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Abstract

In this report, different numerical methods for solving the basic equations in
hydrodynamics are introduced. We would like to practice solving simple ordinary
differential equations (ODEs) and partial differential equations (PDEs) before
simulating complicated phenomena in space. We are following examples in the
textbook “Introduction to Numerical Hydrodynamics.” Simulation results are compared
to the results on the textbook to verify that we know how to use different scheme on

solving PDEs.
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Chapter 1 Introduction
1.1 Motivation

We would like to use numerical schemes to study the behaviors of plasma in the
solar-terrestrial system, which is in the kinetic regime. There are some complex
equations that need be understood. The equations can be solved numerically and the
practical problems can be studied. Before solving the equations for plasma, we follow
the textbook, “Introduction to Numerical Hydrodynamics” [1] to get familiar with
varies numerical schemes to solve different equations. The details will be given in the
following sections.
1.2 Background

The space plasma is in the kinetic regime and can be described by using the
following equations.

of

Vi pdyaX
v

= 0, Vlasov equation
at ax

] . . :
a—’: + V-] = 0, continuity equations

1 0E
|(V><B=llo] =
vxE=-2
4 ~  at ,Maxwell equations
V-B=0
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To solve these equations numerically, the equations need to be discretized. For
example, the Vlasov equation above in the difference form can be written in the

discrete form.

1
afy —df?j+vdf?+1,j—df?—1,j+adffj+1—df?j—1
ot 26x v

=0,

We would like to practice in solving simple differential equations numerically
before solving the equations above.

1.3 The textbook “Introduction to Numerical Hydrodynamics”

This textbook includes many different numerical methods in computational fluid
dynamics. It not only gives different numerical schemes but also provides lots of
corresponding results. It is a good textbook for us to get familiar with different
numerical schemes. It is divided into two parts: (1) solving linear PDE; (2) nonlinear
PDE. They give some discussions and introductions of numerical basic concepts and
hydrodynamics equations that beyond the range of this report. In this report, the linear

PDEs are solved numerically and the results are given.



Chapter 2 Simulation setups

The most conventional equations in fluid and kinetic theory are differential
equations, which include two types, ordinary differential equations (ODEs) and partial
differential equations (PDEs). The partial differential equations can also be categorized
in three kinds, hyperbolic, elliptical, and parabolic PDEs. In this chapter, there are some
equations will be given as examples. They will be discretized via finite difference
method. The initial and boundary conditions will also be given. The results of solving
these equations numerically will be given in the next chapter.

2.1 Basic concepts of numerical simulation

The basic concepts of solving differential equations numerically include
discretizing differential equation, grid generation, iteration, and numerical errors, etc.
Some of them will be discussed here, and the others will be discussed in the next
chapter.

2.1.1 Discretization

The differential equations need to be discretized by finite difference method (FDM)
to be solved numerically, both in space and in time. Also, the method can be used in
time or other physical quantities. There are three basic finite difference methods as the

form.



5 W Central difference,

d

o ACY)
f (x) » M Forward difference,

d

o ACY)

5 W Backward difference,

2.1.2 Grid generation

The generation of grids is to transfer real time-space to numerical time-space.

There are several kinds of ways to define grids in space, time, and other

parameters following.

1. Eulerian method: grids are fixed in space.

2. Lagrangian method: grids are moving with the flow.

3. Semi-Lagrangian method: this method is based on Eulerian one, but the grids

move with speed different from the flow.

4. Grids are replaced by particle positions, which didn’t use any grids.

2.1.3 Stencil diagram

Stencil diagram is a kind of graph to represent the relations between grids in the

new time step to grids in the old time step.
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Fig.1 Stencil diagram



In figure 1, the horizontal axis represents the space grids, and vertical axis
represents the time grids. This graph represents that one grid in new time step
depends on the same point and four neighbor points in the old time steps (five
points in total).
2.2 Basic equations
Discretization of ODE and PDE will be given in this section. We will introduction
simple ODE and three kinds of PDE, diffusion, linear advection, and Poisson equations
in the following. The initial and boundary condition can be used in these equations will
also be discussed.
2.2.1 Ordinary differential equation (ODE)
The simple linear ordinary differential equation is the differential equation which

has only one independent variable, it can be shown as the following form.

d .
d—i’ = —a * y, where “a” is a constant

By using finite difference method, the equation can be discretized to the form.

yn+1_ n

= —axy"
dt y

And it can be derived to

n+1

=y —axy"xdt.
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Here, time is also discretized to
t" = dt *n + t,.
2.2.2 Parabolic PDE
The parabolic equation is also called diffusion equation or heat transfer equation,
it describes heat transfer and diffusion phenomena. There are two independent

variables in this equation and has the form.

of _  9*f
a  ax?

The equation can be discretized by using FDM.
of f?“—f?'
at 5t

*f _ fiv1=2fi+fia

K
ox2 Sx2

Therefore, the equation can be discretized as below.

FENfE L a2
8t 8x2

Finally, the parabolic PDE can be written in the form as below.
[P - Sy — 24 ).
The time and space are discretized as below.
t" =dt*n+t,,
x; =dx* i+ xg.

2.2.3 Hyperbolic PDE

11



The hyperbolic equation is also called advection equation. This equation is used to

express the advection flow in physics and has the form.

o _

at ax’

By applying finite difference method, it becomes

of  fit'-1t

at &t '
‘Dﬂ - vf?+1—f?—1'
ax 26x

The equation becomes

ff S
st 26x

As a result, the hyperbolic PDE is in the form.
n+1 n ot n n
=i _E”(fiu — fi—1)-

The time and space are also discretized as below,

t" =dt*n+t,,

x;i =dx* i+ xg.

2.2.4 Elliptical PDE

Finally, the last kind of partial differential equation is elliptical equation, such as

Laplace’s equation and Poisson’s equation.

%f  9%f ) .
= + %2 = 0 for Laplace’s equation,
62 az . ) 1
B_xI; a_y]; = p for Poisson’s equation.
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These two equations are usually used to represent potential fields in physics. By

applying finite difference method, the terms of these two equations become

J g g
ﬁ_)fi+1_2fi+fi—1

ox2 8x2 g
j+1 . -1

O} _ fiT Z2itf

ay? 8y? i

So the equations becomes

J oy ¢ J+1_ 5 (-1 .
Fiv1=2fitfiq _l_fi Sl _ o
5x2 5}’2 i

As a result, the elliptical PDE is in the form.

f’;“+f{-'+1—4:lf2’;+f’;_1+f{f‘1 F 4
h% = §x? = &y°.

Finally, the equation has the form.

U =307+ a0+ FL + 7D
2.2.5 Initial conditions (ICs) and boundary conditions (BCs)

To solve partial differential equations, initial conditions and boundary conditions
need to be given. The initial condition defines the initial state of the function and
always has the form, y(t = 0) = f(x), where f(x) isa function of space.

The boundary condition defines the physical meaning on boundaries. There are
some boundary conditions in the following.

1. Dirichlet boundary condition, y(0) and y(i,,q,) are given, where y is the

function of space, and i,,,, represents the points on the boundary.

13



2. Neumann condition,y’(0) and y'(i,,4,), Where y is the function of space, and
imax represents the points on the boundary.

3. Reflective boundary condition, y(ingx — 1) = V(imex + 1), y(—1) =y(1),
where y is the function of space, and i,,,, represents the points on the
boundary.

4. Periodic boundary condition, y(i,ne + 1) = y(1), y(—1) = y(ijpax — 1), where

y is the function of space, and i,,,, represents the points on the boundary.

14



Chapter 3 Numerical results

The ODE and PDE we have already discussed in last chapter will be solved
numerically in this chapter by FDM. The positivity and stability of these numerical
results will also be shown.
3.1 Positivity and stability

In solving problems numerically, the numerical noises can affect the results. In
order to solve these problems, measuring the positivity and stability of numerical
results can become an effective way for us to estimate its accuracy. Here, we will verify
the positivity and stability of ODE and PDE respectively.
3.1.1Simple ordinary differential equation

. d : .
The equation d—: = —a * y as an example can be discretized as

Yyl =y _ g« y" x dt.
If “@” in the equation is 1, the criterion of the numerical noise is
Criterion for stability: dt < %,

Criterion for positivity: dt < i

The results of solving the ODE numerically with different 8t are given in figure 2

and figure 3.

15



— ¢t=0.01

— 6t=0.45

— 6t=0.90

Fig.2 ODE simulation results with different time difference

— &t=0.01
¢ — 6t=1.70

— 6t=2.20

Fig.3 ODE simulation results with different time difference

Figure 2 and figure 3 show the simulation results with different dt. If dt isn’t over 1,
the simulation results will be always positive. Similarly, the simulation results are
divergence if the time difference “dt” isn’t over 2.

3.1.2 Parabolic partial differential equation

16



The parabolic PDE has the form as below,

of _  #*f
a~  ax?

The equation can be discretized to the form as below.
ot

fi = = 2l — 27+ ).

The criterion of stability and positivity are

ol - 1
Criterion for stability: —tz <=
ox 2K

Criterion for positivity: b < 3

p y: &x2 T 4x

The initial condition is set as

f(x)—{l’ x = 0.2,0.4,0.6,0.8,1.0
10, x = 0.1,0.3,0.5,0.7,0.9°
On the other hand, :—jzz 0.2,0.4,0.6 in the figure 4, figure 5, and figure 6

respectively, while k is 1.

—initial  H
— after 1 time step/|

1.2

0.8"

0.6% I,
0.4? i

0.2 a

02fF y

0 02 04 06 08 1

Fig.4 PDE simulation results with %20.2
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12} | [ —nitial |
i — after 1 time step| |

1(x)

0 02 04 0.6 08 1

Fig.5 PDE simulation results with Z—ig=0.4

— initial
— after 1 time step

0.5 f(x)

Fig.6 PDE simulation results with g—ig=0.6

Figure 4, figure 5, and figure 6 show that the numerical noises depend on KT&. If

st . . ; - 5t
2 is more than 0.5, the numerical results don’t converge as shown in figure 6. If =

éx2 &x2
is less than 0.25, the numerical results are positive which is shown in figure 4.

3.2 Numerical methods verification

18



The PDEs which we use here are either parabolic PDE (heat equation) or

hyperbolic PDE (linear advection equation). The initial condition is set as below.

(x—0.15)2

0.1<x<0.2,f(x) =e 202 ,0=0.01 for Gaussian distribution function;
0.3<x<0.4, f(x) = 1 for rectangular function;

0.5<x<0.55, f(x) = 20x-10 and 0.55<x<0.6, f(x) = 12-20x for triangular function;

0.7<x<0.8,f(x) = b fl — (x—z_.275)2’ b=1, a=0.75 for semi-ellipse function.

The initial condition is shown as below.

S —
1, e
0.5r (%)
0
| | | |
0 02 04 06 08 1

Fig.7 Initial condition

The initial condition in figure 7 includes a Gaussian function, a rectangular
function, a triangular function, and a half-ellipse function from left to right, respectively.

The boundary condition (B.C.) is f(-1) = f(imax-1) and f(imax+1) = f(1) as a periodic

19



boundary condition that we already defined in section 2.2.5. The functions will
propagate from right to left boundaries.
3.2.1 Parabolic partial differential equation in explicit Euler scheme
The difference form of parabolic PDE by using central finite difference is
Fi4 = 7 = Sl — 27 + Fy)-
The simulation results of solving the parabolic PDE which uses explicit Euler

scheme are given as below. Figure 8 shows the diffusion result after 500 time steps

with 22 = 0.1 and 200 space grids.

5x2
- | — initial
— after 50 real time
1- ]
0.5- /\ 1f(x)
0
C X ! X | ‘ ! ; ) ]
0 0.2 0.4 0.6 0.8 1

X

Fig.8 Diffuse equation with ;—jz = 0.1 and 500 time steps

Figure 9 shows the diffusion result after 100 time steps with ;—; = 0.5 and 200

space grids.

20



— initial
— after 50 real time

~11(x)

0 02 04~ 06 08 1

Fig.9 Diffuse equation with ;—jz = 0.5 and 100 time steps
The simulation results of figure 8 and figure 9 tell us that too large a ;_j; causes
the ripples, but the result in figure 9 is still converged.
The simulation results after 1000 time steps are shown in figure 10, the diffusion

phenomena propagates very smoothly which showed that the method can be used to

solve diffusion equation.

— initial
— after 1000 time steps
1 ]
0.5- ™ (%)
0
C ‘ | ‘ \ . \ . \ ‘ ]
0 0.2 0.4 0.6 0.8 1

X

Fig.10 Diffuse equation after 1000 time steps
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3.2.2 Hyperbolic partial differential equation in explicit Euler scheme
The difference form of hyperbolic PDE by using central finite difference is
5
it = f1 = vl — ),

The simulation results of the hyperbolic PDE in explicit Euler scheme are given as

below. Figure 11 shows the advection result which propagates after 50 time steps with

% = 0.1 and 200 space grids.
— initial
— after 5 real time
f(x)
C 1 | i | | | | | I ]
0 0.2 0.4 « 0.6 0.8 |
Fig.11 Advection equation with % = 0.1 and 50 time steps
Figure 12 shows the advection result which propagates after 10 time steps with
vét r
Py 0.5 and 200 space grids.
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— initial
— after 5 real time

f(x)

0 02 04~ 06 08 1

Fig.12 Advection equation with % = 0.5 and 10 time steps

The simulation results in figure 11 and figure 12 tell us that the growing of the
oscillations makes this scheme useless.

Figure 13 shows the linear advection propagates after 1000 time steps with

vét

% i 0.1. Serious numerical oscillations occur. Therefore, the further goal is using

other numerical methods to simulate the advection equation.

— initial
— after 1000 time steps

~11(x)

Fig.13 Advection equation after 1000 time steps
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3.3 Discussions of different schemes for solving hyperbolic PDE

In this section, linear advection PDE is used to demonstrate the availability of
different numerical schemes because of its simple equation structure. The initial
conditions and boundary conditions are the same as section 3.2, and the parameters of
advection equation are the same as 3.2.2.
3.3.1 Naive forward time center space (FTCS) scheme

From the explicit Euler method, the FTCS scheme has already been mentioned in
the section 3.2.2. This scheme has the difference form.

FEt =7 — - v(fhy — fig).

The stencil diagram of FTCS scheme shows in figure 14.

n time
o
T
®
o

i space

Fig.14 Stencil diagram of FTCS scheme

The simulation result of FTCS scheme is shown in figure 15. Apparently, this
method has huge numerical oscillations as we showed in section 3.2.2 that we can’t use

it to simulate the advection PDE at all.

24



1.2k | — initial
o — after 500 time steps

0.8
0.6}
0.4}
0.2

: f(x)

2020

0 02 04 0.6 08 1
X

Fig.15 FTCS scheme

3.3.2 Forward time forward space (FTFS) scheme
The FTFS scheme has the difference form.
n+1 n 0t n n
fi™ =fi —av(fiﬂ_fi)-

The stencil diagram of FTCS schemes is shown in figure 16.

1k
0}
E of
c
A . , | .
-2 -1 0 1 2
i space

Fig.16 Stencil diagram of FTFS scheme
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The simulation result of FTFS scheme is shown in the figure 17. Apparently, this

scheme also doesn’t work for advection equation, its oscillations grows even faster

than FTCS scheme.

1 HI\ """"""""""""""""""""""""""""""""""" H
' H” — after 500 time steps ”
1| \w"””u |
oo ‘
0.6 | l

ol 10
: H” ‘H
0.2| |
) i
o (U HHMWHH L
0 () 0.4 0. 't 0.8 1

Fig.17 FTFS scheme with v=1
However, if we change its velocity to v = -1, it means that % = —0.1, the result is

given in figure 18.

— initial

— after 500 time steps
I, =
0.5 /\ 1f(x)
0
C s | . . | . | s ]
0 0.2 0.4 0.6 0.8 1

X

Fig.18 FTFS scheme with v=-1
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Figure 18 shows that the FTFS scheme works as the same as FTBS scheme,
because these two schemes become identical when we change the velocity of FTFS
scheme to negative.

3.3.3 Forward time backward space (FTBS) scheme

The FTBS scheme is also called donor cell scheme. It has the difference form.
at
Frt = = Su(r - 1),

The stencil diagram of FTBS scheme is shown in figure 19

-2 -1 0 1 2
i space

Fig.19 Stencil diagram of FTBS scheme

The simulation result of FTBS scheme is shown in figure 20. This method has
better performance than FTCS and FTFS scheme. But this scheme still doesn’t work
well enough after long time. This scheme can only ensure converged results. As a result,

we need smaller space grids to improve its accuracy.

27



12 | =il ]
’ — after 500 time steps| -

0.8:— —

oo /N BLES

0.4 7

-0.2
| I | I | I |

0 02 04~ 06 08 1

Fig.20 FTBS scheme

3.3.4 Lax-Friedrichs scheme
This scheme has more complicated structure and derivation. It has the difference
form.
FE =2 (fhat fl) — 0B — F0).

The stencil diagram of Lax-Friedrichs scheme is shown in figure 21.

1+ [
@
E of ° @
o
AF | | . .
-2 -1 0 1 2
i space

Fig.21 Stencil diagram of Lax-Friedrichs scheme

The simulation result of Lax-Friedrichs scheme is shown in figure 22. There are

huge dissipation and zigzag noises when using this scheme.

28



12k | = mital |
L — after 500 time steps|

1fi(x)

0 '0.20'.4}'(0'.6'0.8' I

Fig.22 Lax-Friedrichs scheme
3.3.5 Lax-Wendroff scheme

This scheme is developed from Lax-Friedrichs scheme. This scheme has the
difference form.
at
i =% g UL % o
fa= 5l + D = vl = D)
i+% — Vit i 20x i+1 i)
1= (T + i) = 50 (= i)

The stencil diagram of Lax-Wendroff scheme shows in figure 23.

29



n time
o
T
®
L

-2 -1 0 1 2
i space

Fig.23 Stencil diagram of Lax-Wendroff scheme

The simulation result of Lax-Wendroff scheme is shown in the figure 24. It shows a

smoother solution with overshoots which doesn’t grow with time.

i —— initial —
— after 500 time steps| -

H(x)

0 02 04 06 08 1

Fig.24 Lax-Wendroff scheme
Figure 25 shows the simulation result of Lax-Wendroff scheme after 20 time steps.

[t shows that the overshoots here already happened at the beginning.
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T
— initial
— after 20 time steps

0.5- 1)

0 02 04 06 08 1

Fig.25 Lax-Wendroff scheme after 20 steps

3.3.6 Beam-Warming scheme
Beam-Warming scheme is basically modified from Lax-Wendroff scheme. This
scheme has the difference form.
n+1 __ n_ﬂ n _ fn
frrt= 1= Lugn, - ),
2 2
fra= G = i) — v = )
i+% . 2 l l—1 Zax l l—1 ’
fra=2 Gy — ) — = v(fiy — f1y)
i_f 2 i—-1 i-2 20x i—-1 i-2)"

The stencil diagram of Beam-Warming scheme is shown in figure 26.
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n time
o
|
®
o

-2 -1 0 1 2
i space

Fig.26 Stencil diagram of Beam-Warming scheme

The simulation result of Beam-Warming scheme is shown in figure 27. The result
is similar to Lax-Wendroff scheme. Both of them have overshoot after propagating, but

still have a similar shape with initial condition.

‘ " |— initial
— after 500 time steps| |

1(x)

0.2

Fig.27 Beam-Warming scheme

32



Figure 28 shows the simulation result of Beam-Warming scheme after 20 time

steps. The shape in this scheme also doesn’t change much but with few overshoots.

T ; T
— initial
A — after 20 time steps
I v a
0.5 (%)
0 v 7
C ‘ \ ‘ \ ‘ \ ‘ \ ‘ ]
0 0.2 0.4 . 0.6 0.8 1

Fig.28 Beam-Warming scheme after 20 steps

3.3.7 Fromm scheme

Fromm scheme combines Beam-Warming scheme and Lax-Wendroff scheme. It

has the difference form.
at
[ s R )
fr1=f"1(Lax — Wendrof f) + f" 1(Beam — Warming),
l+§ l+§ l+E

f?_l = f?_l(Lax — Wendrof f) + f:’_l(Beam — Warming).
2 2 2
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The stencil diagram of Fromm scheme is shown in figure 29.

1F
o
E ol e ® @
c
A | ] | |
-2 -1 0 1 2
i space

Fig.29 Stencil diagram of Fromm scheme

The simulation result of Fromm scheme is shown in figure 30. This simulation

result is the closet to the original initial conditions among all different methods.

— initial .
— after 500 time steps| -

1(x)

0 02 04 0.6 08 1

Fig.30 Fromm scheme
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3.3.8 Backward time center space (BTCS) scheme
This scheme is just like FTCS scheme but solves the advection equation implicitly.
The equation of BTCS scheme has the difference form.
n+1 ot n+1 n+1 n
fi" +-v(fish = fiZi) = fi.

The stencil diagram of BTCS scheme is shown in figure 31.

n time
o
T

-2 -1 0 1 2
i space

Fig.31 Stencil diagram of BTCS scheme

The simulation result of BTCS scheme is shown in figure 32. This scheme also has

a little oscillation and is diffusive heavily. BTCS scheme doesn’t work, too.
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I 1f(x)
0.4 |
0.2 }

0,
_02 B . | ‘ I ) | i | | |
0 0.2 0.4 . 0.6 0.8 1
Fig.32 BTCS scheme
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Chapter 4 Future work
4.1 Short term goal

In the book “Introduction to Numerical Hydrodynamics”, there are some
simulation schemes need to be verified, such as piecewise linear method (PLM)
scheme to solve nonlinear partial differential equations.
4.2 Long term goal

After practicing lots of numerical schemes and methods to simulate hydrodynamic
equations, it’s time to simulate the exact physical phenomena in other papers. We will
simulate the magnetic and plasma interactions of Solar-terrestrial system in space. We
have already found the papers [2][3] related to what we want to simulate. Therefore,

after finishing the works now, that is the next goal.
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Chapter 5 Summary

After practicing lots of numerical schemes and methods to solve ODE and PDE in
the textbook, “Introduction to Numerical Hydrodynamics”, is time to go to next step.
We need different numerical schemes or even discretization methods to be used in
different conditions. To solve the linear advection equation, the best scheme should is
Fromm scheme which combines Lax-Wendroff scheme and Beam- Warming scheme.
However, my simulation results still have a little different from the results compared
with the textbook. The simulation results are possible to solve advection equation are
only Fromm scheme, Lax-Wendroff scheme, and Beam-Warming scheme, the other

schemes are all have big numerical oscillations or severe overshoot problems.
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