Application of Plasma Phenomena
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lonization process

Collisions play an important role in ionization process
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« At the microscopic level, breakdown requires the presence of sufficiently
energy charge particles that have acquired enough energy from the
applied electric field between two energy-dissipating collisions to ionize
the material and to create more charge particles.
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More complex collisions

 Total collisional cross section:
0(V) = O¢ + Oex + Ojop + -+ = 2,0,

Excitation Excitation

lonization

lonization

lonization

lonization

Elastic
* Inert gas can be ionized easier since there are less exciting state
compared to gas molecules.

* Molecules, e.g., Sk, dry air (with O,), that capture electron easier
provides a higher breakdown voltage.



Methods of plasma production

« DC electrical discharges
— Dark electrical discharges in gases
— DC electrical glow discharges in gases

— DC electrical arc discharges in gases



Dark discharge

In a dark discharge, the excitation light is so little and is
not visible
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« In dark discharge, with the exception of the more energetic corona
discharges, the number density of excited species is so small so that
it does not emit enough light to be seen by a human observer.



In background ionization, ions and electrons are
created by ionization from background radiation
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« Sources of background radiation:
— Cosmic rays
— Radioactive minerals in the surroundings
— Electrostatic charge
— UV light illumination

— Other sources



The region where the current exponentially increases is
called the Townsend discharge
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« Electrons from photo- or secondary electron emission from the cathode:
T'ec = I'eg + I'es(electrons/m? — s)

 Volume ionization source from the ionization of the background gas by
energetic electrons accelerated in the electric field:

Se =R, = ne”O(‘“’)ne



Derivation of Townsend’s first ionization coefficient
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« Number of primary electrons with energy higher than the
lonization potential:

dn, = —n dx; = e (X,) = exp <— ﬁ)
° © A Neo A

#/ ionization collisions

a = X (#/electron with E > ionization potential)
per electron
1n,(x;) 1 < x,-)
)'i Neo )li )'l

a = Ap exp(—Apx;)

a AV C\__(E 4 )
;erxp _E/p =Aexp|————|=f ; xiszhereV > V;

« The parameters A and C must be experimentally determined.



Phenomenological constants A and C of Townsend's
first ionization coefficient for selected gases

Gas A C
ion pairs/m-Torr V/m-Torr

A 1200 20 000
Air 1220 36 500
CO, 2000%* 46 600
H, 1060 35000
HCl 2500%* 38 000
He 182 5000
Hg 2000 37 000
H,0 1290% 28 900
Kr 1450 22 000
N, 1060 34200
Ne 400 10 000
Xe 2220 31000

* These values may be high by as much as
a factor of two.
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Corona discharge (unipolar discharge) is a very low
current, continuous phenomenon
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« Corona can initiate on sharp points at potentials as low as 5 kV.

* It can initiate from sharp points, fine wires, sharp edges, asperities,
scratches or anything which creates a localized electric field greater than
the breakdown electric field of the medium surrounding it.

« It can be a “glow discharge”, i.e., visible to eyes. For low currents, the
entire corona is dark.



Phenomenology of corona generated by a fine wire
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 The point of corona initiation is that point at which the voltage on the
inner conductor of radius ais high enough that corona is just detectable.

* The electric field will drop off to the breakdown value at a radius r, called
the active radius.



Corona can occur for both positive and negative polarity

& “
P %
z m
3 d
3 $
% ™

» Positive polarity * Negative polarity

The initiation voltages or coronal current are slightly different between
positive and negative polarity.

A continuous (positive polarity, DC) or intermittent (negative polarity,

usually) current, usually in the order of uA ~ mA per decimeter of length
will flow to the power supply.
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Negative point corona, also known as Trichel pulses
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« Avalanche toward anode occurs in the strong electric field region.

« No further ionization occurs in the weak field region.

« Electrons are slow down by positively charged ions (ion+) behind.

« Electrons attach to gas molecules forming negatively charged ions (ion-).

 The presence of the negative ions reduces the electric field at the point
electrode and the discharge extinguishes.

 When positively/negatively charged ions drifted away, the original high-
field conditions are re-established
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Positive point corona
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« Electron avalanche initiated near the high-field region propagating
toward anode.

« Streamer is developed.

 Lateral avalanches feed into the streamer core.

M. Goldman and R. S. Sigmond, IEEE Trans. Elec. Insulation, EI-17, 90 (1982)
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Don’t bring a long stick to a train station

High voltage cables

Pantograph + 0%; Long stick such as

fishing rod, ski board,
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L
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Rail (Grounded)
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A corona discharge causes some problems even no
breakdown occurs

« Ozone (O;) is generated.

Rubber is destroyed by O.

NOs* is generated with moisture.

Disadvantage:

— Power losses.

— Radio frequency (RF) interference.

— Reduce the service life of solid and liquid insulation via initiating
partial discharge.

— Chemical decomposition.

Advantage: |
— Pseudospark discharge — fast switch. o op”
— Electrostatic precipitator (dust remover)

using coronadischarge.

— Hair dryer https://zh.wikipedia.org/wiki/%E9%9D%99%E 7%94%B5%E9%99%A4%E5%B0%98 16



A corona shield is used to suppress corona
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Electrical breakdown occurs when applied voltage is
greater than the breakdown voltage
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* Primary electrons: electrons from the cathode due to photoemission,
background radiation, or other processes.

« Secondary electrons: electrons emitted from the cathode per incident ion
or photon created from ionization in gas.



Derivation of electrical breakdown

« Secondary electron emission coefficient:

_ #/ of electrons emitted [ Anode }
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The Townsend condition for ignition (avalanche grows)
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« The Townsend condition for ignition or called avalanche grows occurs
when 1 —y(e“d B 1) —0
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Universal Paschen’s curve
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Collision frequency and electron energy gained from
electric field are both important to electrical breakdown
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« Collision is not frequent
enough even the electrons
gain large energy between
each collision.

 Electrons do not gain enough
energy between each collision
even collisions happen frequently.

« The minimum of the Paschen’s curve corresponds to the Stoletow point,
the pressure at which the volumetric ionization rate is a maximum.



Experimental Paschen’s curve
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Paschen’s curve is used to design different high voltage
high current switches in pulsed-power system
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Driven piles - prefabricated steel, wood or concrete
piles are driven into the ground using impact hammers
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* Driven piles « Hammer

PLACEMENT OF PILE INSTALLATION OF PILE REPETITION OF PROCESS

http://www.saudifoundations.com/driven.html
http://learnhowtowritesongs.com/tag/thesaurus/



Example of short pulses with a controllable repetition rate

https://www.youtube.com/watch?v=5fe8b4MIPYw
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A spark gap switch is closed when electron breakdown
OCCurs
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Glow discharge

DC electrical glow discharges in gases

 The internal resistance of the power supply is relatively low, then the gas

will break down at the voltage Vg, and the discharge tube will move from
the dark discharge regime into the low pressure normal glow discharge
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The plasma is luminous in the glow discharge regime

« The luminosity arises because the electron energy and number density
are high enough to generate visible light by excitation collisions.
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Abnormal glow discharge occurs when the cross section
of the plasma covers the entire surface of the cathode
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« Surface cleaning using plasma needs to work in the abnormal glow
discharge region.



Plasma cleaning needs to work in the regime of
abnormal glow discharge
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Low pressure normal glow discharge
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HITTORF} DARK SPACE
CROOKES.
ASTON DARK SPACE - EARADAY DARK SPACE  ANODE DARK SP

Cathode: made of an electrically
conducting metal with 2"d e- emission v,

of which has a significant effect on the
operation of the discharge tube.

Aston dark space: athin region with a
strong electric field and a negative
space charge. The electrons are of too
low a density and/or energy to excite the
gas, So it appears dark.

Cathode glow: has arelatively high ion
number density. The length depends on
the type of gas and the gas pressure.

Cathode (Crookes, Hittorf) dark space:
has a moderate electric field, a positive
space charge, and a relatively high ion
density.




Low pressure normal glow discharge
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Low pressure normal glow discharge
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Low pressure normal glow discharge

e xu,
¥ “
p ¥
z m
° 4
%, $
v 14
[

Eﬁ%g%} BARK SPACE « Faraday dark space: the electron
ASTONDARﬁSPAC%—FAREDAYmRK SPACE  ANODE DARK SP energy iNn it is low as aresult of
(T2 (T L C : s : -
REa L e g ionization and excitation interactions
CATHODE "0 ATHOOE GLOW ~~._  ~POSITIVE COLUMN ANOC . _
NEGATIVE GLOW ANODE GLOW in the negative glow. The electron
CATHODE REGION .
A number density decreases by
INTENSITY recombination and radial diffusion,
R PR — the net space charge is very low, and
o 2 the axial electric field is relatively
ROTENTIAL ¢ [ 77 | small
0 ]dc —
-E :
ELECTRIC &
FIELD i
| o %
ol ]l.a_c_. -
|
DENSITY Cc ---!-_- ‘\

0 |4 L



Low pressure normal glow discharge
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Low pressure normal glow discharge
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Striated discharges
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 Moving or standing striations are, respectively, traveling waves or
stationary perturbations in the electron number density which occur in
partially ionized gases, including the positive columns of DC normal glow
discharge tubes.

* https://youtu.be/Be4RIjMTOWE

https://en.wikipedia.org/wiki/Glow_discharge



Obstructed discharges
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« The obstructed glow discharge finds
many uses in industry, where the
high electron number densities
generated by such discharge are
desired. It will operate with a higher
anode voltage. Such high voltage
drops are sometimes desirable to
accelerate ions into a wafer for
deposition or etching purposes.




DC glow discharge plasma sources

Cylindrical glow discharge sources

« This configuration is used in lighting devices, such as fluorescent
lights and neon advertising signs.
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Parallel plate sources are widely used for plasma
processing and plasma chemistry applications
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« The obstructed configuration is used for plasma processing, where
high ion energies bombarding the cathode, over large areas and at
vertical incidence, are desired.



Magnetron plasma source are used primarily for
plasma-assisted sputtering and deposition
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« When several hundred voltages are applied between the parallel
plates, a glow discharge will form, with a negative glow plasma
trapped in the magnetic mirrors above the magnet pole pieces.



Penning discharge plasma sources produce a dense plasma
at pressures far below than most other glow discharges
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« Strong axial magnetic fields: to prevent electrons from intercepting

the anode.
« Axial electric fields: electrons are reflected by opposing cathodes.

« Multiple reflection of the electrons along axis.



Arc discharge

Discharge may enter glow-to-arc transition region if the
cathode gets hot enough to emit electrons thermionically
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» If the cathode gets hot enough to emit electrons thermionically and
the internal impedance of the power supply is sufficiently low, the
discharge will make a transition into the arc regime.




DC electrical arc discharges in gases
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« An arc is highly luminous and is characterized by high currents (> 1 A)
and current densities (A=cm? t kA/cm?).

« Cathode voltage fall is small (£10 V) in the region of high spatial gradients
within a few mm of the cathode.




An arc can be non-thermal or thermionic
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Plasma parameter

Non-thermal arc

Thermal arc

Equilibrium state
Electron density, n.
{electrons/m3)

Gas pressure, p (Pa)
Electron temperature, T, (eV)
Gas temperature, T, (eV)
Arc current, / (A)

E/p (V/m-Torr}

{E (kW/cm)

Typical cathode emission
Luminous intensity
Transparency

lonization fraction
Radiation output

Kinetic

109 < n, < 107!
0.1 <p<10°
02<T/ <20
0.025<T; <05
1 <l <50
High

TE <10
Thermonic
Bright
Transparent
Indeterminate
Indeterminate

LTE

102 < n, < 10%
10 < p <107
10<T/ <10
T,=T

50 < < 10*
Low

I1E > 1.0
Field
Dazzling
Opaque

Saha equation
LTE




Classical arc were mostly used as lighting devices and
operated as non-thermal arcs

« Cathode - emits electrons thermionically

§PIREDE ORI SFor « Cathode spots - several hot spots causing
A PLASNA - i i i
oo B SN material losses through vaporization and
~ ) move over the cathode surface with a
POSITIVE COLUMN ql Velocity - m/S.

« Cathode sheath - voltage drop (cathode fall)
~10Vin<1mm.

ATHODE ANODE

3”5'%/ % « Positive column - little drop in voltage.

 Plasma core - hot region in thermodynamic
Ve equilibrium and radiates like a black body.

FOSITIVE COLUMN

« Aureole - flaming gases where plasma
0 .
CATo0E e chemistry takes place.

N




Classical arc were mostly used as lighting devices and
operated as non-thermal arcs

« Anode sheath - voltage drop (anode fall) ~

caTHoDE anope cathode fall and is comparable to or less
_ T e _ than the ionization potential of the gas.
catope 5 FT i CORE L h Y (L awooe
. | « Anode spot - a single 'hot spot' where the
! — :
| . . .
| FOSITIVE COLENN | ql current density is high.
| |
'; | - Anode - usually made of a high melting
vi | point, refractory metal and is similar or
ano [~ GATHORE éﬁé’fﬁ%/ slightly hotter than cathode.
Va
Ve
POSITIVE COLUMN
L
0 3

0] L
CATHODE ANQDE



Example
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Note 1 - the cathode fall in arc is usually too small for
secondary election emission so that the emission relies

on thermionic and field emission @&

* Non-thermal, low intensity arcs - relies on thermionic emission

— Non-self sustained thermionic emission - cathode must be heated
externally.
— Self sustained thermionic emission - cathode surface is raised to and
maintained by the heat flux from the arc
« Thermal, high intensity arcs: relies on field emission

— high current and current densities

— cathode temperature is determined by the heat transfer to the
cathode and the cathode cooling mechanism and is usually too cool

to emit thermionically.



The arc tends to be pinched to smaller diameter




Cathode jet is driven by the axial pressure gradient
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Example - Linear Arcs (free-burning arc)

HIGH HEAT
AN CATHODE

TRAN ‘\\\//

« The buoyancy of the hot gases causes a horizontal linear arc to bow
upward, resulting in an arched appearance that gave the ‘arc’ its name.

 The cathode is usually operated at the top, in order to better balance the
heat loads on the two electrodes.



Expanding Arcs

The gliding arc is used for toxic waste disposal and destructive plasma

chemistry.
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Wall-stabilized arc

l [ ANCDE +

* Radial power vaiance: 2 . 1 d dT
= — K = —_-— — TrK —
g r dr Kdr
« Assume that the axial electric field E is constant o and k are not function
of temperature;
" To=T, + oE a’

 Wall-stabilized effect;:

Tl=> kl=TyT= o71= the arc will be pulled back on axis

3/, (KT,)3/? KT ne’t
T, = me( e) K=3.2n eTeOCT 5/2 o = eocTeg/z

4+/2mnietz m, € m,




Arc can be stabilized by air flow
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Arc can be stabilized by the vortex flow

/DUARTZ WALL

%\\\\\\\\ <&

N .:Z ARC ! A o et
CATHODE \ / ﬂ‘ ANODE

D\ S SO SN

T TANGENTIAL INJECTOR

TANGENT AL
GAS INJECTORS

WATER
ouT

 The vortex flow is very effective in reducing the heat flux to the wall.



Magnetically stabilized arc
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« An axial magnetic field provides J x B forces which rotate the arc spoke
to avoid high local heat loads on the anode.

WATER MAGNETIC FIELD
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« An axial magnetic mirror coaxial with the anode so that the magnetic field
maximum is near the plane of the arc rotation.
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Transferred arc is good for metal melting and refining
iIndustry
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« Capable of operating at the multi-megawatt level for duration (100s
~1000s hours) that are not possible for thermionically emitting cathodes
or uncooled, incandescent cathodes operating in air.

 The arc root moves over the cathode surface, further reducing the
cathode heat load and increasing the lifetime of the hardware.

« The object to be heated is used as the anode since the anode receives
the heat deposition from the cathode jet.



Non-transferred arc

e xu,
¥ “
p ¥
z m
° 4
%, $
v i
[

» Gas fed along the axis blows the arc out toward the material which is to
be heated. WATER WATER

”I INSUI;ATOR _ | lL‘

GAS
FEED rzzrrr

« A working gas is fed in coaxially and forms a very hot arc jet, at

supersonic velocities.
ANCDE

COOLING
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—_— ARC JET

WORKING
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Application — Plasma torch
(BIRIERINE by BRAFHIH/ S MR R)

* Non-Transferred -
arc

arc

Transferred

Plasma

Cathode

E ,
% " EL N L
- EEf B4 XEIRLE
T & & # A ETEF A LELARE o R £ # AR H B L
(% 4 2 € &)
BB RERN #7 b #OAMGEELSAR)
(A # Ok (100%) # O (20%)
¥ o« & FE(TC) 4, 000~ 10,000 15,000~ 20,000
& & # H (MJ/kg) i~ 40 20~ 200
H A EHSR L S A TH - EA¥ - TRLEAE
MK E M E (%) |80~80 =40
X A& b M 1.k # & i %
A a 1.8 6B KB R (45%) IR THE MR
k 3.E R & A o F ik (60%)

https://www.atlas-
innotek.com/projects/e60Fj63K47PYPgPe2
http://www.resi.com.tw/PlasmaTorch.htm



Methods of plasma production

 AC electrical discharges

— RF electrical discharges in gases



RF can interact with plasma inductively or capacitively
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma

o

¥ “

J %

z m

(3 d
3 8
et

 DC electrical discharge —atrue current in the form of a flow of ions or
electrons to the electrodes.

* AC electrical discharge — the power supply interacts with the plasma by
displacement current.

— Inductive radio frequency (RF) electrical discharges



The plasma is generated by the induced electric field
from the oscillating magnetic field
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How an electromagnetic wave interacts with a plasma
depends on its frequency

ELECTROMAGNETIC WAVE FREQUENCY, GHz

100 T T

10 COLLECT IVE INTERACTION REGIME

= MICROWAVE OVENS
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i PARTICLE INTERACTION REGIME j
0.1 | | TR O 0 S a1l ] Ll
1014 01 0'® 07 10’8

ELECTRON NUMBER DENSITY n,, ELECTRONS/m>

1760 Torr / 300k = 2.45 X 10?°> m™3

Npq Torr, 1 % ionization

10!%

=3.2x101%m3



RF energy is strongly absorbed within the skin depth if

the frequency is below the electron plasma frequency
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Skin depth is calculated using Maxwell's equations

V- E =~ O(quasi —neutral) yv.B =0
3 o 7 = o E (Ohm'slaw)
= _ OB UxB=uT °=
VX E o Ho J + Ho€o Y

Vx(fo)=—%(Vx§)=v(v-f)—vzf~—v2f

" E OF *E_ E=E i(k )] k=a+tl
i 1/2
N w |we weg\ 2
(—Kk? + iwpgo + poegw?) E = 0 o = /Gllo 0, \/1 n (_0)
2 o o
21/2




Skin depth is calculated using Maxwell's equations
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1/2 1/2

oupw |we WEQn\ 2 1 Ol,W wWEN\2 weE
a = / Ho 0+ 1+(—°) - 2K 1+(—°> -2
2 o o o 2 o o
e’n, € wn.?
wE e 0%pe

 In most industrial plasma, ——9 . 1 . Note that o = = SO
V<< wpe” IS required.

a =~ Gllzow (m™1)

_ 2 C vV,
skin depth: &= = (m)
OUow  2TTVye N TV

« The skin depth & ~ the distance that an electromagnetic wave propagates
into a medium during one period of the electron plasma frequency.




Skin depth needs to be carefully considered in the
design of inductive industrial plasma reactors

 Boulos et al showed that the
energy coupling parameter is
maximum when 1.50 € a £ 30.
However, it doesn't mean the
plasma will be uniformly
heated.

SKIN DEPTH 8. METERS
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A kilowatt-level inductively coupled plasma torch is

shown
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High voltage initiation is usually required for inductive
RF plasma torches
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The power supplies are relatively inefficient

PLASMA TORCH
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Operating regimes of inductively coupled plasma
torches

Parameter Low Characteristic High
Frequency 10 kHz 13.56 MHz 100 MHz
Power 1 kW 30 kW 1MW
Efficiency 20% 35% 50%
Pressure 10 Torr 1 atm 10 atm

Gas temperature 1000 K 10* K 2 x 10 K




Inductive RF coupling provides a plasma with less
contamination from the electrode
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10- 200 m/sec JET VELOCITY 500-150 m/sec
a- 40 mm JETDIAMETER  6-10 mm

VARIABLE JET SHAPE CYLINDRICAL
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Inductive parallel plate reactor
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UARTZ DS j— « Uniform plasma source
SR Freer « Higher power (2 kW) leading to higher
plasma density (up to 1018 electrons/m?3)
: A  Lower gas pressure, i. e., longer mean
free paths and little scattering of ions
and is desired in deposition and
136wz | R colL etching applications.
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Rotamak

RF PREIONIZATION

ORTHOGONAL ROTATING
MAGNETIC FIELD COILS
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« The rapidly rotating magnetic field generates large plasma currents, thus
heating the plasma to densities and temperatures of interest in many

industrial applications



Inductively heated toroidal plasmas

TO LINE

PULSED PRIMARY AC PRIMARY
SWITCH /INDUCTION CIRCUIT ‘ | INQUCTION CIRCUIT

PRIMARY WINDING PRIMARY WINDING

« Large currents are induced in the plasma by transformer action from a
ramped current in a pulsed primary induction circuit.



Applications of inductive plasma torches

« High purity materials production
— Silica and other refractories
— Ultrafine powder
— Spherical fine power
— Refining/purification
* High temperature thermal treatment
— Heat treatment
— Plasma sintering
« Surface treatment
— Oxidation

— Nitriding



Applications of inductive plasma torches
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« Surface coating « Experimental applications

— Plasma flame spraying — Laboratory furnace

— Surface coating of powder — High intensity light source
« Chemical vapor deposition (CVD) — Spectroscopic analysis

— At atmospheric pressure — Isotope separation

— At reduced pressure — lon source
« Chemical synthesis and processing — High power density

plasma source



AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Capacitive RF electrical discharges



Capacitive RF coupling plasma without magnetic fields

d2 dx
m-7 +mv,— i = eEysin(wt)

o x = C¢sin(wt) + C,cos(wt)

SQURCE

| T B eE, 1
m w?+ v?

Cl=—

. ?_\ v.eE, 1
_ eEqgw Ve .
mﬂ Y. = v, (1) = (@2 +v.D) cos(wt) — sm(wt)]
dt Y
_daw _
v, (t) = vyoexp(—v,t) P = dr eEqsin(wt)v,
1 ,2n.e? v,

P,,. = n,P = —¢€yE
tot = Tet T 47070 me, @2 +v,.2



Capacitive RF coupling plasma with magnetic fields
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d2x+ dx_l_ dy  eE, . (o)
Vege T ®cgp = ———sin(w

4 A eem oy o dfy N dx dy 0 eB
dt2 € dt € dt @e m

F=md=—-v.m7— e(i_)‘ 5 Tf) _eF x = C¢sin(wt) + C,cos(wt)

d*x dx d — C.si
mﬁ + mvca + eBd_}t’ = —eE,sin(wt) y = Cesin(ot) + C4cos(w)

dv dx eE w+ w w—w

y 0 c c

m—+mv.yv,—eB—=0 C,=-— +

dt Y dt 1 2m |(w + w)? +v.2  (w— wy)? + vczl

dv
m—+mv,v, =0 C, :_vceEO 1 + 1

dt 2om |(w+ w )2 +v.2  (w—w)? + v, 2
Vz(t) = Vzoexp(=vl) _ w (€1 + Cw) o (Co—Cv,)

3 w? + v 2 4 w? + v 2



The coupling efficient for capacitive RF with magnetic
fields is less than DC electrical discharge
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* DC, unmagnetized discharge (w=w_=0): Vo =
C
* Low collisionality (w,>> v,):
w? + w? v, 2
V, = V,oV> S| 2 Vo5 KV (0,V, K @)
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Resonant (w=w,):
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Collision frequency can be measured using capacitive
RF electrical discharges
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Symmetrical capacitive RF discharge model
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Empirical scaling of electrode voltage drop

1§ I, = A4]1 = Ajeny vy
A 2:4 I, = Ay], = Azen; vy,
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_— <2eV2>
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Example of capacitively coupled RF plasma source 1

VACUUM BELL JAR

PLASMA e

y , ELECTRODE
¢ .‘ -' j‘_.:_‘l. 7 " . ‘.I ": .: I._
N Yl

RF POWER
BARREL REACTOR

SUPPLY
.L SUPPCRT

« Barrier reactor —the wafers
float electrically and have low
ion bombardment energies
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relatively anisotropic, vertical etch.



Example of capacitively coupled RF plasma source 2
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Operating regimes of capacitively coupled plasma
reactors used for plasma processing

Parameter Low value Typical value High value
Frequency 1 kHz 13.56 MHz 100 MHz
Gas pressure 3 mTorr 300 mTorr 5 Torr
Power level S50 W ~ 200 W 500 W

rms electrode voltage 100 V ~ 300V 1000 V
Current density 0.1 mA/cm?  ~ 3 mA/cm? 10 mA/cm?
Electron temperature, T, 3eV A~ 5eV 8 eV
Electron density, n, 105 /m3 ~ 5 x 105 /m3 3 x 1077 /m?
Ion energy, & S5eV 50 eV 500 eV

Electrode separation, d 0.5 cm 4 cm 30 cm




AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Microwave electrical discharges



Advantage of using microwave electrical discharges
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 The wavelength of the microwave is in centimeters range. In contract, the
wavelength is 22 m for RF frequency f = 13.6 MHz.

 The electron number density can approach the critical number density.
(7x10'® m-3) at a frequency of 2.45 GHz.

« The plasma in microwave discharges is quasi-optical to microwave.

* Microwave-generated plasmas have a higher electron kinetic temperature
(5 ~15eV) than DC or low frequency RF-generated plasmas (1 or 2 eV).

« Capable of providing a higher fraction of ionization.
Do not have a high voltage sheath.

* No internal electrodes.



Microwave frequency is determined for those used In
communications and radar purposes
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Internal of a magnetron
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Resonance in a magnetron
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Magnetron schematic diagram
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Microwave plasma reactor configurations
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 Waveguide coupled reactor  Resonant or multimode cavity —
If the impedance matching is
good, more energy can be fed
into the cavity.
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Strong absorption occurs when the frequency matches
the electron cyclotron frequency

« Electron cyclotron resonance (ECR) plasma reactor
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Electron cyclotron frequency depends on magnetic field

only

 Assuming B =Bz and the
electron oscillates in x-y plane
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Electrons keep getting accelerated when a electric field
rotates in electron’s gyrofrequency

dT]\ e N RN RN - ~ - ~ A~ =
M =—2 VX B—¢eE B =Byz E = Ey[xcos(wt) + ysin(wt)]
: e : e .
m,v, = —szy + Egcos(wt) mev, = EBvx + Egcos(wt) m v, =0
e = — 1y = % ac0S(@08) = —wee?Vy — > (@ee + @)COS(D)
v, = — v, ——wcos(wt) = —w v, —— (w w)cos(w
X mec y me ce X me ce
. _eB .- Ey B 2 Ey :
vy, = — mecvx + Ewsm(wt) = —Wce“Vy + E (wee + w)sin(wt)
eB
Wee =

m,c




Electric field in a circular polarized electromagnetic
wave keeps rotating as the wave propagates

* Right-handed polarization « Left-handed polarization

https://en.wikipedia.org/wiki/Circular_polarization



Only right-handed polarization can resonance with
electron’s gyromotion
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Gottscho, 1994).



Strong absorption occurs when the frequency matches
the electron cyclotron frequency

« Electron cyclotron resonance (ECR) plasma reactor
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Electron cyclotron resonance (ECR) microwave

systems
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Immersed ECR plasma source

« Theions in the plasma flux can be used for etching.
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High particle fluxes on targets for diamond or other thin film deposition



Distributed ECR system
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* Function of the multipolar magnetic
field at the tank boundary:

— Provide aresonant surface for
ECR absorption

— Improve the confinement of the
plasma



Microwave plasma torch deposit a much faster rate than
other types of plasma source for diamond film deposition
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Microwave-generated plasmas have the capability of
filling very large volumes with moderately high density
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« Advantages

— Lower neutral gas pressure, i.e., longer ion and neutral mean free
paths.

— Higher fraction ionize.
— Higher electron density.
« Disadvantages
— Lower ion bombardment energies.
— Less control of the bombarding ion energy.
— Difficult in tuning up and achieving efficient coupling.
— Much more difficult and expensive to make uniform over alarge area.

— More expensive.



AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Dielectric-barrier discharges (DBDs)



Dielectric-barrier discharges (DBDs)
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Space charge effect enhance the electric field
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The foundation of AC discharge in plasma display panel
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The plasma can be sustained using ac discharged in
plasma display panel
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 Wall discharge reduced the required discharge voltage
Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Plasma-needle discharge

Matching
network RF source

_

Helium

117



Atmospheric-pressure cold helium microplasma jets
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There are three different modes: chaotic, bullet, and
continuous mode
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In bullet mode, the plasma jet comes out as a pulse
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Laser produced plasma



Electric field of a high-power laser can perturb the
potential of a nuclear and thus ionize the atom directly
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Laser is absorbed in underdense plasma through
collisional process called inverse bremsstrahlung
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AC electrical discharges deliver energy to the plasma
without contact between electrodes and the plasma
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— Pulsed-power generated plasma — it will be introduced later.
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