by multiplying by the plasma volume (𝑉p): 

𝑃oh =
𝐼p
2𝑅p

𝑉p
 (W m3⁄ ) ⇒ 𝑃oh𝑉p (W) (102) 

where 𝐼p is plasma current (A), 𝑅p is plasma resistance (Ω), and 𝑉p is plasma volume 

(m3). Next, to determine the total accumulated energy input over time, we integrate 𝑃oh 

from 𝑡 = 0 to the current time 𝑡 = 40 ms: 

𝐸input = 𝑉p ∫ 𝑃oh𝑑𝑡
𝑡

0

≈ 𝑉p ∑𝑃oh(𝑖) ∙ Δ𝑡

𝑛

𝑖=1

(103) 

where 𝐸input is the total accumulated energy input in Joule to the plasma over time, 𝑃oh𝑉p 

is the Ohmic heating power in Watt, and Δ𝑡 is the time step used for numerical integration. 

 The total energy loss of the plasma, as shown in the red solid line in Figure 36, is 

composed of Bremsstrahlung radiation (𝑃prb), line radiation (𝑃line ), and ionization loss 

(𝑃ion). The ionization loss corresponds to Eq. (94) and accounts for the energy required to 

ionize neutral atoms through electron-neutral collisions. The radiation loss corresponds to 

Eq. (95) and represents the energy emitted as photons when excited ions return to lower 

energy states via bound–bound transitions. In addition, the Bremsstrahlung radiation loss 

Figure 36: Energy conservation check. 
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corresponds to Eq. (96) and arises from the deceleration of electrons in the Coulomb field 

of ions, producing broadband photon emission. 

The net energy retained by the plasma is given by the equation: 

𝑈 =
3

2
𝑛e ∙ 𝑉p ∙ 𝑇e × (eV_to_ J) (104) 

where 𝑈  represents the internal energy of the plasma, measured in joules (J), which 

quantifies the total thermal energy stored within the plasma. The variable 𝑉p represents 

the plasma volume (m3). The term 𝑇e  represents the plasma temperature, measured in 

electron volts (eV), which describes the thermal energy per particle in the plasma. The final 

term, eV_to_ J, is a conversion factor from electron volts to joules, with a value of 

1.6 × 10−19 J/eV. 

As shown in Figure 36, the input energy from Ohmic heating is equal to the total system 

energy, which includes thermal energy and energy losses. This balance ensures that the 

program correctly accounts for energy input, dissipation, and conversion, thereby confirming 

that energy conservation is maintained within the model. 

5.3. Sensitivity test of the program to the initial temperature 

 Before utilizing the program in Subsection 5.2 to further refine the design of the central 

solenoid current profile, we first need to test the program's sensitivity to the initial 

temperature. This verification is important because the initial temperature serves as a critical 

starting condition for plasma evolution. Since the governing equations for plasma density, 

temperature, and resistance all involve temperature-dependent terms, variations in the initial 

temperature could impact the overall plasma dynamics. By testing the program's response to 

different initial temperatures, we can ensure that the numerical simulation remains stable 

and consistent, regardless of the initial condition chosen. 

This sensitivity test allows us to evaluate whether small variations in the initial 

temperature lead to significantly different plasma behavior, which could indicate potential 
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uncertainty in the model. If the simulation remains consistent under different initial 

temperature conditions, we can confidently proceed to use the program for further 

optimization of the central solenoid current profile. We performed calculations under 

different initial temperature conditions, setting 𝑇0 = 0.026 eV, 5 eV, and 20 eV, as shown in 

Figure 37(a) and (b). 

As observed in Figure 37(a), when the initial plasma temperature is relatively high (e.g., 

20 eV), it first decreases before rising. This occurs because at higher temperature, energy 

losses due to line radiation, ionization, or radiation dissipation can exceed Ohmic heating. 

Consequently, the net power, defined as 𝑃net = 𝑃oh − 𝑃loss, may initially become negative, 

leading to a drop in temperature. Over time, as electron density and plasma resistance evolve, 

Ohmic heating increases, eventually surpassing the losses and driving the temperature back 

up, resulting in the observed downward-then-upward trend. 

Additionally, this initial temperature drop reduces the ionization fraction, as shown in 

Figure 37(b), since ionization is strongly temperature dependent. Ultimately, as the current 

and resistance evolve, Ohmic heating "catches up" with energy losses, stabilizing and 

increasing the temperature again. 

Figure 37: (a) Temporal evolution of plasma temperature for different initial temperature. 

(b) Temporal evolution of ionization fraction for different initial temperatures 
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The plasma temperature and ionization fraction result for the three different initial 

temperatures ultimately converge. This convergence occurs because the net heating power 

and energy loss in the plasma reaches a dynamic balance over time, driving the system 

toward a similar final temperature and ionization fraction regardless of the initial condition. 

This behavior can be attributed to several mechanisms. Plasma resistance decreases as 

the temperature rises, particularly with higher electron temperatures. At higher temperatures, 

the lower resistance reduces the effectiveness of Ohmic heating (𝑃oh = 𝐼p
2𝑅p 𝑉p⁄ ), while at 

lower initial temperatures, higher resistance leads to stronger Ohmic heating, accelerating 

the temperature increase in the early stages. 

Additionally, energy loss mechanisms, such as line radiation loss, become more 

significant at higher temperatures. For higher initial temperatures, these losses can 

temporarily exceed Ohmic heating, resulting in a negative net power (𝑃net = 𝑃oh − 𝑃loss) 

and causing a temperature drop, as shown in the yellow line for 20 eV case in Figure 37(a). 

In contrast, for lower initial temperatures, Ohmic heating dominates over losses, leading to 

a faster temperature rise. 

As plasma evolves, a balance is eventually established between Ohmic heating and 

energy losses. This equilibrium determines the final temperature range and is primarily 

influenced by the system’s injected power, geometry, density, and radiative properties, rather 

than the initial temperature. Therefore, whether the plasma starts at 0.026 eV, 5 eV, or 20 eV, 

the temperature trajectories converge, with differences only in the early transitional behavior. 

Over longer timescales, the equilibrium between Ohmic heating and energy loss mechanisms 

governs the plasma's steady-state temperature. 

In conclusion, through this calculation, we have demonstrated that our program has low 

sensitivity to the initial plasma temperature. This reliability allows us to proceed further 

refining the design of the central solenoid current profile using the program. 
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5.4. Neoclassical resistivity 

In a toroidal magnetic field, not all charged particles can freely circulate around the 

torus. This spatial variation in magnetic field strength resembles the behavior of a magnetic 

mirror, causing certain particles to reflect back and become confined between two strong-

field regions. These so-called "trapped particles" cannot contribute effectively to the toroidal 

current, as they oscillate locally rather than circulating around the entire torus. This effect is 

particularly important for electrons, some of them are trapped and enter so-called banana 

orbits due to the mirror-like field structure. As a result, only a fraction of the total electron 

population participates in current conduction, leading to a reduction in the overall plasma 

conductivity. Consequently, this reduced efficiency must be accounted for estimating 

resistivity and heating performance in tokamak plasmas. 

To account for these effects, neoclassical theory extends the classical model by 

incorporating the geometry of the tokamak and the behavior of trapped particles. It modifies 

the effective conductivity and resistivity of the plasma depending on the degree of 

collisionality and magnetic geometry. Neoclassical resistivity becomes important when a 

significant fraction of particles is trapped, which is often the case in compact or low-aspect-

ratio devices like the mini-Tokamak. 

In this study, we employ the neoclassical model developed by O. Sauter et al., published 

in Physics of Plasmas (1999)[18], which provides a set of widely used analytical formulas 

to compute key transport quantities such as the collisionality, conductivity, and bootstrap 

current. The first step involves evaluating the electron collisionality ( 𝜈e
∗ ), which 

characterizes the ratio between the electron collision frequency and the bounce frequency of 

trapped particles. The electron collisionality: 

𝜈e
∗ ∝

𝑞𝑅𝑛e𝑍eff ln 𝛬

𝑇e
2𝜖1.5

, (105) 
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where 𝑞 is the safety factor, 𝑅 is the major radius of plasma, 𝜖 is the inverse aspect ratio 

(𝜖 = 𝑎/𝑅), 𝑍eff is the effective ion charge, which is assumed to be 1 in our assumption, and 

ln 𝛬  is the Coulomb logarithm. A high 𝜈e
∗  indicates strong collisionality and classical 

transport behavior, whereas a low 𝜈e
∗ suggests that neoclassical effect dominates due to the 

increased influence of trapped particles. 

The safety factor 𝑞 describes the pitch angle of magnetic field lines in a tokamak and 

is defined as the number of toroidal turns a magnetic field line makes for each poloidal turn. 

It plays a crucial role in determining the stability and transport properties of the plasma. 

Notice that the pitch angle of magnetic field lines may be different at different radial distance 

from the plasma center axis. In Eq. (106), the safety factor appears in the numerator, meaning 

that higher q values increase the collisionality. To evaluate 𝑞(𝑟) , we use the following 

physics-based relation derived from the magnetic field geometry in a tokamak: 

𝑞(𝑟) =
𝑟𝐵𝑇

(𝑅 + 𝑟)𝐵𝑝
(106) 

where 𝑟 represents the radial distance from the plasma center axis, while 𝑅 is the major 

radius of plasma, which is 85 mm for mini-Tokamak. 𝐵𝑇 is the toroidal magnetic field, and 

𝐵𝑝 is the poloidal magnetic field. 

The toroidal magnetic field 𝐵𝑇 is assumed to vary with radius according to the simple 

model: 

𝐵𝑇(𝑟) = 𝐵0

𝑅

𝑅 + 𝑟
(107) 

where 𝐵0 = 0.1 T is the magnetic field measured at the reference radius of 𝑅 = 85 mm. 

This radial dependence reflects the geometric decay of toroidal field strength as the radius 

increases. 
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The poloidal magnetic field 𝐵𝑝 is derived from Ampère’s law under the assumption of 

uniform current distribution within a given radius 𝑟. The local poloidal current density is 

expressed as: 

𝐽p =
𝐼p

𝜋𝑟2
 . (108) 

Applying Ampère’s circuital law over a circular loop of radius 𝑟, we obtain: 

∮ 𝐵p ∙ 𝑑𝑙 = 2𝜋𝑟 ∙ 𝐵p = 𝜇0𝐼p = 𝜇0𝜋𝑟2𝐽p , (109) 

which leads to: 

𝐵𝑝 =
𝜇0𝑟

2
𝐽p . (110) 

Substituting Eq. (107) and Eq. (110) into Eq. (106): 

𝑞(𝑟) =
𝑟

𝑅 + 𝑟
×

𝐵0𝑅

𝑅 + 𝑟
×

1
𝜇0𝑟
2 𝐽p

=
2𝐵0𝑅

𝜇0𝐽p(𝑅 + 𝑟)2
 . (111) 

After calculating the local safety factor profile 𝑞(𝑟)  across the plasma radius, the 

average safety factor 𝑞̅ is computed using a radial weighting: 

𝑞̅ =
∫ 𝑞(𝑟) ∙ 𝑟 𝑑𝑟

𝑎

0

∫ 𝑟 𝑑𝑟
𝑎

0

=
2

𝑎2
∫ 𝑞(𝑟) ∙ 𝑟 𝑑𝑟

𝑎

0

 , (112) 

where 𝑎 is the minor radius of plasma, which is 55 mm for mini-Tokamak. Although the 

plasma cross-section is elliptical, the weighting remains proportional to 𝑟  because each 

magnetic surface is assumed to be a geometrically similar ellipse, causing the elliptical area 

factors to cancel out in both numerator and denominator. This average 𝑞̅ is then used in Eq. 

(105) as 𝑞, as shown in the red dash line in Figure 38. 

Next, the fraction of trapped particles is estimated. These particles become trapped due 

to magnetic field inhomogeneity and are influenced by both the aspect ratio and triangularity 

of the plasma cross-section. A refined formula incorporating triangularity corrections is 

employed to compute 𝑓t: 
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𝑓t = 1 −
1 − 𝜖𝑒𝑓𝑓

1 + 2√𝜖𝑒𝑓𝑓

∙ √
1 − 𝜖

1 + 𝜖
. (113) 

where 𝜖eff is the triangularity corrections: 

𝜖eff = 0.67(1 − 1.4𝛿2) ∙ 𝜖. (114) 

Here, 𝛿  is the plasma triangularity, which characterizes the D-shape deformation of the 

plasma boundary. However, in our present calculation, the plasma is assumed to have an 

elliptical cross-section without triangular shaping. Therefore, we set 𝛿 = 0 , neglecting 

triangularity effects in the estimation of the trapped particle fraction. Since trapped particles 

are confined by mirror-like magnetic effects, they contribute less effectively to the toroidal 

current. As 𝑓t increases, the effective conductivity decreases. This behavior is especially 

important in low-aspect-ratio configurations like mini-Tokamak, where geometric effects are 

more pronounced. This correction reduces the influence of 𝜖 in plasmas with non-circular 

cross-sections. Using 𝜖eff instead of 𝜖 allows for a more accurate estimate of the trapped 

particle fraction, especially in cases with significant triangular shaping. In our case, since 

𝛿 = 0, we recover 𝜖eff = 0.67 ∙ 𝜖. 

Figure 38: Radial profile of safety factor. 
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The neoclassical conductivity 𝜎neo is then obtained by correcting the classical Spitzer 

conductivity 𝜎spitzer using a term that accounts for trapped particles: 

𝜎neo = 𝜎spitzer ∙ [1 − 𝑓33
𝑒𝑓𝑓 (1 +

0.36

𝑍eff
− 𝑓33

𝑒𝑓𝑓 (
0.59

𝑍eff
−

0.23

𝑍eff
𝑓33

𝑒𝑓𝑓))] . (115) 

Here, 𝑓33
𝑒𝑓𝑓

 is an effective trapped particle fraction, defined as: 

𝑓33
𝑒𝑓𝑓

=
𝑓t

1 + (0.55 − 0.1𝑓𝑡)√𝑣∗ + −0.45(1 − 𝑓𝑡) ∙
𝑣∗

𝑍𝑒𝑓𝑓
1.5

. (116)
 

This effective correction factor is used instead of the raw trapped particle fraction 𝑓t to 

account for the influence of electron collisionality (𝑣∗) and impurity content (𝑍eff) on the 

actual current-carrying capability of the trapped particle population. While 𝑓t captures the 

geometric tendency for particles to become trapped due to magnetic field inhomogeneity, 

not all trapped particles equally suppress conductivity. At low collisionality, these particles 

remain trapped and significantly hinder current flow. At higher collisionality, frequent 

collisions allow them to scatter into passing orbits, reducing their suppressive effect. 

Therefore, 𝑓33
𝑒𝑓𝑓

 serves as a refined measure of the effective transport-limiting role of 

trapped particles under realistic tokamak conditions. 

From Eq. (116) and Eq. (117), we observe that in the limit where the trapped particle 

fraction 𝑓t → 0, the effective correction 𝑓33
𝑒𝑓𝑓

→ 0, and thus the neoclassical conductivity 

𝜎neo approaches the classical Spitzer conductivity 𝜎spitzer, as expected for a fully passing 

particle population. Conversely, when 𝑓t  approaches unity and the collisionality 𝑣∗ 

remains moderate, the value of 𝑓33
𝑒𝑓𝑓

 becomes significant. This leads to a strong suppression 

of 𝜎neo, reflecting the fact that trapped particles contribute much less to the net toroidal 

current, due to their limited ability to complete toroidal orbits. 

The effective neoclassical resistivity is defined as: 
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𝜂neo =
1

𝜎neo
 . (117) 

This resistivity is then used to calculate the total plasma resistance via: 

𝑅p = 𝜂neo

𝐿

𝐴
= 𝜂neo

2𝜋𝑅

𝜋𝑎𝑏
(118) 

where 𝐿 = 2𝜋𝑅 is the effective length of the plasma current path, which is the length of 

the plasma coil of the blue toroidal shape single-coil shown in Figure 30 with 𝑅 = 85 mm 

as the major radius of plasma. 𝐴 is the cross-sectional area of the plasma column given by 

𝐴 = 𝜋𝑎𝑏 . The parameters 𝑎 = 55 mm  and 𝑏 = 100.1 mm  represent the minor and 

major axes of the plasma cross-section, respectively. 

By applying this neoclassical framework, we capture key physical mechanisms that the 

classical model omits, such as magnetic geometry and trapped particle effects. Then we can 

compare plasma resistivity and temperature evolution using both Spitzer and neoclassical 

models to highlight the importance of this correction. 

The initial conditions are identical to those described in Section 5.2. The plasma 

temperature is set to 0.026 eV, and the working gas is helium (He). The total neutral density 

is taken to be 1017 m-3. The applied central solenoid current profile, shown as the blue solid 

line in Figure 39(a), linearly ramps down from 10 kA to 0 kA over the first 10 ms, followed 

by a ramp from 0 kA to −5 kA over the subsequent 30 ms. A comparison between the results 

Figure 39: (a) Central solenoid and plasma current. (b) Plasma temperature. 
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obtained using neoclassical and Spitzer resistivity models for plasma parameters is presented 

in Figure 39 and Figure 40. 

As shown in Figure 39(a), when the same central solenoid current is applied, which is 

the black solid line, the plasma current evolution differs significantly between the two 

models. Under the Spitzer model, corresponding to the blue solid line, plasma current 

quickly rises and reaches a steady state of over 10 kA within the first 10 ms. In contrast, the 

neoclassical model predicts a peak plasma current of only around 3.2 A. Subsequently, as 

the solenoid current change rate decreases from 10 kA over 10 ms to 5 kA over 30 ms, the 

induced plasma current also declines. This reduction weakened the Ohmic heating, which in 

turn slowed down the increase in plasma temperature, as shown in Figure 39(b). The 

resulting temperature stagnation leads to a rise in plasma resistance, as illustrated in Figure 

40(a). According to Ohm’s law V = IR, for a given induced voltage, an increase in plasma 

resistance leads to a reduction in plasma current. Moreover, the Ohmic heating power, which 

determines plasma temperature evolution, is given by 𝑃ohmic = 𝐼p
2𝑅p . This relationship 

introduces a trade-off: increasing plasma resistance tends to increase in Ohmic heating power, 

but simultaneously reducing plasma current leads to a potentially greater reduction in Ohmic 

heating power overall. 

Figure 40: (a) Plasma resistance. (b) Ionization fraction. 
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In this simulation, that trade-off clearly favors current suppression. As seen in Figure 

39(a), the plasma current in the Spitzer case reaches it peaks at only around 18 kA by 40 ms, 

whereas in the neoclassical case it peaks at only around 3.2 A, a ratio of nearly 5.6×103. At 

the same time, Figure 40(a) shows that the Spitzer resistance is about 10−7 Ω while the 

neoclassical resistance is approximately 10−2 Ω. At that moment, it yields a resistance ratio 

of roughly 10−5. Despite the higher resistance in the neoclassical case, the suppression in 

current is more dominant, leading to a substantial reduction in Ohmic heating.  

  Figure 39(b) compares the evolution of plasma temperature. With the Spitzer model, 

the plasma temperature rapidly increases to nearly 104 eV due to efficient Ohmic heating. In 

contrast, the neoclassical model yields much slower temperature growth, reaching less than 

10 eV at t = 40 ms.  

Figure 40(a) shows the time evolution of plasma resistance. The Spitzer model predicts 

a steep decrease in resistance as the temperature increases (𝑅p ∝ 𝑇e
−1.5), reaching values 

below 10−7 Ω. In contrast, the neoclassical model shows a much more gradual decline, with 

resistance stabilizing around 10−2 Ω, consistent with reduced conductivity due to trapped 

particle effects. 

Figure 40(b) shows a similar trend in ionization behavior. Under the Spitzer model, the 

ionization fraction 𝛾 quickly rises and reaches full ionization (𝛾 ≈ 1) by around 8 ms. 

However, in the neoclassical model, the ionization fraction reaches only 1% at the final 

time step (t = 40 ms). This difference arises because neoclassical resistivity leads to a lower 

plasma temperature, and the ionization fraction in our model depends strongly on 

temperature as shown in Eq. (80) and Eq. (89). 

This comparison reveals that relying solely on the Spitzer model can significantly 

overestimate both Ohmic heating efficiency and plasma current drive during the startup 

phase, potentially leading to unrealistic expectations for successful plasma initiation. In 
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contrast, the neoclassical model provides a more accurate description of transport behavior, 

particularly in low-aspect-ratio configurations such as our mini-Tokamak, where small 

geometric effects strongly influence trapped particle dynamics and reduce effective 

conductivity. 

Accordingly, in the following section, we employ neoclassical calculations to design 

the central solenoid current profile, aiming to achieve a more realistic simulation of plasma 

startup, current evolution, and temperature rise. 

5.5. Calculation results 

The solenoid current profile in the mini-Tokamak was designed with the goal of 

achieving a plasma temperature of 10 eV and a plasma current of 10 kA. In our model, the 

plasma current is induced by the changing magnetic flux and is therefore highly dependent 

on the rate of change of the central solenoid current. However, driving a high plasma current 

requires a rapid variation of the solenoid current, which in turn results in stronger Ohmic 

heating. This rapid heating can cause the plasma temperature to exceed the 10 eV limitation, 

beyond which He⁺ ions may not remain confined. Such a loss of confinement could 

potentially lead to serious damage to the vacuum-vessel wall or diagnostic components, due 

to energetic particle impacts. To prevent this, the current solenoid profile is designed 

primarily to regulate the plasma temperature, ensuring it reaches and maintains around 10 

eV. As a result, the target plasma current of 10 kA is not prioritized in present design. 

Three cases were considered: (a) Gas density of 1017 m-3, with initial temperature of 

0.026 eV; (b) Gas density of 1017 m-3, with initial temperature of 1 eV; (c) Gas density of 

1018 m-3, with initial temperature of 1 eV. All cases are listed in Table 3. The detailed code 

for plasma parameters calculation is provided in Appendix A.14. 
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Table 3: Plasma startup scenarios and central solenoid current profiles in mini-Tokamak. 

Case 𝑛0 𝑇0 𝐼cs_max,1 Δ𝑡cs_1 𝐼cs_max,2 Δ𝑡cs_2 𝑉loop_1 𝑉loop_2 

a 1017 m-3 0.026 eV 10 kA 10 ms -7.5 kA 40 ms 0.16 V 0.03 V 

b 1017 m-3 1 eV 5.4 kA 10 ms -1.5 kA 40 ms 0.086 V 0.006 V 

c 1018 m-3 1 eV 10 kA 10 ms -10 kA 10 ms 0.16 V 0.16 V 

 

(a) The initial plasma temperature is set to 0.026 eV, and the gas density is assumed to 

be 1017 m-3, corresponding to a pressure of approximately 10-5 Torr, the results are shown in 

Figure 41(a). The applied central solenoid current profile, represented by the blue solid line 

in Figure 41(a), decreases linearly from 𝐼cs_max,1 = 10 kA  to 0 kA  over the first 10 ms 

(𝛥𝑡1 ), followed by a linear ramp from 0 kA to 𝐼cs_max,2 = −7.5 kA  over the next 40 ms 

(𝛥𝑡2). This time-varying current induces a loop voltage of approximately 0.16 V over the 

first 10 ms, which exceeds the required breakdown voltage of 0.046 V at R = 85 mm under 

a gas pressure of 10−5 Torr, as calculated with Eq. (62) and Eq. (63). This confirms that the 

chosen current profile provides sufficient loop voltage to initiate plasma breakdown under 

the target conditions. Figure 41(b) shows the plasma temperature successfully reaches the 

target value of 10.9 eV. The plasma current, corresponding to the red solid line in Figure 

41(a), peaks at only 4.2 A. 

Figure 41: (a) Central solenoid and plasma current. (b) Plasma temperature. 
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Additionally, the ionization fraction remains low throughout the discharge, as shown in 

Figure 42(a), reaching only 2.63% by the end of the simulation. While Figure 42(b) shows 

the plasma resistance time evolution, which gradually decreases as the temperature increases. 

(b) The initial plasma temperature is set to 1 eV, and the gas density is assumed to be 

1017 m-3, corresponding to a pressure of approximately 10-5 Torr, the results are shown in 

Figure 43(a). The applied central solenoid current profile, represented by the blue solid line 

in Figure 43(a), decreases linearly from 5.4 kA to 0 kA over the first 10 ms, followed by a 

linear ramp from 0 kA to −1.5 kA over the next 40 ms. This current profile induces a loop 

Figure 42: (a) Ionization fraction. (b) Plasma resistance. 

Figure 43: (a) Central solenoid and plasma current. (b) Plasma temperature. 
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voltage of approximately 0.086 V over the first 10 ms, which exceeds the required 

breakdown voltage of 0.046 V at R = 85 mm under a gas pressure of 10−5 Torr. 

With the application of preheating, the plasma temperature can be rapidly raised to 

approximately 10 eV even under a reduced peak central solenoid current. It can then be 

maintained near this level for an extended period, despite a slower central solenoid current 

change rate, thereby providing a longer observation window for studying plasma behavior 

under stable conditions. However, the plasma current, represented by the red solid line in 

Figure 43(a), exhibits a different evolution. It initially rises to near 9.5 A at 10 ms, but then 

drops sharply to approximately 0.8 A, due to the reduced rate of change in the central 

solenoid current. 

Meanwhile, both the ionization fraction and plasma resistance stabilize shortly after the 

temperature plateaus. As shown in Figure 44(a), the ionization fraction reaches 2.58% and 

remains steady, while the resistance shown in Figure 44(b) decreases rapidly in the early 

stage and flattens out at 6 mΩ, consistent with the temperature profile. 

Figure 44: (a) Ionization fraction. (b) Plasma resistance. 
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(c) The initial plasma temperature is set to 1 eV, and the gas density is assumed to be 

1018 m-3, corresponding to a pressure of approximately 10-4 Torr, the results are shown in 

Figure 45(a). The applied central solenoid current profile, represented by the blue solid line 

in Figure 45(a), decreases linearly from 10 kA to 0 kA during the first 10 ms, followed by a 

further linear ramp from 0 kA to −10 kA over the next 10 ms. This current profile induces a 

loop voltage of approximately 0.16 V over the first 10 ms, which exceeds the required 

breakdown voltage of 0.066 V at R = 85 mm under a gas pressure of 10−4 Torr. 

Figure 45(b) shows that, under this central solenoid current profile, the plasma 

temperature reaches a maximum of only 7.2 eV. This limitation arises from the capacitor-

driven nature of the power supply, which requires that the energy associated with the rapidly 

decreasing solenoid current be dissipated elsewhere in the circuit, typically through external 

resistive elements. In our current hardware setup, the system is only capable of handling a 

linear decrease of the solenoid current from 10 kA to 0 kA within 10 ms, as a faster ramp 

could exceed the voltage or thermal limits of the components, posing a risk to system 

integrity. Although achieving the target plasma temperature requires a high current change 

rate to generate sufficient inductive electric fields for plasma initiation, we adopt this current 

profile as a compromise between effective plasma startup and the constraints of our existing 

Figure 45: (a) Central solenoid and plasma current. (b) Plasma temperature. 
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hardware. Despite this temperature limit, the sharp current change still enables a strong 

inductive drive, pushing the plasma current to a peak value of approximately 14.4 A, as 

shown by the red solid line in Figure 45(a). 

Figure 46(a) shows that, due to the relatively low plasma temperature, the ionization 

fraction reaches a maximum of 1.39%. Similarly, as shown in Figure 46(b), the plasma 

resistance remains relatively high, with a minimum value of approximately 10−2 Ω, also a 

result of the insufficient temperature rise. 

In addition, the model is applied to the Formosa Integrated Research Spherical 

Tokamak (FIRST), the first tokamak being constructed in Taiwan, with detailed calculations 

provided in Appendix A.15. 

5.6. Discussion 

Our model primarily simulates the temporal evolution of plasma parameters during the 

plasma breakdown phase, influenced by Ohmic heating generated by the central solenoid 

current profile. In this simple model, physical mechanisms such as thermal conduction, 

particle diffusion, and transport were not included. 

Figure 46: (a) Ionization fraction. (b) Plasma resistance. 
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Specifically, for modeling electron density, this study employs a simplified rate 

equation: 

𝑑𝑛e

𝑑𝑡
= 𝑅ion(𝑇e, 𝑛e)𝑛0𝑛e − 𝑅rec(𝑇e, 𝑛e)𝑛e𝑛i − ∇ ∙ Γ. (119) 

In Eq. (80), only the first two terms in Eq. (119) were included, which account solely for 

local ionization and recombination reactions. The last term in Eq. (119), ∇ ∙ Γ, which was 

omitted in Eq. (80), represents density variations due to particle flow, diffusion, and plasma 

expansion or contraction, all of which are neglected in this simplified model. This 

simplification implicitly assumes that particle generation and loss occur solely through local 

reactions, with no spatial particle transport out of the simulation region. Consequently, this 

may introduce several limitations: 

• Neglect of mass conservation and plasma flow effects: In actual plasmas, particles 

experience flow or expansion driven by electric fields or pressure gradients, 

phenomena that the simplified rate equation cannot represent. 

• Inability to describe spatial density gradients and non-uniformities: Without a 

complete continuity equation, the spatial distribution of density near boundaries or 

regions with rapidly varying magnetic fields cannot be accurately depicted. 

• Inability to predict plasma volume expansion or contraction: Ignoring changes in 

plasma volume may result in overestimated particle density and pressure, affecting 

predictions of temperature and energy dissipation. 

• Reduced accuracy for long-term simulations: Accumulated errors from neglecting 

transport and flow become increasingly significant over extended simulation 

periods, thereby reducing the reliability of the model’s predictions. 

 Furthermore, under ideal conditions, a strong magnetic field effectively confines 

plasma particles to magnetic field lines, primarily guiding particle motion along the field 

lines (parallel direction) and suppressing perpendicular (transverse) transport due to particle 
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gyration. In practice, however, magnetic confinement is imperfect, especially under 

conditions of low magnetic fields, non-stationary states, or inadequate boundary conditions, 

resulting in gradual particle escape from the plasma region. Common escape mechanisms 

include transverse diffusion caused by particle-neutral collisions, E×B drift, and turbulence-

driven anomalous transport. 

 Since our model does not incorporate these transverse transport mechanisms, it 

effectively assumes ideal magnetic confinement, with particles permanently confined within 

the plasma region. This assumption can lead to the following inaccuracies: 

• Overestimation of electron density: Ignoring particle loss due to transverse diffusion. 

• Overestimation of electron temperature: High-energy electrons are more prone to 

escape; neglecting their loss underestimates energy dissipation. 

• Misjudgment of plasma sustainment and stability conditions: Particularly in 

scenarios of poor confinement or proximity to vacuum-vessel walls, these errors 

become more pronounced, potentially resulting in overly optimistic predictions of 

steady-state conditions. 

 The energy balance equation is also affected by the lack of transport and particle loss 

mechanisms. To model the time evolution of electron temperature, this study adopts a 

simplified energy equation: 

3

2

𝑑(𝑛e𝑇e)

𝑑𝑡
= 𝑃oh − (𝑃ion + 𝑃line + 𝑃prb) − 𝑃conv . (120) 

In Eq. (91), only the first four terms in Eq. (120) were included. The last term in Eq. (120), 

𝑃conv = 3𝑛e𝑇e/2𝜏E , accounting for convective energy losses, where 𝜏E  is the energy 

confinement time, was omitted in Eq. (91). This term represents the energy carried away by 

escaping particles and may become the dominant loss mechanism under weak confinement 

conditions. Neglecting this term can lead to an overestimation of plasma temperature and an 
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underestimation of total power dissipation, which in turn may cause the required central 

solenoid current ramp rate for initiating breakdown to be underestimated. 

 Additionally, the model does not explicitly account for seed electron generation 

mechanisms. Typically, during the initial tokamak breakdown phase, neutral gas molecules 

dominate the environment, and stable plasma formation has not yet occurred. Initiating 

plasma formation requires a pre-existing population of free electrons (seed electrons) to 

undergo collisions with neutral atoms, triggering initial ionization and Townsend avalanche 

reactions that rapidly increase electron and ion densities, ultimately establishing stable 

plasma. 

 Seed electrons usually originate from external effects such as microwave-assisted 

ionization rather than from the applied electric field or Ohmic heating. Since our model omits 

detailed seed electron generation mechanisms and their production rates, it may 

underestimate the required electric field strength for plasma initiation and the actual delay 

time for breakdown, resulting in overly optimistic simulation outcomes. 

Lastly, to more accurately reflect real plasma behavior, this study incorporates the 

neoclassical theory for calculating plasma resistivity. Compared to the traditional Spitzer 

theory, neoclassical theory is more suitable for tokamak, as it more precisely accounts for 

the influence of trapped particles formed by magnetic mirror effects on effective collision 

rates, conductivity, and resistivity. However, during the initial low-temperature breakdown 

phase, the electron kinetic energy is generally insufficient to form significant trapped orbits, 

and the velocity distribution remains approximately Maxwellian. Under such conditions, the 

collisionality, as defined in Eq. (105), becomes very high, and the neoclassical model 

naturally reduces to the traditional Spitzer theory, as shown in Eq. (115). In other words, 

although neoclassical theory is applied throughout, the inclusion of the collisionality 

parameter 𝜈e
∗  ensures that trapped-particle effects are suppressed when not physically 



105 

 

relevant, thereby avoiding an underestimation of plasma conductivity in the low-temperature 

regime. This feature allows the model to remain valid and accurate across both low-

temperature and high-temperature regimes, and enables it to be directly extended to full-

temperature tokamak operations, where reduced collisionality and trapped-particle effects 

become significant. 

 In summary, our model is based on several simplifying assumptions and is intended 

primarily as a first-order estimation tool for predicting breakdown parameters and supporting 

the preliminary design of the driving circuit. In the future, more comprehensive numerical 

simulations and experimental validation will be conducted to refine the predicted values and 

enhance the physical accuracy and reliability of the model. 

5.7. Conclusion 

 In this section, we developed a model capable of calculating the evolution of various 

plasma parameters, including temperature, current, and resistance. We also tested the 

model’s sensitivity to the initial plasma temperature and confirmed its robustness. By using 

this model, we can optimize the central solenoid current profile and refine hardware designs 

to ensure that the plasma temperature and current meet our experimental objectives. Table 4 

presents the three selected scenarios used in this study where particle losses and the 

corresponding energy losses were neglected. 

Table 4: Plasma startup scenarios and central solenoid current profiles in mini-Tokamak. 

Case 𝑛0 𝑇0 𝐼cs_max,1 Δ𝑡cs_1 𝐼cs_max,2 Δ𝑡cs_2 𝑉loop_1 𝑉loop_2 

a 1017 m-3 0.026 eV 10 kA 10 ms -7.5 kA 40 ms 0.16 V 0.03 V 

b 1017 m-3 1 eV 5.4 kA 10 ms -1.5 kA 40 ms 0.086 V 0.006 V 

c 1018 m-3 1 eV 10 kA 10 ms -10 kA 10 ms 0.16 V 0.16 V 
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Based on our results, case (b) is the most preferable scenario. In this case, the plasma 

temperature remains near 10 eV for a longer duration, providing an extended observation 

window for studying plasma behavior under quasi-steady conditions. Although case (c) 

yields a higher peak plasma current, our current focus is on achieving and sustaining 

sufficient electron temperature. Moreover, implementing the central solenoid current profile 

required for case (c) involves rapidly reducing the solenoid current from 10 kA to 0 kA 

within 10 ms, which may pose significant engineering and safety challenges. Therefore, case 

(b) is currently identified as the most practical and preferred scenario. 

  



107 

 

6. Future work 

Our models in this study are designed for rapid estimation of plasma parameters and 

therefore involve several simplified assumptions. For example, we assume that the plasma 

adopts its final equilibrium shape immediately after breakdown, which was modeled as a 

single-turn elliptical torus, as illustrated in Figure 47. 

The breakdown voltage we compute in Section 4.1 corresponds to a breakdown 

occurring precisely at R = 85 mm. However, plasma tends to form initially near the inner 

vacuum-vessel wall, where the electric field is stronger under the same induced loop votlage. 

As shown in Figure 48(a), the plasma should be initiated near the inner wall and gradually 

expands outward. 

In future work, we plan to incorporate this expansion behavior into our model by 

discretizing the plasma region into multiple radial grids, as illustrated in Figure 48(b). Each 

grid will be assigned its own breakdown voltage based on its position. If the induced loop 

voltage at a given grid exceeds the local breakdown threshold, that region will be treated as 

plasma and included as a coil components in the full circuit model in Chapter 3. Otherwise, 

it will remain as neutral gas. 

Figure 47: Simplified xz-plane cross-section of mini-Tokamak. 
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Thermal conduction will be included between neighboring grids, allowing us to account 

for heat exchange between plasma and gas regions. A grid that is not initially broken down 

may eventually be defined as plasma if its temperature exceeds a threshold. 

Using the model introduced in Chapter 3, we can compute the mutual inductive currents 

between all components, including those representing plasma grids. This allows us to 

determine the evolving plasma current distribution across space and time in a physically 

consistent way. Ultimately, this approach will enable more accurate modeling of plasma 

parameter evolution and support the optimization of the central solenoid current profile 

design. 

In addition, particle losses and the corresponding energy losses, as described in Eq. (119) 

and Eq. (120) in Section 5.6, will be incorporated to provide a more physically consistent 

and accurate simulation of plasma behavior during the breakdown phase. 

 

  

Figure 48: (a) Plasma expansion process. (b) Grid-based plasma discretization model. 
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7. Conclusion  

In this thesis, we developed a series of models to support the design and optimization 

of the central solenoid current profile in the mini-Tokamak, including the effects of eddy 

currents in the vacuum-vessel walls. This work includes several key physical modules, 

including the calculation of component resistance, self-inductance and the mutual inductance 

between all the components, the calculation of eddy currents induced by time-varying 

magnetic fields from central solenoid, and the time evolution of plasma parameters such as 

temperature, ionization fraction, current, and resistivity. 

We began by establishing an accurate geometric model of the vacuum vessel. Based on 

this geometry, we first calculated the resistance and self-inductance of all components, as 

well as the mutual inductance between them. These quantities were assembled into a full 

circuit model in matrix form, from which we solved the eddy currents induced in the 

vacuum-vessel walls using the conjugate gradient (CG) method to efficiently handle the 

large sparse system. Once the eddy currents were obtained, the loop voltage was computed 

using the Biot–Savart law, considering the contributions from the central solenoid and the 

eddy currents in the vacuum-vessel walls. The calculation shows that eddy current initially 

suppresses the loop voltage but decay rapidly, with their influence reducing to below 5% 

after 0.5 ms. Consequently, the central solenoid current should be maintained longer than 

0.5 ms to minimize eddy current effects. 

To model the plasma response, we incorporated Spitzer and neoclassical[18] resistivity 

models. In addition, we employed atomic data from the ADAS[17] to calculate ionization 

and recombination rate coefficients as functions of electron temperature and density. These 

physics-based parameters were integrated into a time-dependent plasma evolution solver, 

which computes the time evolution profiles of plasma temperature, current, and ionization 

fraction. This allows us to evaluate whether a given central solenoid current profile is 
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sufficient to initiate plasma breakdown and sustain current development under specific initial 

conditions. 

According to our model calculations, achieving breakdown at a particle density of n = 

1017 m−3 (corresponding to a pressure of 10−5 Torr) with a connection length of 500 m, a loop 

voltage of approximately 0.046 V is required. Under these conditions, the central solenoid 

current change rate must exceed 289 A/ms. Furthermore, to achieve a plasma temperature of 

10 eV in the mini-Tokamak with a major radius of 85 mm, minor radius of 55 mm, and 

elongation κ = 1.82, the central solenoid current should decrease linearly from 5.4 kA to 0 

kA in 10 ms, followed by a ramp from 0 kA to –1.5 kA in 40 ms. When the particle losses 

and the corresponding energy losses are neglected, the plasma temperature can be 

maintained at 10 eV for 40 ms. 

In conclusion, this work provides comprehensive models for analyzing tokamak startup 

physics. The developed models not only support the design of effective central solenoid 

current profile but also offer predictive insight into plasma initiation and stability under 

various operating conditions. These models are applicable to other tokamak devices and may 

serve as a reference for future experimental validation and hardware optimization. As an 

example, the model has been applied to FIRST, with detailed calculations presented in 

Appendix A.15. 
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Table 5: Parameters and preferable initial condition for mini-Tokamak. 

Parameters mini − Tokamak 

𝑅 85 mm 

𝑎 55 mm 

𝜅 1.82 

𝑃0 10−5 Torr 

𝑛0 1017 m−3 

𝑇0 1 eV 

𝐼cs_max,1 5.4 kA 

Δ𝑡cs_1 10 ms 

𝐼cs_max,2 −1.5 kA 

Δ𝑡cs_2 40 ms 

𝑉loop_1 0.086 V 

𝑉loop_2 0.006 V 

𝐼p,max 9.7 A 

𝑇p,max 10.7 eV 
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A Appendix 

A.1 Gyro radius calculation 

In a magnetically confined plasma, charged particles undergo gyro-motion around 

magnetic field lines. The gyro-radius depends on the particle species, temperature, and local 

magnetic field strength. For effective confinement, the gyro-radius must be significantly 

smaller than the plasma minor radius, particularly near the plasma edge, to avoid particle 

loss to the vacuum-vessel wall. 

In our mini-Tokamak design, the magnetic field at the plasma center (R = 85 mm) is 

0.1 T. Based on the inverse radial scaling of toroidal field strength 𝐵 ∝ 1 𝑅⁄ , we estimate 

the field to be 0.283 T at the inner edge (R = 30 mm) and 0.061 T at the outer edge (R = 140 

mm), as shown in Figure 49. The corresponding distances from the inner and outer plasma 

boundaries to the vacuum-vessel walls are approximately 11 mm and 17 mm, respectively. 

To evaluate whether different species can be confined under these conditions, we 

calculate the gyro-radius for electrons, H⁺, He⁺, and Ar⁺ ions at three representative positions 

of the plasma: the inner side (R = 30 mm), center (R = 85 mm), and outer side (R = 140 mm), 

Figure 49: Spatial variation of toroidal magnetic field in the midplane (z = 0) 
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for temperatures ranging from 1 eV to 30 eV. The gyro radius of a charged particle is given 

by the following expression: 

𝑟𝐿 =
√2𝑚𝑘B𝑇

𝑞𝐵
 (121) 

where 𝑚  is the particle mass in kg , 𝑞  is the particle charge, 𝐵  is the magnetic field 

strength in T, 𝑇 is the particle temperature in eV, and 𝑘B = 1.602 × 10−19  J eV⁄  is the 

Boltzmann constant. The corresponding results are shown in Figure 50(a) to (c). 

From these results, we observe that electrons remain well confined at all radial positions 

up to a temperature of 30 eV, with their gyro-radii significantly smaller than the plasma 

Figure 50: (a) Gyro-radius at plasma inner edge. (b) Gyro-radius at plasma center.  

(c) Gyro-radius at plasma outer edge. 
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minor radius. H⁺ ions also remain well confined at all radial positions up to a temperature of 

30 eV, with their gyro-radii smaller than the plasma minor radius. He⁺ ions are well confined 

at lower temperatures, but at the outer edge, as shown in Figure 50(c), their gyro-radius 

exceeds the 17 mm confinement margin when the temperature exceeds 13 eV. In contrast, 

Ar⁺ ions exhibit substantially larger gyro-radii throughout the plasma. At the inner edge, as 

shown in Figure 50(a), Ar⁺ ions exceed the 11 mm confinement limit above 10 eV, and at the 

outer edge, they exceed the 17 mm limit even at 2 eV. 

Based on these findings, both hydrogen and helium can be used as working gas. 

However, due to safety, helium was selected as the working gas for the mini-Tokamak. While 

argon is commonly used for diagnostics in larger machines, it cannot be effectively confined 

in this device. Additionally, to ensure adequate magnetic confinement of helium ions, the 

operational plasma temperature is therefore limited to 10 eV. 
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A.2 mini-Tokamak equilibrium  

The goal of this section is to verify whether the plasma in the mini-Tokamak can be 

magnetically confined under the given hardware constraints. In particular, we aim to 

determine the required currents in the poloidal field coils (PFCs) that are needed to achieve 

equilibrium. Notice that an equilibrium state will be designed but stabilization check is 

beyond the scope of this thesis. This appendix is divided into three parts. Appendix A.2.1 

introduces the theoretical foundation of plasma equilibrium in tokamak, starting from the 

basic magnetohydrodynamic (MHD) force balance and leading to the Grad–Shafranov 

equation. Then, Appendix A.2.2 presents the equilibrium calculation results obtained using 

the Grad–Shafranov solver FreeGS[19], applied to the mini-Tokamak configuration. Last, 

Appendix A.2.3 investigates how variations in the plasma current spatial profile affect the 

equilibrium and safety factor distribution. 

A.2.1 Equilibrium theory 

To maintain an equilibrium plasma configuration in a tokamak, the forces acting on the 

plasma must be in balance. The fundamental condition for this is the MHD force balance 

equation: 

𝐽 × 𝐵⃗ = ∇𝑝 (122) 

where 𝐽  is the current density, 𝐵⃗  is the magnetic field, and 𝑝 is the plasma pressure. This 

equation means that the magnetic force acting on the plasma, also known as the Lorentz 

force, must be balanced by the internal pressure gradient. In other words, equilibrium is 

achieved when the inward magnetic forces are exactly offset by the outward pressure forces.  

In axisymmetric configurations such as tokamak or spherical tokamak, the MHD 

equilibrium condition can be reformulated into a single partial differential equation known 

as the Grad–Shafranov equation. This equation determines the structure of magnetic flux 

surfaces and the distribution of plasma current in the poloidal cross-section of the device. Its 
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derivation involves decomposing the magnetic field into toroidal and poloidal components, 

and applying the assumption of axisymmetry, i.e., 𝜕/𝜕𝜙 = 0. 

The Grad–Shafranov equation under axisymmetric assumptions can be expressed as: 

𝜕2𝜓

𝜕𝑟2
−

1

𝑟

𝜕𝜓

𝜕𝑟
+

𝜕2𝜓
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−

1

2

𝑑𝐹2

𝑑𝜓
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where 𝜓(𝑟, 𝑧) is the poloidal magnetic flux, which describes the shape of magnetic surfaces 

in the cross-section; 𝑝(𝜓)  is the plasma pressure, assumed to vary along magnetic flux 

surfaces; 𝐹(𝜓) = 𝑟𝐵ϕ represents the toroidal magnetic field contribution, with 𝐵ϕ being 

the toroidal magnetic field component, and 𝜇0 is the vacuum permeability. This equation 

describes how the electromagnetic force balances the pressure gradient to determine the 

equilibrium structure of the plasma. The left-hand side represents the spatial variation of the 

poloidal magnetic flux in cylindrical coordinate. The right-hand side contains the source 

terms due to plasma pressure and toroidal field contribution. 

By solving the Grad–Shafranov equation under specified boundary conditions and 

prescribed plasma current and pressure profile, and the required plasma shape, one can 

calculate the required coil current to maintain equilibrium. These equilibrium calculations 

and results will be presented in the next section. 

A.2.2 Equilibrium calculation 

 Based on the theoretical framework described in the previous section, equilibrium 

calculations were performed using the FreeGS code[19]. The objectives of these calculations 

were to evaluate whether the designed mini-Tokamak could achieve the desired plasma 

shape, as defined by the aspect ratio and elongation specified in Chapter 2, and to determine 

the required currents in the PFCs (P1U, P1L, P2U, and P2L) necessary to maintain 

equilibrium with a desired plasma current. These PFCs currents are driven by pulse-width 

modulation (PWM) in the mini-Tokamak, with further details provided in Appendix A.3. 

These calculations were conducted under the constraints of the mini-Tokamak’s hardware 
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configuration, including the geometry of the vacuum vessel, the location of the central 

solenoid, and the locations of the poloidal field coils, as described in Chapter 2. 

 The spatial arrangement of the PFCs used in the FreeGS is illustrated in Figure 51. Four 

coils were employed: 

 P1U and P1L are located at (𝑟 = 0.20 m, z = 0.10 m)  and (𝑟 = 0.20 m, z =

−0.10 m), respectively. These coils are positioned symmetrically above and below the 

midplane near the outer edge of the vacuum vessel. They primarily serve to control the 

vertical shape of the plasma and help maintain the equilibrium. 

 P2U and P2L are placed inside the vacuum vessel and closed to the plasma, at (𝑟 =

0.10 m, z = 0.15 m) and (𝑟 = 0.10 m, z = −0.15 m), respectively. These inner coils 

are used to adjust the plasma shape near the edge, particularly influencing the location 

of the separatrix and the structure of the magnetic flux surfaces. 

 All four coils were treated as independently controlled in the calculations, allowing 

their currents to be automatically adjusted by the equilibrium solver according to a specified 

isoflux constraint. This constraint defines the plasma boundary as a closed contour of 

Figure 51: Coil and chamber layout of the mini-Tokamak (rz plane). 
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constant poloidal magnetic flux (ψ), constructed from four connected line segments that 

enclose the desired separatrix, the blue dashed line in Figure 52. The calculation was 

configured for a plasma current of 10 kA and a central pressure of 0.32 Pa, i.e., 𝑛 =

7.7 × 10−19 m−3 for 𝑇 = 10 eV, and a vacuum toroidal field strength characterized by 

𝑓 = 𝑅𝐵t = 8.5 × 10−3 Tm. 

 To define the current distribution within the plasma, a parametric profile for the toroidal 

plasma current density 𝐽ϕ was used, expressed as a function of the normalized poloidal flux 

𝜓n:

𝐽ϕ ∝ (1 − 𝜓n
αm)

𝛼n
(124)

where 𝜓n = 0 at the magnetic axis and 𝜓n = 1 at the plasma edge. In this calculation, 

αm = 2  and αn = 2 were selected, resulting in a moderately broad current profile, as 

shown in Figure 53(a). This shape provides a compromise between core peaking and profile 

flatness, offering favorable stability and confinement properties, which will be detailed 

describe in the next section. 

Figure 52: Equilibrium contours and isoflux constraints in FreeGS. 

 



121 

 

The resulting equilibrium is illustrated in Figure 52. The corresponding PFCs currents 

were shown in Table 6. These coil currents generated a magnetic configuration capable of 

achieving a well-confined plasma, with a safety factor profile ranging from 𝑞min = 1.39 at 

the core to 𝑞95 = 6.32 at the edge, as shown in Figure 53(b). The computed poloidal beta 

was 𝛽p = 2.49 × 10−4, and the magnetic axis remained centered near the designed plasma 

major radius. The results confirmed that the initial PFC positioning and symmetry are 

sufficient for achieving equilibrium in the mini-Tokamak configuration. This validated 

magnetic structure and corresponding coil currents provide a solid foundation for future 

experimental implementation. 

Table 6: Currents in the poloidal field coils. 

Coil Current (A) 

P1U −4295.6 

P1L −4295.8 

P2U 2252.8 

P2L 2253.1 

Figure 53: (a) Toroidal current density profile in FreeGS. (b) Safety factor profile in 

FreeGS. 
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A.2.3 Effect of 𝜶𝐦 and 𝜶𝐧 on current and safety factor profile 

In the FreeGS equilibrium calculation, the toroidal current density profile 𝐽ϕ  is 

prescribed as a function of the normalized poloidal flux 𝜓𝑛, defined such that 𝜓n = 0 at 

the plasma center and 𝜓𝑛 = 1 at the edge. The profile takes the form: 

𝐽ϕ ∝ (1 − 𝜓n
αm)

𝛼n
 . (125) 

Here, 𝛼m and 𝛼n are shaping parameters that control how the current is distributed across 

the plasma cross-section. The parameter 𝛼m  controls the broadness of the profile by 

modifying the inner exponent of 𝜓n, which determines how gradually the current density 

decreases from the center toward the edge. A larger 𝛼m  results in a flatter and broader 

current profile. Figure 54(a) shows as 𝛼m increases from 2 to 4 (with 𝛼n held constant), 

corresponding to the blue, red, and yellow line respectively, the profile transitions from a 

steeply declining shape to a much broader and flatter distribution. Specifically, when 𝛼m is 

small (e.g., 𝛼m = 2), the current is strongly concentrated near the plasma center and rapidly 

drops off toward the edge. As 𝛼m  increases, the central plateau becomes wider, and the 

gradient near the edge becomes more gradual. This demonstrates how 𝛼m modulates the 

“core-flatness” of the profile, controlling the width of the region with high current density. 

Figure 54: (a) Toroidal current density profile in FreeGS. (b) Safety factor profile in 

FreeGS. 
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 In contrast, 𝛼n controls the peakness of the profile. As the outer exponent, it governs 

how sharply the current density falls off once 𝜓n approaches 1. A larger 𝛼n increases the 

central current density and produces a more peaked distribution. As shown in Figure 55, as 

𝛼n  increases from 2 to 4 (with 𝛼m  held constant), the current density profile becomes 

increasingly peaked near the magnetic axis (𝜓n = 0), while the edge current density drops 

more steeply. This demonstrates that 𝛼n  effectively sharpens the profile, concentrating 

more current toward the center and suppressing the edge contribution. 

As illustrated in Figure 54(a) and (b), increasing 𝛼m leads to a broader distribution and 

reduces the peak current near the center. This tends to raise the core safety factor 𝑞min, which 

helps suppress tearing modes. However, overly broad profiles can reduce magnetic shear in 

the core, which may weaken internal stability or degrade confinement. 

On the other hand, as shown in Figure 55(a) and (b), increasing 𝛼n makes the current 

profile more peaked, lowering the central q-value while steepening the safety factor gradient 

near the edge. This enhances magnetic shear at the boundary, which is favorable for 

stabilizing edge-localized modes and supporting the formation of transport barriers.  

Figure 55: (a) Toroidal current density profile in FreeGS. (b) Safety factor profile in 

FreeGS. 
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Nonetheless, excessive edge shear may also alter the overall MHD stability balance and 

trigger other instabilities such as peeling-ballooning modes. 

In summary, the choice of αm and αn shapes the current profile and directly affects 

the safety factor distribution. These parameters must be carefully tuned to balance core and 

edge stability and to achieve the desired confinement performance in the mini-Tokamak. 

However, due to hardware limitations, the current profile in the mini-Tokamak cannot be 

freely adjusted in practice. Therefore, the present calculations serve primarily as a reference, 

and the final configuration must be determined based on experimental results. 
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A.3 Magnetic ripples from PWM signal 

In the mini-Tokamak, the poloidal field coils (PFCs) are driven using a Pulse-Width 

Modulation (PWM), which generates magnetic ripples that might penetrate the vacuum-

vessel wall and alter the internal magnetic field configuration. Therefore, it is necessary to 

ensure that these ripples do not adversely affect the experiment. 

This appendix consists of two parts. Appendix A.3.1 introduces PWM and presents the 

magnetic ripple calculation obtained using our model and COMSOL simulations. Appendix 

A.3.2 provides the conclusion. 

A.3.1 PWM-induced magnetic ripples 

From Chapter 5, we now have the central solenoid current profile and the evolution of 

plasma parameters. Assuming successful plasma initiation, plasma reaches the desired 

equilibrium state, as shown in Figure 52, which illustrates the equilibrium shape calculated 

using FreeGS[19]. In this configuration, the central solenoid is responsible for gas 

breakdown and driving the plasma current. The toroidal field coils generate a strong toroidal 

magnetic field, which causes charged particles to gyrate along the magnetic field lines in the 

toroidal direction, as indicated by the light blue arrows in Figure 24. In addition, PFCs are 

required to produce vertical magnetic fields (BZ), shaping the overall magnetic configuration 

inside the tokamak. These vertical fields are essential for achieving a rational magnetic field 

distribution, leading to the desired equilibrium shape shown in Figure 52. The required PFCs 

currents that generate this field structure have been computed using FreeGS and are listed in 

Table 6 in Appendix A.2.2. 

In our system, the currents in the PFCs are supplied using PWM, which operates by 

rapidly switching the applied voltage on and off at a fixed frequency. By varying the duty 

cycle, the fraction of time that the voltage is “ON” during each cycle varies. Therefore, the 

average voltage, and hence the coil current, can be controlled precisely. 
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To study the effect on the PWM signal, we provided a simulated current profile with 

PWM signal. The current is provided by the circuit shown in Figure 56. When SW1 is ON 

and SW2 is OFF, the circuit can be obtained by solving:  

𝑉0 − 𝐼𝑅 − 𝐿
𝑑𝐼

𝑑𝑡
= 0. (126) 

When SW1 is OFF and SW2 is ON, the circuit can be obtained by solving:  

−𝐼𝑅 − 𝐿
𝑑𝐼

𝑑𝑡
= 0. (127) 

 In both equations, 𝐿 is the coil's self-inductance and 𝑅 is the coil resistance. When 

voltage is applied (SW1 is ON, SW2 is OFF), the current ramps up; when the voltage is turned 

off (SW1 is OFF, SW2 is ON), the current ramps down, resulting in periodic ripples. These 

current ripples can generate fluctuating magnetic fields that may penetrate through the 

vacuum-vessel wall and potentially affect the internal magnetic field distribution. 

Figure 57 illustrates the typical behavior of a coil driven by PWM. The orange dashed 

line shows the applied voltage across the PFC, which alternates between 0 V and 20 V in a 

square-wave pattern. The resistance and inductance here is 0.02 Ω  and 10 μH . This 

switching occurs at a fixed frequency 1 kHz and duty cycle, characteristic of PWM control. 

The blue solid line represents the resulting current through the coil. Due to the coil's 

inductance, the current cannot follow the abrupt voltage changes instantaneously. Instead, it 

Figure 56: PWM circuit. 
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increases as one minus an exponential function during each “ON” phase of the voltage (when 

the voltage is high) and then decreases exponentially during the “OFF” phase (when the 

voltage drops to zero). This produces the characteristic sawtooth-shaped current waveform. 

To mitigate this issue, it is essential to evaluate the frequency range at which the 

vacuum-vessel wall can effectively shield out these ripple-induced magnetic fields. This 

shielding effect arises due to the eddy current generated in the conductive vacuum-vessel 

wall. The induced eddy current in the conducting wall generate opposing magnetic fields, 

which cancel out the penetrating magnetic field components. Until the eddy current damp to 

zero by the wall resistivity, the field penetrates through the vacuum-vessel wall. For high 

frequency ripples, the eddy current doesn’t have enough time to damp out. As a result, the 

high frequency ripples are cancelled by the eddy current and thus shielded out. The damping 

time strongly depends on the resistance of the eddy current path. In other words, it depends 

on the cross section of the eddy current path. The skin depth 𝛿, which determines how far a 

magnetic field can penetrate into a conductor, is given by: 

Figure 57: PWM voltage and current waveforms for 1 kHz. 
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𝛿 = √
2

𝜇𝜎𝜔
(128) 

where 𝜇 is the magnetic permeability, 𝜎 is the electrical conductivity of the wall material, 

and 𝜔 = 2𝜋𝑓 is the angular frequency of the PWM ripple. When the skin depth becomes 

significantly smaller than the wall thickness, the PWM-generated magnetic field is strongly 

cancelled and cannot penetrate the interior of the vacuum vessel. Therefore, by ensuring the 

PWM frequency is sufficiently high, the ripple fields can be effectively shielded by the 

vacuum-vessel wall, minimizing their impact on the magnetic field. 

 In addition, as the frequency increases, the amplitude of the PWM ripples in current 

also decreases. This is because at higher switching frequencies, each ON-OFF cycle becomes 

shorter, leaving less time for the current to rise or fall significantly within each period. As a 

result, the ripple magnitude is reduced, as shown in Figure 58. Increasing the frequency not 

only enhances the vacuum-vessel wall’s attenuation of the magnetic ripple, but also 

intrinsically reduces the ripple amplitude. Therefore, we identify an appropriate high-

frequency range that ensures both effective shielding and minimal ripple-induced 

disturbance. 

Figure 58: Simulated PWM-induced current waveforms at 1 kHz, 10 kHz, and 100 kHz. 
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To study the shielding effect of the vacuum-vessel wall, we use a single-turn PFC with 

a rectangular cross-section of 5 mm × 5 mm to generate a magnetic field with ripples. The 

corresponding resistance and inductance of the PFC is 0.02 Ω  and 10 μH , respectively. 

Then the coil current with ripples can be provided using the model in Figure 56. Finally, we 

can calculate the magnetic field in the interior of the vacuum vessel with and without the 

eddy current of the vacuum-vessel wall for comparison. 

(1) COMSOL simulation 

We used the "Time-dependent", "Magnetic Fields (mf)", and "2D axisymmetric" 

modules in COMSOL[20] to simulate the magnetic field distribution generated by the PWM 

current in the PFC within the interior of the vacuum vessel. First, we constructed the 

geometry of the mini-Tokamak based on the specifications described in Chapter 2, along 

with a test PFC defined as a single-turn circular loop with a rectangular cross-section of 5 

mm × 5 mm, located at a major radius of 170 mm and z = 0, as illustrated by the small dot 

in Figure 59. A semicircular outer shell was added and defined as an “infinite element 

domain” to prevent artificial boundary effects on the simulation, as shown in Figure 59.  

 

Figure 59: mini-Tokamak configuration in COMSOL. 
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The vacuum vessel material was set to 304L stainless steel, the PFC was assigned to 

copper, and all other regions, including the interior of the vacuum vessel and the infinite 

shell, were set as air. The PFC was defined as a "Coil" domain in COMSOL, and the PWM 

current profile (blue solid line in Figure 57) was imported as the time-dependent current 

source for the PFC. 

To calculate the response of the vacuum-vessel wall to the time-varying magnetic field, 

"Ampère’s Law in solids" was applied to the vacuum vessel region. This setting enables the 

simulation of eddy current induced in conductive materials by time-varying magnetic fields. 

Unlike "Ampère's Law" for non-conductive regions (which only solves for magnetic fields), 

the "in solids" variant includes Ohm’s law to account for induced current, making it essential 

for capturing the electromagnetic shielding effects of the vacuum-vessel wall. 

Figure 60 shows the magnetic field distribution simulated using COMSOL under 

different PWM frequencies. In each subplot, the red line represents the magnetic field 

generated solely by the PWM current in the PFC, while the blue line includes the 

contribution from both the PFC and the eddy current induced in the vacuum-vessel wall. At 

1 kHz, as shown in Figure 60(a), the magnetic field exhibits a pronounced ripple pattern with 

visible peak-to-peak oscillations, indicating that the vacuum-vessel wall cannot fully cancel 

the low-frequency components. However, the blue line still shows noticeable damping 

compared to the red one, demonstrating the partial shielding effect of the vessel. 

As the frequency increases to 10 kHz in Figure 60(b), the ripple amplitude visibly 

decreases, and the magnetic field becomes smoother, although some residual oscillation 

remains. By 100 kHz, shown in Figure 60(c), the ripple is almost non-noticeable in the blue 

curve, suggesting that no significant high-frequency components occurs in the vacuum 

vessel. 
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To further quantify the attenuation of magnetic ripple caused by the vacuum-vessel wall 

at different PWM frequencies, Figure 61 presents the extracted ripple components for the 

same three cases shown in Figure 60. The ripple amplitude is obtained by subtracting the 

moving average of each magnetic field signal from its original waveform. The number of 

moving-averaged points for 1-kHz case, 10-kHz case, and 100-kHz case are all 50 points. In 

Figure 61(a), corresponding to the 1 kHz case, both the “with chamber” and “no chamber” 

curves show clear periodic oscillations. However, the blue curve (with chamber) has visibly 

reduced amplitude. The peak ripple reaches approximately ±2 × 10−4 T in the presence of 

Figure 60: (a) Magnetic field comparison at 1 kHz PWM with and without chamber. 

(b): Magnetic field comparison at 10 kHz PWM with and without chamber. 

(c): Magnetic field comparison at 100 kHz PWM with and without chamber. 
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the chamber, whereas the no-chamber case (red curve) exceeds ±5 × 10−4 T. This shows 

that while attenuation is present, the ripple still penetrates significantly at 1 kHz. 

As the PWM frequency increases to 10 kHz in Figure 61(b), the suppression becomes 

much more effective. The blue curve’s ripple amplitude drops to within ±5 × 10−6 T, while 

the red curve still exhibits strong oscillations exceeding ±7 × 10−5 T . At 100 kHz, as 

shown in Figure 61(c), the difference becomes dramatic. The ripple in the chamber-present 

case is nearly flat, remaining within ±1 × 10−7 T, demonstrating that the eddy current in 

the vacuum-vessel wall effectively eliminate high-frequency ripple components. 

Figure 61: (a) Ripple amplitude at 1 kHz PWM with and without chamber. (b): Ripple 

amplitude at 10 kHz PWM with and without chamber. (c): Ripple amplitude at 100 kHz 

PWM with and without chamber. 
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These results provide strong evidence that increasing the PWM frequency not only 

reduces the initial amplitude of the magnetic ripple but also significantly enhances the 

vacuum-vessel wall’s ability to attenuate it. At higher frequencies, the vacuum-vessel wall, 

governed by the skin effect, exhibits greater resistance to time-varying magnetic fields. This 

confines the induced eddy current to a thinner surface layer, thereby generating opposing 

magnetic fields that effectively cancel out the ripple components. Although we currently lack 

experimental data to directly assess the impact of magnetic ripples on plasma equilibrium, 

the present system operates at a PWM frequency of 1 kHz. Future adjustments to the PWM 

frequency will be considered based on forthcoming experimental observations and their 

implications for plasma performance. 

(2) MATLAB calculation using our model 

Since we have already developed a model capable of calculating the eddy current 

induced in the vacuum-vessel wall by the PWM current, as described in Chapter 3, and a 

model for computing the magnetic field generated by both the vacuum-vessel wall and the 

PFC, as detailed in Chapter 4, we now proceed to validate by comparing results obtained 

from our model with the results obtained from COMSOL. 

We input the vacuum-vessel wall configuration identical to that used in the previous 

COMSOL simulation, namely the mini-Tokamak geometry based on the specifications 

described in Chapter 2, along with a test PFC modeled as a single-turn circular loop with a 

rectangular cross-section of 5 mm × 5 mm, positioned at a major radius of 170 mm and z = 

0, as illustrated in Figure 62. 
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Subsequently, using the same PWM current profile at 1 kHz, 10 kHz, and 100 kHz as 

described previously, we calculated the eddy current induced in the vacuum-vessel wall. 

Based on these results, we further computed the magnetic field generated by both the PFC 

and the induced eddy current, as well as their combined total magnetic field distribution, as 

shown in Figure 63, which shows the magnetic field BZ at R = 0.45 m for PWM frequencies 

of 1 kHz, 10 kHz, and 100 kHz, respectively. For each frequency, we plot the magnetic field 

generated by the PFC current alone, the field produced by the eddy current in the vacuum-

vessel wall, and the combined total field. 

As shown in Figure 63(a), at 1 kHz, the vacuum-vessel wall has limited shielding 

capability, and the eddy current is unable to fully suppress the ripple components from the 

PFC, resulting in a large oscillatory component in the total field. At 10 kHz (Figure 63(b)), 

the eddy current begin to effectively oppose the PFC-induced field, reducing the ripple 

amplitude in the total magnetic field. By 100 kHz, as illustrated in Figure 63(c), the high-

frequency ripple is almost unnoticeable, leaving a smooth and nearly steady magnetic field. 

Figure 62: mini-Tokamak coil configuration with a test PFC. 
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These results are consistent with the COMSOL simulation findings presented in 

Appendix A.3.1.1 (Figure 60), confirming that the vacuum-vessel wall's shielding 

effectiveness improves significantly with increasing PWM frequency. Both our model and 

the COMSOL simulations exhibit the same trend of ripple suppression, thereby validating 

the accuracy and reliability of our models. 

To further assess the model’s accuracy, we performed a direct comparison of the 

computed total BZ field from our model with results obtained from COMSOL. As shown in 

Figure 64, the two results are in excellent agreement across all PWM frequencies, showing 

that the BZ waveforms at 1 kHz, 10 kHz, and 100 kHz are nearly identical between the two 

Figure 63: (a) Ripple amplitude at 1 kHz PWM with and without chamber. (b): Ripple 

amplitude at 10 kHz PWM with and without chamber. (c): Ripple amplitude at 100 kHz 

PWM with and without chamber. 
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approaches. It indicates the high accuracy of our models for computing both the eddy current 

and the magnetic fields. 

A.3.2 Conclusion 

This appendix confirms that high-frequency PWM ripples is effectively shielded by the 

vacuum-vessel wall, thereby preventing its penetration into the plasma region; however, the 

precise frequency for effective shielding should ultimately be determined through 

experimental validation. 

  

Figure 64: (a) Comparison of BZ field at 1 kHz PWM frequency. (b): Comparison of BZ 

field at 10 kHz PWM frequency. (c): Comparison of BZ field at 100 kHz PWM frequency. 
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A.4 mini-Tokamak components setup code 

% The code is in Student_Thesis/2025_ypi/Code/parameter_mini_thesis on the NAS. 

% ========== Rec Mode ========== 

 

%% ---- Enable Components ---- 

enable_chamber = true; 

enable_solenoid = true; 

enable_plasma = false; 

enable_pfc = false; 

 

%% =========== Input Parameters =========== 

 

% Chamber 

if enable_chamber 

    chamber_height = 531e-3; 

    inner_thickness = 1.8e-3; 

 

    inner_distance = 17.25e-3 + inner_thickness/2; 

    outer_thk_side    = 3e-3; 

    outer_thk_top     = 16e-3; 

    outer_thk_bottom  = 15e-3; 

 

    outer_x_start = 26.55e-3; 

    outer_x_end   = 146.55e-3; 

    outer_side_length = outer_x_end - outer_x_start; 

 

    % Inner wall params 

    inner_params.height = chamber_height; 

    inner_params.thickness = inner_thickness; 

    inner_params.distance = inner_distance; 

 

    % Generate inner wall 

    [inner_x, inner_z, chamber_components.inner_wall] = 

generate_inner_wall(inner_params); 

 

    % Generate outer wall (3 sides only: bottom → left → top) 

    num_bottom = 9; 
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    z_bot = -chamber_height / 2 + outer_thk_bottom / 2; 

    bottom_x = linspace(outer_x_start, outer_x_end, num_bottom)'; 

    bottom_z = z_bot * ones(num_bottom, 1); 

 

    x_left = 163e-3 - outer_thk_side / 2; 

    z_left_start = -chamber_height / 2 + outer_thk_side / 2; 

    z_left_end   = chamber_height / 2 - outer_thk_side / 2; 

    num_left = ceil((chamber_height) / outer_thk_side); 

    left_x = x_left * ones(num_left, 1); 

    left_z = linspace(z_left_start, z_left_end, num_left)'; 

 

    x_top_start = 152e-3; 

    x_top_end   = 24e-3; 

    num_top = 9; 

    z_top = chamber_height / 2 - outer_thk_top / 2; 

    top_x = linspace(x_top_start, x_top_end, num_top)'; 

    top_z = z_top * ones(num_top, 1); 

 

    outer_x = [bottom_x; left_x; top_x]; 

    outer_z = [bottom_z; left_z; top_z]; 

    outer_thk = [ ... 

        repmat(outer_thk_bottom, num_bottom, 1); ... 

        repmat(outer_thk_side, num_left, 1); ... 

        repmat(outer_thk_top, num_top, 1)]; 

    outer_r = repmat(1.5e-3, length(outer_x), 1); 

 

    chamber_components.outer_wall = struct(); 

    for i = 1:length(outer_x) 

        chamber_components.outer_wall(i).r = outer_x(i); 

        chamber_components.outer_wall(i).z = outer_z(i); 

        chamber_components.outer_wall(i).thickness = outer_thk(i); 

        chamber_components.outer_wall(i).radius = outer_r(i); 

        chamber_components.outer_wall(i).coil_length = 2 * pi * outer_x(i); 

    end 

end 

 

% Solenoid 
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if enable_solenoid 

    solenoid_radius = 1.3e-3; 

    solenoid_radius_cooling = 0e-3; 

    isolation_thickness = 1.7e-3; 

    solenoid_total_radius = solenoid_radius + isolation_thickness; 

    solenoid_inner_num_coils = 92; 

    solenoid_layer_count = 2; 

    solenoid_outer_num_coils = solenoid_inner_num_coils * (solenoid_layer_count == 

2); 

    solenoid_inner_distance = 8e-3; 

    solenoid_outer_distance = solenoid_inner_distance + (solenoid_layer_count == 2) * 2 

* solenoid_total_radius; 

    solenoid_height_between_turns = solenoid_total_radius * 2; 

    solenoid_height = solenoid_total_radius * 2 * solenoid_inner_num_coils; 

    solenoid_coil_A = pi * (solenoid_radius^2 - solenoid_radius_cooling^2); 

    solenoid_a = pi * (solenoid_inner_distance - solenoid_radius)^2; 

end 

 

% Plasma 

if enable_plasma 

    T_plasma = 1; % eV 

    n_total_plasma = 1e17; % m^-3 

    R_plasma = 85e-3; 

    a_plasma = 55e-3; 

    kappa = 1.82; 

    b_plasma = a_plasma * kappa; 

    A_plasma = pi * a_plasma * b_plasma; 

    L_plasma = 2 * pi * R_plasma; 

    V_plasma = 2 * pi^2 * R_plasma * a_plasma * b_plasma; 

end 

 

% PFC 

coil_component = struct(); 

if enable_pfc 

     pfc_list = { 

        struct('name', 'PFC1', 'width', 5e-3, 'radius', 2.5e-3, ... 

               'distance', 0.200, 'z_values',  0.100, 'num_coils', 1), ... 
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        struct('name', 'PFC2', 'width', 5e-3, 'radius', 2.5e-3, ... 

               'distance', 0.200, 'z_values', -0.100, 'num_coils', 1), ... 

        struct('name', 'PFC3', 'width', 5e-3, 'radius', 2.5e-3, ... 

               'distance', 0.100, 'z_values',  0.150, 'num_coils', 1), ... 

        struct('name', 'PFC4', 'width', 5e-3, 'radius', 2.5e-3, ... 

               'distance', 0.100, 'z_values', -0.150, 'num_coils', 1) 

    }; 

 

    coil_component.PFC = struct(); 

    pfc_counter = 1; 

    for k = 1:length(pfc_list) 

        pfc = pfc_list{k}; 

        [pfc_x, ~, pfc_z] = setup_coil(pfc.num_coils, pfc.radius, pfc.width, ... 

            pfc.distance, pfc.z_values, pfc.z_values, 0, 0); 

        for i = 1:pfc.num_coils 

            coil_component.PFC(pfc_counter).r = pfc_x(i); 

            coil_component.PFC(pfc_counter).z = pfc_z(i); 

            coil_component.PFC(pfc_counter).thickness = pfc.width; 

            coil_component.PFC(pfc_counter).radius = pfc.radius; 

            coil_component.PFC(pfc_counter).coil_length = 2 * pi * pfc.distance; 

            pfc_counter = pfc_counter + 1; 

        end 

    end 

end 

 

%% ========== Plotting ========== 

 

figure; 

hold on; 

 

if enable_chamber 

    plot(outer_x, outer_z, 'ro', 'MarkerFaceColor', 'r', 'DisplayName', 'Outer Wall'); 

    plot(inner_x, inner_z, 'bo', 'MarkerFaceColor', 'b', 'DisplayName', 'Inner Wall'); 

end 

 

if enable_plasma 

    theta = linspace(0, 2*pi, 200); 
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    x_plasma = R_plasma + a_plasma * cos(theta); 

    z_plasma = b_plasma * sin(theta); 

    plot(x_plasma, z_plasma, 'k-', 'DisplayName', 'Plasma'); 

end 

 

if enable_solenoid 

    solenoid_z = linspace(-solenoid_height/2 + solenoid_total_radius, ... 

                          solenoid_height/2 - solenoid_total_radius, 

solenoid_inner_num_coils)'; 

    plot(repmat(solenoid_inner_distance, solenoid_inner_num_coils, 1), solenoid_z, ... 

        'gx', 'DisplayName', 'Solenoid Inner'); 

    if solenoid_layer_count == 2 

        plot(repmat(solenoid_outer_distance, solenoid_outer_num_coils, 1), 

solenoid_z, ... 

            'mx', 'DisplayName', 'Solenoid Outer'); 

    end 

end 

 

if enable_pfc 

    for p = 1:length(coil_component.PFC) 

        plot(coil_component.PFC(p).r, coil_component.PFC(p).z, ... 

            'go', 'MarkerSize', 6, 'MarkerFaceColor', 'g', 'DisplayName', 'PFC'); 

    end 

end 

 

xlabel('X Position (m)'); 

ylabel('Z Position (m)'); 

title('Chamber XZ Plane View'); 

legend('Location', 'bestoutside'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold'); 

grid on; 

hold off; 

saveas(gcf, 'wall_rect_plot.png'); 

 

%% ========== Save to Excel ========== 

 

% Chamber 
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if enable_chamber 

    num_inner = length(inner_x); 

    num_outer = length(outer_x); 

    names = [arrayfun(@(i) sprintf('Inner Wall %d', i), 1:num_inner, 'UniformOutput', 

false)'; ... 

             arrayfun(@(i) sprintf('Outer Wall %d', i), 1:num_outer, 'UniformOutput', 

false)']; 

    r_values = [inner_x; outer_x]; 

    z_values = [inner_z; outer_z]; 

    thickness_values = [repmat(inner_params.thickness, num_inner, 1); outer_thk]; 

    radius_values = [repmat(inner_params.thickness/2, num_inner, 1); outer_r]; 

    coil_lengths = 2 * pi * r_values; 

 

    chamber_table = table(names, r_values, z_values, thickness_values, radius_values, 

coil_lengths, ... 

        'VariableNames', {'Component', 'Distance_m', 'Z_Position_m', 'Thickness_m', 

'Radius_m', 'Coil_Length_m'}); 

    save_table_with_overwrite(chamber_table, 'chamber_components.xlsx'); 

end 

 

% Solenoid 

if enable_solenoid 

    solenoid_table = table({"solenoid"}, solenoid_radius, solenoid_radius_cooling, 

isolation_thickness, solenoid_total_radius, ... 

        solenoid_inner_num_coils, solenoid_outer_num_coils, solenoid_inner_distance, 

solenoid_outer_distance, ... 

        solenoid_height_between_turns, solenoid_height, solenoid_coil_A, 

solenoid_a, ... 

        'VariableNames', {'Component', 'Radius_m', 'Cooling_m', 'Isolation_Thick_m', 

'Total_Radius_m', 'Inner_Num_Coils', 'Outer_Num_Coils', 'Inner_Distance_m', 

'Outer_Distance_m', 'Height_Between_Turns_m', 'Total_Height_m', 'Coil_Area_m2', 

'A_Param'}); 

    writetable(solenoid_table, 'solenoid_parameters.xlsx'); 

end 

 

% Plasma 

if enable_plasma 
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    plasma_table = table({"plasma"}, T_plasma, n_total_plasma, a_plasma, kappa, 

R_plasma, A_plasma, L_plasma, V_plasma, ... 

        'VariableNames', {'Component', 'Temperature_eV', 'Particle_Density_m3', 

'Semi_Minor_Axis_m', 'Kappa', 'Major_Radius_m', 'Cross_Sectional_Area_m2', 

'Length_m', 'Volume_m3'}); 

    writetable(plasma_table, 'plasma_parameters.xlsx'); 

end 

 

% PFC 

if enable_pfc 

    coil_names = fieldnames(coil_component); 

    coil_table_data = []; 

    for i = 1:length(coil_names) 

        comp_name = coil_names{i}; 

        coils = coil_component.(comp_name); 

        for j = 1:length(coils) 

            coil_table_data = [coil_table_data; { 

                sprintf('%s %d', comp_name, j), ... 

                coils(j).r, coils(j).z, coils(j).thickness, coils(j).radius, 

coils(j).coil_length 

            }]; 

        end 

    end 

    coil_table = cell2table(coil_table_data, ... 

        'VariableNames', {'Component', 'Distance_m', 'Z_Position_m', 'Thickness_m', 

'Radius_m', 'Coil_Length_m'}); 

    writetable(coil_table, 'coil_components.xlsx'); 

end 

 

%% ====== Function Block ====== 

 

function [x_values, z_values, wall_struct] = generate_inner_wall(params) 

    radius = params.thickness / 2; 

    num_coils = ceil(params.height / params.thickness); 

    z_values = linspace(-params.height/2 + radius, params.height/2 - radius, num_coils)'; 

    x_values = repmat(params.distance, num_coils, 1); 
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    wall_struct = repmat(struct('r',0,'z',0,'thickness',0,'radius',0,'coil_length',0), num_coils, 

1); 

 

    for i = 1:num_coils 

        wall_struct(i).r = x_values(i); 

        wall_struct(i).z = z_values(i); 

        wall_struct(i).thickness = params.thickness; 

        wall_struct(i).radius = radius; 

        wall_struct(i).coil_length = 2 * pi * x_values(i); 

    end 

end 

 

function [x_values, y_values, z_values] = setup_coil(num_coils, coil_radius, 

coil_thickness, ... 

    coil_distance, z_start, z_end, theta_start, theta_end, offset_x, use_sin_z) 

    if nargin < 9, offset_x = 0; end 

    if nargin < 10, use_sin_z = false; end 

    theta_values = linspace(theta_start, theta_end, num_coils)'; 

    x_values = coil_distance * cos(theta_values) + offset_x; 

    y_values = coil_distance * sin(theta_values); 

    if use_sin_z 

        z_values = coil_distance * sin(theta_values); 

    else 

        z_values = linspace(z_start, z_end, num_coils)'; 

    end 

end 

 

function save_table_with_overwrite(table_data, file_name) 

    writetable(table_data, file_name); 

    fprintf('File "%s" has been saved successfully (overwritten if existed).\n', file_name); 

end  
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A.5 Value of 𝑸𝟎 for mutual inductance between solenoid and ring coil 

(Table 27 in page 115 of Ref [10]) 
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A.6 Value of 𝒇 for mutual inductance between ring coils. (Table 13 in 

page 79 of Ref [10]) 
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A.7 Value of 𝒇 for mutual inductance between ring coils. (Table 14 in 

page 81 of Ref [10]) 
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A.8 Value of 𝒇 for mutual inductance between ring coils. (Table 15 in 

page 82 of Ref [10]) 
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A.9 Value of 𝒇 for mutual inductance between ring coils. (Table 16 in 

page 83 of Ref [10]) 
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A.10 Value of 𝒇 for mutual inductance between ring coils. (Table 17 in 

page 84 of Ref [10]) 



152 

 

A.11 Resistance and inductance calculation code 

% The code is in Student_Thesis/2025_ypi/Code/R_and_M_thesis on the NAS. 

enable_plasma = false; 

 

% === Read components data === 

 

% Read chamber components data 

chamber_data = readtable('chamber_components.xlsx'); 

 

% Extract the relevant data from the table 

component_names = chamber_data.Component;          % Component names 

r_values = chamber_data.Distance_m;                % Distance (r) values 

z_values = chamber_data.Z_Position_m;              % Z-position values 

thickness_values = chamber_data.Thickness_m;       % Thickness values 

radius_values = chamber_data.Radius_m;             % Radius values 

coil_length_values = chamber_data.Coil_Length_m;   % Coil length values 

 

% Initialize counters for inner and outer walls 

num_inner_coils = 0; 

num_outer_coils = 0; 

 

% Initialize chamber components structures 

chamber_components.inner_wall = struct(); 

chamber_components.outer_wall = struct(); 

 

% Iterate through each component and classify into inner or outer wall 

for i = 1:height(chamber_data) 

    component_name = component_names{i}; 

     

    if contains(component_name, 'Inner Wall') 

        % Increment the inner wall coil counter 

        num_inner_coils = num_inner_coils + 1; 

         

        % Assign values to the inner wall structure 

        chamber_components.inner_wall(num_inner_coils).r = r_values(i); 

        chamber_components.inner_wall(num_inner_coils).z = z_values(i); 
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        chamber_components.inner_wall(num_inner_coils).thickness = 

thickness_values(i); 

        chamber_components.inner_wall(num_inner_coils).radius = radius_values(i); 

        chamber_components.inner_wall(num_inner_coils).coil_length = 

coil_length_values(i); 

     

    elseif contains(component_name, 'Outer Wall') 

        % Increment the outer wall coil counter 

        num_outer_coils = num_outer_coils + 1; 

         

        % Assign values to the outer wall structure 

        chamber_components.outer_wall(num_outer_coils).r = r_values(i); 

        chamber_components.outer_wall(num_outer_coils).z = z_values(i); 

        chamber_components.outer_wall(num_outer_coils).thickness = 

thickness_values(i); 

        chamber_components.outer_wall(num_outer_coils).radius = radius_values(i); 

        chamber_components.outer_wall(num_outer_coils).coil_length = 

coil_length_values(i); 

    end 

end 

 

% Display the results 

fprintf('Number of inner wall coils: %d\n', num_inner_coils); 

fprintf('Number of outer wall coils: %d\n', num_outer_coils); 

 

% Read solenoid data 

solenoid_data = readtable('solenoid_parameters.xlsx'); 

 

% Extract the relevant parameters for the solenoid 

solenoid_radius = solenoid_data.Radius_m;                  % Radius of the solenoid 

isolation_thick = solenoid_data.Isolation_Thick_m;         % Thickness of isolation 

layer 

solenoid_total_radius = solenoid_data.Total_Radius_m;      % Total radius of solenoid 

solenoid_inner_num_coils = solenoid_data.Inner_Num_Coils;  % Number of inner coils 

solenoid_outer_num_coils = solenoid_data.Outer_Num_Coils;  % Number of outer coils 

solenoid_inner_distance = solenoid_data.Inner_Distance_m;  % Inner coil distance from 

center 



154 

 

solenoid_outer_distance = solenoid_data.Outer_Distance_m;  % Outer coil distance from 

center 

solenoid_height_between_turns = solenoid_data.Height_Between_Turns_m; % Height 

between turns 

solenoid_height = solenoid_data.Total_Height_m;            % Total height of 

solenoid 

solenoid_coil_A = solenoid_data.Coil_Area_m2;              % Cross-sectional area 

of solenoid 

solenoid_a = solenoid_data.A_Param;                        % Solenoid parameter 

'a' 

 

% Read plasma data 

if enable_plasma 

    plasma_data = readtable('plasma_parameters.xlsx'); 

     

    % Assign the values back to their original variable names 

    T_plasma = plasma_data.Temperature_eV(1);                    % Initial 

temperature (K) 

    n_total_plasma = plasma_data.Particle_Density_m3(1);        % Total particle 

density (m^-3) 

    a_plasma = plasma_data.Semi_Minor_Axis_m(1);                % Plasma 

cross-section semi-minor axis (m) 

    kappa = plasma_data.Kappa(1);                % Plasma cross-section semi-

major axis (m) 

    b_plasma = a_plasma * kappa; 

    R_plasma = plasma_data.Major_Radius_m(1);                   % Major radius 

(m) 

    A_plasma = plasma_data.Cross_Sectional_Area_m2(1);          % Plasma cross-

sectional area (m^2) 

    L_plasma = plasma_data.Length_m(1); 

    V_plasma = plasma_data.Volume_m3(1);                       % Plasma 

volume (m^3) for toroidal geometry 

    li_plasma = 0.5; 

    mu0 = 4 * pi * 1e-7;    % Permeability of vacuum (H/m) 

    Lp = mu0 * R_plasma * (log(8 * R_plasma / a_plasma) + li_plasma / 2 - 2); 

    Rp = 0; 
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    total_num_coils = num_inner_coils + num_outer_coils + 1 + 1; % +1 for solenoid, +1 

for plasma  

 

elseif ~enable_plasma 

    total_num_coils = num_inner_coils + num_outer_coils + 1; % +1 for solenoid  

end 

 

% === Collect all components' data === 

coils_distance = zeros(total_num_coils, 1); 

coils_z_values = zeros(total_num_coils, 1); 

coils_thickness = zeros(total_num_coils, 1); 

coils_num = zeros(total_num_coils, 1); 

 

% Solenoid (index 1) 

index = 1; % In case PFC need to put in front of CS 

coils_distance(index) = solenoid_inner_distance; % For mutual inductance calculations, 

we can use inner distance 

coils_z_values(index) = 0; % Assuming solenoid is centered at z=0 

coils_thickness(index) = solenoid_radius * 2; % Diameter 

coils_num(index) = 1; 

 

% Inner wall coils (indices 2 to num_inner_coils+1) 

for i = 1:num_inner_coils 

    coils_distance(i+index) = chamber_components.inner_wall(i).r; 

    coils_z_values(i+index) = chamber_components.inner_wall(i).z; 

    coils_thickness(i+index) = chamber_components.inner_wall(i).thickness; 

    coils_num(i+index) = num_inner_coils; 

end 

 

% Outer wall coils (indices num_inner_coils+2 to 1+num_inner_coils+num_outer_coils) 

for i = 1:num_outer_coils 

    idx = i + num_inner_coils + index; 

    coils_distance(idx) = chamber_components.outer_wall(i).r; 

    coils_z_values(idx) = chamber_components.outer_wall(i).z; 

    coils_thickness(idx) = chamber_components.outer_wall(i).thickness; 

    coils_num(idx) = num_outer_coils; 

end 
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% Material properties 

rho_copper = 1.72e-8;              % Resistivity of copper [Ohm·m] 

chamber_resistivity = 6.9e-7;      % Resistivity of chamber material [Ohm·m] Stainless 

steel 304 

copper_permeability = 4e-7*pi;     % Permeability of copper [H/m] 

chamber_permeability = 1.25663706212e-6 * 1.008; % Permeability of chamber material 

[H/m] 

 

current_idx = 1; 

% Initialize resistance and inductance matrices 

R = zeros(total_num_coils, total_num_coils); 

M = zeros(total_num_coils, total_num_coils); 

 

% Resistance calculations for solenoid 

solenoid_inner_coil_length = 2 * pi * solenoid_inner_distance; 

solenoid_outer_coil_length = 2 * pi * solenoid_outer_distance; 

solenoid_inner_resistance = rho_copper * solenoid_inner_coil_length / solenoid_coil_A * 

solenoid_inner_num_coils; 

solenoid_outer_resistance = rho_copper * solenoid_outer_coil_length / solenoid_coil_A * 

solenoid_outer_num_coils; 

solenoid_resistance = solenoid_inner_resistance + solenoid_outer_resistance; 

 

% Inductance calculation for solenoid 

solenoid_inductance = copper_permeability * (solenoid_inner_num_coils + 

solenoid_outer_num_coils)^2 * solenoid_a / solenoid_height; 

 

% Place solenoid resistance and inductance in the matrices 

R(current_idx,current_idx) = solenoid_resistance; 

M(current_idx,current_idx) = solenoid_inductance; 

 

% Initialize current index after solenoid 

current_idx = 2; % Solenoid is at index 1 

 

% Calculate resistance and inductance for inner wall components 

[R, M] = calculate_self_inductance_and_resistance(chamber_components.inner_wall, 

current_idx, chamber_resistivity, R, M); 
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% Update current index 

current_idx = current_idx + num_inner_coils; 

 

% Calculate resistance and inductance for outer wall components 

[R, M] = calculate_self_inductance_and_resistance(chamber_components.outer_wall, 

current_idx, chamber_resistivity, R, M); 

 

if enable_plasma 

    current_idx = current_idx + num_outer_coils; 

    % Plasma 

    coils_distance(current_idx) = R_plasma; 

    coils_z_values(current_idx) = 0; 

    coils_thickness(current_idx) = 0; 

    coils_num(current_idx) = 1; 

     

    R(current_idx, current_idx) = Rp; 

    M(current_idx, current_idx) = Lp; 

end 

 

% Function to calculate self-inductance and resistance 

function [R, M] = calculate_self_inductance_and_resistance(components, start_idx, 

resistivity, R, M) 

    % Function to calculate self-inductance and resistance for a set of coils 

    % 

    % Inputs: 

    %   components  - Array of component structures with fields: 

    %                 .r (radius), .thickness, .radius (coil radius), .coil_length 

    %   start_idx   - Starting index in the R and M matrices 

    %   resistivity - Resistivity of the material [Ohm·m] 

    %   R           - Resistance matrix to update 

    %   M           - Inductance matrix to update 

    % 

    % Outputs: 

    %   R           - Updated resistance matrix 

    %   M           - Updated inductance matrix 
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    num_coils = length(components); 

    for i = 1:num_coils 

        % Resistance calculation 

        coil_length = components(i).coil_length; % Circumference [m] 

        cross_sectional_area = components(i).radius^2 * pi; % [m^2] 

        resistance = resistivity * coil_length / cross_sectional_area; 

        idx = start_idx + i - 1; 

        R(idx, idx) = resistance; 

 

        % Inductance calculation 

        a_constant = components(i).r * 100; % Convert to cm 

        c_constant = components(i).thickness * 100; % Convert to cm 

        c_over_2a = c_constant / (2 * a_constant); 

        P_prim = 4 * pi * (((1 + (c_over_2a^2) / 6)*(log(8 / (c_over_2a^2)) / 

log(exp(1))) * (1 / 2)) - 0.84834 + 0.2041 * (c_over_2a^2)); 

        inductance = 0.001 * (components(i).r - components(i).radius) * 100 * P_prim * 

1e-6; % [H] 

        M(idx, idx) = inductance; 

    end 

end 

 

% === Mutual inductance calculations === 

 

% Load mutual inductance tables from Excel files 

solenoid_mutual_table = xlsread("table27.xlsx"); 

table13 = xlsread("table13.xlsx"); 

table14 = xlsread("table14.xlsx"); 

table15 = xlsread("table15.xlsx"); 

table16 = xlsread("table16.xlsx"); 

table17 = xlsread("table17.xlsx"); 

 

% Preprocess data from tables 

alpha_values = solenoid_mutual_table(1, 2:end); 

rho_squared_values = solenoid_mutual_table(2:end, 1); 

solenoid_q_values = solenoid_mutual_table(2:end, 2:end); 

 

q_values = table16(:, 1); 
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f_values = table16(:, 2); 

t_values = table17(:, 1); 

k_values = table17(:, 2); 

 

k_prim_square_values_table13 = table13(:, 1); 

f_values_table13 = table13(:, 2); 

 

log_k_prim_square_values_table14 = table14(:, 1); 

f_values_table14 = table14(:, 2); 

 

log_k_square_values_table15 = table15(:, 1); 

log_f_values_table15 = table15(:, 2); 

 

solenoid_top_z = solenoid_height / 2; 

solenoid_bottom_z = -solenoid_height / 2; 

 

% Mutual inductance between solenoid and ring components 

for i = 2:total_num_coils 

    % Alpha parameter 

    alpha_solenoid = solenoid_inner_distance / coils_distance(i); 

     

    % Compute D and d based on relative positions 

    z_coil = coils_z_values(i); 

     

    if z_coil > solenoid_top_z 

        D = z_coil - solenoid_bottom_z; 

        d = z_coil - solenoid_top_z; 

        N_D = solenoid_inner_num_coils * 2; 

        N_d = 1; 

 

        % Calculate rho squared values 

        rho_squared_D = coils_distance(i)^2 / (coils_distance(i)^2 + D^2); 

        rho_squared_d = coils_distance(i)^2 / (coils_distance(i)^2 + d^2); 

         

        % Interpolate q values from solenoid_mutual_table 

        q_solenoid_D = interp2(alpha_values, rho_squared_values, solenoid_q_values, 

alpha_solenoid, rho_squared_D, 'linear', 0); 
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        q_solenoid_d = interp2(alpha_values, rho_squared_values, solenoid_q_values, 

alpha_solenoid, rho_squared_d, 'linear', 0); 

         

        % Mutual inductance calculation 

        M_D = 0.002 * pi^2 * solenoid_outer_distance * 100 * alpha_solenoid * 

sqrt(rho_squared_D) * N_D * q_solenoid_D * 1e-6; 

        M_d = 0.002 * pi^2 * solenoid_outer_distance * 100 * alpha_solenoid * 

sqrt(rho_squared_d) * N_d * q_solenoid_d * 1e-6; 

         

        % Compute mutual inductance between solenoid and coil i 

        M(1, i) = M_D - M_d; 

        M(i, 1) = M(1, i); % Symmetric matrix 

 

    elseif z_coil < solenoid_bottom_z 

        D = solenoid_top_z - z_coil; 

        d = solenoid_bottom_z - z_coil; 

        N_D = solenoid_inner_num_coils * 2; 

        N_d = 1; 

 

        % Calculate rho squared values 

        rho_squared_D = coils_distance(i)^2 / (coils_distance(i)^2 + D^2); 

        rho_squared_d = coils_distance(i)^2 / (coils_distance(i)^2 + d^2); 

         

        % Interpolate q values from solenoid_mutual_table 

        q_solenoid_D = interp2(alpha_values, rho_squared_values, solenoid_q_values, 

alpha_solenoid, rho_squared_D, 'linear', 0); 

        q_solenoid_d = interp2(alpha_values, rho_squared_values, solenoid_q_values, 

alpha_solenoid, rho_squared_d, 'linear', 0); 

         

        % Mutual inductance calculation 

        M_D = 0.002 * pi^2 * solenoid_outer_distance * 100 * alpha_solenoid * 

sqrt(rho_squared_D) * N_D * q_solenoid_D * 1e-6; 

        M_d = 0.002 * pi^2 * solenoid_outer_distance * 100 * alpha_solenoid * 

sqrt(rho_squared_d) * N_d * q_solenoid_d * 1e-6; 

         

        % Compute mutual inductance between solenoid and coil i 

        M(1, i) = M_D - M_d; 
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        M(i, 1) = M(1, i); % Symmetric matrix 

 

    elseif z_coil == solenoid_bottom_z || z_coil == solenoid_top_z 

 

        D = solenoid_height; 

        N_D = solenoid_inner_num_coils * 2; 

 

        % Calculate rho squared values 

        rho_squared_D = coils_distance(i)^2 / (coils_distance(i)^2 + D^2); 

         

        % Interpolate q values from solenoid_mutual_table 

        q_solenoid_D = interp2(alpha_values, rho_squared_values, solenoid_q_values, 

alpha_solenoid, rho_squared_D, 'linear', 0); 

         

        % Mutual inductance calculation 

        M_D = 0.002 * pi^2 * solenoid_outer_distance * 100 * alpha_solenoid * 

sqrt(rho_squared_D) * N_D * q_solenoid_D * 1e-6; 

         

        % Compute mutual inductance between solenoid and coil i 

        M(1, i) = M_D; 

        M(i, 1) = M(1, i); % Symmetric matrix 

         

    else 

        % Coil is within the solenoid range 

        solenoid_z_difference_top = solenoid_top_z - z_coil; 

        solenoid_z_difference_bottom = z_coil - solenoid_bottom_z; 

        N_top = (solenoid_z_difference_top / (solenoid_total_radius * 2)) * 2; 

        N_bottom = solenoid_inner_num_coils*2 - N_top; 

        N_D = N_top; 

        N_d = N_bottom; 

        D = solenoid_z_difference_top; 

        d = solenoid_z_difference_bottom; 

 

        % Calculate rho squared values 

        rho_squared_D = coils_distance(i)^2 / (coils_distance(i)^2 + D^2); 

        rho_squared_d = coils_distance(i)^2 / (coils_distance(i)^2 + d^2); 
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        % Interpolate q values from solenoid_mutual_table 

        q_solenoid_D = interp2(alpha_values, rho_squared_values, solenoid_q_values, 

alpha_solenoid, rho_squared_D, 'linear', 0); 

        q_solenoid_d = interp2(alpha_values, rho_squared_values, solenoid_q_values, 

alpha_solenoid, rho_squared_d, 'linear', 0); 

         

        % Mutual inductance calculation 

        M_D = 0.002 * pi^2 * solenoid_outer_distance * 100 * alpha_solenoid * 

sqrt(rho_squared_D) * N_D * q_solenoid_D * 1e-6; 

        M_d = 0.002 * pi^2 * solenoid_outer_distance * 100 * alpha_solenoid * 

sqrt(rho_squared_d) * N_d * q_solenoid_d * 1e-6; 

         

        % Compute mutual inductance between solenoid and coil i 

        M(1, i) = M_D + M_d; 

        M(i, 1) = M(1, i); % Symmetric matrix 

    end 

end   

 

% Mutual inductance between each ring components 

for i = 2:total_num_coils 

    for j = (i+1):total_num_coils 

        if i ~= j 

            d = abs(coils_z_values(i) - coils_z_values(j)) * 100; % Convert to cm 

             

            if coils_distance(i) == coils_distance(j) && coils_thickness(i) == 

coils_thickness(j) 

                % Coaxial coils of equal size 

                %r = coils_distance(i) * 100; % Radius in cm 

                r = coils_distance(i) * 10^2 * (1 + (coils_thickness(i) * 10^2)^2 / (24 * 

(coils_thickness(i) * 10^2)^2)); 

                radio = d / (2 * r); 

                 

                if radio <= 1 

                    f = interp1(q_values, f_values, radio, 'linear', 'extrap'); 

                    M_ij = coils_distance(i) * 100 * f * 1e-6; % Mutual inductance in 

H 

                else 
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                    radio_inv = 1 / radio; 

                    f = interp1(t_values, k_values, radio_inv, 'linear', 'extrap'); 

                    M_ij = coils_distance(i) * 100 * f * 1e-6; % Mutual inductance in 

H 

                end 

            else 

                % Coaxial coils of different sizes 

                A = max(coils_distance(i), coils_distance(j)) * 100; % Larger radius in 

cm 

                a = min(coils_distance(i), coils_distance(j)) * 100; % Smaller radius in 

cm 

                k_prim_square = ((A - a)^2 + d^2) / ((A + a)^2 + d^2); 

                k_square = 1 - k_prim_square; 

                 

                if k_prim_square <= 0.1 

                    % Use table14 

                    base = abs(floor(log10(k_prim_square))); 

                    correction = base - abs(log10(k_prim_square)); 

                    log_k_prim_square = base + correction; 

         

                    diff_values = log_k_prim_square - 

log_k_prim_square_values_table14; 

                    valid_diff_indices = find(diff_values > 0); 

         

                    if ~isempty(valid_diff_indices) 

                        [~, idx] = min(diff_values(valid_diff_indices)); 

                        idx = valid_diff_indices(idx); 

         

                        if idx < length(log_k_prim_square_values_table14) 

                            k1_log = log_k_prim_square_values_table14(idx); 

                            k2_log = log_k_prim_square_values_table14(idx+1); 

                            f1 = f_values_table14(idx); 

                            f2 = f_values_table14(idx+1); 

         

                            numStr = num2str(k1_log); 

                            dotIndex = strfind(numStr, '.'); 
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                            if isempty(dotIndex) 

                                intPart = str2double(numStr); 

                                fracPart = 0; 

                            else 

                                intPart = str2double(numStr(1:dotIndex-1)); 

                                fracPart = str2double(['0.' 

numStr(dotIndex+1:end)]); 

                            end 

                            difference = -(intPart - fracPart); 

                            k1 = 10^difference; 

                             

                            numStr = num2str(k2_log); 

                            dotIndex = strfind(numStr, '.'); 

                             

                            if isempty(dotIndex) 

                                intPart = str2double(numStr); 

                                fracPart = 0; 

                            else 

                                intPart = str2double(numStr(1:dotIndex-1)); 

                                fracPart = str2double(['0.' 

numStr(dotIndex+1:end)]); 

                            end 

                            difference = -(intPart - fracPart); 

                            k2 = 10^difference; 

         

                            f = f1 + (k_prim_square - k1) * (f2 - f1) / abs(k2 - k1);   

                            M_ij = f * sqrt(A * a) * 1e-6; % Mutual inductance in H 

                        end 

                    end      

 

                elseif k_square <= 0.1 

                    % Use table15 

                    base = abs(floor(log10(k_square))); 

                    correction = base - abs(log10(k_square)); 

                    log_k_square = base + correction; 

         

                    diff_values = log_k_square - log_k_square_values_table15; 



165 

 

                    valid_diff_indices = find(diff_values > 0); 

         

                    if ~isempty(valid_diff_indices) 

                        [~, idx] = min(diff_values(valid_diff_indices)); 

                        idx = valid_diff_indices(idx); 

         

                        if idx < length(log_k_square_values_table15) 

                            k1_log = log_k_square_values_table15(idx); 

                            k2_log = log_k_square_values_table15(idx+1); 

                            f1_log = log_f_values_table15(idx); 

                            f2_log = log_f_values_table15(idx+1); 

                             

                            numStr = num2str(k1_log); 

                            dotIndex = strfind(numStr, '.'); 

                             

                            if isempty(dotIndex) 

                                intPart = str2double(numStr); 

                                fracPart = 0; 

                            else 

                                intPart = str2double(numStr(1:dotIndex-1)); 

                                fracPart = str2double(['0.' 

numStr(dotIndex+1:end)]); 

                            end 

                            difference = -(intPart - fracPart); 

                            k1 = 10^difference; 

                             

                            numStr = num2str(k2_log); 

                            dotIndex = strfind(numStr, '.'); 

                             

                            if isempty(dotIndex) 

                                intPart = str2double(numStr); 

                                fracPart = 0; 

                            else 

                                intPart = str2double(numStr(1:dotIndex-1)); 

                                fracPart = str2double(['0.' 

numStr(dotIndex+1:end)]); 

                            end 
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                            difference = -(intPart - fracPart); 

                            k2 = 10^difference; 

         

                            numStr = num2str(f1_log); 

                            dotIndex = strfind(numStr, '.'); 

                            intPart = str2double(numStr(1:dotIndex-1)); 

                            fracPart = str2double(['0.' numStr(dotIndex+1:end)]); 

                            difference = -(intPart - fracPart); 

                            f1 = 10^difference; 

         

                            numStr = num2str(f2_log); 

                            dotIndex = strfind(numStr, '.'); 

                            intPart = str2double(numStr(1:dotIndex-1)); 

                            fracPart = str2double(['0.' numStr(dotIndex+1:end)]); 

                            difference = -(intPart - fracPart); 

                            f2 = 10^difference; 

         

                            f = f1 + (k_square - k1) * (f2 - f1) / (k2 - k1); 

                            M_ij = f * sqrt(A * a) * 1e-6; % Mutual inductance in H 

                        end 

                    end 

                else 

                    % Use table13 

                    f = interp1(k_prim_square_values_table13, f_values_table13, 

k_prim_square, 'linear', 'extrap'); 

                    M_ij = f * sqrt(A * a) * 1e-6; % Mutual inductance in H 

                end 

            end 

             

            % Assign mutual inductance values 

            M(i, j) = M_ij; 

            M(j, i) = M_ij; % Symmetric matrix 

        end 

    end 

end 

 

return 
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writematrix(R, 'R_matrix.xlsx', 'Sheet', 1, 'Range', 'A1'); 

writematrix(M, 'M_matrix.xlsx', 'Sheet', 1, 'Range', 'A1'); 

 

disp('R and M matrices have been saved to Excel files.'); 
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A.12 Eddy current calculation code 

% The code is in Student_Thesis/2025_ypi/Code/eddy_current_thesis on the NAS. 

% === Read resistance and inductance === 

M_origin = readmatrix('M_matrix.xlsx', 'Sheet', 1); 

R_origin = readmatrix('R_matrix.xlsx', 'Sheet', 1); 

R = R_origin; 

M = M_origin; 

 

total_num_coils = size(R, 1); 

 

% === Read chamber data === 

chamber_data = readtable('chamber_components.xlsx'); 

 

% Extract the relevant data from the table 

component_names = chamber_data.Component;          % Component names 

 

% Initialize counters for inner and outer walls 

num_inner_coils = 0; 

num_outer_coils = 0; 

 

% Initialize chamber components structures 

chamber_components.inner_wall = struct(); 

chamber_components.outer_wall = struct(); 

 

% Iterate through each component and classify into inner or outer wall 

for i = 1:height(chamber_data) 

    component_name = component_names{i}; 

     

    if contains(component_name, 'Inner Wall') 

        num_inner_coils = num_inner_coils + 1; 

           

    elseif contains(component_name, 'Outer Wall') 

        num_outer_coils = num_outer_coils + 1; 

 

    end 

end 
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fprintf('Number of inner wall coils: %d\n', num_inner_coils); 

fprintf('Number of outer wall coils: %d\n', num_outer_coils); 

 

% === Central solenoid current profile === 

N = 4000 + 1;       % Total number of time steps (2 segments of 2000 steps each) 

t_end = 55e-3;      % Total duration (10 ms) 

tspan = linspace(0, t_end, N); % Time array 

I_max = 4000;       % A 

dt = tspan(2) - tspan(1);      % Time step 

I_profile = zeros(1,length(tspan)); 

t1 = 20e-3; 

t2 = 20e-3; 

t3 = 15e-3; 

 

for i = 1:length(tspan) 

    t = tspan(i); 

 

    if t <= t1 

        I_fun = @(t) (I_max / t1) * t; 

        I_profile(i) = I_fun(t); 

 

    elseif t <= t1+t2 

        I_profile(i) = I_max; 

         

    elseif t <= t1+t2+t3 

        I_fun = @(t) (I_max / (t3)) * t; 

        I_profile(i) = I_max - I_fun(t - (t1+t2)); 

    end 

end 

 

n_solenoid = 1; 

V_history_solenoid = zeros(N, n_solenoid); 

I_history_solenoid = zeros(N, n_solenoid); 

I_prev_solenoid = zeros(1, n_solenoid); 

 

M_solenoid = M(1,1);  

R_solenoid = R(1,1);  
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var1 = (M_solenoid / dt); 

for t = 2:length(tspan) 

    I_solenoid = I_profile(t); 

    V_solenoid = var1 * (I_solenoid - I_prev_solenoid) + R_solenoid * I_solenoid; 

    V_history_solenoid(t,:) = V_solenoid; 

    I_prev_solenoid = I_solenoid; 

end 

 

I_current = zeros(total_num_coils - 1, 1);  % Use -1 to exclude the central solenoid 

I_prev_current = zeros(total_num_coils - 1, 1); 

I_history_current = zeros(N, total_num_coils - 1); 

inner_total_I_current = zeros(N, 1); 

outer_total_I_current = zeros(N, 1); 

 

M_voltage = M(2:end, 1);           % Mutual inductance between solenoid and walls 

M_set = M(2:end, 2:end);          % Inductance matrix for walls 

R_set = R(2:end, 2:end);          % Resistance matrix for walls 

 

dI = (I_profile(2) - I_profile(1)) / dt; 

 

tolerance = 1e-8; 

max_iter = 1e10;  

 

% Matrix for wall coil equations 

A = (M_set / dt) + R_set; 

  

for t = 2:length(tspan) 

 

    % Inform every 1000 steps 

    if mod(t, 1000) == 0 

        fprintf('Processing time step %d out of %d\n', t, N); 

    end 

 

    % Voltage induced in wall coils 

    V_current = M_voltage * dI; 
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    % Right-hand side of wall coil equations 

    b = (M_set / dt) * I_prev_current - V_current; 

 

    % Solve for wall coil currents 

    [I_current, flag] = pcg(A, b, tolerance, max_iter, [], [], I_prev_current); 

     

    % Store history 

    I_history_current(t, :) = I_current; 

    I_prev_current = I_current; 

     

    % Sum eddy current 

    inner_total_I_current(t) = sum(I_history_current(t, 1:num_inner_coils)); 

    outer_total_I_current(t) = sum(I_history_current(t, 

num_inner_coils+1:num_inner_coils+num_outer_coils)); 

     

    dI = (I_profile(t) - I_profile(t - 1)) / dt; 

end 

 

figure; 

 

yyaxis left; 

plot(tspan*1000, inner_total_I_current, 'LineWidth', 2.5); 

hold on; 

plot(tspan*1000, outer_total_I_current, 'LineWidth', 2.5); 

ylabel('Eddy Current (A)', 'FontWeight', 'bold'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');  

 

yyaxis right; 

plot(tspan*1000, I_profile/1000, 'LineWidth', 2.5); 

ylabel('Current (A)', 'FontWeight', 'bold'); 

 

xlabel('Time (ms)', 'FontWeight', 'bold'); 

grid on; 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold'); 

legend('Inner wall', 'Outer wall','Solenoid', 'Location', 'southeast') 

 

yyaxis left; 
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ylim([-max(abs(inner_total_I_current))*1.2 max(abs(inner_total_I_current))*1.2]); 

yyaxis right; 

ylim([-max(abs(I_profile/1000))*1.2 max(abs(I_profile/1000))*1.2]); 

 

figure 

plot(tspan*1000, I_history_current(:, 1:num_inner_coils), 'LineWidth', 2.5)  

title(sprintf('N = %d', N))  

grid on 

xlabel('Time(ms)', 'FontWeight', 'bold'); 

ylabel('Current(A)', 'FontWeight', 'bold'); 

title('Eddy current of each inner vacuum-vessel wall') 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold');  

 

plot(tspan*1000, I_history_current(:, num_inner_coils + 1:num_inner_coils + 

num_outer_coils), 'LineWidth', 2.5) 

title(sprintf('N = %d', N))  

grid on 

xlabel('Time(ms)', 'FontWeight', 'bold'); 

ylabel('Current(A)', 'FontWeight', 'bold'); 

title('Eddy current of each outer vacuum-vessel wall') 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold'); 
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A.13 Loop voltage calculation code 

% The code is in Student_Thesis/2025_ypi/Code/loop_V_eddy_thesis on the NAS. 

% === Read data === 

 

% Read chamber data  

chamber_data = readtable('chamber_components.xlsx'); 

 

% Extract the relevant data from the table 

component_names = chamber_data.Component;          % Component names 

r_values = chamber_data.Distance_m;                % Distance (r) values 

z_values = chamber_data.Z_Position_m;              % Z-position values 

 

% Initialize counters for inner and outer walls 

num_inner_coils = 0; 

num_outer_coils = 0; 

 

% Initialize chamber components structures 

chamber_components.inner_wall = struct(); 

chamber_components.outer_wall = struct(); 

 

% Iterate through each component and classify into inner or outer wall 

for i = 1:height(chamber_data) 

    component_name = component_names{i}; 

     

    if contains(component_name, 'Inner Wall') 

        num_inner_coils = num_inner_coils + 1; 

         

    elseif contains(component_name, 'Outer Wall') 

        num_outer_coils = num_outer_coils + 1;         

    end 

end 

 

% Display the results 

fprintf('Number of inner wall coils: %d\n', num_inner_coils); 

fprintf('Number of outer wall coils: %d\n', num_outer_coils); 

 

all_coil_matrix = [r_values, z_values];            
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% Read solenoid parameters from the Excel file 

solenoid_data = readtable('solenoid_parameters.xlsx'); 

 

% Extract the relevant parameters for the solenoid 

solenoid_inner_num_coils = solenoid_data.Inner_Num_Coils;  % Number of inner coils 

solenoid_outer_num_coils = solenoid_data.Outer_Num_Coils;  % Number of outer coils 

solenoid_height = solenoid_data.Total_Height_m;            % Total height of 

solenoid 

solenoid_inner_distance = solenoid_data.Inner_Distance_m;  % Inner coil distance from 

center 

solenoid_outer_distance = solenoid_data.Outer_Distance_m;  % Outer coil distance from 

center 

solenoid_num_coils = solenoid_inner_num_coils * 2;   

 

% === CS current profile and eddy current in inner and outer walls === 

 

% Read inductance and resistance matrices 

R0 = readmatrix('R_matrix.xlsx', 'Sheet', 1);     

M0 = readmatrix('M_matrix.xlsx', 'Sheet', 1);     

M = M0; 

R = R0; 

 

total_num_coils = size(R, 1);                    

 

% Define solenoid parameters 

V_loop_desired = 0.066; % Desired loop voltage (V) 

mu0 = 4*pi*1e-7; % Vacuum permeability (H/m) 

solenoid_major_radius = (solenoid_inner_distance + solenoid_outer_distance)/2;          

% Radius of the solenoid [m] 

A_solenoid = pi * solenoid_major_radius^2; 

 

% Calculate current ramp rate to achieve desired loop voltage 

I_rate = - (V_loop_desired * solenoid_height) / (A_solenoid * mu0 * solenoid_num_coils); 

% Current ramp rate (A/s) 

 

% Time parameters 
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N_steps = 500 + 1; % Number of time steps 

t_end = 15e-3; % Total time (s) 

tspan = linspace(0, t_end, N_steps); % Time array 

dt = tspan(2) - tspan(1); % Time step (s) 

 

% Define current profile (linear ramp) 

I_profile = abs(t_end * I_rate) + (tspan * I_rate); 

 

n_solenoid = 1; 

 

V_history_solenoid = zeros(N_steps, n_solenoid); 

I_history_solenoid = zeros(N_steps, n_solenoid); 

I_prev_solenoid = zeros(1, n_solenoid); 

 

M_solenoid = M(1,1);  

R_solenoid = R(1,1);  

 

var1 = (M_solenoid / dt); 

for t = 2:length(tspan) 

    I_solenoid = I_profile(t); 

    V_solenoid = var1 * (I_solenoid - I_prev_solenoid) + R_solenoid * I_solenoid; 

    V_history_solenoid(t,:) = V_solenoid; 

    I_prev_solenoid = I_solenoid; 

end 

 

I_current = zeros(total_num_coils - 1 , 1);  % Use -1 to exclude the central solenoid 

I_prev_current = zeros(total_num_coils - 1  , 1); 

I_history_current = zeros(N_steps, total_num_coils -1  ); 

inner_total_I_current = zeros(N_steps, 1); 

outer_total_I_current = zeros(N_steps, 1); 

 

M_voltage = M(2:end, 1);           % Mutual inductance between solenoid and walls 

M_set = M(2:end, 2:end);          % Inductance matrix for walls 

R_set = R(2:end, 2:end);          % Resistance matrix for walls 

 

dI = (I_profile(2) - I_profile(1)) / dt; 
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tolerance = 1e-8; 

max_iter = 1e10;  

 

% Matrix for wall coil equations 

A = (M_set / dt) + R_set; 

  

for t = 2:length(tspan) 

 

    % Voltage induced in wall coils 

    V_current = M_voltage * dI; 

 

    % Right-hand side of wall coil equations 

    b = (M_set / dt) * I_prev_current - V_current; 

 

    % Solve for wall coil currents 

    [I_current, flag] = pcg(A, b, tolerance, max_iter, [], [], I_prev_current); 

     

    % Store history 

    I_history_current(t, :) = I_current; 

    I_prev_current = I_current; 

     

    % Sum eddy current 

    inner_total_I_current(t) = sum(I_history_current(t, 1:num_inner_coils)); 

    outer_total_I_current(t) = sum(I_history_current(t, 

num_inner_coils+1:num_inner_coils+num_outer_coils)); 

     

    dI = (I_profile(t) - I_profile(t - 1)) / dt; 

end 

 

figure; 

set(gcf, 'Renderer', 'painters'); 

 

yyaxis left 

plot(tspan * 1e3, I_profile / 1e3, 'LineWidth', 2.5);  % kA 

ylabel('Current (kA)'); 

 

leftMax = max(I_profile) / 1e3;        
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ylim([0, leftMax * 1.1]);              

 

yyaxis right 

plot(tspan * 1e3, inner_total_I_current, 'LineWidth', 2.5); hold on; 

plot(tspan * 1e3, outer_total_I_current, 'LineWidth', 2.5); 

ylabel('Eddy Current (A)'); 

 

rightMax = max([max(inner_total_I_current), max(outer_total_I_current)]); 

ylim([0, rightMax * 1.5]); 

 

xlabel('Time (ms)'); 

title(['Current profile for V_{loop} = ', num2str(V_loop_desired, '%.3f')]); 

legend('Central Solenoid', 'Inner wall', 'Outer wall', 'Location', 'north'); 

grid on; 

box on; 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold');  

 

figure 

plot(tspan*1000, I_history_current(:, 1:num_inner_coils), 'LineWidth', 2.5)  

grid on 

xlabel('Time (ms)', 'FontWeight', 'bold'); 

ylabel('Current (A)', 'FontWeight', 'bold'); 

title('Eddy current of each inner chamber wall') 

set(gca, 'LineWidth', 1.5, 'FontSize', 14, 'FontWeight', 'bold'); 

max_inner = max(I_history_current(:, 1:num_inner_coils), [], 'all'); 

ylim([0, 1.2 * max_inner]); 

 

figure 

plot(tspan*1000, I_history_current(:, 1+num_inner_coils : 

num_inner_coils+num_outer_coils), 'LineWidth', 2.5)  

grid on 

xlabel('Time (ms)', 'FontWeight', 'bold'); 

ylabel('Current (A)', 'FontWeight', 'bold'); 

title('Eddy current of each outer chamber wall') 

set(gca, 'LineWidth', 1.5, 'FontSize', 14, 'FontWeight', 'bold'); 

max_outer = max(I_history_current(:, 1+num_inner_coils : 

num_inner_coils+num_outer_coils), [], 'all'); 
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ylim([0, 1.2 * max_outer]); 

 

% === CS Bz Calculation === 

 

num_slices = 100;  

spatial_length = 1001; 

spatial_grid = 1; 

dz = solenoid_height / num_slices; 

r_values = linspace(0, spatial_grid, spatial_length); 

z_obs = 0;  

y_obs = 0; 

Nx_obs = spatial_length; 

BZ_x_solenoid = zeros(N_steps, Nx_obs); 

 

% Compute the magnetic flux induced by the central solenoid (CS) only, and then obtain 

V_loop_time using the gradient 

Phi_solenoid = zeros(N_steps, 1); 

R_loop = 0.085; % Expected location of plasma breakdown 

 

for t_idx = 1:length(tspan) 

    I = I_profile(t_idx); 

    Bz_total_r = zeros(size(r_values)); 

 

    for idx = 1:length(r_values) 

        x_obs = r_values(idx); 

        Bz_total = 0; 

 

        % Accumulate Bz from each loop 

        for n = 1:num_slices 

            z0 = -solenoid_height/2 + (n - 0.5) * dz; 

            I_loop = I * solenoid_num_coils / num_slices; 

            [~, ~, Bz] = magnetic_field_loop(solenoid_major_radius, I_loop, x_obs, 

y_obs, z_obs - z0); 

            Bz_total = Bz_total + Bz; 

        end 

 

        Bz_total_r(idx) = Bz_total; 
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    end 

 

    BZ_x_solenoid(t_idx,:) = Bz_total_r; 

 

    % Calculate magnetic flux 

    indices = r_values <= R_loop; 

    r_in_loop_local = r_values(indices); 

    Bz_in_loop_local = Bz_total_r(indices); 

    Phi_solenoid(t_idx) = trapz(r_in_loop_local, Bz_in_loop_local .* 2 .* pi .* 

r_in_loop_local); 

end 

 

% Compute the loop voltage from the central solenoid using the gradient 

V_loop_time = -gradient(Phi_solenoid, dt); 

 

%% Bz generated by the solenoid vs radius 

figure; 

set(gcf, 'Renderer', 'painters'); 

 

plot(r_values*1000, BZ_x_solenoid(100, :), 'LineWidth', 2.5); 

xlabel('X Position (mm)'); 

ylabel('Magnetic Field B_z (T)'); 

title('Magnetic Field B_z vs Radius'); 

grid on; 

ylim([-0.1 2.6]); 

xlim([0 200]); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');  

print(gcf, 'cs_Bz_vs_radius', '-dpng', '-r600'); 

 

figure; 

plot(tspan*1000, V_loop_time, 'LineWidth', 2.5); 

xlabel('time (ms)'); ylabel('V_{loop} (V)'); 

title('V_{loop} from only central solenoid'); 

grid on; 

set(gca, 'linewidth', 1.5, 'fontsize', 12, 'FontWeight', 'bold'); 

 

% === Inner and Outer Chamber Wall Bz Calculation === 
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total_num_wall = length(all_coil_matrix);             

 

N_segments_wall  = 30;   

u0 = 4*pi*1e-7;     

xp = linspace(0, spatial_grid, Nx_obs); 

 

num_wall_coils = total_num_wall;        

spec_matrix = zeros(num_wall_coils, Nx_obs); 

 

fprintf('Starting precomputation of spec_matrix...\n'); 

for coil = 1:num_wall_coils 

    R = all_coil_matrix(coil, 1);         

    z0 = all_coil_matrix(coil, 2);        

 

    phi = linspace(-pi/2, 3*pi/2, N_segments_wall); 

    Xc = R * cos(phi); 

    Yc = R * sin(phi); 

    Zc = z0 * ones(size(Xc)); 

 

    X_next = circshift(Xc, -1); 

    Y_next = circshift(Yc, -1); 

    Z_next = circshift(Zc, -1); 

 

    dlx = X_next - Xc; 

    dly = Y_next - Yc; 

    dlz = Z_next - Zc;  

 

    x_mid = 0.5 * (Xc + X_next); 

    y_mid = 0.5 * (Yc + Y_next); 

    z_mid = 0.5 * (Zc + Z_next); 

 

    for a = 1:Nx_obs 

        x_obs = xp(a); 

        y_obs = 0; 

        z_obs = 0; 
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        Rx = x_obs - x_mid; 

        Ry = y_obs - y_mid; 

        Rz = z_obs - z_mid; 

 

        Xcross = dly .* Rz - dlz .* Ry; 

        Ycross = dlz .* Rx - dlx .* Rz; 

        Zcross = dlx .* Ry - dly .* Rx; 

 

        R_dist = sqrt(Rx.^2 + Ry.^2 + Rz.^2); 

        valid = R_dist ~= 0; 

        Bz = zeros(size(R_dist)); 

        Bz(valid) = (1 * u0) / (4*pi) .* Zcross(valid) ./ (R_dist(valid).^3); 

 

        spec_matrix(coil, a) = sum(Bz); 

    end 

 

    if mod(coil, 100) == 0 

        fprintf('Completed precomputing coil %d / %d\n', coil, num_wall_coils); 

    end 

end 

fprintf('Completed precomputation of spec_matrix.\n'); 

 

I_all_wall_matrix = I_history_current; % [time x coils] 

BZ_x_wall = I_all_wall_matrix * spec_matrix; % [time x Nx_obs] 

 

I_all_wall_reshaped = reshape(I_all_wall_matrix, [N_steps, num_wall_coils, 1]);  

spec_matrix_reshaped = reshape(spec_matrix, [1, num_wall_coils, Nx_obs]); 

BZ_x_coils_wall = I_all_wall_reshaped .* spec_matrix_reshaped;  

 

% === Calculate total loop voltage from CS and Eddy current === 

 

Bz_total = BZ_x_wall + BZ_x_solenoid;      

 

indices = r_values <= R_loop; 

r_in_loop = r_values(indices); 

Bz_in_loop = Bz_total(:, indices); 
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Phi = trapz(r_in_loop, Bz_in_loop .* 2 .* pi .* r_in_loop, 2);  

V_loop_total = -gradient(Phi, dt); 

 

% === Plot loop voltage comparison === 

figure; 

set(gcf, 'Renderer', 'painters'); 

 

plot(tspan*1000, V_loop_total, 'LineWidth', 2.5); 

hold on; 

plot(tspan*1000, V_loop_time, 'LineWidth', 2.5); 

xlabel('Time (ms)'); 

ylabel('V_{loop} (V)'); 

title('V_{loop} induced by CS and Eddy current'); 

legend('CS and Eddy current', 'Only CS', 'Location', 'southeast'); 

grid on; 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');  

 

figure; 

set(gcf, 'Renderer', 'painters'); 

 

V_loop_total_percentage = (V_loop_total ./ V_loop_time) * 100; 

V_loop_time_percentage = (V_loop_time ./ V_loop_time) * 100; 

 

plot(tspan*1000, V_loop_total_percentage, 'LineWidth', 2.5); 

hold on; 

plot(tspan*1000, V_loop_time_percentage, 'LineWidth', 2.5); 

 

xlabel('Time (ms)'); 

ylabel('V_{loop} (%)'); 

ylim([40 110]); 

title('V_{loop} induced by CS and Eddy current'); 

legend('CS and Eddy current', 'Only CS (100%)', 'Location', 'southeast'); 

grid on; 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold');  

 

% === magnetic_field_loop Function Definition === 

function [Bx, By, Bz] = magnetic_field_loop(R, I, x, y, z) 
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    mu0 = 4*pi*1e-7;  

    rho = sqrt(x.^2 + y.^2); 

    phi = atan2(y, x); 

 

    rho(rho == 0) = eps; 

 

    k_squared = 4 * R * rho ./ ((R + rho).^2 + z.^2); 

    k = sqrt(k_squared); 

    [K, E] = ellipke(k_squared); 

 

    Brho = (mu0 * I) ./ (2 * pi * sqrt((R + rho).^2 + z.^2)) .* (z ./ rho) .* ... 

           ( (R^2 + rho.^2 + z.^2) ./ ((R - rho).^2 + z.^2) .* E - K ); 

    Bz = (mu0 * I) ./ (2 * pi * sqrt((R + rho).^2 + z.^2)) .* ... 

         ( (R^2 - rho.^2 - z.^2) ./ ((R - rho).^2 + z.^2) .* E + K ); 

 

    Bx = Brho .* cos(phi); 

    By = Brho .* sin(phi); 

end 

  



184 

 

A.14 Plasma parameters calculation code 

% The code is in Student_Thesis/2025_ypi/Code/plasma_thesis on the NAS. 

% === Read data === 

 

% Plasma 

plasma_data = readtable('plasma_parameters.xlsx'); 

 

% Assign the values back to their original variable names 

a_plasma = plasma_data.Semi_Minor_Axis_m(1);                % Plasma cross-

section semi-minor axis (m) 

kappa = plasma_data.Kappa(1);                % Plasma cross-section semi-major 

axis (m) 

b_plasma = a_plasma * kappa; 

R_plasma = plasma_data.Major_Radius_m(1);                   % Major radius (m) 

A_plasma = plasma_data.Cross_Sectional_Area_m2(1);          % Plasma cross-

sectional area (m^2) 

L_plasma = plasma_data.Length_m(1); 

V_plasma = plasma_data.Volume_m3(1);                       % Plasma volume 

(m^3) for toroidal geometry 

 

plasma_material = 'He';       % H, He, Ar 

n_total_plasma = 1e17;        % Total particle density (m^-3) 

readRateData(plasma_material); 

B0  = 0.1;              % Central magnetic field (T) 

T_plasma = 0.026; % Initial plasma temperature in eV (300K) 

ne = 0; 

n0 = 0; 

eV_to_J = 1.60218e-19;  % Conversion factor from eV to J 

 

% Read chamber data 

chamber_data = readtable('chamber_components.xlsx'); 

 

% Extract the relevant data from the table 

component_names = chamber_data.Component;          % Component names 

 

% Initialize counters for inner and outer walls 

num_inner_coils = 0; 
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num_outer_coils = 0; 

 

% Initialize chamber components structures 

chamber_components.inner_wall = struct(); 

chamber_components.outer_wall = struct(); 

 

% Iterate through each component and classify into inner or outer wall 

for i = 1:height(chamber_data) 

    component_name = component_names{i}; 

     

    if contains(component_name, 'Inner Wall') 

        num_inner_coils = num_inner_coils + 1; 

           

    elseif contains(component_name, 'Outer Wall') 

        num_outer_coils = num_outer_coils + 1; 

 

    end 

end 

 

% Display the results 

fprintf('Number of inner wall coils: %d\n', num_inner_coils); 

fprintf('Number of outer wall coils: %d\n', num_outer_coils); 

 

% === Calculation === 

 

% Time range and current profile 

n_solenoid = 1; 

N = 2000 + 1;     

N_q = 100; 

t1 = 10e-3;      % First segment 

t2 = 40e-3;      % Second segment 

t_total = t1 + t2; 

tspan = linspace(0, t_total, N); % Time array 

dt = tspan(2) - tspan(1);      % Time step 

I1 = 10e3;       % Maximum current in the first segment 

I2 = 7.5e3;      % Maximum current in the second segment 
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% Define the current profile 

I_profile = zeros(size(tspan)); 

for i = 1:length(tspan) 

    t = tspan(i); 

    if t <= t1 

        % First phase: From I1 kA to 0 A 

        I_profile(i) = I1 * (1 - t / t1); 

    elseif t <= t1 + t2 

        % Second phase: From 0 A to -I2 kA 

        I_profile(i) = -I2 * ((t - t1) / t2); 

    end 

end 

 

M_origin = readmatrix('M_matrix.xlsx', 'Sheet', 1); 

R_origin = readmatrix('R_matrix.xlsx', 'Sheet', 1); 

M = M_origin; 

R = R_origin; 

total_num_coils = size(R, 1); 

 

% Initialization 

V_history_solenoid = zeros(N, n_solenoid); 

I_history_solenoid = zeros(N, n_solenoid); 

I_prev_solenoid = zeros(1, n_solenoid); 

 

M_solenoid = M(1, 1);  

R_solenoid = R(1, 1);  

var1 = (M_solenoid / dt); 

 

% Plasma parameters to track over time 

T_eV_array = zeros(1, N);  

gamma_array = zeros(1, N); 

ne_array = zeros(1, N); 

n0_array = zeros(1, N); 

P_ohmic_array = zeros(1, N); 

P_prb_array = zeros(1, N); 

P_ion_array = zeros(1, N); 

P_line_array = zeros(1, N); 
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P_loss_array = zeros(1, N); 

P_net_array = zeros(1, N); 

Rp_array = zeros(1, N); 

q_array = zeros(1, N); 

 

I_current = zeros(total_num_coils - 1, 1);   

I_prev_current = zeros(total_num_coils - 1, 1); 

I_history_current = zeros(N, total_num_coils - 1); 

inner_total_I_current = zeros(N, 1); 

outer_total_I_current = zeros(N, 1); 

plasma_I_current = zeros(N,1); 

 

% Energy tracking 

U_array = zeros(1, N);          % Total thermal energy (J) 

E_input_array = zeros(1, N);    % Cumulative input energy (J) 

E_loss_array = zeros(1, N);    % Cumulative loss energy (J) 

 

[Rp, eta_N, T_next, P_ohmic, P_prb, P_ion, P_line, P_loss, P_net,... 

    ne, n0, gamma, Lp] = plasma_parameters(0, T_plasma, dt, ne, n0, ... 

    n_total_plasma, a_plasma, kappa, R_plasma, plasma_material, B0, N_q); 

 

R(total_num_coils, total_num_coils) = Rp; 

M(total_num_coils, total_num_coils) = Lp; 

M_set = M(2:end, 2:end);          % Inductance matrix for walls and plasma 

R_set = R(2:end, 2:end);          % Resistance matrix for walls and plasma 

M_voltage = M(2:end, 1);           % Mutual inductance between solenoid and walls 

and plasma 

A = (M_set / dt) + R_set; 

 

sigma_neo_array = zeros(1, N); 

ft_array = zeros(1, N); 

nuestar_array = zeros(1, N); 

q_profile_array = zeros(N_q, N); 

 

tolerance = 1e-8; 

max_iter = 1e10;  
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for t = 1:N 

    if mod(t, 100) == 0 

        fprintf('Processing time step %d out of %d\n', t, N); 

    end 

 

    if t == 1 

       dI = 0; 

    else 

        dI = (I_profile(t) - I_profile(t - 1)) / dt; 

    end 

 

    V_current = M_voltage * dI; 

    b = (M_set / dt) * I_prev_current - V_current; 

    [I_current, flag] = pcg(A, b, tolerance, max_iter, [], [], I_prev_current); 

 

    I_history_current(t, :) = I_current; 

    I_prev_current = I_current; 

 

    inner_total_I_current(t) = sum(I_current(1:num_inner_coils)); 

    outer_total_I_current(t) = 

sum(I_current(num_inner_coils+1:num_inner_coils+num_outer_coils)); 

    plasma_I_current(t) = I_current(end); 

 

    [Rp, eta_N, T_next, P_ohmic, P_prb, P_ion, P_line, P_loss, P_net,... 

     ne, n0, gamma, Lp, q, sigma_neo, ft, nuestar, q_vals] = ... 

    plasma_parameters(plasma_I_current(t), T_plasma, dt, ne, n0, ... 

        n_total_plasma, a_plasma, kappa, R_plasma, plasma_material, B0, N_q); 

 

    T_plasma = T_next; 

    R_set(end, end) = Rp; % update plasma resistance 

    A = (M_set / dt) + R_set; 

 

    T_eV_array(t) = T_next; 

    gamma_array(t) = gamma; 

    ne_array(t) = ne; 

    n0_array(t) = n0; 

    P_ohmic_array(t) = P_ohmic; 
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    P_prb_array(t) = P_prb; 

    P_ion_array(t) = P_ion; 

    P_line_array(t) = P_line; 

    P_loss_array(t) = P_loss; 

    P_net_array(t) = P_net; 

    Rp_array(t) = Rp; 

    q_array(t) = q; 

    sigma_neo_array(t) = sigma_neo; 

    ft_array(t) = ft; 

    nuestar_array(t) = nuestar; 

    q_profile_array(:, t) = q_vals; 

 

    U_array(t) = 1.5 * n_total_plasma * V_plasma * T_plasma * eV_to_J; 

    if t == 1 

        E_input_array(t) = P_ohmic * dt * V_plasma; 

        E_loss_array(t) = P_loss * dt * V_plasma; 

    else 

        E_input_array(t) = E_input_array(t-1) + P_ohmic * dt * V_plasma; 

        E_loss_array(t) = E_loss_array(t-1) + P_loss * dt * V_plasma; 

    end 

end 

 

% Eddy current of inner and outer chamber 

figure 

plot(tspan*1000, inner_total_I_current/1000, 'LineWidth', 2.5); 

hold on; 

plot(tspan*1000, outer_total_I_current/1000, 'LineWidth', 2.5); 

grid on;  

xlabel('Time(ms)', 'FontWeight', 'bold'); 

ylabel('Current (kA)', 'FontWeight', 'bold'); 

title('Eddy current') 

legend('Inner wall', 'Outer wall', 'Location', 'southeast') 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

 

figure;  

 

yyaxis left 
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plot(tspan * 1e3, I_profile / 1e3, 'LineWidth', 2.5);  % ms vs. kA 

ylabel('Central Solenoid Current (kA)'); 

 

leftMax = max(I_profile) / 1e3;        % kA 

leftMin = min(I_profile) / 1e3; 

 

ylim([leftMin, leftMax * 1.1]);            

 

yyaxis right 

plot(tspan * 1e3, plasma_I_current / 1e3, 'LineWidth', 2.5); hold on; 

ylabel('Current (kA)'); 

 

rightMax = max([max(plasma_I_current)]) / 1e3; 

ylim([0, rightMax * 1.1]); 

 

xlabel('Time (ms)'); 

title('Current Profile'); 

legend('Central Solenoid', 'Plasma current', 'Location', 'best'); 

grid on; 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

 

% Temperature vs. Time 

figure; 

plot(tspan*1e3, T_eV_array, 'LineWidth', 2.5); 

xlabel('Time (ms)'); 

ylabel('Temperature (eV)'); 

title('Plasma Temperature'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

grid on; 

 

% Ionization Fraction vs. Time 

figure; 

plot(tspan*1e3, gamma_array, 'LineWidth', 2.5); 

xlabel('Time (ms)'); 

ylabel('Ionization Fraction \gamma'); 

title('Ionization Fraction'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 
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grid on; 

 

% Plasma Resistance vs. Time 

plot(tspan * 1e3, Rp_array, 'LineWidth', 2.5); 

xlabel('Time (ms)'); 

ylabel('Resistance R_p (\Omega)'); 

title('Plasma Resistance'); 

set(gca, 'YScale', 'log'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

set(gca, 'YMinorGrid','off') 

grid on 

 

% Ohmic Heating Power Density vs. Time 

figure; 

plot(tspan*1e3, P_ohmic_array, 'LineWidth', 2.5); 

xlabel('Time (ms)'); 

ylabel('P_{ohmic} (W/m^3)'); 

title('Ohmic Heating Power Density'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

grid on; 

 

% Plot Multiple Power Losses on the Same Figure 

figure; 

hold on; 

 

plot(tspan*1000, P_prb_array, 'LineWidth', 2.5, 'DisplayName', 'Bremsstrahlung 

(P_{prb})'); 

plot(tspan*1000, P_line_array, 'LineWidth', 2.5, 'DisplayName', 'Line Radiation 

(P_{line})'); 

plot(tspan*1000, P_ion_array, 'LineWidth', 2.5, 'DisplayName', 'Ionization Loss 

(P_{ion})'); 

plot(tspan*1000, P_loss_array, 'LineWidth', 2.5, 'DisplayName', 'Total Loss (P_{loss})'); 

 

xlabel('Time (ms)', 'FontWeight', 'bold'); 

ylabel('Power Density (W/m^3)', 'FontWeight', 'bold'); 

legend('Location', 'best'); 

title('Energy loss'); 
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grid on; 

box on 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

 

% Plot Total Power Loss 

figure 

plot(tspan*1000, P_net_array, 'LineWidth', 2.5); 

hold on; 

grid on;  

xlabel('Time (ms)', 'FontWeight', 'bold'); 

ylabel('Power Density (W/m^3)', 'FontWeight', 'bold'); 

title('Power Input'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

 

%% Energy Conservation Check 

figure; 

plot(tspan * 1e3, E_input_array, 'LineWidth', 2.5); 

hold on; 

plot(tspan * 1e3, E_loss_array, 'LineWidth', 2.5); 

plot(tspan * 1e3, U_array - U_array(1), 'LineWidth', 2.5); 

plot(tspan * 1e3, E_loss_array + U_array - U_array(1), '--', 'LineWidth', 2.5); 

xlabel('Time (ms)', 'FontWeight', 'bold'); 

ylabel('Energy (J)', 'FontWeight', 'bold'); 

title('Energy Conservation Check'); 

legend('Ohmic heating (Input Energy)', 'Total loss', 'Thermal Energy', 'Output Energy', 

'Location', 'best'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 2, 'FontWeight', 'bold'); 

grid on; 

 

function [Rp, eta_N, T_next, P_ohmic, P_prb, P_ion, P_line, P_loss, P_net, ... 

          ne, n0, gamma, Lp, q, sigma_neo, ft, nuestar, q_vals] = ... 

          plasma_parameters(I, T_plasma, dt, ne, n0, ... 

                            n_total_plasma, a_plasma, kappa, R_plasma, 

plasma_material, B0, N_q) 

 

    %% === Constant Definitions === 

    e   = 1.6e-19;          % Elementary charge (C) 
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    kB  = 1.38e-23;         % Boltzmann constant (J/K) 

    mu0 = 4 * pi * 1e-7;    % Permeability of vacuum (H/m) 

    T_e = T_plasma;         % (eV)  

    eV_to_K = 11604.52;     % Conversion factor from eV to K 

 

    switch plasma_material 

    case 'H' 

        Z1_use = 1;   

        Ei_eV = 13.6; 

        mi = 1.67e-27; 

        sigma_ei = 1.5e-16 * T_e^(-2); 

        sigma_ea = 3e-19   * T_e^(-0.5); 

         

    case 'He' 

        Ei_eV = 24.6; 

        mi = 6.64e-27; 

        Z1_use = 1;  % He⁺ → He⁰ dominates 

        sigma_ei = 1.5e-16 * T_e^(-2); 

        sigma_ea = 1e-19   * T_e^(-0.46); 

 

    case 'Ar' 

        Ei_eV = 15.76; 

        mi = 6.63e-26; 

        Z1_use = 1;   

        sigma_ei = 3.0e-16 * T_e^(-2); 

        sigma_ea = 2.0e-19 * T_e^(-0.5); 

 

    otherwise 

        error('Unknown plasma material: %s', plasma_material); 

    end 

 

    Ei_J = Ei_eV * e; 

 

    %% === Geometric Parameters === 

    b_plasma = a_plasma * kappa;         % Plasma minor radius a_plasma, major 

radius b_plasma 

    A_plasma = pi * a_plasma * b_plasma; % Plasma cross-sectional area (m^2) 
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    L_plasma = 2 * pi * R_plasma;        % Effective current path length (m) 

    V_plasma = 2 * pi^2 * R_plasma * a_plasma * b_plasma; % Plasma volume (m^3) 

 

    % Calculation of q profile 

    r_vals = linspace(1e-4, a_plasma, N_q);  

    q_vals = zeros(1, N_q); 

    for i = 1:N_q 

        r = r_vals(i); 

        J_p = I / (pi*r^2); 

        B_T = B0 * R_plasma / (R_plasma + r); 

        B_P = mu0 * J_p / (2*pi*max(r,1e-3));  

        q_vals(i) = (r * B_T) / ((R_plasma + r)* B_P); 

    end 

    q = sum(q_vals .* r_vals) / sum(r_vals); % scalar q output 

 

    gamma_collision = sigma_ea / sigma_ei; 

    gamma_collision = max(min(gamma_collision, 1), 0); 

     

    % SCD/ACD rates 

    R_ion = get_scd_rate(T_e, ne, Z1_use);  % (cm^3/s) 

    R_rec = get_acd_rate(T_e, ne, Z1_use);  % (cm^3/s) 

    if isempty(R_ion), R_ion = 0; end 

    if isempty(R_rec), R_rec = 0; end 

 

    R_ion_m3 = R_ion * 1e-6;   % (m^3/s) 

    R_rec_m3 = R_rec * 1e-6;   % (m^3/s) 

 

    dne_dt  = R_ion_m3 * (n0 * ne) - R_rec_m3 * (ne^2); 

    ne_scd  = ne + dne_dt * dt; 

    ne_scd  = max(ne_scd, 0); 

    gamma_scd = ne_scd / n_total_plasma; 

    gamma_scd = max(min(gamma_scd, 1), 0); 

 

    slope = 10; 

    x_start = 0.0; 

    x_end = 0.5; 
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    x_norm = (gamma_collision - x_start) / (x_end - x_start); 

    x_norm = min(max(x_norm, 0), 1); 

 

    w_scd = 1 ./ (1 + exp(-slope * (x_norm - x_end))); 

 

    w_collision = 1 - w_scd; 

    gamma = w_collision .* gamma_collision + w_scd .* gamma_scd; 

 

    if gamma > 0.9999 

    gamma = 1; 

    end 

 

    ne = gamma * n_total_plasma; 

    n0 = (1 - gamma) * n_total_plasma; 

 

    %% === Neoclassical Conductivity Calculation === 

    ne_for_neo = ne; 

    te_for_neo = T_e; 

    ni_for_neo = ne_for_neo; 

    ti_for_neo = te_for_neo; 

    Zeff = 1.0; 

    eps_local = a_plasma / R_plasma; 

 

    [nuestar, nuistar] = nustar(ne_for_neo, te_for_neo, ni_for_neo, ti_for_neo, Zeff, q, 

R_plasma, eps_local); 

    eps = a_plasma / R_plasma; 

    delta = 0; 

    ft = ftav_with_delta(eps, delta); 

 

    [sigma_neo, ~] = sigmaneo(ft, ne, T_e, Zeff, nuestar); 

    eta_N = 1 ./ sigma_neo;  

    Rp = eta_N * (L_plasma / A_plasma); 

 

    %% === Ohmic Heating Power Calculation === 

    P_ohmic = (I^2 * Rp) / V_plasma; 

 

    %% Bremsstrahlung, Ionization Loss, Line Radiation === 
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    R_prb = get_prb_rate(T_e, ne, Z1_use); 

 

    if isempty(R_prb), R_prb = 0; end 

    R_prb_m3 = R_prb * 1e-6; 

    P_prb = R_prb_m3 * (ne^2); 

 

    P_ion = R_ion_m3 * ne * n0 * Ei_J;  

 

    R_plt = get_plt_rate(T_e, ne, Z1_use); 

 

    if isempty(R_plt), R_plt = 0; end 

    R_plt_m3 = R_plt * 1e-6; 

    P_line = R_plt_m3 * (ne^2); 

 

    P_loss = P_prb + P_ion + P_line; 

    P_net  = P_ohmic - P_loss; 

 

    %% === Heat Capacity Calculation & Temperature Update === 

    c_v    = n_total_plasma * (1.5 * kB);  % J/K·m³ 

    dT_dt  = P_net / c_v;                  % K/s 

    dT_dt_eV = dT_dt / eV_to_K;            % eV/s 

    T_next   = T_plasma + dT_dt_eV * dt;   % eV 

 

    T_next = max(min(T_next, 1e8 / eV_to_K), 300 / eV_to_K); 

 

    %% Plasma Inductance Calculation === 

    li_plasma = 0.5;  

    Lp = mu0 * R_plasma * (log(8 * R_plasma / a_plasma) + li_plasma/2 - 2); 

 

end 

 

% === Read ADAS data === 

 

function readRateData(material) 

    material = lower(material);  

    global rateMatrix_scd Te_scd Ne_scd 

    global rateMatrix_acd Te_acd Ne_acd 
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    global rateMatrix_prb Te_prb Ne_prb 

    global rateMatrix_plt Te_plt Ne_plt 

 

    dataFolder = 'ADAS'; 

    types = {'scd', 'acd', 'prb', 'plt'}; 

 

    for i = 1:length(types) 

        type = types{i}; 

        fname = fullfile(dataFolder, [type '_' material '.dat']); 

        if ~isfile(fname), warning('%s file not found', fname); continue; end 

        lines = readlines(fname, "EmptyLineRule","skip"); 

 

        meta = sscanf(lines(1), '%f'); 

        num_Z1 = meta(1); 

        num_Ne = meta(2); 

        num_Te = meta(3); 

        grid_header_lines = ceil(num_Ne / 8); 

        temp_header_lines = ceil(num_Te / 8); 

 

        % Read ne, Te 

        logNe = []; 

        for j = 3:(2 + grid_header_lines) 

            logNe = [logNe; sscanf(lines(j), '%f')]; 

        end 

        logTe = []; 

        start_te = 3 + grid_header_lines; 

        for j = start_te:(start_te + temp_header_lines - 1) 

            logTe = [logTe; sscanf(lines(j), '%f')]; 

        end 

        Ne = 10.^logNe; 

        Te = 10.^logTe; 

 

        idx_z1 = find(contains(lines, '/ Z1=')); 

        idx_z1 = [idx_z1; length(lines) + 1]; 

 

        rateStruct = struct(); 

        for z = 1:num_Z1 
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            startLine = idx_z1(z) + 1; 

            endLine = idx_z1(z + 1) - 1; 

            blockLines = lines(startLine:endLine); 

            logRate = []; 

            for k = 1:length(blockLines) 

                logRate = [logRate; sscanf(blockLines(k), '%f')]; 

            end 

            if numel(logRate) ~= num_Te * num_Ne 

                warning("Z1=%d rate matrix size mismatch: expected %d, got %d", ... 

                    z, num_Te * num_Ne, numel(logRate)); 

                continue; 

            end 

            mat = reshape(logRate, [num_Te, num_Ne]); 

            rateStruct.(['Z1_', num2str(z)]) = 10.^mat; 

        end 

 

        % Save by type  

        switch type 

            case 'scd' 

                Te_scd = Te; Ne_scd = Ne; rateMatrix_scd = rateStruct; 

            case 'acd' 

                Te_acd = Te; Ne_acd = Ne; rateMatrix_acd = rateStruct; 

            case 'prb' 

                Te_prb = Te; Ne_prb = Ne; rateMatrix_prb = rateStruct; 

            case 'plt' 

                Te_plt = Te; Ne_plt = Ne; rateMatrix_plt = rateStruct; 

        end 

    end 

end 

 

function R = get_scd_rate(T_e, ne, Z1) 

    global Te_scd Ne_scd rateMatrix_scd 

    key = ['Z1_', num2str(Z1)]; 

    if ~isfield(rateMatrix_scd, key) 

        warning('No data for Z1 = %d in SCD', Z1); R = 0; return; 

    end 

    ne_cm3 = ne / 1e6; 
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    R = interp2(Ne_scd(:)', Te_scd(:), rateMatrix_scd.(key), ne_cm3, T_e, 'linear', 0); 

end 

 

function R = get_acd_rate(T_e, ne, Z1) 

    global Te_acd Ne_acd rateMatrix_acd 

    key = ['Z1_', num2str(Z1)]; 

    if ~isfield(rateMatrix_acd, key) 

        warning('No data for Z1 = %d in ACD', Z1); R = 0; return; 

    end 

    ne_cm3 = ne / 1e6; 

    R = interp2(Ne_acd(:)', Te_acd(:), rateMatrix_acd.(key), ne_cm3, T_e, 'linear', 0); 

end 

 

function R = get_prb_rate(T_e, ne, Z1) 

    global Te_prb Ne_prb rateMatrix_prb 

    key = ['Z1_', num2str(Z1)]; 

    if ~isfield(rateMatrix_prb, key) 

        warning('No data for Z1 = %d in PRB', Z1); R = 0; return; 

    end 

    ne_cm3 = ne / 1e6; 

    R = interp2(Ne_prb(:)', Te_prb(:), rateMatrix_prb.(key), ne_cm3, T_e, 'linear', 0); 

end 

 

function R = get_plt_rate(T_e, ne, Z1) 

    global Te_plt Ne_plt rateMatrix_plt 

    key = ['Z1_', num2str(Z1)]; 

    if ~isfield(rateMatrix_plt, key) 

        warning('No data for Z1 = %d in PLT', Z1); R = 0; return; 

    end 

    ne_cm3 = ne / 1e6; 

    R = interp2(Ne_plt(:)', Te_plt(:), rateMatrix_plt.(key), ne_cm3, T_e, 'linear', 0); 

end 

 

% === Reference: https://gitlab.epfl.ch/spc/public/NEOS. === 

 

function [nuestar, nuistar] = nustar(ne,te,ni,ti,zeff,q,R,eps,varargin) 
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zion=ones(size(ne)); 

nargeff=nargin-8; 

if nargeff > 0 

  if ~isempty(varargin{1}); zion=varargin{1}; end 

end 

 

ii=find(ne>0 & te>0); 

lnLam=zeros(size(ne)); 

lnLam(ii) = 31.3 - log(sqrt(ne(ii))./te(ii)); 

 

ii=find(ni>0 & ti>0); 

lnLami=zeros(size(ni)); 

lnLami(ii) = 30. - log(zion(ii).^3.*sqrt(ni(ii))./ti(ii).^1.5); 

 

ii=find(eps~=0); 

nuestar=zeros(size(ne)); 

nuistar=zeros(size(ne)); 

nuestar(ii) = 6.921E-18 .* q(ii) .* R(ii) .* ne(ii) .* zeff(ii) .* lnLam(ii) ./ (te(ii).^2 .* 

eps(ii).^1.5); 

nuistar(ii) = 4.900E-18 .* q(ii) .* R(ii) .* ni(ii) .* zion(ii).^4 .* lnLami(ii) ./ (ti(ii).^2 .* 

eps(ii).^1.5); 

ii=find(eps==0); 

nuestar(ii)=2.*zeff(ii); 

nuistar(ii)=2.*zeff(ii); 

end 

 

function [signeo, sigspitzer] = sigmaneo(ft,ne,te,varargin)  

 

nuestar=zeros(size(ft)); 

zeff=3. .* ones(size(ft)); 

 

nargeff=nargin-3; 

if nargeff > 0 

  if ~isempty(varargin{1}); zeff=varargin{1}; end 

end 

if nargeff > 1 

  if ~isempty(varargin{2}); nuestar=varargin{2}; end 
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end 

 

NZ = 0.58 + 0.74 ./ (0.76 + zeff); 

lnLam = 17.*ones(size(ft)); 

ii=find(ne>0 & te>0); 

if length(ii)>0 

  lnLam = 31.3 - log(sqrt(ne)./te); 

end 

 

sigspitzer = 1.9012E+04 .* te.^1.5 ./ zeff ./ NZ ./ lnLam; 

 

ft33eff = ft ./ (1. + (0.55-0.1.*ft).*sqrt(nuestar) + 0.45.*(1.-ft).*nuestar./zeff.^1.5); 

signeo = sigspitzer .* (1. - ft33eff.*(1.+0.36./zeff - ft33eff.*(0.59./zeff - 

0.23./zeff.*ft33eff))); 

end 

 

 

function [jB,L31,L32,L34,alfa] = jdotB_BS(ft,dln_ne,dln_te,dln_ti,peop,varargin) 

 

zeff=3. .* ones(size(ft)); 

nuestar=zeros(size(ft)); 

nuistar=zeros(size(ft)); 

ptot=ones(size(ft)); 

Tpsi=ones(size(ft)); 

 

nargeff=nargin-5; 

if nargeff > 0 

  if ~isempty(varargin{1}); zeff=varargin{1}; end 

end 

if nargeff > 1 

  if ~isempty(varargin{2}); nuestar=varargin{2}; end 

end 

if nargeff > 2 

  if ~isempty(varargin{3}); nuistar=varargin{3}; end 

end 

if nargeff > 3 

  if ~isempty(varargin{4}); ptot=varargin{4}; end 
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end 

if nargeff > 4 

  if ~isempty(varargin{5}); Tpsi=varargin{5}; end 

end 

 

[L31, L32, L34, alfa] = BScoeff(ft,zeff,nuestar,nuistar); 

 

jB = - Tpsi.*ptot.* (L31.*dln_ne + peop.*(L31+L32).*dln_te + (1.-

peop).*(L31+alfa.*L34).*dln_ti); 

end 

 

function [L31, L32, L34, alfa] = BScoeff(ft,varargin) 

 

% dim 

dims=size(ft); 

dimrho=dims(1); 

dimt=dims(2); 

if dimrho==1 

  dimrho=dimt; 

  dimt=1; 

end 

dims=[dimrho dimt]; 

ft=reshape(ft,dims); 

 

zeff=3. * ones(dims); 

nuestar=0.*ones(dims); 

nuistar=0.*ones(dims); 

 

nargeff=nargin-1; 

if nargeff > 0 

  if ~isempty(varargin{1}); zeff=reshape(varargin{1},dims); end 

end 

if nargeff > 1 

  if ~isempty(varargin{2}); nuestar=reshape(varargin{2},dims); end 

end 

if nargeff > 2 

  if ~isempty(varargin{3}); nuistar=reshape(varargin{3},dims); end 



203 

 

end 

 

%  effective trapped fractions 

sqnuestar=sqrt(nuestar); 

 

ft31eff = ft ./ (1.+(1.-0.1.*ft).*sqnuestar + 0.5.*(1.-ft).*nuestar./zeff); 

ft32ee_eff = ft ./ (1. + 0.26.*(1.-ft).*sqnuestar + 0.18.*(1.-0.37.*ft).*nuestar./sqrt(zeff)); 

ft32ei_eff = ft ./ (1. + (1.+0.6.*ft).*sqnuestar + 0.85.*(1.-0.37.*ft).*nuestar.*(1.+zeff)); 

ft34eff = ft ./ (1.+(1.-0.1.*ft).*sqnuestar + 0.5.*(1.-0.5.*ft).*nuestar./zeff); 

alfa0 = - 1.17.*(1.-ft) ./ (1.-0.22.*ft-0.19.*ft.^2); 

 

% coefficients 

zeffp1 = zeff+1.; 

L31 = ft31eff .* ( (1.+1.4./zeffp1) ... 

    - ft31eff .* (1.9./zeffp1 - ft31eff .* (0.3./zeffp1 + 0.2./zeffp1 .* ft31eff))); 

L32 = (0.05+0.62.*zeff)./zeff./(1.+0.44.*zeff).*(ft32ee_eff-ft32ee_eff.^4) ... 

    + ft32ee_eff.^2.*(1.-1.2.*ft32ee_eff+0.2.*ft32ee_eff.^2) ./ (1.+0.22.*zeff) ... 

    - (0.56+1.93.*zeff)./zeff./(1.+0.44.*zeff) .* (ft32ei_eff-ft32ei_eff.^4) ... 

    + ft32ei_eff.^2.*(1.-0.55.*ft32ei_eff-0.45.*ft32ei_eff.^2) .* 4.95 ./ (1.+2.48.*zeff) ... 

    + 1.2 ./ (1.+0.5.*zeff) .* (ft32ee_eff.^4-ft32ei_eff.^4); 

L34 = ft34eff.* ( (1.+1.4./zeffp1) - ft34eff.*(1.9./zeffp1-

ft34eff.*(0.3./zeffp1+0.2./zeffp1.*ft34eff)) ); 

sqnui = sqrt(nuistar); 

nui2ft6 = nuistar.^2 .* ft.^6; 

alfa = ((alfa0 + 0.25.*(1.-ft.^2).*sqnui) ./ (1.+0.5.*sqnui) + 0.315.*nui2ft6) ./ 

(1.+0.15.*nui2ft6); 

end 

 

function ft = ftav_with_delta(eps, delta) 

 

if isscalar(delta) 

    delta = delta .* ones(size(eps)); 

end 

 

% Step 1: Calculate effective inverse aspect ratio 

epsilon_eff = 0.67 .* (1 - 1.4 * delta .* abs(delta)) .* eps; 
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% Step 2: Calculate ft using refined formula 

numerator = (1 - epsilon_eff); 

denominator = (1 + 2 .* sqrt(epsilon_eff)); 

sqrt_term = sqrt((1 - eps) ./ (1 + eps)); 

 

ft = 1 - (numerator ./ denominator) .* sqrt_term; 

 

% Step 3: Ensure ft does not exceed 1 

ft = min(ft, 1); 

ft = max(ft, 0); % also clip to 0 if any negative due to numerical error 

end 

  



205 

 

A.15 Formosa Integrated Research Spherical Tokamak (FIRST) 

In the study, we developed a series of numerical models for calculating key physical 

quantities in the mini-Tokamak, including the resistance and inductance of the components, 

the eddy currents in the vacuum-vessel walls, the required and induced loop voltages, as well 

as plasma parameters such as temperature, current, ionization fraction, and resistance. These 

models were primarily designed to support the optimization of the central solenoid current 

profile. Here, we would like to apply the same models to Formosa Integrated Research 

Spherical Tokamak (FIRST), the first tokamak that is being built in Taiwan. 

This appendix consists of three parts. Appendix 15.1 introduces the specifications of 

FIRST, including the vacuum-vessel geometry, the central solenoid configuration, and the 

desired plasma shape. Appendix 15.2 presents the calculation of the required breakdown 

voltage, and Appendix 15.3 shows the calculation of plasma parameters. Finally, Appendix 

15.4 provides the conclusion. 

A.15.1 Specification 

Formosa Integrated Research Spherical Tokamak (FIRST) is the first tokamak being 

developed in Taiwan. The expected date of first tokamak plasma is in 2026. The major and 

minor radii of plasma in FIRST are 450 mm and 320 mm, respectively. The elongation will 

be 2.4 so that the long and short axis of the plasma cross section is 768 mm and 320 mm, 

respectively. The vacuum vessel is approximately elliptical in shape, featuring an arc radius 

of 968 mm as shown in Figure 65(a). The center of the arc is 140 mm away from the z axis 

of the system as shown in Figure 65(b). The device will provide a toroidal magnetic field 

of up to 0.5 T at R = 450 mm, the goal of the plasma current is 100 kA. Achieving a 

temperature of 100 eV is the first milestone of the project. 
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Figure 66(a) shows the central solenoid in FIRST, which consists of two layers with 

140 turns each, resulting in a total of 280 turns. The distances from the centerline to the 

centers of the inner and outer layers are 88 mm and 100 mm, respectively. For simplicity, 

the major radius of the central solenoid in our calculations is set as their average, 94 mm. 

The total height of the solenoid is 1680 mm.  

The solenoid coil is a hollow copper tube wrapped with an insulating layer on the 

outside. The blue circle represents the insulation layer, which is 1 mm thick. The black 

circle represents the coil, with a diameter of 10 mm. The gray circle represents the hollow 

section for cooling water, with a diameter of 7.6 mm. Including the insulation, the total 

diameter of a single turn is therefore 12 mm. 

For the vacuum vessel, we divide it into two parts: the inner-vacuum-vessel wall and 

the outer-vacuum-vessel wall, as shown in Figure 65(b). The curve of the outer-vacuum-

vessel wall, which is approximately elliptical in shape, centered at x = -140 mm, with an 

arc radius of 968 mm, is calculated based on the equation: 

(𝑟 + 140)2 + 𝑧2 = 9682. (129) 

Figure 65: (a) Simpled xz-plane cross-section of FIRST. (b) Specifications of the vacuum 

vessel. 
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 The vacuum-vessel wall is treated as many ring coils stacking on top of each other. 

To enhance calculation accuracy, as illustrated in Figure 66(b), we divide the inner-

vacuum-vessel wall into 937 identical ring coils with square cross-sections of 2 mm in 

each side, stacked together. Similarly, the outer-vacuum-vessel wall is divided into 188 

ring coils with square cross-sections of 10 mm in each side and with different ring radius, 

stacked together. The radius of each element is calculated using Eq. (129) This 

segmentation allows for precise modeling of the eddy currents generated within the 

vacuum-vessel walls. All components are implemented in MATLAB according to the 

specifications, and the detailed code is provided in Appendix A.16. 

A.15.2 Required loop voltage for breakdown 

To design an appropriate solenoid current profile, it is first necessary to determine the 

breakdown conditions. With the specifications of the central solenoid and vacuum-vessel 

walls, we apply the models developed in the previous chapters to calculate the key physical 

quantities in FIRST. Finally, we design the central solenoid current profile for generating 

the required loop voltage including considering the eddy current induced in the vacuum-

vessel wall. 

Figure 66: (a) Specifications of the central solenoid. (b) Specifications of the inner and 

outer vacuum-vessel walls divided for calculation. 
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 First, we calculate the required loop voltage for breakdown. To do so, we must 

determine the connection length in FIRST. This calculation follows the same method 

described in Section 4.1. Since the shape of the outer-vacuum-vessel wall is already known 

as an arc centered at x = -140 mm with an arc radius of 968 mm, as shown in Figure 67: 

(x + 140)2 + z2 = 9682. (130) 

The vertical side equals the vacuum vessel height at the location 450 mm from the 

centerline. It can be calculated as 

𝑦 = √9682 − (450 + 140)2 = 767 (at x = 450mm),

⇒ 2𝑦 = 1534 mm. (131)
 

This vertical distance of 1534 mm corresponds to the total extent of the electron’s 

motion in the z direction, as shown in Figure 67. Assuming a magnetic field ratio BZ/BT = 

1/1000, the corresponding connection length is estimated to be 1534 m. 

Using the same method described in Section 4.1, the required loop voltage for 

breakdown is calculated based on the empirical Townsend criterion: 

𝐸BD =
𝐵𝑃

ln(𝐴𝑃𝐿)
(132) 

where 𝑃 is the prefill gas pressure, 𝐿 is the connection length, and 𝐴, 𝐵 are gas-specific 

constants. Unlike the mini-Tokamak, which uses helium, FIRST uses hydrogen as the 

Figure 67: Specifications of the vacuum vessel. 
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prefill gas. Therefore, the constants are taken as 𝐴  = 3.83 m−1⋅Pa−1 and 𝐵  = 

93.6 V⋅m−1⋅Pa−1. 

Then, we calculate the breakdown electric field under specified conditions, which 

depend on parameters such as gas pressure, connection length, and the magnetic field ratio 

BT/BZ. Figure 68(a) shows the breakdown curve of the electric field for a gas pressure range 

from 10-4 Pa to 100 Pa, with the ratio between BT and BZ varying from 0.1 to 0.001. 

 Multiplying the electric field by the total field line length, we can further determine 

the breakdown voltage (𝑉BD) at our desired plasma position (R = 450 mm): 

𝑉BD = 𝐸BD ∙ 2𝜋𝑅, (133) 

as shown in Figure 68(b). 

Using the previously described method in Section 4.2, we calculate the breakdown 

voltage under the target conditions of our experiment. For example, when BZ is 0.1% of BT, 

and the vacuum vessel height is 1534 mm (at a radius of 450 mm), the connection length (L) 

is 1534 m. Additionally, if the pressure is 10-4 Torr (equivalent to 1.3×10-2 Pa), i.e., the 

Figure 68: (a) Breakdown electric field curve. (b) Breakdown voltage curve. 
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particle density is approximately 1018 m-3, the breakdown electric field is calculated using 

Eq. (132): 

𝐸 =
𝐵𝑃

ln(𝐴𝑃𝐿)
=

93.6 × 1.3 × 10−2

ln(3.83 × 1.3 × 10−2 × 1534)
= 0.28V

m⁄ . (134) 

Based on this electric field, we can calculate the breakdown voltage required to generate 

plasma at a distance of 0.45 m from the centerline using Eq. (133): 

𝑉 = 𝐸 ∙ 2𝜋𝑅 = 0.28 × 2𝜋 × 0.45 = 0.8 V. (135) 

To induce this loop voltage in the vacuum vessel, we calculate the required rate of 

change of the central solenoid current using Faraday’s law. Substituting the solenoid 

geometry and parameters, length 𝑙 = 1.68 m , radius 𝑟 = 0.094 m , cross-sectional area 

𝐴 = 𝜋𝑟2 = 𝜋(0.094)2 = 0.314 m2, number of turns 𝑁 = 280, and permeability of free 

space 𝜇0 = 4𝜋 × 10−7 H/m, into Eq. (70): 

𝑑𝐼

𝑑𝑡
= −

0.8 × 1.68

𝜋(0.094)2 ∙ 280 ∙ 4𝜋 × 10−7
= −138 A ms⁄ . (136) 

Once the current rate is determined, a current profile over a specified duration, e.g., 

15 ms, can be generated. As shown by the blue solid line in Figure 69(a), the current drops 

from 2.07 kA to 0 kA in 15 ms. This profile is then used in conjunction with the model 

developed in Chapter 3 to calculate the eddy currents induced in the inner and outer vacuum-

vessel walls by the time-varying central solenoid current. As illustrated in Figure 69(a), the 

total eddy currents in the inner and outer walls are represented by the red solid and red dashed 

lines, respectively. The total eddy currents in the inner and outer walls reach ~5 kA and ~4 

kA, respectively. These total currents are obtained by summing the contributions from each 

individual wall segment, as shown in Figure 69(b) and (c). 

The induced loop voltage is often several times higher than the calculated breakdown 

voltage since the connecting length we used was an optimistic condition where BZ/BT = 0.1 

%. Using this program, we can quickly calculate the maximum central solenoid current 
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required for different loop voltages and durations. As shown in Table 7, if we aim to induce 

a loop voltage of 10 V, the maximum current of the central solenoid would need to be 20 

kA, which is very challenging. Alternatively, we can reduce the time duration (𝑡duratin) 

while maintaining the same current rate (𝐼max/𝑡duratin) to lower the required maximum 

current of the central solenoid. For example, if 𝑡duratin is 10 ms, the 𝐼max = 17 kA. It’s a 

more reasonable number. 

  

Figure 69: (a) Current profile of central solenoid and the eddy currents of the inner and outer 

vacuum-vessel wall. (b) The eddy current of each element of the inner-vacuum-vessel wall.  

(c) The eddy current of each element of the outer-vacuum-vessel wall. 
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Table 7: Central solenoid current requirements for different loop voltages and durations. 

𝑉𝑙𝑜𝑜𝑝 𝑡𝑑𝑢𝑟𝑎𝑡𝑖𝑛 𝐼𝑚𝑎𝑥 

0.8 V 15 ms 2.1 kA 

5 V 15 ms 13 kA 

10 V 10 ms 17 kA 

10 V 15 ms 26 kA 

 

With this current profile, we then computed the magnetic field distribution produced by 

each coil and integrated the resulting fields to obtain the total magnetic flux in the equatorial 

plane. Based on the flux variation over time, the loop voltage was derived using Eq. (64), as 

shown in Figure 70.  

It can be observed that around 6.5 ms, the influence of eddy currents in the vacuum-

vessel walls on the loop voltage reduces to approximately 5%. It indicates that the impact of 

eddy currents in the vacuum-vessel walls on the loop voltage can be ignored for a central 

solenoid current profile with a duration longer than 6.5 ms. 

Figure 70: Comparison of loop voltage induced by central solenoid and eddy currents in 

the vacuum-vessel walls over time. 
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A.15.3 Plasma parameters 

Lastly, we calculate the plasma parameters by providing the initial conditions, including 

the initial plasma temperature, working gas pressure, and the central solenoid current profile. 

Using these inputs, the plasma parameters at each time step are computed based on the model 

in Chapter 5. 

Three cases were considered: (a) Gas density of 1017 m-3, with initial temperature of 

0.026 eV; (b) Gas density of 1017 m-3, with initial temperature of 1 eV; (a) Gas density of 

1018 m-3, with initial temperature of 5 eV. They are listed in Table 8. 

 

Table 8: Plasma startup scenarios and central solenoid current profiles in FIRST. 

Case 𝑛0 𝑇0 𝐼cs_max,1 Δ𝑡cs_1 𝐼cs_max,2 Δ𝑡cs_2 𝑉loop_1 𝑉loop_2 

a 1017 m-3 0.026 eV 1.7 kA 10 ms -1.08 kA 40 ms 1 V 0.16 V 

b 1018 m-3 0.026 eV 10 kA 5 ms -10 kA 45 ms 11.6 V 1.3 V 

c 1018 m-3 5 eV 10 kA 5 ms -10 kA 45 ms 11.6 V 1.3 V 
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 (a) The initial plasma temperature is set to 0.026 eV, and the gas density is assumed to 

be 1017 m-3, corresponding to a pressure of approximately 10-5 Torr, the results are shown in 

Figure 71(a). The applied central solenoid current profile, represented by the blue solid line 

in Figure 71(a), decreases linearly from 1.7 kA to 0 kA over the first 10 ms, followed by a 

linear ramp from 0 kA to −1.08 kA over the next 40 ms. This time-varying current induces a 

loop voltage of approximately 1 V over the first 10 ms, which exceeds the required 

breakdown voltage of 0.06 V at R = 450 mm under a gas pressure of 10−5 Torr. 

Figure 71(a) shows the plasma current in the red line, induced by the central solenoid 

current profile in the blue line, while Figure 71(b) presents the total eddy currents in the 

inner and outer vacuum-vessel walls, respectively. The target plasma parameters for FIRST 

are a plasma temperature of 100 eV and a plasma current of 100 kA. However, compared to 

achieving high plasma current, our current focus is to reach and sustain the target plasma 

temperature at 100 eV, as shown in Figure 72(a). Figure 72(b) shows the time evolution of 

the ionization fraction. The plasma becomes fully ionized at approximately 11 ms and 

remains at this level. 

Figure 71: (a) Central solenoid and plasma current. (b) Current profile of inner and outer 

vacuum-vessel walls. 
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(b) The initial plasma temperature is set to 0.026 eV, and the gas density of 1018 m−3, 

corresponding to a pressure of approximately 10−4 Torr. The applied central solenoid current 

profile, represented by the blue solid line in Figure 73(a), decreases linearly from 10 kA to 

0 kA over the first 5 ms, followed by a linear ramp from 0 kA to −10 kA over the next 45 ms. 

This time-varying current induces a loop voltage of approximately 11.6 V over the first 5 ms, 

which exceeds the required breakdown voltage of 0.8 V at R = 450 mm under the same 

pressure condition. 

As shown in Figure 73(a), the plasma current, represented by the red solid line, driven 

by the sharp initial change rate of the central solenoid current reaches its peak value of 

approximately 78 kA at around 5.3 ms. However, as the rate of change of the solenoid current 

decreases after 5 ms, the induced loop voltage also declines, leading to a gradual reduction 

in plasma current. Figure 73(b) presents the total eddy currents in the inner and outer 

vacuum-vessel walls induced by the central solenoid current profile. 

Figure 72: Plasma temperature. (b) Ionization fraction. 
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Figure 74(a) shows the plasma temperature evolution. The red dashed vertical lines 

indicate the period during which the plasma remains fully ionized, which lasts for 

approximately 10 ms. The plasma temperature reaches a peak value of approximately 125 eV 

at around 5.8 ms, due to the sharp initial change rate of the central solenoid current. However, 

as the rate of change of the solenoid current decreases after 5 ms, the induced plasma current 

declines, resulting in insufficient Ohmic heating and a gradual reduction in plasma 

temperature.  

Figure 74(b) presents the time evolution of the plasma ionization fraction. The plasma 

becomes fully ionized at around 3.65 ms, and maintains this state until approximately 16 ms. 

Afterward, the ionization fraction begins to decrease, following the same general trend as 

the plasma temperature. 

  

Figure 73: (a) Central solenoid and plasma current. (b) Current profile of inner and outer 

vacuum-vessel walls. 
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(c) The initial plasma temperature is set to 5 eV, and the gas density is assumed to be 

1018 m−3. The central solenoid current profile decreases linearly from 10 kA to 0 kA over the 

first 5 ms, followed by a linear ramp from 0 kA to −10 kA over the next 45 ms. It is the same 

as that in case (b) and is shown in Figure 75(a). Preheating enables the plasma current, 

represented by the red solid line, to reach a higher peak value of approximately 93 kA at 

around 5.3 ms.  

Figure 75(b) presents the total eddy currents in the inner and outer vacuum-vessel walls 

for case (b) and (c). There is no significant difference in the eddy current behavior, as it is 

primarily determined by the rate of change of the central solenoid current, which remains 

the same in both cases. However, a noticeable difference can be observed in the eddy current 

of the inner-vacuum-vessel wall. Due to the delayed decay of the plasma current in this case 

as shown in Figure 75(a), the secondary rise of the eddy current in the inner-vacuum-vessel 

wall, caused by the changing magnetic field from the decaying plasma current, occurs later. 

Specifically, the peak of this secondary feature shifts from 20 ms to approximately 31 ms. A 

similar trend can also be observed in the eddy current of outer-vacuum-vessel wall, although 

the effect is less pronounced due to its larger distance from the plasma. 

Figure 74: Plasma temperature. (b) Ionization fraction. 
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Figure 76(a) and Figure 76(b) show the plasma temperature profile and plasma 

ionization fraction, respectively. The results demonstrate that preheating not only increases 

the peak plasma temperature, reaching approximately 165 eV at around 6.2 ms due to the 

enhanced plasma current and resulting stronger Ohmic heating, but also extends the fully 

ionized duration. The temperature increases ~32% compare to the no-preheated case in case 

(b). The plasma becomes fully ionized at approximately 3 ms and maintains this state until 

around 26.4 ms, representing an extension of about 11 ms compared to the non-preheated 

case, i.e., 89% increase. These results highlight the effectiveness and importance of 

preheating in achieving and sustaining plasma conditions. Therefore, the initial condition in 

case (c) is the most preferable condition. 

  

Figure 75: (a) Central solenoid and plasma current. (b) Current profile of inner and outer 

vacuum-vessel walls. 
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A.15.4 Conclusion  

In this section, we use our model to design the central solenoid current profile for the 

Formosa Integrated Research Spherical Tokamak (FIRST) and propose three different cases. 

One case targets an initial plasma density of n = 1017 m−3, aiming to maintain a plasma 

temperature of approximately 100 eV for 35 ms. The other two cases are designed for a 

higher density of n = 1018 m−3, both aiming to reach 100 eV. We find that introducing a 5 eV 

preheat increases the peak plasma temperature from 125 eV to 165 eV, an improvement of 

approximately 32%, and extends the fully ionized duration from 12.35 ms to 23.4 ms, 

representing an 89% increase. Based on these results, case (c) in Table 9, which includes 

preheating, is preferred, as it significantly increases both the peak temperature and the 

duration of full ionization. These enhancements contribute to improved plasma startup 

quality and stability. 

Table 9: Plasma startup scenarios and central solenoid current profiles in FIRST. 

Case 𝑛0 𝑇0 𝐼cs_max,1 Δ𝑡cs_1 𝐼cs_max,2 Δ𝑡cs_2 𝑉loop_1 𝑉loop_2 

a 1017 m-3 0.026 eV 1.7 kA 10 ms -1.08 kA 40 ms 1 V 0.16 V 

b 1018 m-3 0.026 eV 10 kA 5 ms -10 kA 45 ms 11.6 V 1.3 V 

c 1018 m-3 5 eV 10 kA 5 ms -10 kA 45 ms 11.6 V 1.3 V 

Figure 76: Plasma temperature. (b) Ionization fraction. 
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A.16 Formosa Integrated Research Spherical Tokamak (FIRST) 

% The code is in Student_Thesis/2025_ypi/Code/parameter_FIRST_thesis on the NAS. 

% ========== Arc Mode ========== 

 

%% ---- Enable Components ---- 

enable_chamber = true; 

enable_solenoid = true; 

enable_plasma = true; 

enable_pfc = false; 

 

%% =========== Input Parameters =========== 

 

% Chamber 

if enable_chamber 

    % Arc chamber parameters 

    offset_x = 140e-3; 

    thickness = 10e-3; 

    inner_radius = 968e-3 + thickness/2; 

    radius = thickness/2; 

    inner_thickness = 2e-3; 

    inner_distance = 100e-3 + inner_thickness/2; 

    % Arc geometry 

    x_target = inner_distance + thickness / 2; 

    cos_theta = (x_target + offset_x) / inner_radius; 

    theta_start = -acos(cos_theta); 

    theta_end = acos(cos_theta); 

    z_top = inner_radius * sin(theta_end); 

    z_bottom = inner_radius * sin(theta_start); 

    chamber_height = abs(z_top - z_bottom); 

 

    % Inner wall params 

    inner_params.height = chamber_height; 

    inner_params.thickness = inner_thickness; 

    inner_params.distance = inner_distance; 

    % Outer wall params 

    outer_params = struct( ... 
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        "height", chamber_height, ... 

        "radius", radius, ... 

        "thickness", thickness, ... 

        "inner_radius", inner_radius, ... 

        "offset_x", offset_x, ... 

        "theta_start", theta_start, ... 

        "theta_end", theta_end); 

 

    % Generate wall geometry 

    [inner_x, inner_z, chamber_components.inner_wall] = 

generate_inner_wall(inner_params); 

    [outer_x, outer_z, chamber_components.outer_wall] = 

generate_outer_wall_arc(outer_params); 

 

    % Chamber export table (same format as Rec Mode) 

    num_inner = length(inner_x); 

    num_outer = length(outer_x); 

    names = [arrayfun(@(i) sprintf('Inner Wall %d', i), 1:num_inner, 'UniformOutput', 

false)'; ... 

             arrayfun(@(i) sprintf('Outer Wall %d', i), 1:num_outer, 'UniformOutput', 

false)']; 

    r_values = [inner_x; outer_x]; 

    z_values = [inner_z; outer_z]; 

    thickness_values = [repmat(inner_params.thickness, num_inner, 1); 

repmat(outer_params.thickness, num_outer, 1)]; 

    radius_values = [repmat(inner_params.thickness/2, num_inner, 1); 

repmat(outer_params.radius, num_outer, 1)]; 

    coil_lengths = 2 * pi * r_values; 

 

    chamber_table = table(names, r_values, z_values, thickness_values, radius_values, 

coil_lengths, ... 

        'VariableNames', {'Component', 'Distance_m', 'Z_Position_m', 'Thickness_m', 

'Radius_m', 'Coil_Length_m'}); 

    save_table_with_overwrite(chamber_table, 'chamber_components.xlsx'); 

end 

 

% Solenoid 
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if enable_solenoid 

    solenoid_radius = 5e-3; 

    solenoid_radius_cooling = 3.8e-3; 

    isolation_thickness = 1e-3; 

    solenoid_total_radius = solenoid_radius + isolation_thickness; 

    solenoid_inner_num_coils = 140; 

    solenoid_layer_count = 2; 

    solenoid_outer_num_coils = solenoid_inner_num_coils * (solenoid_layer_count == 

2); 

    solenoid_inner_distance = 82e-3; 

    solenoid_outer_distance = solenoid_inner_distance + (solenoid_layer_count == 2) * 2 

* solenoid_total_radius; 

    solenoid_height_between_turns = 12e-3; 

    solenoid_height = solenoid_total_radius * 2 * solenoid_inner_num_coils; 

    solenoid_coil_A = pi * (solenoid_radius^2 - solenoid_radius_cooling^2); 

    solenoid_a = pi * (solenoid_inner_distance - solenoid_radius)^2; 

 

    solenoid_table = table({"solenoid"}, solenoid_radius, solenoid_radius_cooling, 

isolation_thickness, solenoid_total_radius, ... 

        solenoid_inner_num_coils, solenoid_outer_num_coils, solenoid_inner_distance, 

solenoid_outer_distance, ... 

        solenoid_height_between_turns, solenoid_height, solenoid_coil_A, 

solenoid_a, ... 

        'VariableNames', {'Component', 'Radius_m', 'Cooling_m', 'Isolation_Thick_m', 

'Total_Radius_m', 'Inner_Num_Coils', 'Outer_Num_Coils', 'Inner_Distance_m', 

'Outer_Distance_m', 'Height_Between_Turns_m', 'Total_Height_m', 'Coil_Area_m2', 

'A_Param'}); 

    writetable(solenoid_table, 'solenoid_parameters.xlsx'); 

end 

 

% Plasma 

if enable_plasma 

    T_plasma = 1; % eV 

    n_total_plasma = 1e17; % m^-3 

    a_plasma = 0.32; 

    kappa = 2.4; 

    b_plasma = a_plasma * kappa; 
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    R_plasma = 0.45; 

    A_plasma = pi * a_plasma * b_plasma; 

    L_plasma = 2 * pi * R_plasma; 

    V_plasma = 2 * pi^2 * R_plasma * a_plasma * b_plasma; 

 

    plasma_table = table({"plasma"}, T_plasma, n_total_plasma, a_plasma, kappa, 

R_plasma, A_plasma, L_plasma, V_plasma, ... 

        'VariableNames', {'Component', 'Temperature_eV', 'Particle_Density_m3', 

'Semi_Minor_Axis_m', 'Kappa', 'Major_Radius_m', 'Cross_Sectional_Area_m2', 

'Length_m', 'Volume_m3'}); 

    writetable(plasma_table, 'plasma_parameters.xlsx'); 

end 

 

% PFC 

coil_component = struct(); 

if enable_pfc 

    pfc_list = { 

        struct('name', 'PFC1', 'width', 11e-3, 'radius', inner_thickness/2, ... 

               'distance', 850e-3 + inner_thickness/2, 'z_values', 0, 'num_coils', 1) 

    }; 

    coil_component.PFC = struct(); 

    pfc_counter = 1; 

    for k = 1:length(pfc_list) 

        pfc = pfc_list{k}; 

        [pfc_x, ~, pfc_z] = setup_coil(pfc.num_coils, pfc.radius, pfc.width, ... 

            pfc.distance, pfc.z_values, pfc.z_values, 0, 0); 

        for i = 1:pfc.num_coils 

            coil_component.PFC(pfc_counter).r = pfc_x(i); 

            coil_component.PFC(pfc_counter).z = pfc_z(i); 

            coil_component.PFC(pfc_counter).thickness = pfc.width; 

            coil_component.PFC(pfc_counter).radius = pfc.radius; 

            coil_component.PFC(pfc_counter).coil_length = 2 * pi * pfc.distance; 

            pfc_counter = pfc_counter + 1; 

        end 

    end 

    % Export table (same as Rec Mode) 

    coil_names = fieldnames(coil_component); 
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    coil_table_data = []; 

    for i = 1:length(coil_names) 

        comp_name = coil_names{i}; 

        coils = coil_component.(comp_name); 

        for j = 1:length(coils) 

            coil_table_data = [coil_table_data; { 

                sprintf('%s %d', comp_name, j), ... 

                coils(j).r, coils(j).z, coils(j).thickness, coils(j).radius, 

coils(j).coil_length 

            }]; 

        end 

    end 

    coil_table = cell2table(coil_table_data, ... 

        'VariableNames', {'Component', 'Distance_m', 'Z_Position_m', 'Thickness_m', 

'Radius_m', 'Coil_Length_m'}); 

    writetable(coil_table, 'coil_components.xlsx'); 

end 

 

%% ========== Plotting ========== 

 

figure; 

hold on; 

 

if enable_chamber 

    plot(outer_x, outer_z, 'ro', 'MarkerFaceColor', 'r', 'DisplayName', 'Outer Wall'); 

    plot(inner_x, inner_z, 'bo', 'MarkerFaceColor', 'b', 'DisplayName', 'Inner Wall'); 

end 

 

if enable_plasma 

    theta = linspace(0, 2*pi, 200); 

    x_plasma = R_plasma + a_plasma * cos(theta); 

    z_plasma = b_plasma * sin(theta); 

    plot(x_plasma, z_plasma, 'k-', 'DisplayName', 'Plasma'); 

end 

 

if enable_solenoid 

    solenoid_z = linspace(-solenoid_height/2 + solenoid_total_radius, ... 
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                          solenoid_height/2 - solenoid_total_radius, 

solenoid_inner_num_coils)'; 

    plot(repmat(solenoid_inner_distance, solenoid_inner_num_coils, 1), solenoid_z, ... 

        'gx', 'DisplayName', 'Solenoid Inner'); 

    if solenoid_layer_count == 2 

        plot(repmat(solenoid_outer_distance, solenoid_outer_num_coils, 1), 

solenoid_z, ... 

            'mx', 'DisplayName', 'Solenoid Outer'); 

    end 

end 

 

if enable_pfc 

    for p = 1:length(coil_component.PFC) 

        plot(coil_component.PFC(p).r, coil_component.PFC(p).z, ... 

            'go', 'MarkerSize', 6, 'MarkerFaceColor', 'g', 'DisplayName', 'PFC'); 

    end 

end 

 

xlabel('X Position (m)'); 

ylabel('Z Position (m)'); 

title('Chamber XZ Plane View'); 

legend('Location', 'bestoutside'); 

set(gca, 'linewidth', 1.1, 'fontsize', 14, 'LineWidth', 1.5, 'FontWeight', 'bold'); 

grid on; 

hold off; 

saveas(gcf, 'wall_arc_plot.png'); 

 

%% ====== Function Block ====== 

function [x_values, z_values, wall_struct] = generate_inner_wall(params) 

    radius = params.thickness / 2; 

    num_coils = ceil(params.height / params.thickness); 

    z_values = linspace(-params.height/2 + radius, params.height/2 - radius, num_coils)'; 

    x_values = repmat(params.distance, num_coils, 1); 

    wall_struct = repmat(struct('r',0,'z',0,'thickness',0,'radius',0,'coil_length',0), num_coils, 

1); 

    for i = 1:num_coils 

        wall_struct(i).r = x_values(i); 
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        wall_struct(i).z = z_values(i); 

        wall_struct(i).thickness = params.thickness; 

        wall_struct(i).radius = radius; 

        wall_struct(i).coil_length = 2 * pi * x_values(i); 

    end 

end 

 

function [x_values, z_values, wall_struct] = generate_outer_wall_arc(params) 

    radius = params.radius; 

    num_coils = ceil(params.height / params.thickness); 

    theta_values = linspace(params.theta_start, params.theta_end, num_coils)'; 

    x_values = params.inner_radius * cos(theta_values) - params.offset_x; 

    z_values = params.inner_radius * sin(theta_values); 

    wall_struct = repmat(struct('r',0,'z',0,'thickness',0,'radius',0,'coil_length',0), num_coils, 

1); 

    for i = 1:num_coils 

        wall_struct(i).r = x_values(i); 

        wall_struct(i).z = z_values(i); 

        wall_struct(i).thickness = params.thickness; 

        wall_struct(i).radius = radius; 

        wall_struct(i).coil_length = 2 * pi * x_values(i); 

    end 

end 

 

function [x_values, y_values, z_values] = setup_coil(num_coils, coil_radius, 

coil_thickness, ... 

    coil_distance, z_start, z_end, theta_start, theta_end, offset_x, use_sin_z) 

    if nargin < 9, offset_x = 0; end 

    if nargin < 10, use_sin_z = false; end 

    theta_values = linspace(theta_start, theta_end, num_coils)'; 

    x_values = coil_distance * cos(theta_values) + offset_x; 

    y_values = coil_distance * sin(theta_values); 

    if use_sin_z 

        z_values = coil_distance * sin(theta_values); 

    else 

        z_values = linspace(z_start, z_end, num_coils)'; 

    end 
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end 

 

function save_table_with_overwrite(table_data, file_name) 

    if isfile(file_name) 

        delete(file_name); 

    end 

    writetable(table_data, file_name); 

    fprintf('File "%s" has been saved successfully (overwritten if existed).\n', file_name); 

end 


