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Proton therapy takes the advantage of using Bragg peak
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Energy Loss of Alphas of 5.49 MeV in Air
(Stopping Power of Air for Alphas of 5.49 MeV)

Stopping Power [MeV/cm]

Path Length [cm]

X-Rays Proton beams

Irradiation damages Irradiation damages

. Proton
beams
Cancer
X-rays go through the nidus. Proton beams stop at the nidus.

http://www.shi.co.jp/quantum/eng/product/proton/proton.htmi



Saha equation gives the relative proportions of atoms
of a certain species that are in two different states of
lonization in thermal equilibrium &

Nyvafe _ Gri1ge (2mm KT)%/? Xr
* n.,, N, Density of atoms in ionization state r+1, r (m-3)
* n.: Density of electrons (m-3)
* G,,;, G,: Partition function of ionization state r+1, r
* g.=2: Statistical weight of the electron
* m,: Mass of the electron

* X,: lonization potential of ground level of state r to reach to the ground
level of state r+1

T: Temperature

h: Planck’s constant

K: Boltzmann constant
Supplement to Ch. 6 of Astrophysics Processes by Hale Bradt

(http://homepages.spa.umn.edu/~kd/Ast4001-2015/NOTES/n052-saha-bradt.pdf) 3



Saha equation is derived using the transition between
different ionization states
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Photoionization:

Rpi — nr,ku(V)Br,k—W+1,j
Induced radiation: 8rt, j
Riy = Nyyq1jNe,(P)UWV)Briq jork

Spontaneous emission:

Ry = NyiqNep (p)Ar+ 1,j-1k

In thermal equilibrium:

n,, 1, 'ne,pAr+ 1,j-rk + n,, 1, 'ne,puBr+ 1,jork
J J J J

= Nn, kuBr k-r+1,j Atom in Atom in
’ ’ ’ r 10Nniz. r+1 ioniz.
« Einstein coefficients: state state (with

free electron)

2 3
By k-r+1j  Gr+1j geATD Ari1jork  8mhy

3 3
Br+1,j—>r,k Irk h Br+1,j—>r,k c




Saha equation — example: hydrogen plasma of the sun

 Photosphere of the sun — hydrogen atoms in an optically thick gas in
thermal equilibrium at temperature T=6400 K.
— Neutral hydrogen (r state / ground state)
€r1 10.2eV
Gr = X8rk = Gro T gr1€XP (— ﬁ) o =2+48exp| - v T
=2+9.8x1078+... ~2
— lonized state (r+1 state)
€r+1,1
Gri1=28r+1j = Ir+1,0 T Ir+1,1€XP <— KT ) +--=1
— Other information: g. =2 xr=13.6eV; KT =0.56eV MNy11 =N,
2
Nr+1 21 1 X2 3/2 13.6 16, -3
=2.41 X 10 —— (6400 ———]=3.5%x10
n, 5 (6400)" exp| — G m



It is mostly neutral in the photosphere of the sun

« Assuming 50 % ionization:

n..;=n,=3.5x101%m3 n=n,.q,+n,=7x10%m>3
* In the photosphere of the sun:

p~3x10"*kg/m3 ->n=2x103m3>»7x10%m3

« At higher densities n at the same temperature, there should be more
collisions leading to higher recombination rate and thus the plasma is
less than 50 % ionization.

— Less than 50 % ionization

« Use the total number density to estimate the ionization percentage:

n,.,+n,=2x10%3

n,iq
n,

=4 x10"*@6400K



A semiconductor device is fabricated by many
repetitive production process

lon implantatio\rv\
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Stripping

Deposition

Developing Photoresist coating

Exposure

Surf. Topogr.: Metrol. Prop. 4 (2016) 023001
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Reference for material processing

« Principles of plasma discharges and materials processing, 2"d edition, by
Michael A. Lieberman and Allan J. Lichtenberg

* http://lwww.eecs.berkeley.edu/~lieber/

« Materials science of thin films, 2"d edition, by Milton Ohring

* Plasma etching, by Dennis M. Manos and Daniel L. Flamm

* Industrial plasma engineering, volume 1, by J. Reece Roth

Rf or microwave
power

:

e, CF3, CF3*, F, 07, O,, CO, SiFy, etc.

—> Pump

CF4/0, —>

Si0

ot




There are two types of etching: isotropic vs anistropic
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« Isotropic etching
Resist
Polysilicon

Substrate

« Anisotropic etching
Resist T ]

Polysilicon

Substrate [




There are four major plasma etching mechanisms

(a)

« Sputtering
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 Pure chemical etching

Neutral
Volatile
product

G

(c) Neutral lon
Volatile
product
Lol ey

lon energy-driven etching

¥TTy=— Inhibitor

(d) Neutral lon
Volatile
product

* lon-enhanced inhibitor etching

Principles of plasma discharges and materials processing, 2™ edition,
by Michael A. Lieberman and Allan J. Lichtenberg 10



Sputtering etching

Sputtering is an unselective but anisotropic process

Unselective process.

Anisotropic process, strongly sensitive to the angle of incidence of the
ion.

Sputtering rates of different materials are roughly the same.

Sputtering rates are generally low because the yield is typically of order
one atom per incident ion.

Sputtering is the only one of the four etch processes that can remove
nonvolatile products from a surface.

The process is generally under low pressure since the mean free path of
the sputtered atoms must be large enough to prevent redeposition on the
substrate or target.

R

{ e : : N J Principles of plasma discharges and materials processing, 2" edition,
—_— by Michael A. Lieberman and Allan J. Lichtenberg 11




Topographical patterns might not be faithfully
transferred during sputter etching

(a) lons
L ] 1 T T
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800 - Photoresist
2
2 600 . .
a (b)
o
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O Aluminum T — |
0 | | { I \ I I
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| Photoresist
B {degrees)

Principles of plasma discharges and materials processing, 2™ edition,
by Michael A. Lieberman and Allan J. Lichtenberg 12



Pure chemical etching

Atoms or molecules chemically react with the surface
to form gas-phase products
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« Highly chemically selective, e.qg.,

Neutral :
Volatile
Si(s) +4F — SiFy(g) product

photoresist + O(g) — CO»(g) + H,O(g) L' TR }

« Almost invariably isotropic.
« Etch products must be volatile.
 The etch rate can be quite large.

« Etch rate are generally not limited by the rate of arrival of etchant atoms,
but by one of a complex set of reactions at the surface leading to
formation of etch products.

Principles of plasma discharges and materials processing, 2™ edition,
by Michael A. Lieberman and Allan J. Lichtenberg



lon-enhanced energy-driven etching
The discharge supplies both etchants and energetic ions

to the surface
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« Low chemical etch rate of silicon substrate in XeF2 etchant gas.

« Tenfold increase in etch rate with XeF, + 500 V argon ions, simulating ion-
enhanced plasma etching.

« Very low “etch rate” due to the physical sputtering of silicon by ion

bombardment alone. Plasma etching, by Daniel L. Flamm and G. Kenneth Herb 14



lon-enhanced energy-driven etching has the characteristic
of both sputtering and pure chemical etching
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 Chemical in nature but with a reaction rate determined by the energetic
lon bombardment.

* Product must be volatile.

* Highly anisotropic.

15



lon-enhanced inhibitor etching

An inhibitor species is used

Inhibitor

Inhibitor precursor molecules that absorb or deposit on the substrate
form a protective layer or polymer film.

Etchant is chosen to produce a high chemical etch rate of the substrate
in the absence of either ion bombardment or the inhibitor.

lon bombardment flux prevents the inhibitor layer from forming or clears
it as it forms.

Where the ion flux does not fall, the inhibitor protects the surface (side
wall) from the etchant.

May not be as selective as pure chemical etching.
A volatile etch product must be formed.

Contamination of the substrate and final removal of the protective

inhibitor film are other issues. Neutral lon
Volatile
product

¥y <— Inhibitor

16



Comparison of different processes

Sputtering | Pure chemical |lon energy- lon- enhanced
etchlng etchlng driven etching | Inhibitor etching

Selectivity
Anisotropic O X
Volatile product X O

O
O

TABLE 15.1. Etch Chemistries Based on Product

Volatility

Material

Etchant Atoms

Si, Ge

Si0,

Si3Ny, silicides
Al

Cu

C, organics

W, Ta, Ti, Mo, Nb
Au

Cr

GaAs

InP

F. Cl., Br
F.F+C

F

Cl, Br

Cl (T = 210°C)
O

F. Cl

Cl
CLLCl1+0
Cl, Br
Cl,C+H

17



Deposition and implementation

* Plasma-assisted deposition, implantation, and surface modification are
iImportant material processes for producing films on surfaces and
modifying their properties

« Example processes:
— Plasma-enhanced chemical vapor deposition (PECVD)
— Sputter deposition / physical vapor deposition (PVD)

— Plasma-immersion ion implantation (PIII)
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Chemical Vapor Deposition (CVD)
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http://www.ece.uah.edu/courses/material/[EE410-Wms/ 19



Plasma-enhanced chemical vapor deposition (PECVD)

RF Electrode

Matching Plasma
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Films can be deposited in low temperatures using
plasma deposition

« Device structures are sensitive to temperature, high-temperature
deposition processes cannot be used in many cases.

* High-temperature films can be deposited at low temperatures.

« Unique films not found in nature can be deposited, e.g., diamond.

21



Working temperature is determined by the desired film
properties

« CVD - consists of athermally activated set of gas-phase and surface
reactions that produce a solid product at a surface.

« PECVD - gas-phase and the surface reactions are controlled or modified
by the plasma properties.

« Te~2-5eVin PECVD is much greater than the substrate temperature, the
temperature in PECVD is much less that CVD.

« Deposition rates are usually not very sensitive to the substrate
temperature T.

« Film properties such as composition, stress, and morphology, are
functions of T.

 Low-temperature PECVD films are amorphous, not crystalline, which can
more easily be achieved with chemical vapor deposition (CVD).

22



Example of using PECVD — amorphous silicon

« Amorphous silicon thin films are used in solar cells

Monocrystalline Polycrystalline Amorphous

23



Example of using PECVD — amorphous silicon

* His required so that SiH, is used
— For the material to be semiconducting.
— Terminate the dangling bonds.

— The dangling bonds are created by ion bombardment (SiH;*) which
also removes hydrogen from the surface.

— SiH; and SiH, radicals are important precursors for film growth while
SiH, also participates in surface reactions.

24



the deposited material

ysical vapor deposition can be achieved by heating

« Thermal evaporator

Vacuum chamber

Substrate holder

: (\
—— Substrate
<
\\ ‘// e X Vapor flux
Crucible i—'—d
containing —
target material

ng

To pumping system

* Pulsed-laser deposition

Pulsed laser beam

Focusing lens
Chamber window
Vacuum chamber

- Heater
Substrate

T Plasma
Plume

» Electron-beam evaporator

Path of the

Water Cooled Holder

https://en.wikipedia.org/wiki/Pulsed_laser_deposition

Engineered biomimicry by A. Lakhtakia and R. J. Martin-Palma
https://en.wikipedia.org/wiki/Electron-beam_physical _vapor_deposition
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Sputtering deposition
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http://Inf-wiki.eecs.umich.edu/wiki/Sputter_deposition



The chamber becomes very dirty after the deposition
process

« Before

« The turbomolecular pump is also
very dirty after the process.
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Plasma-immersion ion implantation (PlII)
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« Silicon doping —ions such as B, P, As are implanted

« Surface hardening of metals — N, C are implanted

https://www.hzdr.de/db/Cms?pOid=10890&pNid=306
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Magnetron sputtering provides higher deposition rates
than conventional sputtering
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Examples of magnetron sputtering deposition

UHV-MSD-X
Rotatable I
Manipulator —
S Veriabier e

Sample Stage A
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https://angstromengineering.com/tech/magnetron-sputtering/pulsed-dc/
https://dynavac.com/wp-content/uploads/2017/09/Confocal-Sputtering-2.jpg
https://www.adnano-tek.com/magnetron-sputtering-deposition-msd.htm|

Magnetron
Cathode




Demonstration experiments — magnetron sputtering

e System * Without magnet « With magnet
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A bright ring occurs when the magnet is inserted into
the system

Confined electrons
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self-aligned quadruple patterning

HARD MANDREL 1 SPACER 1 SPACER 1 ETCH HARD MANDREL 2 SPACER 2 SPACER 2 ETCH PATTERN
ETCH DEP & MANDREL PULL ETCH DEP & MANDREL PULL TRANSFER
ORGANIC SPACER 1 SPACER 1 ETCH SPACER 2 SPACER 2 ETCH PATTERN
MANDREL ETCH DEP & MANDREL PULL DEP & MANDREL PULL TRANSFER

(b)
bl el e R A

H. C. M. Knoops et al., J. Vac. Sci. Technol. A 37, 030902 (2019)

s xu
g,

& o
P %
7 H
5 3

g7 &

"v 4
rast

33



Plasma can be used for cleaning surface

« Cleaning mechanisms:

— Chemical reactions by free radicals

— Physical sputtering by high energy ions

Chemical Energy

Plasma Cleaning

Hydrogen Plasma Oxygen Plasma

Chemical Energy

Argon Plasma

Physical

23522

BRRAREROHBIRAE

https://www.ecplaza.net/products/plasma-cleaning_111807
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Free radicals are generated and used in chemical reactions
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e_+H2—)2H° e_+02—>20° O'+02—>03

« Highly reactive free radicals generated in plasma may react with the
hydrocarbon contaminants of surface oxide.

* Both He and Oe can react with grease or oil on surface to form volatile
hydrocarbons.
H eyt CrHani2(s) = CHys)

Oe )+ CnH2n+2(s) - CO(S) + CHxOy(g) + HZO(g)

(g

e Oeis more reactive than He. But Oe may also react with surface metal to form oxide,
deteriorating the material properties. Nevertheless, He can make metal oxide back
to metal.

Oe¢ +Me » MeO

He+ +MeO - Me + H,0

35



The effect of chemical reactions Is increased as the
pressure increases

« Advantages:
— Stable gas products are formed.
— No redeposition problem.

— High etching selectivity.

« Disadvantages:

— Higher concentration of H, or O, is required to ensure an appropriate
etching rate.

— H, safety or O, strong oxidation ability needs to be monitored.

36



High energy ions are used in physical sputtering
cleaning

* lons generated in plasma can be accelerated toward the substrate to
physically bombard away the atoms of contaminants.

 The physical sputtering rate increases as the following quantities
Increase:

— Plasma density;

— Accelerating voltage;

— Mass of bombardment atoms.
 The physical sputtering is also enhanced by lowering the pressure.
« High cathode bias is used.

« Ar* has strong sputtering effect.

37



The physical sputtering rate increases with higher
cathode bias and Ar concentration and lower pressure
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« Advantages:
— Highly efficient cleaning effect can be achieved.

— Gas consumption rate can be very low.

« Disadvantages:
— Etching problems — non-selective etching by physical sputtering.

— Redeposition problems: the products sputtered out may be highly
unstable and tend to deposit again downstream.

38



Plasma cleaning examples
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Low-pressure plasma system: Generation with a low-frequency or high-frequency generator Low-pressure plasma system: Cleaning with a microwave generator

Magnetron

Microwave radiation

Valve I TTT Valve \
L J Vacuum chamber

Microwave window

: 2 Vacuum chamber
*® | <| e Electrode | <| oo
,  Gas flow - Gas flow
g S
O" ‘ & 0‘3 % %
% %
e ? PLASMA ¢ " e ? PLASMA ¢ | P
1] o _HF generator ° < ° o ower supply
:' v Gas bottle L ’ = By g e Gas bottle vv : =2
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s e% e 000 oty o moter(® “; $88888888 8T
o sV o eente, e X ;
ubstrate s ® L | Substrate ® °
, % o < o & %
Ventilation valve Ventilation valve 3
) = (&) —
Gas flow ') Gasflow | | /
/" Vacuum pump ® Oxygen \ f Vacuum pump
® o ® Carbon
xygen
® Carbon @i Hydrogen
e.g.: The removal of carbon-particle e.g.: Removal of photoresist
matter with Ozplasma ) c+0;— co2 T ’
C+02—0 co:t Diagram 6 10— H:01 Diagram 7

https://lwww.plasma.com/en/plasmatechnik/low-pressure-plasma’/cleaning/



Plasma cleaning needs to work in the regime of
abnormal glow discharge
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EUV light sources

A semiconductor device is fabricated by many
repetitive production process

lon implantation .
P Wr Y Y Stripping
S VYo om
et Y g
Deposition

Developing Photoresist coating

Exposure

Surf. Topogr.: Metrol. Prop. 4 (2016) 023001
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Ultraviolet lithography (EUVL) is one of the key
technologies in semiconductor manufacturing nowadays

v 4

« The process technology of Taiwan Semiconductor Manufacturing
Company Limited (TSMC):

1
\
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« Optical diffraction needs to be taken into account.
« Shorter wavelength is preferred.

« Light source with a center wavelength of 13.5 nm is used.

https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm 42



EUV lithography becomes important for semiconductor
iIndustry

* 0.15 billion USD for each EUV light source.
https://lwww.youtube.com/watch?v=NHSRG6AHNIDs

http://finance.technews.tw/2019/01/25/euv-asml|-2018/ 43



EUV light can only be reflected using multilayer mirrors

a) b)
radiation o
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Vasalanath (nim)
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Mo/Si multilayer coating technology for EUVL, coating uniformity and time stability; E. Louis
et al.; SPIE 4146-06, Soft X-ray and EUV Imaging Systems, San Diego, 2000.
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13.5-nm EUV light is picked for EUV lithography
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A=13.5nm + 1% is required. e Tin:

At T=35-40 eV (~450,000 K), . 4p®4dN — 4p54dN+L + 4p6adN-LAf
In-band emission occurs. (1<N < 6) in ions ranging from
Xenon: Sps8+ to Spl2+

* 4p®4d® — 4p°4d75p + UTA @ 13.5nm

from single ion stage Xel0+

« UTA@ 11 nm "
« UTA: unresolved transition array

V. Bakshi, EUV sources for lithography
R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012)
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EUV light is generated from laser-produced plasma (LPP)

Vessel
With Collector, Droplet

+ Key factors for high source power are: ! Generator and Metrology
|

High input CO, laser power

High conversion efficiency (CO, to EUV energy)
High collection efficiency (reflectivity and lifetime)
Advanced controls to minimize dose overhead

V

Controllers for Dose
and Pre-pulse

Fab Floor

Pre-pulse
requires seed 1
laser trigger

control

Master Oscillator Power Amplifier Sub-Fab Floor

D.-K. Yang, etc., Chip, 1, 100019 (2022) 46



Two laser pulses are used to heat the plasma

v,
é .
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Temporal View

Spatial View

Pre-pulse

n(x)~ w2 (x)

E (x)i2

@ Stream of tin droplets, 80 m/s

PreN/

9 Droplet diameter ~30um
laser bea )

A Target
' Expansion

Main pulse

Target diameter ~500um
laser bea

EUV 13.5nm

I. Fomenkoy, etc., Synch. Rad. News, 32, 3 (2019)
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Hydrogen buffer gas with a pressure of ~100 Pa is used
to protect the collector mirror

: , * Hydrogen buffer gas (pressure

' DG | ~100Pa) causes deceleration of ions

’ ’ « Hydrogen flow away from collector
reduces atomic tin deposition rate

EUV collector | i
Temperature controlled .

H, flow

Laser beam ‘

Sn droplet / IF

plasma

Reaction of H radicals with Sn to
form SnH,, which can be pumped
away.

Sn (s) + 4H (g) — SnH, (g)

T * Vessel with vacuum pumping to
remove hot gas and tin vapor

Sn * Internal hardware to collect micro
catcher particles

D.-K. Yang, etc., Chip, 1, 100019 (2022) s



Laser-produced plasma (LPP) is used in the EUV
lithography
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Vacuum ~103 mbar Multilayered Mirror Optics

Intermediate Focus Reticle

Cooler Collector/ Droplet Dispenser

Debris Mitigation

Laser

Beam Delivery

Wafer

Vacuum
System

R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012) 49



High harmonic generation from high-power laser

For | < 1018 w/cm?

IR field
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M. Kruger, etc., Appl. Sci. 9, 378 (2019)
Nonlinear Optics 3™ edition , by Robert W. Boyd
P. B. Corkum and F. Krausz, Nature Phys., 3, 381 (2007) 50




EUV light can be gen
plasma

erated using discharged-produced
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Light source and display systems

Plasma display panel (PDP)

‘address ol oclrode rear plate glass

Liquid crystal display (LCD)

Un-polarized Light

/ \
Polarizing Filbers\

Substrate Gl
A ass

o 4
\ & special polymer / <& ’
z rubbed on the side of % .
f the glass substrate = - Liquid
- that does not have [ erystal
Liquid crystal the polarizing film on director
director iit to create m m "4
microscopic grooves
in the same direction _ W _ E
Light path as the polarizing film. Applied
through A Voltage
liquid crystal E

/ N\

-

botaris S
olarizing Filters AFF Siatn

Cross-Sectional View of an LCD Panel
@ Practical-home-theater-guide.com 2006
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Outlines

« Cathode Ray Tube

« Color space (CIE 1931 color spaces)
« History of plasma display panel (PDP)
* Design of PDP

« Liquid crystal display (LCD)

- LCD vs PDP
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CRT
Cathode Ray Tube uses electron beams to light the
fluorescent screen @

. Bright spot
Horizontal on screen
deflection plates e where

Cathode Anode o ;
P |/ / — electrons hit

Grid \ B S,
Path of

electrons

Heater
current

Fluorescent
screen

Vertical
deflection
plates

http://www.sciencefacts.net/cathode-ray-tube-crt.html
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The image is shown by scanning through the whole
screen with the single electron beam

1 VEYNC (EVEN FIELD)

HEIYNC 1r
HEYMNC ~r
HEYNC r

HEYHC L

—

Vertical Retrace

Last Horizontal Line

¥ ¥ v

Horizontal Retrace

horizontal sync pulses horizontal sync pulses

A vertical sync pulses

l

+0.714¥

+0.054v
o

line 3 0285V

odd field ,

even field

interlaced video signal
RS-170 standard

http://www.ni.com/white-paper/3020/en/#toc2
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Color image is formed by using three electron beams

scanning through three different color channels

Deflection coil (aka yoke): magnetically steers
beam in a left-to-right top-to-bottom pattern.
There are separate H and V coils.

Cathode: separate
beams for R G and B

Shadow mask: ensures R
beam only illuminates R
pixels, etfc.

Source: PixTech

Phosphor Screen: emits light
when excited by electron beam,
intensity of beam determines
brightness

Anode

o x
v,
o <
P %
:

1 3
s 4

v i

http://web.mit.edu/6.111/www/f2008/handouts/L12.pdf
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Color space

Color can be created using three primary colors

aaaaa

Additive primaries Subtractive primaries

Y

https://en.wikipedia.org/wiki/Primary_color 57



Human retina has three kinds of “cones” that have
different spectral response

58



Spectral response of retina “cones” are tested using
light sources with single wavelength

Whit Maskin
Scre:rl Red Si?ear?
// Green 0.4 T [T [rrrrrrree [Ty 3
4 // () 3
S TN 0.3G T
s : —— b
- 0.20- 3
Observer 0.1C;— —;
0.0
_0.1 3! (A AN AN A A A A Lot v 10y (I A I I EEEEN | |E
400 500 A 600 700 800

http://betterphotographytutorials.com/2011/08/01/light-and-colors-%E2%80%93-part-3/
https://en.wikipedia.org/wiki/CIE_1931 color_space 59



The CIE 1931 color space chromaticity diagram is the
standard color space

s xu
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A/nm il 620
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https://en.wikipedia.org/wiki/CIE_1931_color_space 60



History of PDP

Plasma display panel was invented at the University of

lllinois in 1967
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k A -
Prof. H. Gene Slottow Prof. Donald L. Bitzer

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 61



PDP was invented due to a need for Programmed Logic

for Automatic Teaching Operations (PLATO) in 1960s

1981 Plato V.

https://topwallpapers.pw/computer/keyboards-computers-history-teletype-typewriters-desktop-hd-wallpaper-1035981/
https://en.wikipedia.org/wiki/Punched_tape
https://en.wikipedia.org/wiki/PLATO_(computer_system)
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The positive column in a glow discharge is used to
excite phosphors in color PDP

CATHODE
HITTORF} DARK SPACE
ASTON DARK SPACE <" ?A%ngm DARK SPACE ANODE DARK SP
CATHODE "~ ATHODE GLOW . ~POSITIVE COLUMN ANCC

NEGATIVE GLOW ANODE GLOW

Majority of monochrome PDPs use the negative glow as the light source
The positive column is used to excite phosphors in fluorescent lamps
and in color PDPs

Industrial plasma engineering, volume 1, by J. Reece Roth
https://en.wikipedia.org/wiki/Neon_lighting 63



Early plasma panel (PD) attached to the glass vacuum
system used for the first plasma displays at Ul

* It had the same alternating sustain voltage, neon, gas, and dielectric
glass insulated electrodes that are used for plasma TVs today.

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006
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Early plasma panel (PD) attached to the glass vacuum
system used for the first plasma displays at Ul

s Ku,
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« It had the same alternating sustain voltage, neon, gas, and dielectric
glass insulated electrodes that are used for plasma TVs today.

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 65



Early 4x4 pixel panel has achieved matrix addressability
for the first time

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 66



Early 4x4 pixel panel has achieved matrix addressability
for the first time

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 67



A 16x16 pixel PD, developed in 1967, needed to be
addressed manually

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 68



First color PD was three cell prototype with red and
green color phosphors excited by a xenon gas discharge

D%f
% i
% e,

Blue (no
phosphors)

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006 69



Open-cell structure developed in 1968

It could be baked under vacuum

PARALLEL
ELECTRODES

DIELECTRIC
GLASS

PARALLEL
ELECTRODES

-
—
-
— —
-

— -
-

SUBSTRATE
GLASS

at 350 °C to drive out contaminants.

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006
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More progress

1968, University of lllinois
16x16 pixels

1971, Owens-lllinois
512x512 pixels

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006
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Color PDPs had short display lifetime due to the
degradation of color phosphors caused by ion sputtering

Transparant Column Electrode
Plazma glow

&

v,
é .
P z
Z ki
3 i
% &
“"’b r;
veat

Top glass
/ Cell filled with Nefe mixture
/

.

Electrodes huried in glass

v (a)

Bottom olass

=% Color phosphors

(b)

AL colar plasma panel

http://what-when-how.com/display-interfaces/display-technologies-and-applications-display-interfaces-part-3/
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Design of PDP

A lower breakdown voltages can be obtained with very

Firing Voltage (V)

small amounts of added gas

100003

1000

AlR

NetO.19%Ar

108

pd (Torr+ cm)

LELELELL |
1000

Net

. ]
Ne

s Ky
(R KUy,
X 3
& <
P &
H
3 %
5 b4
% &
+,
v Ld
et

: metastable state
: ionized state

: resonandc state

: excited state

I ®\ _}{e+2_
x& *[ I /g — Xeg
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1 Xe

X& . Xe*g

Xe

* = +B
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AT&T three-electrode patent

L. F. Weber, IEEE Trans. Plas. Scien., 34, 268, 2006
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Reflective phosphor geometry is used in most of

today’s plasma TVs

@ . Front Glass

s

Sustain >

Electrode "

<

Address - y
Electrode / ear Glass

R
) osphor
Layer

Barrier
Rib

Visible Light

r* + %

R

75



Spectrum of the different phosphors
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The foundation of AC discharge
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Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 77



The plasma can be sustained using ac discharged

ov =+ 220V oy -+ 220V
| | | |
— = — = ¥+ + + — = — = ¥+ + +
HEBE Jululala)
- = — R — R e el
X —] P
o "o e T 27 -
o i o~ A
+ S50V ov <+ 180V ov
| | | |
 + + —— - F+ ++ — = — -
llll llll 3858
c}c}c}c}c}:}m}c} cecccecce I —R— ] OO
g O oo

 Wall discharge reduced the required discharge voltage
Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Wall discharge reduced the required discharge voltage

VF Vs VF
Optical } Wall Optical
Output Chargeo"tp”t ON
OFF | ON ON
OFF
—p
Electrical Electrical
Input Input

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 79



ON/OFF State Selection

VE: 250V
150V GND 150V GND 150V GND
ON Cell =5 -
- -

4+ 4+

GND GND 100V 100V 100V
=T 150V GND 150V GND 150V GND

OFF Cell
GND GND GND

(i)

(ii)

(iii)

(iv)

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Sustain discharge

ON Cell
GND GND GND 180V GND GND 180V GND
- cmcm_w OO0 S w_cc}cm
)
GND GND GND GND
OFF Cell
GND GND GND 180V GND GND 180V GND
GND GND GND GND

(i)

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Address and sustain electrodes are connected to

different drivers

Z Address Driver

Z1919

<

Scan &
Sustain Driver

Z2

21920

X

Common
Sustain Driver

Z Address Driver

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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PDP pixel can only be either ON or OFF

A

. . Optical
Cathode Ray Tube : o‘z tout

=
Electrical
_ Input
« Plasma Display Panel :
Optical } Optical }
Output Output
OFF | ON
> >
Electrical Pulse
Input Number

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 83



PDP luminance is controlled by using number of light
pulses

s Ku,
& “
P Z
z m
£ &
%, $
v 14
[

* CRT : Control the Luminance using Electron Beam Intensity

Luminance Ratio
2:1 K

Time Time

A 4
Y

* PDP : Control the Luminance using Number of Light Pulses

P o 111117

.
>

Time Time

A\ 4

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 84



A single field is divided into 8 subfield

MSB LSB
1/1 /11 11|11
111,01 (1|1[0]|0
1/0/1|1(1[0|0]|1
255 204 153 128 64 32 16 8 4 2 1

SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
1 2 4 8 16 32 64 128

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Composition of each subfield

Reset . ) ]
. Address Period Sustain Period
, Period
L))
S
. |
s
L
5
S
\J
480
0.3msec 1.44msec 0.01~1.28msec

Spec : VGA (640*480)
8 Subfield
0.03msec Address Pulse
100KHz Sustain Freq.

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 86



8 subfield in one TV-Field (ADS)

1 Field (16.67msec)

1
480

SF1 SF2 SF3 SF4 SF5 SF6 SF7  SF8
1 2 4 8 16 32 64 128

Vertical Line

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 87



PDP uses line-by-line scanning

» Cathode Ray Tube : Cell-by-Cell Scanning

S DS DDS DDDS DDDD
S

v Vv Vv ¥

* PDP : Line-by-Line Scanning
SSSS

v

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University 88
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Video signal processing

« Analog Video Signal = Digital Pulse Signal

Input Analog
Video Signal

Color
Seperation

A/D
Converter

255,

8Bit/color

Digital

Analo§

8bit
Digital

8bit
Digital

v

8bit
Digital

8Bit Binary
Code

O =00
O == O
OO0 =
OO0 —
- O= O

QO0OC

-0 00
Q=
Q000
o= 0O
-0 =0
=000
—_ | -
Q000

v

o= O =
e ="
-0 =0
SO0
-0 =0
OO 0=
oSO =0

—_ - OO

8bit
Digital

8bit
Digital

8bit
Digital

Subfield
Method

v

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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Addressing period

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University

90



Displaying period

Original Image

Slides from Prof. Heung-Sik Tae, School of Electronic and Electrical Engineering, Kyungpook National University
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LCD

Liquid crystal are a special state of matter between
liquid and crystal

0000000 I =Y A

ggggggg Heating 80%%0303 Heating 4\72Q0

Cooling Cooling <a» /

Mt U S
Y
N
!
10090

T. Kato, et. al., Chem. Soc. Rev., 36, 1845, 2007



Linear polarization of a light can be rotated by miss
aligned liquid crystal

Un-polarized Light

r"’f’

>
i B special polymer T
rubbed on the side of @ i -
the glass substrate - Liquid
_ that does not have I_I | crystal
Liquid crystal the polarizing film on - - director
director () it to create v
""*-R____“ ~C microscopic grooves
in the same direction i m _ E
Light path a3 the polarizing film. l_] Applied
through Voltage
liquid crystal / \.
Glass Substrate” =
\Polarizing Filters

Cross-Sectional View of an LCD Panel

@ Practical-home theater-guide.com 2006

http://www.practical-home-theater-guide.com/Icd-display.html o3



Structure of Liquid crystal display (LCD)

& Transmittance ~ 5%

Color Filters: 30%

*— Wide-view LC: 85%
“—TFT-Array: 60%

Polarizer: 45%

A ' \
[ ] ‘<" Q/ \Z \12/ +— Optical films: 70%

<— Backlight

\

\\

YB Huang, IDRC 2008 Notes from ST Wu, UCF

http://wwwé.cityu.edu.hk/cityu25/events/engineering/pdf/proftang.pdf
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Optimistic projection of PDP market
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Reality

TV Shipment Growth by Technology
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250 80%
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| D
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™ [n} [ ™ [n} [ ™ [ [ [

http://www.digitaltvnews.net/?p=22108



Too many reasons that PDP died!

« Bright showroom conditions put plasmas at a distinct disadvantage
versus LED-lit LCDs

« Aesthetics may have played a role in hastening plasma's demise
« UHD/4K caught on quickly

« Screen-size limitations also played a part in plasmas plight
 You can't bend a plasma

 Plasmas were harder to deal with than LCDs

 While OLED is still in the early stages of development, there's no
guestion it offers greater potential than plasma

* Energy efficiency may have played a part in putting plasma out to pasture

« Plasma was the original flat-panel technology, People just thought of it as
old technology.

* Projectors improved in quality and prices dropped

http://www.avsforum.com/forum/40-oled-technology-flat-panels-general/2080650-10-reasons-plasma-died.html 97



Let’s stand up and do exercise!!
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The hydrogen bomb
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The “iron group” of isotopes are the most tightly bound

Binding energy per nuclear
particle (nucleon) in MeV

Fe

-

The "iron group”
of isotopes are the
maost tightly bound.

.+ yield from
. ' nuclear fission

- ggmi (most tightly bound)
58 :
o€ ' Elements heavier
56 Fe : than iron can yield
26" have 8.8 MeV" energy by nuclear
per nucleon fission.
yield from binding energy. -
nuclear fusion .
L | W
: Average mass
: of fission fragments 235
1is about 118, U:
lIlI!IIIIIEIIIIIIIIIIIl:
50 100 150 200

Mass Number, A
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£y z
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) v
1831

http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html
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Chain reaction can happen in U%3 fission reaction

O

 ~ 200 million electron volts
(MeV)/fission, ~million times more
than chemical reactions
 Energy for bombs, or for civilian

b
power can generate huge amounts of
energy (and toxicity) in a small space
9
e @) B e
O @
@)

with a modest amount of material
» Source of safety, security issues for
nuclear power

https://en.wikipedia.org/wiki/Uranium-235
Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013
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The neutrons are leaking out and stopping the chain
reaction in a sub-critical mass

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 102



Solution 1: add more material

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 103



Solution2: reflect the neutron back in

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 104



Solution 3: increase the density

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 105



How to get the material together before it blows apart?
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 There are always neutrons around
 Once chain reaction starts, material will heat up, expand, stop reaction
« How to get enough material together fast enough?

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 106



Gun-type bomb

« Simple, reliable — can be built

without testing | Active Materia)
« Highly inefficient — require lots of (Each Two-Thirds Critical)
nuclear material (50-60 kg of 90%
enriched HEU) . W’
« Can only get high yield with HEU, [ 8 wwm»wmw-m»;;/

not plutonium

 Hiroshima bomb: cannon that
fired HEU projectile into HEU
target

Source: NATO

Talk given by Matthew Bunn, IGA-232: Controlling the World’s Most Dangerous Weapons, Harvard Kennedy School, 2013 107



Hiroshima Bomb - “Little Boy”

Gun Type — Easiest to design and build (Hiroshima bomb was never tested)

About 13 kiloton explosive yield

Talk given by Dr. Charles D. Ferguson, President, Federation of American Scientists, Department of Physics,
Colloquium, American University, 2012 108



Atomic bomb is very destructive
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Hiroshima: August 6, 1945 Nagasaki: August 9, 1945

Talk given by Dr. Charles D. Ferguson, President, Federation of American Scientists, Department of Physics,
Colloquium, American University, 2012 109



The fusion process

Deuterium
(H-2) Tritium
), /‘ (H-3)
(i

3.5 Mev
Alpha Particle 14.1 Mey

(He-4) ; Meutron

Deuterium-Tritium Fusion Reaction

H+H = 4“He+n+Q = 17.6 MeV
Energy release Q=17.6 MeV

In comparison

2H+2H = H+3H +Q = 4.0 MeV
2H+2H = 3He+n +Q = 3.2 MeV
3H+3H = “He+2n+Q = 11.3 MeV
235+n = X,+Xg+3n +Q = 200 MeV

Fusionable Material, deuterium 2H (D) and tritium 3H (t):

Deuterium: natural occurrence (heavy water) (0.015%).

Tritium: natural occurrence in atmosphere through cosmic ray
bombardment; radioactive with T,,=12.3y.

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf
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“Advantages” of hydrogen bomb

Fusion of 2H+3H: % = L7.6 Me) =3.5 Mel
A (3+2)amu amu
) 200 MeV Mel

Fission of 235U: g = c = (.85 c
A 236 amu ami

Fusion is 4 times more powerful than fission
and generates 24 times more neutrons!

1
L =—=02

‘H+'H: —
4 5

Neutron production:

557 s o2 0.0085
4 236

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf
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Hydrogen bomb uses a fission bomb to initiate the
fusion reaction

Fuel
Primary Fission Device
Secondary Fusion Device
Core: 2Py, <1,
plus 2H+°H booster Radiation channel
Shell: 238U tamper 239y sparkplug
High explosive lenses 6Li, 2H, 3H fusion cell

2381 tamper

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf 112



Event sequence

1. Warhead before 2. HE ﬂtes in primary, 3. Fissioning primary emits
firing; primary (fission bomb) comp plutonium X-rays which reflect

and

5. Compressed
at ndary (fusio ilo ercrltl lity along the inside of ing daty demlumm-gsm
top, secondary (fusion  core into su cal le} nside compressing secon u ue
fuel) at bottom, all auspended and beg ng a fission the casing, irradiating and plutonium sparkplug  fusion reaction, neutron
polystyfene reaction, the polystyrene foam. begins to fission. flux causes tamper to fission.
A fireball is starting to form...

Additional pressure from recoil of exploding shell (ablation)!

https://isnap.nd.edu/Lectures/phys20061/pdf/10.pdf
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You don’t want to build a hydrogen bomb!

Tzar Bomba
(Soviet)

Hiroshima

:
.

Illustration From October 2002
Issue of “"Popular Mechanics” (pg. 69)
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To Fuse, or Not to Fuse...

Laser light shines The target
on the target is compressed
B, A
~4mm @‘ O
l " “' '
4+
The target is ignited The target
burns

U73311

115



Outline

 Introduction to nuclear fusion
« Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU

116



Outline

* Introduction to nuclear fusion
 Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU
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World energy consumption is dominated by the use of

dwindling fossil fuels

TW

E15657

Fossil fuel

Estimated reserve

(2005 consumption rate)
Years remaining

Oil 1,277,702 million barrels 32 years
Natural gas| ~6,500,000 billion cubic ft 72 years
Coal 1,081,279 million tons 252 years

Oil
5 _\/_
4l

, | Coal
Gas

== Nuclear

3} _
) - _
1 B ——
—‘_'T—'—-_—l-—_-—_l 1 1 '
D 1 1 1 ' 1
1980 1990 2000
Date

While predictions about
the exact number of
remaining years vary,
fossil fuels will run out.

Hydro-electric

Energy Information Administration (EIA) 2006 Annual Report,

U.S. Department of Energy, Washington, D.C.
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*from Laboratory for Laser Energetics, University of Rochester, Rochester, NY
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The “iron group” of isotopes are the most tightly bound

Binding energy per nuclear
particle (nucleon) in MeV
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Fe

The "iron group”

. yield from
of isotopes are the '

' nuclear fission

most tightly bound.
3 g: Ni (most tightly bound) |
58 ; _
26 Fe . Elements heavier
56 e : than iron can yield
26" have 8.8 MeV: energy by nuclear
per nucleon fission.

yield from binding energy. .
nuclear fusion :

* Average mass
+ of fission fragments 235
: is about 118. U:

i | L1 1

5b 1 I160I I1éul Eﬂu
Mass Number, A

http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html 119



Fusion in the sun provides the energy

* Proton-proton chain in sun or smaller

Particles are confined by the gravity.

'HQD D' 'HQ O
\/ \/
re \v e \v

Hd” | o
) Proton ‘He \"' )
Q Neutron Gamma ray Y
Positron Neutrino D

https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Nuclear_fusion
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In heavy sun, the fusion reaction is the CNO cycle

4He$ JlH

1HJ\ L ” g/v

12C \$i
13N ’
\/
¥ l\v
13C4‘_) ’
=N
4)» —
o -
/ \
v\ /
' v
J Proton
Q Neutron Gamma ray Y
Positron Neutrino D

https://en.wikipedia.org/wiki/Nuclear_fusion



The cross section of proton-proton chain is much
smaller than D T fusion

D+T—a+n 2.72x1072 3.43

D+T—T+p 2.81x10* 3.3x102 0.06 1250
D+T—3He+n 2.78x10* 3.7x102 0.11 1750
T+T—a+2n 7.90x10+ 3.4x1072 0.16 1000
D+3He—a+p 2.2x107 0.1 0.9 250
p+SLi—a+3He 6x1010 7x103 0.22 1500
p+1B—3a (4.6x1017) 3x104 1.2 550
p+p—D+e*+v  (3.6x102%%) (4.4x10%°)

p+2C—13N+y (1.9x10-26) 2.0x1010 1.0x10.4 400
2C+12C (all (5.0x10-103)

branches)

« “()” are theoretical values while others are measured values.

The Physics of Inertial Fusion, by Stefano Atzeni and Jurgen Meyer-Ter-Vehn



Nuclear fusion and fission release energy through
energetic neutrons

Fission
Uranium Radioactive
‘ daughter atoms Neutron/v
> O == 9 d5 200 MeV

O Neuotrm

Fusion

Deuterium Tritium Helium 4
NeutrV
O%O-Quﬂzo 75 18 MeV

(3.5MeV) (14.1MeV)
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Nuclear fusion provides more energy per atomic mass
unit (amu) than nuclear fission

17.6 Mel” Mel”
Fusion of 2H+3H: 0 = € =3.5 €
4 (3+ 2) amu amu
200 MelV Mel”
Fission of 235U: O = =(0.85
A 236 amu anii
| Half-life (years)
U235 7.04x108
U238 4.47x10°

Tritium 12.3
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What could you do with 1 kg DT?

« 1kg DT ->340 Tera joules

— You can drive your car for ~40,000 km (back and forth between
Keelung and Kaoshiung for 50 times).

— You can keep your furnace running for 8 years.

— You can blow things up! 1 TJ = 250 tons of TNT.

*R. Betti, HEDSA HEDP Summer School, 2015 125



Enormous fusion fuel can be produced from sea water

e xu,
z"\(l 2
p ¥
z m
° 4
% ‘s
v Ld
[

Total energy
= of world oll
reserve

*R. Betti, HEDSA HEDP Summer School, 2015 126



A “hot plasma” at 100M °C is needed

* Probability for fusion reactions to occur is low at low temperatures due to
the coulomb repulsion force.

0 (4) <@

« If the ions are sufficiently hot, i.e., large random velocity, they can collide
by overcoming coulomb repulsion

2= o0

Probability

s Ku,
& Yo

< %L

- =

H

7 5

2 &
N &
v 54

Teat

Energy

*R. Betti, HEDSA HEDP Summer School, 2015
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Fusion is much harder than fission, a “hot plasma” at
100M °C is needed

e xu,
3+ i

§ <

p 2

p

5 2

° 4
% @
v 4

[

« Fission: n433°U —55° U —:5* Ba +52 Kr +3n + 177 MeV
« Fusion: D+ T — He*(3.5MeV) + 5 (14.1 MeV) D @ (—). T
““““““““““““ 10_24 b |
. :
107
2 : 2 U+n
5 100 ¢ o~ 10725 Coulomb Scattering -
< — E
g 5
3= 1 — S 10728
%é 0.0] + ‘?m D-T Fusion -
g 10-4 | | | | | 1 © p-30L
- - - « D-D Fusion
10°10° 10001 1 100 10° ; e
Projectile/Neutron Energy (keV) T T T e 000

Deuteron Energy (keV)

https://www6.lehigh.edu/~eus204/lab/PCL_fusion.php#x1-10096 128



Fast neutrons are slowed down due to the collisions

Neutron @ ==) @ Atom

my My

A moderator is used to slow down fast neutrons but not to absorb
neutrons.

 For m,,~m,, the energy decrement is higher. Therefore, H slows down
neutron most efficiently.

e However,H+ n — D, i.e., Habsorbs neutrons.

* The best option is the D in the heavy water (D,0O).

Energy Neutron scattering | Neutron absorption
decrement Cross section (os) |cross section (os)
GENS) GENS)
H 1 49 (H,0) 0.66 (H,0)
D 0.7261 10.6 (D,0) 0.0013 (D,0)
C 0.1589 4.7 (Graphite) 0.0035 (Graphite)

https://en.wikipedia.org/wiki/Neutron_moderator#cite_note-Weston-4
https://energyeducation.ca/encyclopedia/Neutron_moderator#cite_note-3
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Fusion doesn’t come easy

10-27 Temperature (MKk)
10-2 58 116 580 1160 5802
E | |
10728 ~ 7
‘Tth
€ E 102
e 10 29¢ @
3 c
3
g 10730 é 10-23
o o
Q
103" o D-D
10—24 | Y AN ‘ L
1 5 10 50 100 500
10— 5 5. 10, 20. 50. 100.200. 500.1000. lon temperature (keV)
Center—of-Mass Energy (keV) . -
« Reaction rate: Proseotty
D+D->T+ D + He3 — He? +
P P <ov>= |owvf(v) dv
— He3 +n
p + Bl — 3He*
D+T — He?+n Cross section

https://i.stack.imgur.com/wXQD5.jpg

Santarius, J. F., “Fusion Space Propulsion — A Shorter Time Frame Than You
Think”, JANNAF, Monterey, 5-8 December 2005. 130



It takes a lot of energy or power to keep the plasma at

100M °C

« Let the plasmado it itself!

@ The neutron leaves
because is neutral
Tritium

O + @
e o Helium (alpha particle)

Deuterium 'Q ® stays in the plasma because
® is charged and collides with

®  the electrons

 The a-particles heat the plasma.

*R. Betti, HEDSA HEDP Summer School, 2015 131



Under what conditions the plasma keeps itself hot?

o
¥ “
J %
z m
3 d
3 8
et

« Steady state 0-D power balance:
S+S,=Sg+S
S, aparticle heating
S, external heating
Sg: Bremsstrahlung radiation

S: heat conduction lost

Ignition condition: Pt > 10 atm-s = 10 Gbar - ns

 P: pressure, or called energy density
* Tis confinement time
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The plasma is too hot to be contained

« Solution 1. Magnetic confinement fusion (MCF), use a magnetic field to
contain it. P~atm, T~sec, T~10 keV (108 °C)

Tokamak Stellarator

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/
https://en.wikipedia.org/wiki/Stellarator 133



Don’t confine it!

« Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined
by its own inertia: P~Gigabar, T~nsec, T~10 keV (108 °C)

Laser light shines The target
on the target is compressed

A [ 4
. X f‘?
~4mm »@« > o < _&
! N 7Y | ¢ W . F
aﬁ o
The target is ignited The target
burns
i’ \{
u\ 'w

U733]1

Inertial confinement fusion: an introduction, Laboratory
for Laser Energetics, University of Rochester 134



To control? Or not to control?

« Magnetic confinement fusion (MCF) ¢ Inertial confinement fusion (ICF)
< Laser light shines The target
on the target is compressed
The target is ignited Ths target
q’ 5{
uﬁ 'w
« Plasmais confined by toroidal - A DT ice capsule filled with DT
magnetic field. gas is imploded by laser.

Laboratory for Laser Energetics, University of Rochester is
a pioneer in laser fusion

135



Outline

 Introduction to nuclear fusion
« Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU

136



Charged particles gyro around the magnetic fields

137



Charged particles can be partially confined by a
magnetic mirror machine

« Charged particles with small v, eventually stop and are reflected
while those with large v, escape.

1 1 1
~mv* = -my)* + -mv,?

2 2 2
* Large v, may occur from collisions between particles.

« Those confined charged particle are eventually lost due to collisions.

https://i.stack.imgur.com/GlzGZ.jpg 138



“loffe bars” are added to stabilize the Rayleigh-Taylor
Instabilities at the center of the mirror machine

loffe bars

Introduction to Plasma Physics and Controlled Fusion 3™ Edition, by Francis F. Chen 139



A “baseball coil” is obtained if one links the coils and
the bars into a single conductor

S K
&, <
> %

1 4
2 &
% 5
nr sal =

« Baseball coil e MFTF-B mirror machine

Introduction to Plasma Physics and Controlled Fusion 3 Edition, by Francis F. Chen 140



Plasma can be confined in a doughnut-shaped chamber
with toroidal magnetic field

« Tokamak - "toroidal chamber with magnetic coils" (TopounaanbHas
Kamepa ¢ MarHUTHbIMUN KaTyLUKamMM)

Relatively Constant Elecinic Current

ﬂ

Taroidal

1 T;E f;‘fﬂ s E:ﬁ

=A% ?%ﬁ’?»\
e )
-tECEmnl Taroidal Field <<\\\\\\\\

https://www.iter.org/mach/tokamak
https://en.wikipedia.org/wiki/Tokamak#cite_ref-4
Drawing from the talk “Evolution of the Tokamak” given in 1988 by B.B. Kadomtsev at Culham. 141



Charged particles drift across field lines

« ExB drift e Grad-B drift
@ E - @ .

os  E M

Vgc - S
® VB

ION ELECTRON

Asuial
magnetic
field

http://www.geocities.jp/tomoyahirata417/fusion/gennkou.htm 142



A poloidal magnetic field is required to reduce the drift
across field lines

Inner poloidal field coils

Toroidal (Primary transformer circuit)

Direction Poloidal magnetic field Outer poloidal field coils

(for plasma positioning and shaping)

lon gyro-motion

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.davidpace.com/keeping-fusion-plasmas-hot/
https://www.euro-fusion.org/2011/09/tokamak-principle-2/ 143



A poloidal magnetic field is required to reduce the drift
across field lines

~

Outer poloidal field coils
or plasma positioning and shaping)

& )

-
[
o
-
4

Id Toroidal field coils

oidal magnetic field

144



A divertor is needed to remove impurities and the power
that escapes from the plasma
o

Closed magnetic
surfaces

Open
magnetic
surfaces

~
&

&
Scrape-off layer

Strike points X-point

Divertor plates Private plasma

https://www.euro-fusion.org/newsletter/divertor-concepts/ 145



D-shaped tokamak with diverter is more preferred
nowadays

* Make the plasma closer
to the major axis

Introduction to Plasma Physics and Controlled Fusion 3" Edition, by Francis F. Chen 146



Spherical tokamak is formed when the aspect ratio of a
tokamak is reduced to the order of unity

WS Kuy,

& ‘s
& B
- iz

H
z 1
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45

« NSTX @ Princeton « MegaAmpere Spherical Tokamak
(MAST) @ Culham center for
fusion energy, UK

Introduction to Plasma Physics and Controlled Fusion 3" Edition, by Francis F. Chen 147



ITER ("The Way" Iin Latin) is one of the most ambitious
energy projects in the world today

https://www.iter.org 148



ITER ("The Way" Iin Latin) is one of the most ambitious
energy projects in the world today

« Vacuum vessel

« Magnets

Divertor

https://www.iter.org/ 149



ITER

PN PR

e PRI

+ T=150M °C . B
° PZSOO MW = l XJ’—_’/‘L"’

e = B "\»\,ﬁ‘"‘ 7-:\
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ITER — Magnets

Eg=51 GJ
Tg=4 K

Length of Nb;Sn
superconducting
strand: 10° km

B =11.8T
B =6 T

T,max

P,max

= /7—7 3 —
S
W I

]

rrrrr
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ITER — Vacuum vessel

- W = 8000 tons s e
+ V=840 m3 " T Y e—

* R=6m e —— tokaEte -
: F- == 1)

. >

T

//

M
=T
-
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ITER — Blanket

440 modules
Thermal load:

736 MW

e

153



ITER — Divertor

SR YO,

54 cassettes e S

Thermal load: A | -

20 MW/m?2 e AR
= = s | I,

A=y

> i

Each cassette: S S
10 tons
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ITER — Crystat

« P=10%atm b e
« W =3800 tons : ~a | B

—

+ V =16000 m?3 e ‘;AF;.E;;—\\%,;%%

=
& XY A 3
1 iE "..
1 A oy i J
&
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Supporting systems

« Tritium breeding

« Control, Data access and Communication (CODAC)
« Cooling water

« Cryogenics

« Diagnostics

* Fuel cycle

« Hot cell - a secure environment for processing, repair or testing, etc., of
components that have become activated by neutrons.

 Power supply
« Remote handling
 Heating and current drive

* Vacuum system

156



There is a long way to go, but we are on the right path...
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* Dec 2025 First Plasma
« 2035 Deuterium-Tritium Operation begins
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Joint European Torus (JET) facility has a record-
breaking 59 megajoules of sustained fusion energy

s Ku,
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H
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v 54
Teat

Record-breaking 59 megajoules of sustained fusion energy in Joint
European Torus (JET) facility in Oxford demonstrates powerplant potential
and strengthens case for ITER.

https://ccfe.ukaea.uk/resources/#gallery 158



Stellarator uses twisted coil to generate poloidal
magnetic field

Tokamak Stellarator

Inner poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/
https://en.wikipedia.org/wiki/Stellarator 159



A figure-8 stellarator solved the drift issues

Introduction to Plasma Physics and Controlled Fusion 3 Edition, by Francis F. Chen 160



A figure-8 stellarator solved the drift issues

161



Lyman Spitzer, Jr. came out the idea during a long ride
on a ski lift at Garmisch-Partenkirchen

https://www.snowtrex.de/magazin/skigebiete/garmisch-classic-zugspitze/ 162



Exhibit model of a figure-8 stellarator for the Atoms for
Peace conference in Geneva in 1958
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Introduction to Plasma Physics and Controlled Fusion 3™ Edition, by Francis F. Chen 163



Twisted magnetic field lines can be provided by toroidal
coils with helical coils

toroidal
. coil

—_—

\ y 3' . ‘
. 7
flux surface - \helical

plasma field line

Wagner, F., Fusion energy. MRS Energy & Sustainability, 5, E8 (2018) 164



LHD stellarator in Japan

https://en.wikipedia.org/wiki/Large_Helical_Device 165



Wendelstein 7-X is a stellarator built by Max Planck
Institute for Plasma Physics (IPP)
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outer vessel ports and domes

S—
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\i

-9, central support ring 1 =
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< e
Y _nop-pla far eoils

vacuum field
Poincaré sections

« Wemdelstein 7-x is now
installing new diverters.
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Demonstration of a magnetic mirror machine

Show video. https://i.stack.imgur.com/GlzGZ.jpg 167



Plasma is partially confined by the magnetic field




Many mirror points are provided by a pair of ring-type

magnets

ALK

]

]

0
mm
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Outline

 Introduction to nuclear fusion
 Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU

170



Compression happens when outer layer of the target is
heated by laser and ablated outward

Laser light shines
on the target

The target is ignited

u’ ™

%9 A
k S

U733]1

The target
is compressed

The target
burns

Light wave /S — Critic_al

density
pCI‘, ncr

pens'ty

| Sonic point M=1 |

—Corona conduction zone — M Mach # = VIC,
Isotherr.nal r steady state i
expansion Subsonic flow M<1

Time-dependent v =Ablation velocity

Supersonic flow
M>1

v,=blow-off velocity :

T

Heat flows by
conduction

Laser energy
deposited near
critical surface

Ablated plasma

II:Ilgtht Prarse ~ 1-158/cC
< xc — I
X g:i.t.if:zlz;scirffi‘:e -g=acceleration in the lab frame:
0.35um light

Inertial confinement fusion: an introduction, Laboratory
for Laser Energetics, University of Rochester
R. Betti, HEDSA HEDP Summer School, 2015
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Plasma is confined by its own inertia in inertial

confinement fusion (ICF)

Laser light shines The target
on the target is compressed

The target is ignited The target

burns
i’ 5&

veEY

U733]1

Spatial profile at stagnation

Pressure

IIIIIIIIIII..III...

T

temperature

heat flux

hot spot

Inertial confinement fusion: an introduction, Laboratory
for Laser Energetics, University of Rochester
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A ball can not be compressed uniformly by being
squeezed between several fingers

Rayleigh-Taylor instability

P2 P2

« Stages of atarget implosion

(a) Early time (d) Peak compression

Imprinting and shock

Laser drive

Feedout Core—shell mix

Propagating burn

Plasma formation
and laser—plasma
interactions

Fusion neutrons, charged
particles, and x rays

Hot-spot ignition

Rayleigh-Taylor growth,—”
mitigation, and saturation

Shock convergence
Rayleigh—Taylor growth

Laser drive

(b) Acceleration phase (c) Deceleration phase

E988611

P.-Y. Chang, PhD Thesis, U of Rochester (2013)
R. S. Craxton, etc., Phys. Plasmas 22, 110501 (2015)
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A spherical capsule can be imploded through directly or
indirectly laser illumination

Direct-drive target Indirect-drive target

Capsule

Laser beams

Diagnostic hole

Hohlraum using
a cylindrical high-Z case

*R. Betti, HEDSA HEDP Summer School, 2015
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Rochester is known as “The World's Image Center”
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There are many famous optical companies at Rochester
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Laboratory for Laser Energetics, University of Rochester
IS a pioneer in laser fusion

o x
v,
& <
P %
1 2

3
2 &

« OMEGA Laser System « OMEGA EP Laser System

UR
60 beams 4 beams; 6.5 kJ UV (10ns) '-'—E*
« >30 kJ UV on target « Two beams can be high-  FS€>
* 1%~2% irradiation nonuniformity energy petawatt
» Flexible pulse shaping « 26 kJ IR in 10 ps

« Can propagate to the
OMEGA or OMEGA EP
target chamber

OMEGA target

- OMEGA EP
' : target
chamber

Main

i _amplifiers
Compression

chamber

OMEGA EP Laser Bay
177



The OMEGA Facility is carrying out ICF experiments
using a full suite of target diagnostics

Imaging x-ray UR %é
LLNL flat streak camera LLE
crystal x-ray Target X-ray pinhole FS€
streak in TIM #1 positioner camera

X-axis target-
viewing system

X-ray pinhole
cameras = KB x-ray
‘microscope
#2 (GMX1)
Indium _
activation X-ray pinhole
camera
Copper
activation KB x-ray
microscope #1
KB x-ray X-ray framing A-ray Plasma
microscope camera #1 pinhole calorimeter
#3 in TIM#3 cameras

E8012b Photo taken from port H11B
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The 1.8-MJ National Ignition Facility (NIF) will
demonstrate ICF ignition and modest energy gain
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Completed March 2009
and beginning
experiments
at LLNL

= » ;' }’
\ Relative
size

OMEGA experiments are integral to an
ignition demonstration on the NIF.
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Targets used in ICF

« Triple-point temperature : 19.79 K

300

200

Power (TW)

100

TC8286J1

Time (ns)

12

http://www.lle.rochester.ed
https://en.wikipedia.org/wiki/Inertial_confinement_fusion
R. S. Craxton, etc., Phys. Plasmas 22, 110501 (2015)
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Softer material can be compressed to higher density

« Compression of a baseball

> Pl N 1447450

« Compression of a tennis ball

https://www.youtube.com/watch?v=uxlldMoAwbY
https://newsghana.com.gh/wimbledon-slow-motion-video-of-how-a-tennis-ball-turns-to-goo-after-serve/ 181



A shock is formed due to the increasing sound speed of
a compressed gas/plasma

« Wave in the ocean: Jockn

213 km 3 23 km

Depth Velocity Wave length
(meters) (km/h) (km)

7000 943 282
4000 713 213

2000 504 151

200 159 48
50 79 23
10 36 10.6

« Acoustic/compression wave driven by a piston:

CS3 Ushock>c
Csz
3V C., shock

X
Cs ~ B ™~ p \/7401}3
p p

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis
*R. Betti, HEDSA HEDP Summer School, 2015 182




Targets used in ICF

a Cryogenic hohlraum

https://www.lle.rochester.edu/index.php/2014/11/10/next-generation-cryo-target/
Introduction to Plasma Physics and Controlled Fusion 3 Edition, by Francis F. Chen  1s3



Nature letter “Fuel gain exceeding unity in an inertially
confined fusion implosion”

a Inner cone

. entrance hole
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* Fuel gain

exceeding unity was demonstrated for the first time.
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130927
131119

Nature 506, p343, 2014
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The hot spot has entered the burning plasma regime

Hotspot pressure-energy [no-ol]
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National Ignition Facility (NIF) achieved a yield of more
than 1.3 MJ from ~1.9 MJ of laser energy in 2021 (Q~0.7)

Generalized Lawson Criterion

1.6

—
O CHLF
O CHHF

g cnr 1.35 MJ
@ HDC BF

I HDC Iraum
B HDC HyE

1.41

1.2

1F

0.8}

0.6}

Fusion yield (MJ)

0.4

0.2

o y !
0010203040506070809 1

PP,

National Ignition Facility (NIF)
achieved a yield of more than 1.3
MJ (Q~0.7). This advancement puts
researchers at the threshold of
fusion ignition.

Y
7 5
L/v Teal v

THEROAD TO IGNITION

The National Ignition Facility (NIF) struggled for years before achieving a
high-yield fusion reaction (considered ignition, by some measures) in 2021.
Repeat experiments, however, produced less than half the energy of that result.

On 8 August 2021, a laser shot
produced more than 1.3 megajoules
of fusion energy.

B The NIF’'s original
goal was to achieve
ignition by 2012.

Fusion yield (megajoules)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

« Laser-fusion facility heads back to
the drawing board.

T. Ma, ARPA-E workshop, April 26, 2022

J. Tollefson, Nature (News) 608, 20 (2022) 186



“Ignition” (target yield larger than one) was achieved in
NIF on 2022/12/5

Fusion yield (MJ)

28

2.6

24

22

1.8

1.6
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0.2

NIF fusion yields versus time

3.15 MJ
(Q=1.54)

2.05MJ

Max laser energy

SEECE T R tinee i3 mall Tﬂrlll"hk

2011 2012 20132 2014 2045 2016 2017 2018 2019 2020 2021 2022
Year

NIF’s ignition achievement in perspective

Energy in megajoules @ =1

(1 1

Energy required from the grid Energy of laser fired upon hohlraum Energy produced via fusion

300 MJ 2.05 MJ 3.15 MJ

https://physicstoday.scitation.org/do/10.1063/PT.6.2.20221213a/full/
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External “spark” can be used for ignition

« Shock ignition

(a)

Compression )
wave (b) Spike shock wave

Return
shock
Picket
shock wave
]_O . . — f'/\-l-\ 20 T ) T T T —] 8 PT
~ Picket delay 4 = S 5L Spike delay 5
= s& E INES
: 5 F e ~ o — 10 | H4 E
o 2 = 3) =
=~ 2 = 0 | I | 0 %
0 ' 0 = =
-1 0 1 2 -1 0 1 2 3 4
Time (ns) E 1613011 Time (ns)

« Fastignition

a) channeling Fl concept

Hole [ '

boring ” Ignition

—| |a—

10 ps

b) cone-in-shell FI concept

ignition
10ps pulse

J. Badziak, Bull.Polish Acad. Sci. Tech. Sci.Phys. Plasmas 15, 056306 (2008)
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A shock is formed due to the increasing sound speed of
a compressed gas/plasma

« Wave in the ocean: Jockn

213 km 3 23 km

Depth Velocity Wave length
(meters) (km/h) (km)

7000 943 282
4000 713 213

2000 504 151

200 159 48
50 79 23
10 36 10.6

« Acoustic/compression wave driven by a piston:

CS3 Ushock>c
Csz
3V C., shock

X
Cs ~ B ™~ p \/7401}3
p p

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis
*R. Betti, HEDSA HEDP Summer School, 2015 189




Ignition can happen by itself or being triggered externally

]
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Self-ignition External “spark” for fast ignition
Conventional ICF Fast Ignition Shock Ignition
X ¥
Hot spot Shock
pulse
Fast
|- injection

T ' I I AP of heat

| T A | A

' |

Low-density central spot ignites Fast-heated side spot ignites Spherical shock wave ignites
a high-density cold shell a high-density fuel ball a high-density fuel ball
PThot = PTeold (Isobaric) Phot = Peold (Isochoric) PThot ® PTeold

P. B. Radha, Fusion Energy Conference,2018 190



Outline

 Introduction to nuclear fusion
 Magnetic confinement fusion (MCF)
— Tokamak
— Stellarator
* Inertial confinement fusion (ICF)
— Indirection drive ICF
— Direct drive ICF
* Innovation idea — MCF + ICF

* Pulsed-power system at NCKU
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A strong magnetic field reduces the heat flux

O .
= ° °
o
R, ° i ° K, = KT 5/2
} o ° K” Imfp
x, =—; forlargeHallparameter y oc — >>1
(o] ’( 0 o y 4 RL
o o o

* Typical hot spot conditions:
R, ~40 pm, p ~ 20 g/cm3, T ~ 5 keV:

B>10MG isneededfor y >1

Magnetic-flux compression can be used to provide the
needed magnetic field.
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Principle of frozen magnetic flux in a good conductor is

used to compress fields

Seed B-field
Bo

A A A A A A A A A

Conductor
ST B
<‘-H o ,.f>

® = nriB, =7zr’B

Compression

B

A A

3
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H
% F
Y b4
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et

M. Hohenberger, P.-Y. Chang, et al., Phys. Plasmas 19, 056306 (2012).
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Plasma can be pinched by parallel propagating plasmas

o x
v,
o <

P %
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1 3
s 4

v i

Voltage Magnetic Field lon

https://en.wikipedia.org/wiki/Pinch_(plasma_physics) 194



Sandia’s Z machine is the world's most powerful and
efficient laboratory radiation source

WS Kuy,

Peak current: 26 MA

Rise time: 100 ns

Peak X-ray emissions: 350 TW
Peak X-ray output: 2.7 MJ

« Stored energy: 20 MJ
« Marx charge voltage: 85 kV
« Peak electrical power: 85 TW

195



Z machine
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Z machine

Compressed
fuel at fusion
3 temperatures

« Stored energy: 20 MJ  Peak current: 26 MA

« Peak electrical power: 85 TW  Risetime: 100 ns
 Peak X-ray output: 2.7 MJ
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Z machine discharge
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Before and after shots

- Before shots - After shots =

SAND2017-0900PE_The sandia z machine - an overview of the
world's most powerful pulsed power facility.pdf
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Promising results were shown in MagLIF concept
conducted at the Sandia National Laboratories
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t=0ns t =100 ns t =150 ns
Laser entrance hole t’?;‘eétln:;?lnce hole La:ﬁ: 20, 2 kJ, 2 ns Axial field compressed
by implosion

with CH foil - ‘CR 20

magnetic fuel
field 250 eV :
lcm Compressed e
Liner fuel at fusion g %
(Al or Be) temperatures \
Cold DT .
gas (fuel)

Compression

The stagnation plasma reached fusion-relevant temperatures with a
70 km/s implosion velocity

S. A. Slutz et al Phys. Plasmas 17 056303 (2010)
M. R. Gomez et al Phys. Rev. Lett. 113 155003 (2014) 200



MagLIF target
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Neutron yield increased by 100x with preheat and
external magnetic field.

(b) (b) 4
20 B on Temp
E TS Electron Temp 110"
< 15 gé 3| I DD yield
= 12§& S | MEEMDT yield
1 S 88 a2 o
- 5 R o S >
& Q 5 115 @ = 110"
3 5 - 11 '
J 0 0 I - .
2950 3000 3050 3100 j 110
Time [ns] 0N =~ o m o o =9 o
© © _- o, m m o m
Jd & © N ®© ¥ = o
N N § © © ©o o -
I8 8§ 8§ §
™ o N N N N

M. R. Gomez et al Phys. Rev. Lett. 113 155003 (2014) 202



Sheared flow stabilizes MHD instabilities

m = 0 (sausage)

Perturbation o g™M®+¥2+1 m =1 (kink)

increasing

2o

u BZ , 2
L—r—} <3, decreasing dggreasin g \A"’j
:;,J: -— 28—; increasing </K|:C/

T I

dVv
2.0 M. G. Haines, etc., Phys. Plasmas 7, 1672 (2000)

dr U. Shumlak, etc., Physical Rev. Lett. 75, 3285 (1995)
U. Shumlak, etc., ALPHA Annual Review Meeting 2017 203
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A z-pinch plasma can be stabilized by sheared flows

Inner Electrode Neutral Gas Injection Plane Z-pinch plasma Electrode End Wall
]

& Outer Gas Valve

“ »

|

Inner Gas Valve ey

ST
o |
!

>

L]
L]
€&—— Outer Gas Valve Z=0 Z=15cm s
]

]
"“j.

.
Outer Electrode Observation Side-Window

Acceleration Region Dl Assembly Region ==
(100 cm) l (50 cm)

https://www.zapenergyinc.com/about
A. D. Stepanoy, etc., Phys. Plasmas 27, 112503 (2020)



Fusion reactor concept by ZAP energy

Vacuum Pumping

Weir Wall

™~

Sheared Flow
Stabilized
Z-Pinch in

Reactor
Chamber

Molten Wall

Outer Electrode \

From Steam Generator /
Fuel Recycling System

—
-

To Steam Generator /
Fuel Recycling System

Molten LiPb -

https://www.zapenergyinc.com/about
E. G. Forbes, etc., Fusion Sci. Tech. 75, 599 (2019)




There are alternative

TRAPPING
FUSION FIRE

When a superhot, ionized plasma is trapped in a
magnetic field, it will fight to escape. Reactors are
designed to keep it confined for long enough for

the nuclei to fuse and produce energy.

A CHOICE OF FUELS

Many light isotopes will fuse to release
energy. A deuterium-tritium mix ignites at
the lowest temperature, roughly 100 million
kelvin, but produces neutrons that make the
reactor radioactive. Other fuels avoid that,
but ignite at much higher temperatures.

D-T Tritium Neutron
e, + 3. R — 0:. + ®

Deuterium Helium-4 (o)

D-D

)+ @& —> (@ +o
D D Helium-3 "

D-*He
%)+ (& —> @ + 0

D 3He a Proton

p-1'B
20

.+'.5°§).—’.' + (@8 + @

Boron-11 o g

Magnetic field coils

Plasma Plasma
chamber

TOKAMAK

(ITER AND MANY OTHERS)

Multiple coils produce magnetic fields that
hold the plasma in the chamber. A coil
through the centre drives a current
through the plasma to keep it hot.

Fuel beams

Central
Central plasmoid
chamber

Plasmoid

Liquid metal
vortex

Pistons Plasma

MAGNETIZED TARGET REACTOR
(GENERAL FUSION)

Magnetized rings of plasma are injected
into a vortex of liquid metal. Pistons punch
the metal inwards, compressing the plasma
to ignite fusion.

COLLIDING BEAM FUSION REACTOR
(TRI ALPHA ENERGY)

'Cannons' fire plasma vortices into a
chamber, where they merge into a
stationary vortex. This is suspended in
magnetic fields, and is kept heated by
beams of fresh fuel.

http://mww.nextbigfuture.com/2016/05/nuclear-fusion-comany-tri-alpha-energy.html
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Commonwealth Fusion Systems, a MIT spin-out
company, is building a high-magnetic field tokamak
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« Fusion power o« B4,
« The fusion gain Q > 2 is expected for SPARC tokamak.

https://en.wikipedia.org/wiki/SPARC_(tokamak) 207



Merging compression is used to heat the tokamak at the

start-up process in ST40 Tokamak at Tokamak Energy Ltd

40~60 cm « High temperature superconductors
Outer vacuum are used.
chamber/cryostat ° BT ~3T

Merging

compression
coil

o
_1__!7,;

Inner vacuum =
chamber &

Central
solenoid

Poloidal

field coil

Divertor
coil

M. Gryaznevich, etc., Fusion Eng. Design, 123,177 (2017)
https://www.tokamakenergy.co.uk/
P. F. Buxton, etc., Fusion Eng. Design, 123, 551 (2017) 208



Reconnection

b A

| ! !

/ ! ;
plasma reconnection | ‘ / "
current diffusion region / ‘ | T :

layer A B2 ; 3 | - “ |
DA ‘ . -
\E B P B
s\l : |
' N e :

magnetic
slingshots

https://www.youtube.com/watch?v=7sS3Lpzh0Zw
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Merging compression is used to heat the plasma

R [m] R [m] R [m]

http://www.100milliondegrees.com/merging-compression/
P. F. Buxton, etc., Fusion Eng. Design, 123, 551 (2017)
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Spherical torus (ST) and compact torus (CT)

 Spherical torus (ST)

Large aspect ratio

ta) (Standard tokamak)

MinoF

radius
R
ajor .
ius.

Low aspectradio |
(Spherical tokamak)

« Compact torus (CT)
« Spheromak * Field reversed configuration (FRC)

Zhe Gao, Matter Radiat. Extremes 1, 153 (2016)
https://en.wikipedia.org/wiki/Field-reversed_configuration 211



Field reverse configuration is used in Tri-alpha energy

cusp
mirror segmented
coils theta-pi\nch coil

separatrix
1
\ N

\

open \— . quartz tube
magnetic | closed poloidal toroidal

A SRR GG LANL.: design, test
field lines magnetic field line (F:)urrent AFRL: Shiva-FRC

*Magneto-Inertial Fusion& Magnetized HED Physics by Bruno
S. Bauer, UNR & Magneto-Inertial Fusion Community
**https://en.wikipedia.org/wiki/Field-reversed_configuration
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Field reverse configuration is used in Tri-alpha energy

S K
&, <
> %

1 4
2 &
% 5
nr sal =

Neutral-Beam Injectors

Plasma Gun

(inside)

Confinement Chamber
DC Magnets

http://trialphaenergy.com/ 213



NBI for Tri-Alpha Energy Technologies

214

https://tae.com/media/



Neutral beams are injected in to the chamber for
spinning the FRC

https://tae.com/media/ 215



FRC sustain longer with neutral beam injection

hg20160914.tae.2

o
oo

o
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v H

C-2 HPF14, #34913
0.2 #6359 (w/ ~4 MW NBI)
0 {No IGuanIB} 1 1 1 20 kev I_II 1 1 L 1 1 1 1 1
150
) %) o] #)
__1oor 1 | Q c-2u
% ' (w/ ~10 MW NBI)
2 1 " | C-2HPF14
it 5ol (w/ ~4 MW NBI)
0 | | 1 | 1 | | | | | 1 | | | | | 1 |
0 1.0 2.0 3.0 4.0 50 6.0 7.0 8.0 9.0 10
Time (ms)

H. Gota, etc., Nucl. Fusion 57 (2017) 116021 216



General fusion is a design ready to be migrated to a
power plant

Plasma Injectors

Hydraulic Rams J Core Liquid drain

\

/ Heat Exchanger

Injectors —> Steam Turbo-alternator

A

Core Injector Pump

https://en.wikipedia.org/wiki/General_Fusion 217



A spherical tokamak is first generated

Fast CHI Spherical Tokamak devices

SPECTOR
= =1
[Tl 11 ) | PI3
- Tm

K. EPP, etc., 60" APS-DPP, CP11.00192 15



Plasma injector for the spherical tokamak

K. EPP, etc., 60" APS-DPP, CP11.00192 210



A spherical tokamak is generated in a liquid metal
vortex
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The spherical tokamak is compressed by the pressure
provided by the sournding hydraulic pistons
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BBC: General Fusion to build its Fusion Demonstration
Plant in the UK, at the UKAEA Culham Campus

Nuclear energy: Fusion plant backed
by Jeff Bezos to be built in UK

By Matt McGrath
Environment correspondent

® 17 June

- .
e | L
e L (i

i R i M Ty RN GENERAL FUSION

An artist's impression of what the new demonstration plant might look like

A company backed by Amazon's Jeff Bezos is set to build a large-scale
nuclear fusion demonstration plant in Oxfordshire.

(Canada'c Ganaral Fucian ic nne nf the leadina nrivate firme aimina tn tiirn the

https://www.bbc.com/news/science-environment-57512229 222



Helion energy Is compressing the two merging FRCs
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Ebsite uses cookies. Read more about our privacy policy & terms of use.

https://www.helionenergy.com/ 223



Two FRCs are accelerated toward each other

e uses cookies. Read more about our privacy policy & terms of use.

https://www.helionenergy.com/ 224



Two FRCs merge with each other

usion electricity is used to power homes and

bsite uses cookies. Read more about our privacy policy & terms of use.

https://www.helionenergy.com/ 225



The merged FRC is compressed electrically to high
temperature

e uses cookies. Read more about our privacy policy & terms of use.

« Similar concept will be studied in our laboratory. nitps:/fwww.helionensrgy.com
. . . 226




Projectile Fusion is being established at First Light
Fusion Ltd, UK
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Incident Shock /Maln Transverse Jet

Cavi ty

(€) (d)

« Stored energy: 2.5 MJ @ 200 kV
(Cioi=125 uF)
lpeak=14 MA W/ T);~2US.

4 \
« High pressure is generated by
the colliding shock.
https://www.youtube.com/watch?v

=—aTMPIigL7FB8

https://firstlightfusion.com/
B. Tully and N. Hawker, Phys. Rev. E93, 053105 (2016) 227
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A gas gun is used to eject the projectile

T

https://www.youtube.com/watch?v=JN7lyxC11n0O
https://www.youtube.com/watch?v=aW4eufacf-8



Many groups aim to achieve ignition in the MCF regime
In the near future

 ITER - 2025 First Plasma  Tokamak energy, UK
2035 D-T Exps « 2025 Gain
2050 DEMO .

« Commonwealth Fusion Systems, USA
— 2025 Gain

|

https://www.iter.org
https://www.tokamakenergy.co.uk/
https://www.psfc.mit.edu/sparc
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Fusion is blooming!
FUSION

FIA Members }
Commonwealth taeC) |
*iL

usion Systems
L T
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https://www.fusionindustryassociation.org/members
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We are closed to ignition!

(P)tp (atm X 8)

103 E L S T T T T ITTT] T T T T ng 10005 ITER target of T; = 18 keV, nTt = 3.4 atmosphere seconds
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A. J. Webster, Phys. Educ. 38, 135 (2003)
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R. Betti, etc., Phys. Plasmas, 17, 058102 (2010)
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Fusion projects in Inst. Space and Plasma Sciences
, National Cheng Kung University
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We welcome anyone interested in fusion research to join our team!
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