Application of Plasma Phenomena

Po-Yu Chang

Institute of Space and Plasma Sciences, National Cheng Kung University

Lecture 11

2023 spring semester

Tuesday 9:10-12:00

Materials:

https://capst.ncku.edu.tw/PGS/index.php/teaching/

Online courses:

https://nckucc.webex.com/nckucc/j.php?MTID=m2a52f2d8ea616f434b6ec30 53ef0ebd2

2023/5/23 updated 1

Proton therapy takes the advantage of using Bragg peak

http://www.shi.co.jp/quantum/eng/product/proton/proton.html

Saha equation gives the relative proportions of atoms of a certain species that are in two different states of ionization in thermal equilibrium

$$\frac{n_{r+1}n_e}{n_r} = \frac{G_{r+1}g_e}{G_r} \frac{(2\pi m_e KT)^{3/2}}{h^3} \exp\left(-\frac{\chi_r}{KT}\right)$$

- n_{r+1}, n_r: Density of atoms in ionization state r+1, r (m⁻³)
- n_e: Density of electrons (m⁻³)
- G_{r+1}, G_r: Partition function of ionization state r+1, r
- g_e=2: Statistical weight of the electron
- m_e: Mass of the electron
- χ_r: Ionization potential of ground level of state r to reach to the ground level of state r+1
- T: Temperature
- h: Planck's constant
- K: Boltzmann constant

Supplement to Ch. 6 of Astrophysics Processes by Hale Bradt (http://homepages.spa.umn.edu/~kd/Ast4001-2015/NOTES/n052-saha-bradt.pdf) ₃

Saha equation is derived using the transition between different ionization states

- Photoionization:
 - $R_{\rm pi} = n_{r,k} u(\nu) B_{r,k \to r+1,j}$
- Induced radiation: $R_{ir} = n_{r+1,i}n_{e,p}(p)u(v)B_{r+1,i \rightarrow r,k}$
- Spontaneous emission:

$$R_{\rm sr} = n_{r+1,j} n_{e,p}(p) A_{r+1,j \to r,k}$$

• In thermal equilibrium:

$$n_{r+1,j}n_{e,p}A_{r+1,j
ightarrow r,k} + n_{r+1,j}n_{e,p}uB_{r+1,j
ightarrow r,k}$$

= $n_{r,k}uB_{r,k
ightarrow r+1,j}$

• Einstein coefficients:

$$\frac{B_{r,k\to r+1,j}}{B_{r+1,j\to r,k}} = \frac{g_{r+1,j}}{g_{r,k}} \frac{g_e 4\pi p^2}{h^3}$$

 $g_{r+1, j}$

$$\frac{A_{r+1,j\to r,k}}{B_{r+1,j\to r,k}}=\frac{8\pi h\nu^3}{c^3}$$

Saha equation – example: hydrogen plasma of the sun

- Photosphere of the sun hydrogen atoms in an optically thick gas in thermal equilibrium at temperature T=6400 K.
 - Neutral hydrogen (r state / ground state)

$$G_r = \Sigma g_{r,k} = g_{r,0} + g_{r,1} \exp\left(-\frac{\epsilon_{r,1}}{\mathrm{KT}}\right) + \dots = 2 + 8\exp\left(-\frac{10.2\mathrm{eV}}{0.56\mathrm{eV}}\right) + \dots$$
$$= 2 + 9.8 \times 10^{-8} + \dots \approx 2$$

- Ionized state (r+1 state)

$$G_{r+1} = \Sigma g_{r+1,j} = g_{r+1,0} + g_{r+1,1} \exp\left(-\frac{\epsilon_{r+1,1}}{\mathrm{KT}}\right) + \cdots \approx 1$$

- Other information: $g_e = 2$ $\chi_r = 13.6 \text{eV}$; kT = 0.56 eV $n_{r+1} = n_e$

$$\frac{n_{r+1}^2}{n_r} = 2.41 \times 10^{21} \frac{1 \times 2}{2} (6400)^{3/2} \exp\left(-\frac{13.6}{0.56}\right) = 3.5 \times 10^{16} m^{-3}$$

It is mostly neutral in the photosphere of the sun

• Assuming 50 % ionization:

 $n_{r+1} = n_r = 3.5 \times 10^{16} m^{-3}$ $n = n_{r+1} + n_r = 7 \times 10^{16} m^{-3}$

• In the photosphere of the sun:

 $ho \sim 3 imes 10^{-4} \, {
m kg}/m^3 o n = 2 imes 10^{23} m^{-3} \gg 7 imes 10^{16} m^{-3}$

 At higher densities n at the same temperature, there should be more collisions leading to higher recombination rate and thus the plasma is less than 50 % ionization.

 \Rightarrow Less than 50 % ionization

• Use the total number density to estimate the ionization percentage:

$$n_{r+1} + n_r = 2 imes 10^{23}$$
 $rac{n_{r+1}}{n_r} = 4 imes 10^{-4} @ 6400 K$

A semiconductor device is fabricated by many repetitive production process

Reference for material processing

- Principles of plasma discharges and materials processing, 2nd edition, by Michael A. Lieberman and Allan J. Lichtenberg
- http://www.eecs.berkeley.edu/~lieber/
- Materials science of thin films, 2nd edition, by Milton Ohring
- Plasma etching, by Dennis M. Manos and Daniel L. Flamm
- Industrial plasma engineering, volume 1, by J. Reece Roth

There are two types of etching: isotropic vs anistropic

Anisotropic etching

 Resist
 Polysilicon
 Substrate

There are four major plasma etching mechanisms

Principles of plasma discharges and materials processing, 2nd edition, by Michael A. Lieberman and Allan J. Lichtenberg

Sputtering etching

Sputtering is an unselective but anisotropic process

- Unselective process.
- Anisotropic process, strongly sensitive to the angle of incidence of the ion.
- Sputtering rates of different materials are roughly the same.
- Sputtering rates are generally low because the yield is typically of order one atom per incident ion.
- Sputtering is the only one of the four etch processes that can remove nonvolatile products from a surface.
- The process is generally under low pressure since the mean free path of the sputtered atoms must be large enough to prevent redeposition on the substrate or target.

Principles of plasma discharges and materials processing, 2nd edition, by Michael A. Lieberman and Allan J. Lichtenberg

Topographical patterns might not be faithfully transferred during sputter etching

Principles of plasma discharges and materials processing, 2nd edition, by Michael A. Lieberman and Allan J. Lichtenberg

Pure chemical etching

Atoms or molecules chemically react with the surface to form gas-phase products

• Highly chemically selective, e.g.,

 $Si(s) + 4F \longrightarrow SiF_4(g)$ photoresist + O(g) \longrightarrow CO₂(g) + H₂O(g) Neutral Volatile product

- Almost invariably isotropic.
- Etch products must be volatile.
- The etch rate can be quite large.
- Etch rate are generally not limited by the rate of arrival of etchant atoms, but by one of a complex set of reactions at the surface leading to formation of etch products.

Principles of plasma discharges and materials processing, 2nd edition, by Michael A. Lieberman and Allan J. Lichtenberg

Ion-enhanced energy-driven etching

The discharge supplies both etchants and energetic ions to the surface

- Low chemical etch rate of silicon substrate in XeF2 etchant gas.
- Tenfold increase in etch rate with XeF₂ + 500 V argon ions, simulating ionenhanced plasma etching.
- Very low "etch rate" due to the physical sputtering of silicon by ion bombardment alone.

Ion-enhanced energy-driven etching has the characteristic of both sputtering and pure chemical etching

- Chemical in nature but with a reaction rate determined by the energetic ion bombardment.
- Product must be volatile.
- Highly anisotropic.

Ion-enhanced inhibitor etching

An inhibitor species is used

- Inhibitor precursor molecules that absorb or deposit on the substrate form a protective layer or polymer film.
- Etchant is chosen to produce a high chemical etch rate of the substrate in the absence of either ion bombardment or the inhibitor.
- Ion bombardment flux prevents the inhibitor layer from forming or clears it as it forms.
- Where the ion flux does not fall, the inhibitor protects the surface (side wall) from the etchant.
- May not be as selective as pure chemical etching.
- A volatile etch product must be formed.
- Contamination of the substrate and final removal of the protective inhibitor film are other issues.
 Neutral O Ion

Comparison of different processes

	NG KUN
5	10/05
N.N.	
dit	67
	THAN

	Sputtering etching	Pure chemical etching	lon energy- driven etching	Ion-enhanced Inhibitor etching	
Selectivity	X	0	0	0	
Anisotropic	0	X	0	0	
Volatile product	X	0	0	0	
	TABLE 15.1. Etch Chemistries Based on ProductVolatility				
	Material		Etchant Atoms		
	Si, Ge		F, Cl, Br		
	SiO ₂		F, F + C		
	Si ₃ N ₄ , silicides		F		
	Al		Cl, Br		
	Cu		Cl ($T > 210^{\circ}$ C)		
	C, organics		0		
	W, Ta, Ti, Mo, Nb		F, Cl		
	Au		Cl		
	Cr		Cl, Cl + O		
	GaAs		Cl, Br		
	InP		Cl, C + H		

- Plasma-assisted deposition, implantation, and surface modification are important material processes for producing films on surfaces and modifying their properties
- Example processes:
 - Plasma-enhanced chemical vapor deposition (PECVD)
 - Sputter deposition / physical vapor deposition (PVD)
 - Plasma-immersion ion implantation (PIII)

Chemical Vapor Deposition (CVD)

Plasma-enhanced chemical vapor deposition (PECVD)

Films can be deposited in low temperatures using plasma deposition

- Device structures are sensitive to temperature, high-temperature deposition processes cannot be used in many cases.
- High-temperature films can be deposited at low temperatures.
- Unique films not found in nature can be deposited, e.g., diamond.

Working temperature is determined by the desired film properties

- CVD consists of a thermally activated set of gas-phase and surface reactions that produce a solid product at a surface.
- PECVD gas-phase and the surface reactions are controlled or modified by the plasma properties.
- Te~2-5 eV in PECVD is much greater than the substrate temperature, the temperature in PECVD is much less that CVD.
- Deposition rates are usually not very sensitive to the substrate temperature T.
- Film properties such as composition, stress, and morphology, are functions of T.
- Low-temperature PECVD films are amorphous, not crystalline, which can more easily be achieved with chemical vapor deposition (CVD).

Example of using PECVD – amorphous silicon

Amorphous silicon thin films are used in solar cells

- H is required so that SiH₄ is used
 - For the material to be semiconducting.
 - Terminate the dangling bonds.
 - The dangling bonds are created by ion bombardment (SiH₃⁺) which also removes hydrogen from the surface.
 - SiH₃ and SiH₂ radicals are important precursors for film growth while SiH₄ also participates in surface reactions.

PVD

Physical vapor deposition can be achieved by heating the deposited material

Electron-beam evaporator

Pulsed-laser deposition

https://en.wikipedia.org/wiki/Pulsed_laser_deposition Engineered biomimicry by A. Lakhtakia and R. J. Martin-Palma https://en.wikipedia.org/wiki/Electron-beam_physical_vapor_deposition

Sputtering deposition

The chamber becomes very dirty after the deposition process

• Before

• After

• The turbomolecular pump is also very dirty after the process.

Plasma-immersion ion implantation (PIII)

- Silicon doping ions such as B, P, As are implanted
- Surface hardening of metals N, C are implanted

Magnetron sputtering provides higher deposition rates than conventional sputtering

Examples of magnetron sputtering deposition

https://angstromengineering.com/tech/magnetron-sputtering/pulsed-dc/ https://dynavac.com/wp-content/uploads/2017/09/Confocal-Sputtering-2.jpg https://www.adnano-tek.com/magnetron-sputtering-deposition-msd.html

DC/RF Power

Supply

Magnetron

Cathode

Demonstration experiments – magnetron sputtering

• System

Without magnet

With magnet

A bright ring occurs when the magnet is inserted into the system

H. C. M. Knoops et al., J. Vac. Sci. Technol. A 37, 030902 (2019)

Plasma can be used for cleaning surface

- Cleaning mechanisms:
 - Chemical reactions by free radicals
 - Physical sputtering by high energy ions

馗鼎奈米科技股份有限公司 https://www.ecplaza.net/products/plasma-cleaning_111807 ₃₄ Free radicals are generated and used in chemical reactions

- $e^- + H_2 \rightarrow 2H \bullet$ $e^- + O_2 \rightarrow 2O \bullet$ $0 \bullet + O_2 \rightarrow O_3$
- Highly reactive free radicals generated in plasma may react with the hydrocarbon contaminants of surface oxide.
- **Both H** and O• can react with grease or oil on surface to form volatile hydrocarbons.

$$\mathbf{H} \bullet_{(g)} + C_n H_{2n+2(s)} \to \mathbf{CH}_{4(s)}$$
$$\mathbf{O} \bullet_{(g)} + C_n H_{2n+2(s)} \to \mathbf{CO}_{(s)} + \mathbf{CH}_x \mathbf{O}_{y(g)} + H_2 \mathbf{O}_{(g)}$$

 O• is more reactive than H•. But O• may also react with surface metal to form oxide, deteriorating the material properties. Nevertheless, H• can make metal oxide back to metal.

$$0 \bullet + Me \to MeO$$

 $H \bullet + MeO \to Me + H_2O$

The effect of chemical reactions is increased as the pressure increases

- Advantages:
 - Stable gas products are formed.
 - No redeposition problem.
 - High etching selectivity.
- Disadvantages:
 - Higher concentration of H_2 or O_2 is required to ensure an appropriate etching rate.
 - H₂ safety or O₂ strong oxidation ability needs to be monitored.
High energy ions are used in physical sputtering cleaning

- lons generated in plasma can be accelerated toward the substrate to physically bombard away the atoms of contaminants.
- The physical sputtering rate increases as the following quantities increase:
 - Plasma density;
 - Accelerating voltage;
 - Mass of bombardment atoms.
- The physical sputtering is also enhanced by lowering the pressure.
- High cathode bias is used.
- Ar+ has strong sputtering effect.

The physical sputtering rate increases with higher cathode bias and Ar concentration and lower pressure

- Advantages:
 - Highly efficient cleaning effect can be achieved.
 - Gas consumption rate can be very low.
- Disadvantages:
 - Etching problems non-selective etching by physical sputtering.
 - Redeposition problems: the products sputtered out may be highly unstable and tend to deposit again downstream.

Plasma cleaning examples

Low-pressure plasma system: Generation with a low-frequency or high-frequency generator

Plasma cleaning needs to work in the regime of abnormal glow discharge

EUV light sources

A semiconductor device is fabricated by many repetitive production process

Ultraviolet lithography (EUVL) is one of the key technologies in semiconductor manufacturing nowadays

• The process technology of Taiwan Semiconductor Manufacturing Company Limited (TSMC):

- Optical diffraction needs to be taken into account.
- Shorter wavelength is preferred.
 - Light source with a center wavelength of 13.5 nm is used.

https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm 42

EUV lithography becomes important for semiconductor industry

• 0.15 billion USD for each EUV light source.

https://www.youtube.com/watch?v=NHSR6AHNiDs

ASMI

TE SE

EUV light can only be reflected using multilayer mirrors

Mo/Si multilayer coating technology for EUVL, coating uniformity and time stability; E. Louis et al.; SPIE 4146-06, Soft X-ray and EUV Imaging Systems, San Diego, 2000.

13.5-nm EUV light is picked for EUV lithography

- $\lambda = 13.5 \text{ nm} \pm 1\%$ is required.
- At T=35-40 eV (~450,000 K), in-band emission occurs.
- Xenon:
 - $4p^{6}4d^{8} \rightarrow 4p^{6}4d^{7}5p$ from single ion stage Xe¹⁰⁺
 - UTA @ 11 nm

- Tin:
 - $4p^{6}4d^{N} \rightarrow 4p^{5}4d^{N+1} + 4p^{6}4d^{N-1}4f$ (1 \leq N \leq 6) in ions ranging from Sn⁸⁺ to Sn¹²⁺
 - UTA @ 13.5 nm
 - UTA: unresolved transition array
- V. Bakshi, EUV sources for lithography

R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012) 45

EUV light is generated from laser-produced plasma (LPP)

Two laser pulses are used to heat the plasma

Hydrogen buffer gas with a pressure of ~100 Pa is used to protect the collector mirror

Laser-produced plasma (LPP) is used in the EUV lithography

R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012) 49

High harmonic generation from high-power laser

50

EUV light can be generated using discharged-produced plasma

JPDAP_37_p3254_2004_EUV sources using Xe and Sn discharge plasmas 51

Light source and display systems

Plasma display panel (PDP)

Liquid crystal display (LCD)

- Cathode Ray Tube
- Color space (CIE 1931 color spaces)
- History of plasma display panel (PDP)
- Design of PDP
- Liquid crystal display (LCD)
- LCD vs PDP

Cathode Ray Tube uses electron beams to light the fluorescent screen

The image is shown by scanning through the whole screen with the single electron beam

http://www.ni.com/white-paper/3020/en/#toc2

55

Color image is formed by using three electron beams scanning through three different color channels

http://web.mit.edu/6.111/www/f2008/handouts/L12.pdf

Color can be created using three primary colors

Human retina has three kinds of "cones" that have different spectral response

Spectral response of retina "cones" are tested using light sources with single wavelength

http://betterphotographytutorials.com/2011/08/01/light-and-colors-%E2%80%93-part-3/ https://en.wikipedia.org/wiki/CIE_1931_color_space

The CIE 1931 color space chromaticity diagram is the standard color space

https://en.wikipedia.org/wiki/CIE_1931_color_space

60

History of PDP

Plasma display panel was invented at the University of Illinois in 1967

Prof. H. Gene Slottow

Prof. Donald L. Bitzer

PDP was invented due to a need for Programmed Logic for Automatic Teaching Operations (PLATO) in 1960s

https://topwallpapers.pw/computer/keyboards-computers-history-teletype-typewriters-desktop-hd-wallpaper-1035981/ https://en.wikipedia.org/wiki/Punched_tape https://en.wikipedia.org/wiki/PLATO_(computer_system)

The positive column in a glow discharge is used to excite phosphors in color PDP

- Majority of monochrome PDPs use the negative glow as the light source
- The positive column is used to excite phosphors in fluorescent lamps and in color PDPs

Early plasma panel (PD) attached to the glass vacuum system used for the first plasma displays at UI

• It had the same alternating sustain voltage, neon, gas, and dielectric glass insulated electrodes that are used for plasma TVs today.

Early plasma panel (PD) attached to the glass vacuum system used for the first plasma displays at UI

 It had the same alternating sustain voltage, neon, gas, and dielectric glass insulated electrodes that are used for plasma TVs today.

Early 4x4 pixel panel has achieved matrix addressability for the first time

Early 4x4 pixel panel has achieved matrix addressability for the first time

A 16x16 pixel PD, developed in 1967, needed to be addressed manually

First color PD was three cell prototype with red and green color phosphors excited by a xenon gas discharge

Open-cell structure developed in 1968

It could be baked under vacuum at 350 °C to drive out contaminants.

More progress

1968, University of Illinois 16x16 pixels

1971, Owens-Illinois 512x512 pixels

Color PDPs had short display lifetime due to the degradation of color phosphors caused by ion sputtering

http://what-when-how.com/display-interfaces/display-technologies-and-applications-display-interfaces-part-3/
Design of PDP

A lower breakdown voltages can be obtained with very small amounts of added gas

AT&T three-electrode patent

Reflective phosphor geometry is used in most of today's plasma TVs

Spectrum of the different phosphors

The foundation of AC discharge

The plasma can be sustained using ac discharged

• Wall discharge reduced the required discharge voltage

Wall discharge reduced the required discharge voltage

ON/OFF State Selection

Sustain discharge

Address and sustain electrodes are connected to different drivers

PDP pixel can only be either ON or OFF

• Plasma Display Panel :

PDP luminance is controlled by using number of light pulses

CRT : Control the Luminance using Electron Beam Intensity

• PDP : Control the Luminance using Number of Light Pulses

A single field is divided into 8 subfield

Composition of each subfield

8 subfield in one TV-Field (ADS)

88

Cathode Ray Tube : Cell-by-Cell Scanning

• PDP : Line-by-Line Scanning

89

• Analog Video Signal ⇒ Digital Pulse Signal

Addressing period

Displaying period

Liquid crystal are a special state of matter between liquid and crystal

Linear polarization of a light can be rotated by miss aligned liquid crystal

Structure of Liquid crystal display (LCD)

http://www6.cityu.edu.hk/cityu25/events/engineering/pdf/proftang.pdf

Optimistic projection of PDP market

Reality

TV Shipment Growth by Technology

Too many reasons that PDP died!

- Bright showroom conditions put plasmas at a distinct disadvantage versus LED-lit LCDs
- Aesthetics may have played a role in hastening plasma's demise
- UHD/4K caught on quickly
- Screen-size limitations also played a part in plasmas plight
- You can't bend a plasma
- Plasmas were harder to deal with than LCDs
- While OLED is still in the early stages of development, there's no question it offers greater potential than plasma
- Energy efficiency may have played a part in putting plasma out to pasture
- Plasma was the original flat-panel technology, People just thought of it as old technology.
- Projectors improved in quality and prices dropped

http://www.avsforum.com/forum/40-oled-technology-flat-panels-general/2080650-10-reasons-plasma-died.html 97

Let's stand up and do exercise!!

The hydrogen bomb

The "iron group" of isotopes are the most tightly bound

Chain reaction can happen in U²³⁵ fission reaction

- ~ 200 million electron volts (MeV)/fission, ~million times more than chemical reactions
- Energy for bombs, or for civilian power can generate huge amounts of energy (and toxicity) in a small space with a modest amount of material
- Source of safety, security issues for nuclear power

https://en.wikipedia.org/wiki/Uranium-235

The neutrons are leaking out and stopping the chain reaction in a sub-critical mass

Solution 1: add more material

Solution2: reflect the neutron back in

Solution 3: increase the density

How to get the material together before it blows apart?

- There are always neutrons around
- Once chain reaction starts, material will heat up, expand, stop reaction
- How to get enough material together fast enough?

Gun-type bomb

- Simple, reliable can be built without testing
- Highly inefficient require lots of nuclear material (50-60 kg of 90% enriched HEU)
- Can only get high yield with HEU, not plutonium
- Hiroshima bomb: cannon that fired HEU projectile into HEU target

Hiroshima Bomb – "Little Boy"

Gun Type – Easiest to design and build (Hiroshima bomb was never tested)

About 13 kiloton explosive yield

Talk given by Dr. Charles D. Ferguson, President, Federation of American Scientists, Department of Physics, Colloquium, American University, 2012
Atomic bomb is very destructive

Hiroshima: August 6, 1945

Nagasaki: August 9, 1945

Talk given by Dr. Charles D. Ferguson, President, Federation of American Scientists, Department of Physics, Colloquium, American University, 2012

The fusion process

²H+³H ⇒ ⁴He+n+Q ≡ 17.6 MeV Energy release Q=17.6 MeV In comparison ²H+²H ⇒ ¹H+³H +Q ≡ 4.0 MeV ²H+²H ⇒ ³He+n +Q ≡ 3.2 MeV ³H+³H ⇒ ⁴He+2n+Q ≡ 11.3 MeV ²³⁵U+n ⇒ X_A+X_B+3n +Q ≈ 200 MeV

Deuterium-Tritium Fusion Reaction

Fusionable Material, deuterium ²H (D) and tritium ³H (t):

Deuterium: natural occurrence (heavy water) (0.015%).

Tritium: natural occurrence in atmosphere through cosmic ray bombardment; radioactive with $T_{1/2}$ =12.3 y.

Fusion of ²H+³H:
$$\frac{Q}{A} = \frac{17.6 MeV}{(3+2)amu} = 3.5 \frac{MeV}{amu}$$

Fission of ²³⁵U:
$$\frac{Q}{A} = \frac{200 MeV}{236 amu} = 0.85 \frac{MeV}{amu}$$

Fusion is 4 times more powerful than fission and generates 24 times more neutrons!

$${}^{2}H + {}^{3}H : \frac{n}{A} = \frac{1}{5} = 0.2$$

Neutron production:

$$^{235}U + n: \quad \frac{n}{A} = \frac{2}{236} = 0.0085$$

Hydrogen bomb uses a fission bomb to initiate the fusion reaction

Primary Fission Device

Core: ²³⁹Pu, ²³⁵U, plus ²H+³H booster Shell: ²³⁸U tamper High explosive lenses Fuel

Secondary Fusion Device

Radiation channel ²³⁹Pu sparkplug ⁶Li, ²H, ³H fusion cell ²³⁸U tamper

Event sequence

1. Warhead before firing; primary (fission bomb) at top, secondary (fusion fuel) at bottom, all suspended and beginning a fission in polystyrene foam.

2. HE fires in primary, compressing plutonium core into supercriticality reaction.

 Fissioning primary emits X-rays which reflect along the inside of the casing, irradiating the polystyrene foam.

4. Polystyrene foam becomes plasma, compressing secondary, and plutonium sparkplug begins to fission.

5. Compressed and heated, lithium-6 deuteride fuel begins fusion reaction, neutron flux causes tamper to fission. A fireball is starting to form ...

Additional pressure from recoil of exploding shell (ablation)!

You don't want to build a hydrogen bomb!

To Fuse, or Not to Fuse...

- Introduction to nuclear fusion
- Magnetic confinement fusion (MCF)
 - Tokamak
 - Stellarator
- Inertial confinement fusion (ICF)
 - Indirection drive ICF
 - Direct drive ICF
- Innovation idea MCF + ICF
- Pulsed-power system at NCKU

Introduction to nuclear fusion

- Magnetic confinement fusion (MCF)
 - Tokamak
 - Stellarator
- Inertial confinement fusion (ICF)
 - Indirection drive ICF
 - Direct drive ICF
- Innovation idea MCF + ICF
- Pulsed-power system at NCKU

World energy consumption is dominated by the use of dwindling fossil fuels

Fossil fuel	Estimated reserve	(2005 consumption rate) Years remaining	
Oil	1,277,702 million barrels	32 years	
Natural gas	~6,500,000 billion cubic ft	72 years	
Coal	1,081,279 million tons	252 years	

*from Laboratory for Laser Energetics, University of Rochester, Rochester, NY 118

The "iron group" of isotopes are the most tightly bound

http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html 119

Fusion in the sun provides the energy

 $^{1}\mathsf{H}$

Proton-proton chain in sun or smaller •

In heavy sun, the fusion reaction is the CNO cycle

https://en.wikipedia.org/wiki/Nuclear_fusion

The cross section of proton-proton chain is much smaller than D T fusion

Reaction	σ _{10 keV} (barn)	σ _{100 keV} (barn)	σ _{max} (barn)	ε _{max} (keV)
D+T→α+n	2.72x10 ⁻²	3.43	5.0	64
D+T→T+p	2.81x10 ⁻⁴	3.3x10 ⁻²	0.06	1250
D+T→³He+n	2.78x10 ⁻⁴	3.7x10 ⁻²	0.11	1750
T+T→α+2n	7.90x10 ⁻⁴	3.4x10 ⁻²	0.16	1000
D+³He→α+p	2.2x10 ⁻⁷	0.1	0.9	250
p+ ⁶ Li→α+³He	6x10 ⁻¹⁰	7x10 ⁻³	0.22	1500
p+ ¹¹ B→3α	(4.6x10 ⁻¹⁷)	3x10 ⁻⁴	1.2	550
p+p→D+e⁺+v	(3.6x10 ⁻²⁶)	(4.4x10 ⁻²⁵)		
$p+^{12}C\rightarrow^{13}N+\gamma$	(1.9x10 ⁻²⁶)	2.0x10 ⁻¹⁰	1.0x10.4	400
¹² C+ ¹² C (all branches)		(5.0x10 ⁻¹⁰³)		

• "()" are theoretical values while others are measured values.

The Physics of Inertial Fusion, by Stefano Atzeni and Jürgen Meyer-Ter-Vehn

Nuclear fusion and fission release energy through energetic neutrons

Nuclear fusion provides more energy per atomic mass unit (amu) than nuclear fission

Fusion of ²H+³H:
$$\frac{Q}{A} = \frac{17.6 \ MeV}{(3+2) \ amu} = 3.5 \ \frac{MeV}{amu}$$

Fission of ²³⁵U: $\frac{Q}{A} = \frac{200 \ MeV}{236 \ amu} = 0.85 \ \frac{MeV}{amu}$

	Half-life (years)	
U235	7.04x10 ⁸	
U238	4.47x10 ⁹	
Tritium	12.3	

- 1 kg DT -> 340 Tera joules
 - You can drive your car for ~40,000 km (back and forth between Keelung and Kaoshiung for 50 times).
 - You can keep your furnace running for 8 years.
 - You can blow things up! 1 TJ = 250 tons of TNT.

Enormous fusion fuel can be produced from sea water

^{*}R. Betti, HEDSA HEDP Summer School, 2015 126

• Probability for fusion reactions to occur is low at low temperatures due to the coulomb repulsion force.

 If the ions are sufficiently hot, i.e., large random velocity, they can collide by overcoming coulomb repulsion

Fusion is much harder than fission, a "hot plasma" at 100M °C is needed

- Fission: $n + {}^{235}_{92} U \rightarrow {}^{236}_{92} U \rightarrow {}^{144}_{56} Ba + {}^{89}_{36} Kr + 3n + 177 \text{ MeV}$
- **Fusion:** $D + T \to He^4 (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$

Fast neutrons are slowed down due to the collisions

- A moderator is used to slow down fast neutrons but not to absorb neutrons.
- For $m_M \sim m_N$, the energy decrement is higher. Therefore, H slows down neutron most efficiently.
- However, H + n \rightarrow D, i.e., H absorbs neutrons.
- The best option is the D in the heavy water (D₂O).

	Energy decrement	Neutron scattering cross section (σs) (Barns)	Neutron absorption cross section (σs) (Barns)
Н	1	49 (H ₂ O)	0.66 (H ₂ O)
D	0.7261	10.6 (D ₂ O)	0.0013 (D ₂ O)
С	0.1589	4.7 (Graphite)	0.0035 (Graphite)

https://en.wikipedia.org/wiki/Neutron_moderator#cite_note-Weston-4 https://energyeducation.ca/encyclopedia/Neutron_moderator#cite_note-3

Fusion doesn't come easy

Think", JANNAF, Monterey, 5-8 December 2005.

It takes a lot of energy or power to keep the plasma at 100M °C

• Let the plasma do it itself!

• The α-particles heat the plasma.

Under what conditions the plasma keeps itself hot?

• Steady state 0-D power balance:

 $S_{\alpha}+S_{h}=S_{B}+S_{k}$

- S_{α} : α particle heating
- S_h: external heating
- **S_B: Bremsstrahlung radiation**
- S_k: heat conduction lost

Ignition condition: Pτ > 10 atm-s = 10 Gbar - ns

- P: pressure, or called energy density
- т is confinement time

The plasma is too hot to be contained

 Solution 1: Magnetic confinement fusion (MCF), use a magnetic field to contain it. P~atm, τ~sec, T~10 keV (10⁸ °C)

https://www.euro-fusion.org/2011/09/tokamak-principle-2/ https://en.wikipedia.org/wiki/Stellarator

Don't confine it!

 Solution 2: Inertial confinement fusion (ICF). Or you can say it is confined by its own inertia: P~Gigabar, τ~nsec, T~10 keV (10⁸ °C)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

To control? Or not to control?

Magnetic confinement fusion (MCF)

 Plasma is confined by toroidal magnetic field. Inertial confinement fusion (ICF)

A DT ice capsule filled with DT gas is imploded by laser.

Laboratory for Laser Energetics, University of Rochester is a pioneer in laser fusion

Outline

- Introduction to nuclear fusion
- Magnetic confinement fusion (MCF)
 - Tokamak
 - Stellarator
- Inertial confinement fusion (ICF)
 - Indirection drive ICF
 - Direct drive ICF
- Innovation idea MCF + ICF
- Pulsed-power system at NCKU

Charged particles gyro around the magnetic fields

Charged particles can be partially confined by a magnetic mirror machine

• Charged particles with small $v_{||}$ eventually stop and are reflected while those with large $v_{||}$ escape.

- Large v_{\parallel} may occur from collisions between particles.
- Those confined charged particle are eventually lost due to collisions.

"loffe bars" are added to stabilize the Rayleigh-Taylor instabilities at the center of the mirror machine

A "baseball coil" is obtained if one links the coils and the bars into a single conductor

Baseball coil

• MFTF-B mirror machine

Plasma can be confined in a doughnut-shaped chamber with toroidal magnetic field

• Tokamak - "toroidal chamber with magnetic coils" (тороидальная камера с магнитными катушками)

https://www.iter.org/mach/tokamak

https://en.wikipedia.org/wiki/Tokamak#cite_ref-4

Drawing from the talk "Evolution of the Tokamak" given in 1988 by B.B. Kadomtsev at Culham.

Charged particles drift across field lines

A poloidal magnetic field is required to reduce the drift across field lines

https://www.davidpace.com/keeping-fusion-plasmas-hot/ https://www.euro-fusion.org/2011/09/tokamak-principle-2/

A poloidal magnetic field is required to reduce the drift across field lines

A divertor is needed to remove impurities and the power that escapes from the plasma

D-shaped tokamak with diverter is more preferred nowadays

 Make the plasma closer to the major axis

Introduction to Plasma Physics and Controlled Fusion 3rd Edition, by Francis F. Chen 146

Spherical tokamak is formed when the aspect ratio of a tokamak is reduced to the order of unity

NSTX @ Princeton

 MegaAmpere Spherical Tokamak (MAST) @ Culham center for fusion energy, UK

ITER ("The Way" in Latin) is one of the most ambitious energy projects in the world today

ITER ("The Way" in Latin) is one of the most ambitious energy projects in the world today

Vacuum vessel

Magnets

Divertor

Cryostat

Blanket

ITER

- T=150M °C
- P=500 MW

ITER – Magnets

- E_B=51 GJ
- $T_B = 4 K$
- Length of Nb₃Sn superconducting strand: 10⁵ km
- B_{T,max}=11.8 T
- B_{P,max}=6 T

ITER – Vacuum vessel

- W = 8000 tons
- V = 840 m³
- R = 6 m

ITER – Blanket

- 440 modules
- Thermal load: 736 MW

ITER – Divertor

- 54 cassettes
- Thermal load: 20 MW/m²
- Each cassette: 10 tons

ITER – Crystat

- P = 10⁻⁶ atm
- W = 3800 tons
- V = 16000 m³

Supporting systems

- Tritium breeding
- Control, Data access and Communication (CODAC)
- Cooling water
- Cryogenics
- Diagnostics
- Fuel cycle
- Hot cell a secure environment for processing, repair or testing, etc., of components that have become activated by neutrons.
- Power supply
- Remote handling
- Heating and current drive
- Vacuum system

There is a long way to go, but we are on the right path...

•	Dec 2025	First Plasma
•	2035	Deuterium-Tritium Operation begins

Joint European Torus (JET) facility has a recordbreaking 59 megajoules of sustained fusion energy

 Record-breaking 59 megajoules of sustained fusion energy in Joint European Torus (JET) facility in Oxford demonstrates powerplant potential and strengthens case for ITER.

Stellarator uses twisted coil to generate poloidal magnetic field

https://www.euro-fusion.org/2011/09/tokamak-principle-2/ https://en.wikipedia.org/wiki/Stellarator

A figure-8 stellarator solved the drift issues

A figure-8 stellarator solved the drift issues

Lyman Spitzer, Jr. came out the idea during a long ride on a ski lift at Garmisch-Partenkirchen

Exhibit model of a figure-8 stellarator for the Atoms for Peace conference in Geneva in 1958

Twisted magnetic field lines can be provided by toroidal coils with helical coils

LHD stellarator in Japan

Wendelstein 7-X is a stellarator built by Max Planck Institute for Plasma Physics (IPP)

Demonstration of a magnetic mirror machine

Show video.

Plasma is partially confined by the magnetic field

Many mirror points are provided by a pair of ring-type magnets

- Introduction to nuclear fusion
- Magnetic confinement fusion (MCF)
 - Tokamak
 - Stellarator
- Inertial confinement fusion (ICF)
 - Indirection drive ICF
 - Direct drive ICF
- Innovation idea MCF + ICF
- Pulsed-power system at NCKU

Compression happens when outer layer of the target is heated by laser and ablated outward

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester R. Betti, HEDSA HEDP Summer School, 2015

Plasma is confined by its own inertia in inertial confinement fusion (ICF)

Inertial confinement fusion: an introduction, Laboratory for Laser Energetics, University of Rochester

A ball can not be compressed uniformly by being squeezed between several fingers

 ρ_2

P.-Y. Chang, PhD Thesis, U of Rochester (2013) R. S. Craxton, etc., *Phys. Plasmas* **22**, 110501 (2015) 173

A spherical capsule can be imploded through directly or indirectly laser illumination

Rochester is known as "The World's Image Center"

There are many famous optical companies at Rochester

Kodak

Eastman school of music

BAUSCH + LOMB

Laboratory for Laser Energetics, University of Rochester is a pioneer in laser fusion

- OMEGA Laser System
 - 60 beams
 - >30 kJ UV on target
 - 1%~2% irradiation nonuniformity
 - Flexible pulse shaping

- OMEGA EP Laser System
 - 4 beams; 6.5 kJ UV (10ns)
 - Two beams can be highenergy petawatt
 - 2.6 kJ IR in 10 ps
 - Can propagate to the OMEGA or OMEGA EP target chamber

UR 🔬

FSC

The OMEGA Facility is carrying out ICF experiments using a full suite of target diagnostics

The 1.8-MJ National Ignition Facility (NIF) will demonstrate ICF ignition and modest energy gain

OMEGA experiments are integral to an ignition demonstration on the NIF.

Targets used in ICF

• Triple-point temperature : 19.79 K

http://www.lle.rochester.ed https://en.wikipedia.org/wiki/Inertial_confinement_fusion R. S. Craxton, etc., *Phys. Plasmas* **22**, 110501 (2015)
Softer material can be compressed to higher density

Compression of a baseball

Compression of a tennis ball

https://www.youtube.com/watch?v=uxIIdMoAwbY https://newsghana.com.gh/wimbledon-slow-motion-video-of-how-a-tennis-ball-turns-to-goo-after-serve/ 181

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis *R. Betti, HEDSA HEDP Summer School, 2015

Targets used in ICF

https://www.lle.rochester.edu/index.php/2014/11/10/next-generation-cryo-target/ Introduction to Plasma Physics and Controlled Fusion 3rd Edition, by Francis F. Chen

Nature letter "Fuel gain exceeding unity in an inertially confined fusion implosion"

Fuel gain exceeding unity was demonstrated for the first time.

The hot spot has entered the burning plasma regime

185

National Ignition Facility (NIF) achieved a yield of more than 1.3 MJ from ~1.9 MJ of laser energy in 2021 (Q~0.7)

 National Ignition Facility (NIF) achieved a yield of more than 1.3 MJ (Q~0.7). This advancement puts researchers at the threshold of fusion ignition.

THE ROAD TO IGNITION

The National Ignition Facility (NIF) struggled for years before achieving a high-yield fusion reaction (considered ignition, by some measures) in 2021. Repeat experiments, however, produced less than half the energy of that result.

• Laser-fusion facility heads back to the drawing board.

T. Ma, ARPA-E workshop, April 26, 2022

J. Tollefson, Nature (News) 608, 20 (2022)

"Ignition" (target yield larger than one) was achieved in NIF on 2022/12/5

Fusion yield (MJ)

External "spark" can be used for ignition

Shock ignition

Fast ignition

A shock is formed due to the increasing sound speed of a compressed gas/plasma

• Acoustic/compression wave driven by a piston:

http://neamtic.ioc-unesco.org/tsunami-info/the-cause-of-tsunamis *R. Betti, HEDSA HEDP Summer School, 2015

Ignition can happen by itself or being triggered externally

- Introduction to nuclear fusion
- Magnetic confinement fusion (MCF)
 - Tokamak
 - Stellarator
- Inertial confinement fusion (ICF)
 - Indirection drive ICF
 - Direct drive ICF
- Innovation idea MCF + ICF
- Pulsed-power system at NCKU

A strong magnetic field reduces the heat flux

 Typical hot spot conditions: R_{hs} ~ 40 μm, ρ ~ 20 g/cm³, T ~ 5 keV: B > 10 MG is needed for χ > 1

Magnetic-flux compression can be used to provide the needed magnetic field.

Principle of frozen magnetic flux in a good conductor is used to compress fields

M. Hohenberger, P.-Y. Chang, et al., Phys. Plasmas <u>19</u>, 056306 (2012). ₁₉₃

Plasma can be pinched by parallel propagating plasmas

https://en.wikipedia.org/wiki/Pinch_(plasma_physics) 194

Sandia's Z machine is the world's most powerful and efficient laboratory radiation source

- Stored energy: 20 MJ
- Marx charge voltage: 85 kV
- Peak electrical power: 85 TW
- Peak current: 26 MA
- Rise time: 100 ns
- Peak X-ray emissions: 350 TW
- Peak X-ray output: 2.7 MJ

Z machine

Z machine

- Stored energy: 20 MJ
- Peak electrical power: 85 TW
- Peak current: 26 MA
- Rise time: 100 ns
- Peak X-ray output: 2.7 MJ

Z machine discharge

Before and after shots

• Before shots

SAND2017-0900PE_The sandia z machine - an overview of the world's most powerful pulsed power facility.pdf

• After shots

Promising results were shown in MagLIF concept conducted at the Sandia National Laboratories

The stagnation plasma reached fusion-relevant temperatures with a 70 km/s implosion velocity

S. A. Slutz *et al* Phys. Plasmas 17 056303 (2010)

M. R. Gomez et al Phys. Rev. Lett. 113 155003 (2014) 200

MagLIF target

Neutron yield increased by 100x with preheat and external magnetic field.

Sheared flow stabilizes MHD instabilities

$$\frac{dV_Z}{dr} \neq 0$$

- M. G. Haines, etc., Phys. Plasmas 7, 1672 (2000) U. Shumlak, etc., Physical Rev. Lett. 75, 3285 (1995)
- U. Shumlak, etc., ALPHA Annual Review Meeting 2017

A z-pinch plasma can be stabilized by sheared flows

https://www.zapenergyinc.com/about A. D. Stepanov, etc., Phys. Plasmas 27, 112503 (2020)

Fusion reactor concept by ZAP energy

https://www.zapenergyinc.com/about E. G. Forbes, etc., Fusion Sci. Tech. 75, 599 (2019)

There are alternative

TRAPPING FUSION FIRE

When a superhot, ionized plasma is trapped in a magnetic field, it will fight to escape. Reactors are designed to keep it confined for long enough for the nuclei to fuse and produce energy.

A CHOICE OF FUELS

Many light isotopes will fuse to release energy. A deuterium-tritium mix ignites at the lowest temperature, roughly 100 million kelvin, but produces neutrons that make the reactor radioactive. Other fuels avoid that, but ignite at much higher temperatures.

Magnetic field coils

http://www.nextbigfuture.com/2016/05/nuclear-fusion-comany-tri-alpha-energy.html

Liquid metal vortex

Commonwealth Fusion Systems, a MIT spin-out company, is building a high-magnetic field tokamak

- Fusion power $\propto B^4$.
- The fusion gain Q > 2 is expected for SPARC tokamak.

Merging compression is used to heat the tokamak at the start-up process in ST40 Tokamak at Tokamak Energy Ltd

- High temperature superconductors are used.
 - B_T ~ 3 Τ

M. Gryaznevich, etc., Fusion Eng. Design, **123**,177 (2017) https://www.tokamakenergy.co.uk/ P. F. Buxton, etc., Fusion Eng. Design, **123**, 551 (2017)

Reconnection

https://www.youtube.com/watch?v=7sS3Lpzh0Zw

Merging compression is used to heat the plasma

http://www.100milliondegrees.com/merging-compression/ P. F. Buxton, etc., Fusion Eng. Design, **123**, 551 (2017)

Spherical torus (ST) and compact torus (CT)

Spherical torus (ST)

- Compact torus (CT)
 - Spheromak

Field reversed configuration (FRC)

Zhe Gao, Matter Radiat. Extremes **1**, 153 (2016) https://en.wikipedia.org/wiki/Field-reversed_configuration

Field reverse configuration is used in Tri-alpha energy

Field reverse configuration is used in Tri-alpha energy

NBI for Tri-Alpha Energy Technologies

Neutral beams are injected in to the chamber for spinning the FRC

FRC sustain longer with neutral beam injection

General fusion is a design ready to be migrated to a power plant

A spherical tokamak is first generated

Plasma injector for the spherical tokamak

A spherical tokamak is generated in a liquid metal vortex

The spherical tokamak is compressed by the pressure provided by the sournding hydraulic pistons

BBC: General Fusion to build its Fusion Demonstration Plant in the UK, at the UKAEA Culham Campus

By Matt McGrath Environment correspondent

🕑 17 June

A company backed by Amazon's Jeff Bezos is set to build a large-scale nuclear fusion demonstration plant in Oxfordshire.

Canada's General Fusion is one of the leading private firms aiming to turn the

Helion energy is compressing the two merging FRCs

Two FRCs are accelerated toward each other

Two FRCs merge with each other

ectricity Recapture

plasma expands, it pushes back on the magnetic y Faraday's law, the change in field induces t, which is directly recaptured as electricity. This usion electricity is used to power homes and unities, efficiently and affordably.

site uses cookies. Read more about our privacy policy & terms of use.

The merged FRC is compressed electrically to high temperature

e uses cookies. Read more about our privacy policy & terms of use.

Similar concept will be studied in our laboratory. •

Projectile Fusion is being established at First Light Fusion Ltd, UK

• I_{peak}=14 MA w/ T_{rise}~2us.

 High pressure is generated by the colliding shock. https://www.youtube.com/watch?v =aTMPigL7FB8

https://firstlightfusion.com/ B. Tully and N. Hawker, Phys. Rev. **E93**, 053105 (2016) ₂₂₇

A gas gun is used to eject the projectile

https://www.youtube.com/watch?v=JN7lyxC11n0 https://www.youtube.com/watch?v=aW4eufacf-8

Many groups aim to achieve ignition in the MCF regime in the near future

ITER – 2025 First Plasma
2035 D-T Exps
2050 DEMO

https://www.iter.org https://www.tokamakenergy.co.uk/ https://www.psfc.mit.edu/sparc

- Tokamak energy, UK
 - 2025 Gain
 - 2030 to power grid

 Commonwealth Fusion Systems, USA – 2025 Gain

Fusion is blooming!

We are closed to ignition!

A. J. Webster, Phys. Educ. **38**, 135 (2003)

R. Betti, etc., Phys. Plasmas, **17**, 058102 (2010)

Fusion projects in Inst. Space and Plasma Sciences, National Cheng Kung University

We welcome anyone interested in fusion research to join our team!