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Grading

* Quizzes 50 % (2-min Q&A at the beginning of each class)
* Presentations 50 % (10-min presentation on any

plasma applications or phenomena)

* No class on 9/25, 11/20.

* Final presentation on 12/25.




There are several Important plasma parameters that
need to be considered
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Charged particles collide with each other through
coulomb collisions

* Relation between 8 and t is
B 0 = cosfO -
X = —rcosf = prsy = v
* Therefore,
© n 2 v
mv, = j dtF (t) v, = To J dOsinf = T4o = oPo
—oo mvop Jy mvyp p
« Coulomb force: 2qq,
where Po = >
mvy
=990
mr = —21‘ . . .
r * Note that this is valid only
qq. when v, <<v, ,i.e.,, p>>p,.

F, = ——sin30
1 pz



Cumulative effect of many small angle collisions is
more important than large angle collisions

oS Kl
e 2
> a1
z m
2 5
%, il

R

Consider a variable Ax that is the sum of many small random variables
Ax;, i=1,2,3,...,N, N

Ax = Axq + Axy + Ax3 + -+ Axy = ZAxi
i=1

Suppose < Ax; >=< AX;AX; >i¢j= 0

((4x)?) = z Ax; | | = Z((Axi)z) = N{(4x)?)

For one collision:

2 2 1 2 2
(9:2) = (@v?) + ((av,)*) = 2220 {(@v?) = {(avy)") =5 =

The total velocity in X

N 2 2
<(Avxtot)2> _ N((Avx)2> == v0plz70



The collision frequency can be obtained by
integrating all the possible impact parameter

* Number of collisions in a time
interval:

dN = ny2ntp dp vy dt

l.e., — =2npnd
dt Tp Ap nyvy

 Therefore

i((dv tot)2> _ 1 Vo’po* dN
dt X 2 p? dt

dp
= T NyVy°Po° ?

d 2 d tot) 2
ael(@) = 2 g {(av’)
Pmax ¢
= 2nyvo°po* -
Pmin p
3.2 Pmax
= 2mNnyVy°Po ln( )
Pmin
L)
~ 2NV P In| —
|Pol

~ 2NV pe?Ina

 Note that
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Comparison between the mean free path and the
system size L determines the regime of the plasma
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* A reasonable definition for the scattering time due to small angle
collisions is the time it takes <(Avﬁ°t)2> to equal v,y2. The collision
frequency v, due to small-angle collisions:

2qq, B 8nnge*lnA

2

tot _

<(Al ) > ~ 2MNgve3po?Inad = vy?v,, Po = o2 = Ve =
e

d
dt

my2v,3

* With more careful derivation, the collisional time is obtained:
4+/2mne*lnA

_1 _ —
© 3ym(KT,)3/2

* Mean free path: Imfp = VeTe

Lntp < L Fluid Theory
Imtp > L Kinetic Theory
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lonization process

Collisions play an important role in ionization process
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« At the microscopic level, breakdown requires the presence of sufficiently
energy charge particles that have acquired enough energy from the
applied electric field between two energy-dissipating collisions to ionize
the material and to create more charge particles.

Energy > ionization level Gain energy
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In most cases, electrons dominate the breakdown
process since its mobility is much larger than that of ions

1 ’ZE
Ek=—mv2 v = 27k EkaT
2 m
-1/3
S n
Collision time: t= ~ vm n = #/ _#// son-1/3
ZEk \/T V 53
\/ m
m; . L
—~2000 X Atomic mass L ~45x+VA

m, te
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Mean free path is important in ionization process

* For an electron to acquire enough energy between collisions, its
mean free path in the material must be sufficiently long.

Mean free path, A

Cnll ®

@\ Ex=eXEXA=eV

E
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Kinetic energy needs to greater than the ionization
energy to ionize the gas

« Between each collision, the kinetic energy increase.
2eEA I
AeE = Emv2 Y= E
m TN
* Mean time between ionization collisions f)
for electron with velocity v: | 2eEA
A 0.3? m
T=— .
v 02 l
« The rate of ionization is:
1 v 5 ' —— : :
_——= — = v :
T A v
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Collisions can be elastic or inelastic

 Elastic collisions — NO energy exchanges. Momentum is redistributed.

* Inelastic collisions — energy is exchanged between the collision partners
— production of molecules & particles.

— A portion of the kinetic energy before collision is converted to
potential energy of one of the particles in the system.

— lonization: A+B - A+ Bt +e-

- The process of ionization is dominated by e- acceleration in an
electric field and is greatly aided by the appearance of initiatory

electrons: (1) ionization in the gas; (2) emission from the cathode.
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Electron impact ionization is the most important
process in a breakdown of gases

« Electron impact ionization: A+e- — A*+e +e-

— The most important process in the breakdown of gases but is not
sufficient alone to result in the breakdown.

eEA.; = eV; V.: ionization potential
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Photoionization & collisions with excited molecules
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* Metastable production (1~10 ms life time): A+B—->A*+B

« Electron impact excitation: A+e - A" +e

« Step ionization: A*+e - At+e +e
. De-excitaton: ~  A*+e—A+e+hv
« Radiative recombination: A*+e —> A+ hv

- Dielectronic excitation: Are AT +e
* Autoionization: A*™ — A* + e

* Dielectronic recombination: A*™ — A + hv

. Step photoionization: ~~ A*+hv SA*+e
* Photoionization: A+hv - A +e



Photoionization is very complex

* Photons with A=125 nm (UV) @ 9.9 eV can ionize almost all gases despite
that almost all molecules and atom have ionization energy > 9.9 eV!

* Dust or water vapor can emit electrons through photon absorption.

« All photoionization occurs between 6~ 50 eV.

S I S
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1*" Ionization energy (eV)
O

O
S

20 40 60 80 100
Atomic number (Z)
A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team.
NIST Atomic Spectra Database (ver. 5.5.1), [Online]. Available:

https://physics.nist.gov/asd [2017, December 24]. National
Institute of Standards and Technology, Gaithersburg, MD., 2017.
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Penning ionization — breakdown voltage may reduce
with mixture of inert gas
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A*+B* > A*+B+e

May be from impurities or engineered mixture called penning mixture.

A penning mixture is a mixture of an inert gas with a small amount of a
quench gas, which has lower ionization potential than the 1st excited
state of the inert gas.

Ex: neon lamp: Ne + Ar (<2%)
plasma display: He/Ne + Xe
Gas ionization detector: Ar/Xe, Ne/Ar, Ar/acetylene(Z{R)

Ne*t m : metastable state
AIR + : ionized state
10000 A I : resonanc state
E *: excited state
3 v Ne
'Q‘ Xe
=
— b ‘\ \ Xéz
ng» @ —
= 1000 Xé ——1— et Keg
> ] 3
- Net0.1%Ar s o
B . *
LIE_ ] \—,// Xén Xeg
T 147nm 152nm 172nm
108 R oo rErrTy A | LI |
0.1 1.9 10 100 1000 e—
Ne Xe

pd (Torr+ cm)



More complex collisions

3-body collision: At+e t+te > A"+ e
lon impact excitation: A*+B — A"+ B*
3-body collision: A*t+B+e —>A*+B
lon impact ionization: A*+B > A*+B*+e-

Total collisional cross section:
0(V) = O¢ + Oex + Ojop + -+ = 2,0,

Excitation Excitation

lonization

1 lonization
6 /17

lonization

lonization

Elastic
Inert gas can be ionized easier since there are less exciting state
compared to gas molecules.

Molecules, e.g., SF, dry air (with O,), that capture electron easier
provides a higher breakdown voltage.
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Breakdown voltage of different gas
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Methods of plasma production

* DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases
— DC electrical arc discharges in gases
« AC electrical discharges
— RF electrical discharges in gases
— Microwave electrical discharges in gases
— Dielectric-barrier discharges (DBDs)
« Other mechanism
— Laser produced plasma

— Pulsed-power generated plasma

20
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* Industrial plasma engineering, volume 1, by J. Reece Roth, Chapter 8 - 13.

* Plasma physics and engineering, by Alexander Fridman an Lawrence A.
Kennedy.

* Plama medicine, by Alexander Fridman and Gary Frideman.
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Methods of plasma production

* DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases

— DC electrical arc discharges in gases

22



DC electrical discharges

Electrical discharge physics was studied using the
classical low pressure electrical discharge tube

— | HIGH VOLTAGE |+ Vo .,f". (1)
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The V-l curve is nonlinear in a DC electrical discharge

tube

— | HIGH VOLTAGE |+ Ve -
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 Depends on the voltage, the adjustable ballast resistor, the voltage-

current characteristic behaves differently in different regime.

— Dark discharge
— Glow discharge

— Arc discharge
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Dark discharge

In a dark discharge, the excitation light is so little and is
not visible

VOLTAGE, V
4
DARK DISCHARGE [ GLOW DISCHARGE ARC DISCHARGE e
| m Amusgujé
i | TOWNSEND REGIME | ! .4
|
i ! corona | ) e et |
VBI— | E— BREAKDOWN VOLTAGE | A e e
I - T0 |
1 |
| |
| : GLOW-TO-ARC
l — -
| ! Y TRANSITION
i
I ¥
| |saTuraTion F
REGIME
| | NormAL cLow
| B
BACKGROUND ION!ZATJON
A e I I I | L] L1l 1 | -
10710 o8 108 lonh 102 | 100 10,000

CURRENT I, AMP3

* In dark discharge, with the exception of the more energetic corona
discharges, the number density of excited species is so small so that
it does not emit enough light to be seen by a human observer.
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In background ionization, ions and electrons are
created by ionization from background radiation

VOLTAGE, V

BREAKDOWN S
VOLTAGE B[~ 777

D CORONA

C

B
BACKGROUND
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CURRENT
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A

CURRENT I, AMPS

TOWNSEND
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« Sources of background radiation:

— Cosmic rays

— Radioactive minerals in the surroundings

— Electrostatic charge
— UV light illumination

— Other sources
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Cosmic rays can be observed by a “cloud chamber”

containments

glass / =\://_—\X\\ vapours /IK—/:/ duct
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A cloud chamber consists of a sealed environment containing a
supersaturated vapor of water or alcohol. An energetic charged particle
interacts with the gaseous mixture by knocking electrons off gas
molecules via electrostatic forces during collisions, resulting in a trail of
ionized gas particles. The resulting ions act as condensation centers
around which a mist-like trail of small droplets form if the gas mixture is
at the point of condensation. These droplets are visible as a "cloud"
track that persists for several seconds while the droplets fall through the
vapor.

high voltage

vy

heating

aturated vapours

v /Lo ergy slec < % o

o Breiateel : : A/ At ANt sy p
. LA T {———lighting 2 g

v ra T

A g T
b " Fia Proton with « delta ray »
PN Z F 4 (electrons)
cooling black board A !
~ o i 3

alcohol inflow and outflow

https://en.wikipedia.org/wiki/Cloud_chamber
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A discharge of a gold-leaf electroscope can illustrate the
ionization of air by cosmic rays and background radiation
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Current saturation occurs when all ions and electrons
produced between the electrodes are collected

VOLTAGE, V -

4
BREAKDOWN E
VOLTAGE B

D CORONA

| TOWNSEND N
DISCHARGE >
Anode
$C -
CURRENT
SATURATION
A
ul_/

s ) Cathode
/ } BACKGROUND
IONIZATION

CURRENT I, AMPS

dn
S=— (electrons orions/m3 —s)

I, = eAdS Js =edS
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The region where the current exponentially increases is
called the Townsend discharge

BBBBBBB
VOLTAGE

CI) Fglx)=Tgc e

HIGH VOLTAGE
POWER SUPPLY GD

UV Tes=Mic

F’/'/I////// L L
CATHODE

T

» Electrons from photo- or secondary electron emission from the cathode:

I'ec = T'eg + I'es(electrons/m? — s)

* Volume ionization source from the ionization of the background gas by
energetic electrons accelerated in the electric field:

Se =R, = nen()(GV)ne
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Chain reaction or avalanche of electron and ion
production occurs in a strong electric field

1. The electrons initially produced in
the creation of ion-electron pairs ] ANODE
by ionizing radiation or from other M‘f‘aﬂw‘ﬂ%’
sources are accelerated in the Fea (@
electric field of the discharge tube.

2. If the electric field is high enough,

the electrons can acquire sufficient Mec*Teo* d
energy before reaching the anode )
to ionize another neutral atom. Feoo
l-'io:
3. As the electric field becomes Wg[ Fes=Tic

stronger, these secondary P 7777777 77777777777 777 777 7 777 /)
. . CATHODE
electrons may themselves ionize a —

third neutral atom leading to a
chain reaction, or avalanche of
electron and ion production.
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Special case |

« Assumption:
— No recombination or loss of electrons occurs.

— Initiating electrons are emitted from the cathode, with no contribution
by volume ionization.

 Townsend’s first ionization coefficient, a: the number of ionizing
collisions made on the average by an electron as it travels 1 m along the

electric field:
1 Vei _ n0<0've>ne

aA~— = — -
Ai Ve Ve
 Differential electron flux: r
N e
dr, = al.dx e =Tpe™
X
Jre dr, _ Jxadx Jo = €@y = Jope™ (A/mz) J Tl"eo

reO e

0 Ie = IeOeaX = A]eOeO‘X (A) [ Cathode }
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Special case |l

« Assumption:
— No recombination or loss of electrons occurs.

— No cathode emission, i.e., I'_,=0.

— Significant volume source of electrons throughout the discharge

volume.

» Differential electron flux:

dr, = al .dx + S.dx [/ Anode |

re 1 x In(ale +Se)|'®
j — o d['e dx = ( - e) A re

o ale+ S, 0 a 0

Se X
¢ a( ) ]ezl_s(eax_l) J Ireo 0
ad
eS. Cathode }

Je=ele = (e"* —1)

Js = edS,
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Derivation of Townsend’s first ionization coefficient
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1 Vei n0<0-ve>ne P (Gv>ne _ _ 1 <6V>ne
o= = - = — - = Ap A== -
A v, Ve T v, T v,
* Number of primary electrons with energy higher than the
ionization potential:
dn, = —n dx = e(X) = exp <—ﬁ>
) ° A Neg A
#/ ionization collisions ] L ]
a = X (#/electron with E > ionization potential)
per electron

1 ne(xi) 1 ( xi)
= = —exp|-—=
A ng A P A;

a = Ap exp(—Apx;)

a_, AV* 1 ( C > f<E> v here U* S 7
— = Aexp | — =Aexp| ——— | = — | & — i '
P p E/p p » Xi W ere > V;

 The parameters A and C must be experimentally determined.
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Phenomenological constants A and C of Townsend's
first ionization coefficient for selected gases

#® K
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Gas A C
ion pairs/m-Torr V/m-Torr

A 1200 20000
Air 1220 36 500
CO;, 2000* 46 600
H- 1060 35000
HCl 2500%* 38 000
He 182 5000
Hg 2000 37000
H,0 12090* 28 900
Kr 1450 22 000
N, 1060 34200
Ne 400 10000
Xe 2220 31000

* These values may be high by as much as
a factor of two.



Stoletow point is the pressure for maximum current

« Stoletow experimentally found that for a given electric field between the

plates, there is an air pressure in the Townsend discharge where the

current is a maximum.

E

ol (3
; = Aexp <— E_/p> » = -
da d E
d C
—a =A [1 14 E] exp (— —p> =0 dp dp pf <p>]

E

E__t )7 () =55 ()0
Pmax = - = for air f p pp2f p _p pf p -
a/p\ _ . (E\ _
(E/p>—f<p>—tan9
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The current will be a maximum when the tangent to the
o/p versus E/p curve intersects the origin

l.2A T T T [ T [ ' B !
ASYMPTOTE Z:a
P
A __________________________________

o
[
S ORIGIN
" o.sAR TANGENT LINE
LuJ
|_
L
= STOLETOW POINT
S 08AF E ) .
(0 i: —_——
< p = A EKP( E/p
o
5 04A | poo08A - -
8le

Q.2A _

|
|
O | I | _l_ 1
o) C 2¢ iC 4c 5C

£, vouTs/METER-TORR

« Stoletow point is the minimum of the Paschen breakdown curve for gases.

37



Corona discharge (unipolar discharge) is a very low
current, continuous phenomenon
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VOLTAGE, V

BREAKDOWN
VOLTAGE B

* Break down condition for
dry air:

D CORONA
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1.35
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C

B
BACKGROUND
IONIZATION

}SATURATON VB =3000d + 1.35 kV

CURRENT I, AMPS

« Corona can initiate on sharp points at potentials as low as 5 kV.

* It can initiate from sharp points, fine wires, sharp edges, asperities,
scratches or anything which creates a localized electric field greater than
the breakdown electric field of the medium surrounding it.

« It can be a “glow discharge”, i.e., visible to eyes. For low currents, the
entire corona is dark.

38



Phenomenology of corona generated by a fine wire
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HiGH VOLTAGE
POWER SUPPLY

QUTER
ELECTRODE
ACTIVE VOLUME

ACTIVE RADIUS
INNER ELECTRODE

« The point of corona initiation is that point at which the voltage on the
inner conductor of radius a is high enough that corona is just detectable.

* The electric field will drop off to the breakdown value at a radius r, called
the active radius.
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Corona can occur for both positive and negative polarity

« Positive polarity * Negative polarity

« The initiation voltages or coronal current are slightly different between
positive and negative polarity.

» A continuous (positive polarity, DC) or intermittent (negative polarity,

usually) current, usually in the order of uA ~ mA per decimeter of length
will flow to the power supply.
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Negative point corona, also known as Trichel pulses

I —> — I — <«
e E. 1\ S N\
" stron " S
\ T g Eweak s T

« Avalanche toward anode occurs in the strong electric field region.

* No further ionization occurs in the weak field region.

« Electrons are slow down by positively charged ions (ion+) behind.

« Electrons attach to gas molecules forming negatively charged ions (ion-).

« The presence of the negative ions reduces the electric field at the point
electrode and the discharge extinguishes.

 When positively/negatively charged ions drifted away, the original high-
field conditions are re-established
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Positive point corona

-+
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« Electron avalanche initiated near the high-field region propagating
toward anode.

« Streamer is developed.

« Lateral avalanches feed into the streamer core.

M. Goldman and R. S. Sigmond, IEEE Trans. Elec. Insulation, EI-17, 90 (1982)
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Don’t bring a long stick to a train station

High voltage cables

Pantograph + 0%; Long stick such as

fishing rod, ski board,
?

L
_

| [
Rail (Grounded)
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A corona discharge causes some problems even no
breakdown occurs

* Ozone (O,) is generated.

Rubber is destroyed by O,.

NO,* is generated with moisture.

Disadvantage:

— Power losses.

— Radio frequency (RF) interference.

— Reduce the service life of solid and liquid insulation via initiating
partial discharge.

— Chemical decomposition.

Advantage:
— Pseudospark discharge — fast switch.
— Electrostatic precipitator (dust remover)

using corona discharge.

— Hair dryer https://zh.wikipedia.org/wiki/%E9%9D%99%E 7%94%B5%E9%99%A4%E5%B0%98 44



A corona shield is used to suppress corona

"
alo

o
1000

CORONA SHIELD
/ V= Vg

CORONA GENERATION

M A ; E

' | Lo L y o ] 14
| 10 100 1000

CORONA FREE REGION

+[ve

HIGH VOLTAGE

APPROXIMATE SPARKING CONDITION
POWER SUPPLY

—
-

o Cy| indrical approxi mation: DIMENSIONLESS CORONA e\::DNaamow PARAMETER
Vo bV b -
S aln(b/a) abln(b/a) T a = v _ X
Vo Iny

E; = E; (E@ surface for corona initiation)
* For b=0.5 m, V;,=50 kV, E~Eg~3 MV/m
Egb 3x10°x0.5 X

=30 =
Vo 5 x 104 Iny

x = 150,i.e.,a = 0.33mm
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Electrical breakdown occurs when applied voltage is
greater than the breakdown voltage

TOWNSEND CIB

DISCHARGE

HIGH VOLTAGE
POWER SUPPLY

CATHODE

* Primary electrons: electrons from the cathode due to photoemission,
background radiation, or other processes.

Secondary electrons: electrons emitted from the cathode per incident ion
or photon created from ionization in gas.
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Derivation of electrical breakdown

« Secondary electron emission coefficient:

_ #/ of electrons emitted [ Anode }
V= #/ of incident ions or photons A
Ies = VI T I Feq l (Iea)
Fee =Tep + I
Ieg =Iec+Iic > T@oy=Te+ T d
Ieg
rea_rec:ric=7 (rea:recead) Trec l(Iec)
—
Fes =Y(T'ea = Tec) = yI‘ec(e“d B 1) (Iic) lric IreOIres
\ _
Fee =Teg+Tg = Yrec(ead - 1) + I'e [ Cathode }
| — FeO
“1—-y(ed -1)
ead 5 ad
I.,=T electrons/m“ — s =
ea eol—y(e“d—l)( / ) ] ]0

1 y(e“d 1) (A/mz)

47



The Townsend condition for ignition (avalanche grows)
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 The Townsend condition for ignition or called avalanche grows occurs

when 1 y(e“d B 1) —0

1
ye*d=y+1 or ln<1+—>=ad

Y
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Apdexp|—— | =In(1+— — = - __B
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Universal Paschen’s curve

vV
RELAT VE SPARKING POTENTIAL Y= B
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Collision frequency and electron energy gained from
electric field are both important to electrical breakdown

v

RELATIVE SPARKIHG POTENTIAL Y= =~
B MIN

1000 B T X —

I
ASYMPTQTIC AT x=C.368

100 - v
/{
e
TrEoreTicAL S 7
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L 1
1 10 100 1000 10,000

RELATIVE SREAKDOWN PARAMETER X= B2
(pdhwiy

 Collision is not frequent
enough even the electrons
gain large energy between
each collision.

 Electrons do not gain enough
energy between each collision
even collisions happen frequently.

 The minimum of the Paschen’s curve corresponds to the Stoletow point,
the pressure at which the volumetric ionization rate is a maximum.
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Experimental Paschen’s curve
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A Air
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»
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002 05 04 02 05 1| 2 1§ 50 100 200 500 1000
Pxd(pressure x electrode gap).kpa-cm
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Paschen’s curve is used to design different high voltage
high current switches in pulsed-power system

* Pulsed-power system 1007
/ o
7:“ Paschen Curve
g
Low power High power
0.1

10° 10° 10' 10 10’ 10° 10°
Pressure [Pq]

10° 10° 10°
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Driven piles - prefabricated steel, wood or concrete
piles are driven into the ground using impact hammers

s Xy,
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* Driven piles « Hammer

e Attt i Res S

YA R P ST Y W Ry

PLACEMENT OF PILE INSTALLATION OF PILE REPETITION OF PROCESS

http://www.saudifoundations.com/driven.htmi
http://learnhowtowritesongs.com/tag/thesaurus/ 53



Example of short pulses with a controllable repetition rate

https://www.youtube.com/watch?v=5fe8b4MIPYw 54



Spark-gap switch

Main-Electrode

Insulatin
P, Casing
Gas g ]
Trigger
Electrod

Ground Electrode
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A spark gap switch is closed when electron breakdown
occurs
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Glow discharge

DC electrical glow discharges in gases

s xu,
& Xuy,
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« The internal resistance of the power supply is relatively low, then the gas
will break down at the voltage Vg, and the discharge tube will move from
the dark discharge regime into the low pressure normal glow discharge

regime. VOLITAGE, v
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The plasma is luminous in the glow discharge regime

 The luminosity arises because the electron energy and number density
are high enough to generate visible light by excitation collisions.

v
ANODE, [

CATHODE ™ SRR
_:l__ CATHODE
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DISCHARGE TUBE PLASMA REACTCR
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~ HOLLOW
CATHODE
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Vﬁ: FEED
ANODE
COPLANAR COAXIAL ELECTRON BOMBARDMENT

MAGNETRON REACTOR OISCHARGE CHAMBER

58



Abnormal glow discharge occurs when the cross section
of the plasma covers the entire surface of the cathode
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« Normal glow discharge: « Abnormal glow discharge:
l
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« Surface cleaning using plasma needs to work in the abnormal glow
discharge region.
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Plasma cleaning needs to work in the regime of
abnormal glow discharge

Top view
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Low pressure normal glow discharge

CATHODE
RITTORF r DARK SPACE
CROOKES
ASTON DARK SPACE_~"— FARADAY DARK SPACE ANODE DARK SP
e 2 ¢ [l )V
CATHODE " ATHODE GLOW ~~_  ~POSITIVE COLUMN ANOC
NEGATIVE GLOW ANODE GLOW
CATHODE REGION
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0 X
L

A
PLASMA Ve F—=
POTENTIAL
-0

ELECTRIC
FIELD

E

|
NET CHARGE +
DENSITY Cf==-=-%=~

H

]

F >

Cathode: made of an electrically
conducting metal with 2"d e- emission v,

of which has a significant effect on the
operation of the discharge tube.

Aston dark space: a thin region with a
strong electric field and a negative
space charge. The electrons are of too
low a density and/or energy to excite the
gas, so it appears dark.

Cathode glow: has a relatively high ion

number density. The length depends on
the type of gas and the gas pressure.

Cathode (Crookes, Hittorf) dark space:

has a moderate electric field, a positive
space charge, and a relatively high ion
density.
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Low pressure normal glow discharge
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« Cathode region: most of the voltage

drop (cathode fall) across the
discharge tube appears between the
cathode and the boundary between
the cathode dark space and the
negative glow. Electrons are
accelerated to energies high enough
to produce ionization and
avalanching in this region. The axial
length will adjust itself such that
d.p~(dp),i, where (dp) is the Paschen
minimum.
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Low pressure normal glow discharge
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* Negative glow: the brightest light
intensity in the entire discharge. It
has a relatively low electric field and
is usually long compared to the
cathode glow. Electrons carry almost
the entire current in the negative
glow region. Electrons which have
been accelerated in the cathode
region produce ionization and
intense excitation in the negative
glow, hence the bright light output
observed.
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Low pressure normal glow discharge
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- Faraday dark space: the electron
energy in it is low as a result of
ionization and excitation interactions
in the negative glow. The electron
number density decreases by
recombination and radial diffusion,
the net space charge is very low, and
the axial electric field is relatively
small.
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Low pressure normal glow discharge
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« Positive column: quasi-neutral, the
electric field is small and is just large
enough to maintain the required
degree of ionization at its cathode
end. Since the length of cathode
region remains constant, the positive
column lengthens as the length of
the discharge tube is increased.
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Low pressure normal glow discharge
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« Anode glow: the boundary of the

anode sheath, slightly more intense
than the positive column.

Anode dark space: has a negative
space charge due to electrons
traveling from the positive column to
the anode and a higher electric field
than the positive column. The anode
pulls electrons out of the positive
column and acts like a Langmuir
probe in electron saturation in this
respect.
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Striated discharges
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* Moving or standing striations are, respectively, traveling waves or
stationary perturbations in the electron number density which occur in
partially ionized gases, including the positive columns of DC normal glow
discharge tubes.

* https:/lyoutu.be/Be4RIjMTOWE

https://en.wikipedia.org/wiki/Glow_discharge &7



Obstructed discharges

PLASMA EDGE
POLARIZATION L < d

CATHOCE /

C

at the Paschen minimum, i.e., (pd.).in

) pLAsMA 1
s Vo Veascren

 The obstructed glow discharge finds
many uses in industry, where the
high electron number densities
generated by such discharge are
desired. It will operate with a higher
anode voltage. Such high voltage
drops are sometimes desirable to
accelerate ions into a wafer for
deposition or etching purposes.




DC glow discharge plasma sources

Cylindrical glow discharge sources

» This configuration is used in lighting devices, such as fluorescent
lights and neon advertising signs.

= | HIGH VOLTAGE +
POWER SUPPLY

DISCHARGE TUBE
CATHODE / ANODE

NEGATIVE
- GLOW 7




Parallel plate sources are widely used for plasma
processing and plasma chemistry applications

* Unobstructed operation * Obstructed operation
NEGATIVE  FARADAY
GLOW DARK SPACE CATHCDE MNEGATWE GLOW
CATRODE / ANODE /ANODE

oc
POWER SLFPLY

' e i
POWER SUPPLY
-+

(b) AL

« The obstructed configuration is used for plasma processing, where
high ion energies bombarding the cathode, over large areas and at
vertical incidence, are desired.



Magnetron plasma source are used primarily for
plasma-assisted sputtering and deposition

/
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- CATHODE NEGATIVE GLOW
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POWER POSITIVE COLUMN
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DARK)
i PN NN,

e
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ANODE

« When several hundred voltages are applied between the parallel
plates, a glow discharge will form, with a negative glow plasma
trapped in the magnetic mirrors above the magnet pole pieces.
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Penning discharge plasma sources produce a dense plasma
at pressures far below than most other glow discharges
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« Strong axial magnetic fields: to prevent electrons from intercepting

the anode.
» Axial electric fields: electrons are reflected by opposing cathodes.
» Multiple reflection of the electrons along axis.
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Arc discharge

Discharge may enter glow-to-arc transition region if the
cathode gets hot enough to emit electrons thermionically

x x
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10710 108 1078 o4 10-2 | 100 10,000
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- If the cathode gets hot enough to emit electrons thermionically and
the internal impedance of the power supply is sufficiently low, the
discharge will make a transition into the arc regime.
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DC electrical arc discharges in gases
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« An arc is highly luminous and is characterized by high currents (> 1 A)
and current densities (A=cm? t kA/cm?).

« Cathode voltage fall is small (£10 V) in the region of high spatial gradients
within a few mm of the cathode.
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An arc can be non-thermal or thermionic

104

102 10!

PTTeV]
10 4 |0ev

NONTHERMAL ARC
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|

— lev
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ONE ATMOSPHERE

—— — —

-{ 0.0leV
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Plasma parameter

Non-thermal arc

Thermal arc

Equilibrium state
Electron density, n.
(electrons/m3)

Gas pressure, p (Pa)
Electron temperature, T, (eV)
Gas temperatre, T, (eV)
Arc current, / (A)

E/p (V/m-Torr}

{E (kW/cm)

Typical cathode emission
Luminous intensity
Transparency

Ionization fraction
Radiation output

Kinetic

109 < n, < 107
0.1 <p<10°
02<T/ <20
0.025<T; <05
1 <l <50
High

TE <10
Thermonic
Bright
Transparent
Indeterminate
Indeterminate

LTE

102 < n, < 10%
10 < p < 107
10<T/ <10
,=T

50 < I < 10°
Low

IE > 1.0
Field
Dazzling
Opaque

Saha equation
LTE
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Classical arc were mostly used as lighting devices and
operated as non-thermal arcs

« Cathode - emits electrons thermionically

§RLRgPE RO ShoP « Cathode spots - several hot spots causing
Z g T SRR N - : iy ati
o material losses through vaporization and
| v move over the cathode surface with a
|! POS/TIVE COLUN | ql velocity ~ m/s.
| |
'; ': « Cathode sheath - voltage drop (cathode fall)
vi | ~10Vin<1mm.
Var |- GATHODE SHERTH i, : :
SHEATH ﬁ/ Ve  Positive column - little drop in voltage.

« Plasma core - hot region in thermodynamic
ve equilibrium and radiates like a black body.

FQSITIVE COLUMN

« Aureole - flaming gases where plasma
0 .
caToo0E - chemistry takes place.
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Classical arc were mostly used as lighting devices and
operated as non-thermal arcs

« Anode sheath - voltage drop (anode fall) ~

cATHoos - anope cathode fall and is comparable to or less
_ O e _ than the ionization potential of the gas.
CATHODE £ T RORE Y (] ANODE
| ~ | « Anode spot - a single 'hot spot' where the
E rosTvE Qo | current density is high.
| |
'; | - Anode - usually made of a high melting
vi | point, refractory metal and is similar or
anc [~ GATHORE ér'ié’EFHﬁ/ slightly hotter than cathode.
Va
Ve
FQSITIVE COLUMN
"
0 %

o L
CATHODE ANODE



Example
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Note 1 - the cathode fall in arc is usually too small for
secondary election emission so that the emission relies

on thermionic and field emission &

* Non-thermal, low intensity arcs - relies on thermionic emission

— Non-self sustained thermionic emission - cathode must be heated
externally.
— Self sustained thermionic emission - cathode surface is raised to and
maintained by the heat flux from the arc
« Thermal, high intensity arcs: relies on field emission

— high current and current densities

— cathode temperature is determined by the heat transfer to the
cathode and the cathode cooling mechanism and is usually too cool

to emit thermionically.
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The arc tends to be pinched to smaller diameter
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Cathode jet is driven by the axial pressure gradient
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Example - Linear Arcs (free-burning arc)

HIGH HEAT
OH e CATHODE

TR &NSFEH\

 The buoyancy of the hot gases causes a horizontal linear arc to bow
upward, resulting in an arched appearance that gave the ‘arc’ its name.

 The cathode is usually operated at the top, in order to better balance the
heat loads on the two electrodes.
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Expanding Arcs

is used for toxic waste disposal and destructive plasma

The gliding arc
chemistry.
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Wall-stabilized arc

l [ ANODE +

E?=-V-(kVT) = ——— [ rk—
g (=VT) r dr rkdr

 Assume that the axial electric field E is constant o and k are not function
of temperature:

- Radial power paiance: 1 d ( dT)

oE%a?
4K

T0=Tw+

 Wall-stabilized effect:

Tl=> kl= TyT= oT= the arc will be pulled back on axis

3./m, (KT,)3/2 KT ne’r
T, = T (KTe) k=320 ¢ 52 o= o T,>?

4+/2mnietz m, € m,
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Arc can be stabilized by air flow
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Arc can be stabilized by the vortex flow
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 The vortex flow is very effective in reducing the heat flux to the wall.
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Magnetically stabilized arc

« An axial magnetic field provides J x B forces which rotate the arc spoke
to avoid high local heat loads on the anode.
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« An axial magnetic mirror coaxial with the anode so that the magnetic field
maximum is near the plane of the arc rotation.
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Transferred arc is good for metal melting and refining
industry
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« Capable of operating at the multi-megawatt level for duration (100s
~1000s hours) that are not possible for thermionically emitting cathodes
or uncooled, incandescent cathodes operating in air.

« The arc root moves over the cathode surface, further reducing the
cathode heat load and increasing the lifetime of the hardware.

 The object to be heated is used as the anode since the anode receives
the heat deposition from the cathode jet.
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Non-transferred arc
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» Gas fed along the axis blows the arc out toward the material which is to
be heated. WATER w::msﬁ

{ 1 | INSULATOR | 1 L‘
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« A working gas is fed in coaxially and forms a very hot arc jet, at
supersonic velocities.
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Application — Plasma torch

(BRERE by 45N Hr/ S IR IR)

* Non-Transferred
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Methods of plasma production

« AC electrical discharges

— RF electrical discharges in gases
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RF can interact with plasma inductively or capacitively

X
R Uy

& <

P z

g

5 g

s &
% &
v 4

rsat

planar

coaxial

Capacitively coupled

3 = '
;*4

)

Inductively coupled

coaxial

Sp:al--L--l

planar

92



AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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* DC electrical discharge — a true current in the form of a flow of ions or
electrons to the electrodes.

« AC electrical discharge — the power supply interacts with the plasma by
displacement current.

— Inductive radio frequency (RF) electrical discharges
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The plasma is generated by the induced electric field
from the oscillating magnetic field
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How an electromagnetic wave interacts with a plasma
depends on its frequency

ELECTROMAGNETIC WAVE FREQUENCY, GHz
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!O|4 |015 |0|6 |Dl? lOkB

ELECTRON NUMBER DENSITY n,, ELECTRONS/m”

1760 Torr / 300k = 2.45 X 10?°> m™3

Npq Torr, 1 % ionization
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=3.2x101%m-3
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RF energy is strongly absorbed within the skin depth if

the frequency is below the electron plasma frequency
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Skin depth is calculated using Maxwell's equations

V- E =~ O(quasi —neutral) yv.B =0
3 o 7 = o E (Ohm'slaw)
= _ OB UxB=uT °=
VX E o Mo J + Ho€o Y

Vx(fo)=—%(Vx§)=v(v-f)—vzf~—v2f

" E OF *E_ E=E i(k )] k=a+tl
] 1/2
) - oUow |we WEQ 2
(—Kk? + iwpgo + poegw?) E = 0 a = / Ho 0, \/1 n (_0)
2 o o
' 21/2
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Skin depth is calculated using Maxwell's equations

1/2 1/2
Ol w | WE WEY\ 2 1 ol W wep\2  weg
— 1 -0 - 1 B
S T S IR
2 2
e’n, €w
- In most industrial plasma, €0 . ; . Note that ¢ = — ve - OVpe so
V.w<< Wy is required. 2 evc c
OHow , _,
an (T2 (1)

] 2 c V¢
skin depth: & = / = (m)
OUow 2TTVye N TV

 The skin depth & ~ the distance that an electromagnetic wave propagates
into a medium during one period of the electron plasma frequency.
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Skin depth needs to be carefully considered in the
design of inductive industrial plasma reactors

 Boulos et al showed that the
energy coupling parameter is
maximum when 1.50 € a < 30.
However, it doesn't mean the
plasma will be uniformly
heated.

SKIN DEPTH & METERS
1Qm N D o S B B B N R B D e 20 IR M B BN

I [ | L | 1 I, L L] |
104 10'S 108 io'7 10'# 10'®
ELECTRON NUMBER DENSITY ng,/m>
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A kilowatt-level inductively coupled plasma torch is
shown
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High voltage initiation is usually required for inductive
RF plasma torches
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The power supplies are relatively inefficient

PLASMA TORCH
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Operating regimes of inductively coupled plasma
torches

Parameter Low Characteristic High
Frequency 10 kHz 13.56 MHz 100 MHz
Power 1 kW 30 kW IMW
Efficiency 20% 35% 50%
Pressure 10 Torr 1 atm 10 atm

Gas temperature 1000 K 10* K 2 x 10 K

103



Inductive RF coupling provides a plasma with less
contamination from the electrode

WORKING GAS

A

COAXIAL
GAS FLOW

coiL

-

INDUCT IVE PLASMA TORCH ARG JET
10~ 200 m/sec JET VELOCITY 500-1%90 m/sec
4~ 40 mm JET DIAMETER 6-10mm

VARIABLE JET SHAPE CYLINDRICAL
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Several cooling configurations are shown
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WATER FLOW
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Inductive parallel plate reactor
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ELAN VIEW

* Uniform plasma source

QUARTZ DISC

SR e - Higher power (2 kW) leading to higher
plasma density (up to 1018 electrons/m3)

 Lower gas pressure, i. e., longer mean
free paths and little scattering of ions
and is desired in deposition and
13,56 Wi | RF ColL etching applications.
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Rotamak

RF PREIONIZATION

ORTHOGONAL ROTATING
MAGNETIC FIELD COILS

TO VACUUM
SYSTEM
TN colL
/2 27 7 - ol
I / o ‘:\.\\
1) N L ; "/ \
- / ~
\ ~
EQUILIBRIUM FIELD N
COILS

« The rapidly rotating magnetic field generates large plasma currents, thus
heating the plasma to densities and temperatures of interest in many
industrial applications
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Inductively heated toroidal plasmas

TO LINE
PULSED PRIMARY AC PRIMARY
‘ | INQUCTION CIRCUIT

AINDUCTION CIRCUIT
SWITCH
i PRIMARY WINDING PRIMARY WINDING

« Large currents are induced in the plasma by transformer action from a
ramped current in a pulsed primary induction circuit.
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Applications of inductive plasma torches

* High purity materials production
— Silica and other refractories
— Ultrafine powder
— Spherical fine power
— Refining/purification
* High temperature thermal treatment
— Heat treatment
— Plasma sintering
« Surface treatment
— Oxidation

— Nitriding
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Applications of inductive plasma torches

« Surface coating
— Plasma flame spraying
— Surface coating of powder
» Chemical vapor deposition (CVD)
— At atmospheric pressure
— At reduced pressure

« Chemical synthesis and processing

« Experimental applications
— Laboratory furnace
— High intensity light source
— Spectroscopic analysis
— Isotope separation
— lon source

— High power density
plasma source
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma

— Capacitive RF electrical discharges
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Capacitive RF coupling plasma without magnetic fields

RF
SOURCE

P
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C3 &
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d2 dx
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eEqw Ve .
v,(t) = — m(wz—‘jﬂ’cz) cos(wt) — ;sm(wt)]

dw _
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5 5 1 m ,2n.e’ v,
=n = —c
tot = Tet T 47070 mey @2 +v,.2
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Capacitive RF coupling plasma with magnetic fields
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The coupling efficient for capacitive RF with magnetic
fields is less than DC electrical discharge
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Collision frequency can be measured using capacitive
RF electrical discharges
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Symmetrical capacitive RF discharge model
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Empirical scaling of electrode voltage drop

I, = A1J,1 = Ajeny vy
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Example of capacitively coupled RF plasma source 1

VACUUM BELL JAR

p , ELECTRODE

RF POWER
BARREL REACTOR

SUPPLY
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« Barrier reactor — the wafers
float electrically and have low
ion bombardment energies
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* Hexagonal reactor — the wafers
develop a DC bias which leads to a
relatively anisotropic, vertical etch.
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Example of capacitively coupled RF plasma source 2
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* Plane parallel reactor * Multiple electrode system
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Operating regimes of capacitively coupled plasma
reactors used for plasma processing

Parameter Low value Typical value High value
Frequency 1 kHz 13.56 MHz 100 MHz
(Gas pressure 3 mTorr 300 mTorr 5 Torr
Power level S50 W ~ 200 W 500 W

rms electrode voltage 100 V ~30V 1000 V
Current density 0.1 mA/cm?  ~ 3 mA/cm? 10 mA/cm?
Electron temperature, 7, eV A~ 5eV 8 eV
Electron density, n, 105 /m3 ~ 5 x 105 /m3 3 x 1077 /m?
Ion energy, &; 5eV 50 eV 500 eV

Electrode separation, d 0.5 cm 4 cm 30 cm
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Microwave electrical discharges
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Advantage of using microwave electrical discharges
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« The wavelength of the microwave is in centimeters range. In contract, the
wavelength is 22 m for RF frequency f = 13.6 MHz.

« The electron number density can approach the critical number density.
(7x107¢ m-3) at a frequency of 2.45 GHz.

 The plasma in microwave discharges is quasi-optical to microwave.

 Microwave-generated plasmas have a higher electron kinetic temperature
(5~ 15 eV) than DC or low frequency RF-generated plasmas (1 or 2 eV).

« Capable of providing a higher fraction of ionization.
Do not have a high voltage sheath.

* No internal electrodes.
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Microwave frequency is determined for those used in
communications and radar purposes
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Internal of a magnetron
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© 2010 Encyclopeedia Britannica, Inc.

https://kids.britannica.com/students/article/electron-tube/106024/media?assemblyld=137 124



Internal of a magnetron
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Magnetron is a forced oscillation driven by electrons
between the gap

Hot cathode emits

electrons which

travel outward Stable magnetic
field B

Electrons from a hot filament would

travel radially to the outside ring if

it were not for the magnetic field. The

magnetic force deflects them in the

sense shown and they tend to sweep

around the circle. In so doing, they

"pump" the natural resonant frequency

of the cavities. The currents around the Current around
resonant cavities cause them to radiate the cavity plays
electromagnetic energy at that resonant the role of an

frequency. inductor. Oscillating magnetic
and electric fields
produced in the
cavity.

The cavity exhibits
a resonance
analogous to a
parallel resonant
circuit.

C
g L Charge at ends

o of cavity plays

Electrons from the hot

I" the role of a center cathode arriving
— sapael at a negatively charged
pacitor. . LS
region tend to drive it
1 | back around the cavity,
- "pumping” the natural
resonance Qg \| [.C resonant frequency.

http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/magnetron.html
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Strong oscillation occurs when the electron cyclotron
frequency match the LC oscillation frequency
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Resonance condition: wc = w
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Resonance in a magnetron

http://cdn.preterhuman.net/texts/government_information/intelligence_and_espionage/homebrew.milit
ary.and.espionage.electronics/servv89pn0aj.sn.sourcedns.com/_gbpprorg/mil/herf1/index.html 128



Magnetron schematic diagram
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Magnetron schematic diagram
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Magnetron schematic diagram
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The electrode of the microwave source is located at the
location with the highest electric field

o
S
Camera
Quartz tube
High voltage AC power supply \
i Plasma torch
Circulator water load Compressed waveguide

7\g/ 4+ }\.g/ 8 7\g / 8 Magnetron

Ag/2

Cold circulating water tank Air compressor RF power supply

V. Surducan, etc., AIP Conference Proceedings 1425, 89 (2012)
Dan Ye, etc., AIP Advances 10, 055002 (2020 132



A 3-port circulator combining with a dump can be used
as a isolator
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Microwave plasma reactor configurations
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« Waveguide coupled reactor  Resonant or multimode cavity —
if the impedance matching is
good, more energy can be fed
into the cavity.
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Strong absorption occurs when the frequency matches

the electron cyclotron frequency

« Electron cyclotron resonance (ECR) plasma reactor
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Electron cyclotron frequency depends on magnetic field

only

 Assuming B =Bz and the
electron oscillates in x-y plane

 Therefore
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Electrons keep getting accelerated when a electric field
rotates in electron’s gyrofrequency

dv e N N N R o
me— =7 UVxB—eE B =B,z FE =Ey[xcos(wt) + ysin(wt)]

: e : e ] .
m,v, = — szy + Egcos(wt) mev, = EBvx + Epsin(wt) m v, =0
v, = — v, — —wsin(wt) = —w v, —— (w w)sin(w

X mec y me ce X me ce
.o eB . EO _ 2 EO
v, =— mecvx + m—ewcos(wt) = —We"Vy + E (wee + w)cos(wt)
eB

Wee =

m,c
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Electric field in a circular polarized electromagnetic
wave keeps rotating as the wave propagates

* Right-handed polarization « Left-handed polarization

https://en.wikipedia.org/wiki/Circular_polarizatioss



Electric field rotates in a circular polarization
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A linear polarized wave can be decomposed by a left-
handed and a right-handed polarized wave
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* Right-handed polarization « Left-handed polarization

24
/’/’,’—T“:?\: N LHC
= ~ E 0/~ . ~ .~ 3 : 4 N ;1
E = on - 7 [(x + ly) + (x o ly)] é 3 :\\"\\ > /,'/,\:1 1 'x
RHC LHC lR e
214

https://en.wikipedia.org/wiki/Circular_polarizatiosn



Only right-handed polarization can resonance with
electron’s gyromotion
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FIGURE 13.5. Basic principle of ECR heating: (a) continuous energy gain for right-
hand polarization; (b) oscillating energy for left-hand polarization (after Lieberman and
Gottscho, 1994).
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Strong absorption occurs when the frequency matches

the electron cyclotron frequency

« Electron cyclotron resonance (ECR) plasma reactor
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Electron cyclotron resonance (ECR) microwave

systems
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Immersed ECR plasma source

#® K
& <
A 3
% F
C3 &
“, s
o »
T3t

* High particle fluxes on targets for diamond or other thin film deposition

* The ions in the plasma flux can be used for etching.
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Distributed ECR system
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* Function of the multipolar magnetic
field at the tank boundary:

— Provide a resonant surface for
MICROWAVE ECR absorption
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— Improve the confinement of the
plasma
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Microwave plasma torch deposit a much faster rate than
other types of plasma source for diamond film deposition
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Microwave-generated plasmas have the capability of
filling very large volumes with moderately high density
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« Advantages

— Lower neutral gas pressure, i.e., longer ion and neutral mean free
paths.

— Higher fraction ionize.
— Higher electron density.
« Disadvantages
— Lower ion bombardment energies.
— Less control of the bombarding ion energy.
— Difficult in tuning up and achieving efficient coupling.
— Much more difficult and expensive to make uniform over a large area.

— More expensive.
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Dielectric-barrier discharges (DBDs)
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Dielectric-barrier discharges (DBDs)
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Space charge effect enhance the electric field
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The foundation of AC discharge in plasma display panel
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The plasma can be sustained using ac discharged In
plasma display panel
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« Wall discharge reduced the required discharge voltage
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Plasma-needle discharge

Matching
network RF source

Helium
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Atmospheric-pressure cold helium microplasma jets
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There are three different modes: chaotic, bullet, and
continuous mode
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In bullet mode, the plasma jet comes out as a pulse
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Laser produced plasma
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Electric field of a high-power laser can perturb the
potential of a nuclear and thus ionize the atom directly
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Laser is absorbed in underdense plasma through
collisional process called inverse bremsstrahlung
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Pulsed-power generated plasma - it will be introduced later.
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