國立成功大學 太空與電漿科學研究所 碩士論文

#### National Cheng Kung University Institute of Space and Plasma Science Master Thesis

## 磁控電子束轟擊金屬離子推進器中電子軌跡之探討

Study of Electron Trajectories in Metal Ion Thruster using Magnetron E-beam Bombardment (MIT-MEB)



研究生:林宛儀 Author: Wan-Yi Lin 指導教授:張博宇 博士 Advisor: Po-Yu Chang, Ph.D 中華民國109年11月

# 國立成功大學

# 碩士論文

磁控電子束轟擊金屬離子推進器中電子軌跡之探討 Study of Electron Trajectories in Metal Ion Thruster using Magnetron E-beam Bombardment (MIT-MEB)

# 研究生:林宛儀

本論文業經審查及口試合格特此證明 論文考試委員:



指导教授: 26 (8) 系(所)主管: 鷹響線線-剛

中華民國 109 年 11 月 25 日

我們的團隊藉由電子蒸鍍的概念開發了一種利用磁控電子束轟擊金屬靶材的離子推進 器—Metal Ion Thruster using Magnetron E-beam Bombardment (MIT-MEB),此論文是透過 實驗與模擬電子軌跡來研究此推進器中電子的行為。此推進器分為三個部分:金屬離子產生 器、離子加速器和中和器。利用加速電壓 $V_{\rm acc}$ 提供的電場加速電子槍(E-gun)中熱燈絲產生的 自由電子轟擊鋅製成的金屬靶材,使靶材被加熱蒸發。在靶材後方有放置磁鐵,因此電子會 沿著磁力線轟擊靶材中心。一部分的金屬蒸氣被熱燈絲發射出的電子碰撞而游離,這些離子 再經由電場加速排出產生推力,並帶走中和器提供的電子來保持推進的電中性。因此,電 子的運行軌跡在此推進器中扮演很重要的角色。我們分別使用Vacc等於500、750和1000 V的 加速電壓進行了一系列的實驗。從實驗結果我們發現,在使用較低的Vacc時,抵達靶材的電 子會少於使用較高的Vacc。我們認為電子會被電場力加速往靶材移動,但磁鏡力會將它反彈 回電子槍的燈絲,造成電子無法抵達靶材。因此,當Vacc較低時,較多的電子會被磁鏡力反 彈。所以,我們利用模擬來探討電子軌跡。然而,在模擬中一旦Vacc大於1V,電子就不會被 磁鏡力反彈。透過簡單的模型中,只要 $V_{acc} \geq 0.13$  V就足以加速電子克服磁鏡效應,這符合 模擬的結果。所以,我們排除了MIT-MEB中的磁鏡效應對電子軌跡的影響。然而,若我們 將燈絲放置於偏心的位置,使得電場力中平行於磁鏡力方向的分量變小,便有機會利用磁鏡 效應將電子侷限於燈絲與靶材之間。未來我們需要使用其他可模擬熱電子發射的模擬方式來 探討MIT-MEB中電子的行為並更改推進器的設計。

關鍵字:磁控電子束轟擊金屬靶材的離子推進器 (MIT-MEB);電場力;磁鏡力;力的競爭; 電子軌跡

i

#### Abstract

The Metal Ion Thruster using Magnetron E-beam Bombardment (MIT-MEB), which uses the principle of electron-beam (E-beam) evaporation, was developed in our group. In this thesis, we studied electron behaviors in both experiments and simulations. There are three parts in the MIT-MEB: a metal evaporator, an ion accelerator, and a neutralizer. Electrons emitted by the heated filament of the E-gun are accelerated toward the target made of Zinc by the electric field provided by an accelerating voltage  $V_{\rm acc}$ . A magnet is placed behind the target so that electrons follow the magnetic field lines and reach the center of the target. The target is heated and evaporated when electrons bombard on it. When the metal vapor is impacted by electrons emitted from the thermal filament, part of the vapor is ionized. Ions are then accelerated by the applied electric field providing thrusts. Electrons from the neutralizer would leave the thruster with ions and keep the thruster in neutral. Therefore, electron trajectories play an important role in MIT-MEB. We did a series of experiments with  $V_{\rm acc}$  equal to 500, 750, and 1000 V. We found that fewer electrons reach the target in lower  $V_{\rm acc}$  than that in higher  $V_{\rm acc}$  in experiments. We suspected that the electric force would accelerate electrons toward the target while the magnetic-mirror force would reflect electrons back to the filament of the E-gun preventing them to reach the target. More electrons might be returned in lower  $V_{\rm acc}$  than that in higher  $V_{\rm acc}$ . Therefore, we studied electron trajectories in simulations. However, in simulations, no electrons were reflected by the magnetic mirror force once there was an electric force from  $V_{\rm acc}$  greater than 1 V. It coincided with a simple analytic model where  $V_{\rm acc} \ge 0.13$  V was sufficient to accelerate electrons overcoming the magnetic-mirror effect. So, we have rolled out the magnetic-mirror effect in the MIT-MEB. Nevertheless, we can move the filament of the E-gun sideway. In this case, the component of the electric field parallel to the magnetic-mirror force much smaller than the magnetic-mirror force will potentially reduce. Thus, electrons may be reflected by the magnetic-mirror force. Therefore, using other simulations which could simulate the thermionic electron emission, and changing the design of the MIT-MEB need to be conducted as future work. Keyword: MIT-MEB; thermionic electron emission, electric force; magnetic-mirror effect; force competition; electron trajectories

很高興能來到太空與電漿科學研究所,在這遇到了許多很棒的老師、學長、同學、學妹 與學弟們,讓我在研究所的期間可以愉快的研究、學習與成長。特別感謝張博宇教授,耐心 地指導我研究上的各種疑難雜症,且不斷地給我鼓勵和信心,在生活與未來規劃上的問題也 會傾聽和給予建議,並營造了PGS這個歡樂大家庭,我一定會懷念和實驗室的夥伴們一起講 幹話、互相吐槽的日子。非常謝謝學長國益,在他身上學到很多知識與實驗技巧,很榮幸可 以承接MIT-MEB有關的研究。也感謝成大航太系提供了COMSOL這套軟體讓我可以模擬, 完成論文。最後謝謝我的家人和朋友們,就算不清楚我在做什麼,依舊無條件的支持、包容 我。



# Contents

| 1 | Intr | oducti                     | luction 1                                                                |                                                                                                                                    |  |  |  |  |
|---|------|----------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   | 1.1  | 1.1 Principle of thrusters |                                                                          |                                                                                                                                    |  |  |  |  |
|   |      | 1.1.1                      | Thrusts                                                                  | 1                                                                                                                                  |  |  |  |  |
|   |      | 1.1.2                      | Specific impulse $(I_{sp})$                                              | 2                                                                                                                                  |  |  |  |  |
|   | 1.2  | Differe                    | nt types of electric thrusters                                           | 3                                                                                                                                  |  |  |  |  |
|   |      | 1.2.1                      | Electrothermal thruster – Resistojet                                     | 3                                                                                                                                  |  |  |  |  |
|   |      | 1.2.2                      | Electrostatic – Gridded-ion thruster                                     | 4                                                                                                                                  |  |  |  |  |
|   |      | 1.2.3                      | Electromagnetic – Pulsed-plasma thruster (PPT)                           | 5                                                                                                                                  |  |  |  |  |
|   |      | 1.2.4                      | Metal-vapor Hall Thruster                                                | 5                                                                                                                                  |  |  |  |  |
|   | 1.3  | Metal                      | Ion Thruster using Magnetron Ebeam Bombardment (MIT-MEB) $\ldots$        | 7                                                                                                                                  |  |  |  |  |
|   |      | 1.3.1                      | Background principles of the MIT-MEB                                     | 7                                                                                                                                  |  |  |  |  |
|   |      |                            | 1.3.1.1 Physical vapor deposition (PVD)                                  | 8                                                                                                                                  |  |  |  |  |
|   |      |                            | 1.3.1.2 The thermionic electron emission                                 | 9                                                                                                                                  |  |  |  |  |
|   |      |                            | 1.3.1.3 The electron beam evaporation                                    | 10                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.3.1.4 Temperature of the tungsten filament                             | 11                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.3.1.5 Vapor pressure of the common metals at different temperature .   | 12                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.3.1.6 Electron impact ionizations                                      | 13                                                                                                                                 |  |  |  |  |
|   |      | 1.3.2                      | The design of the MIT-MEB                                                | 14                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.3.2.1 The structure of MIT-MEB                                         | 15                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.3.2.2 The prototype of the MIT-MEB                                     | 17                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.3.2.3 Previous results                                                 | 18                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.3.2.4 Cross section of electron impact ionization for zinc             | 18                                                                                                                                 |  |  |  |  |
|   | 1.4  | Force                      | competitions                                                             | <ol> <li>10</li> <li>11</li> <li>12</li> <li>13</li> <li>14</li> <li>15</li> <li>17</li> <li>18</li> <li>18</li> <li>19</li> </ol> |  |  |  |  |
|   |      | 1.4.1                      | The electric force                                                       | 20                                                                                                                                 |  |  |  |  |
|   |      | The magnetic mirror effect | 21                                                                       |                                                                                                                                    |  |  |  |  |
|   |      |                            | 1.4.2.1 Uniform magnetic fields                                          | 21                                                                                                                                 |  |  |  |  |
|   |      |                            | 1.4.2.2 Non-uniform magnetic fields                                      | 22                                                                                                                                 |  |  |  |  |
|   |      | 1.4.3                      | The competition between the electric field and the magnetic-mirror force | 25                                                                                                                                 |  |  |  |  |
|   | 1.5  | Goal                       | Goal                                                                     |                                                                                                                                    |  |  |  |  |

# 2 Experiments 2.1 Parameters in the MIT-MEB 2.1.1 Evaporation rates

| Re       | References 70        |                                                |                                                                                     |    |  |  |  |
|----------|----------------------|------------------------------------------------|-------------------------------------------------------------------------------------|----|--|--|--|
| <b>5</b> | Sun                  | nmary                                          |                                                                                     | 69 |  |  |  |
| 4        | Disc                 | cussion                                        | IS                                                                                  | 66 |  |  |  |
|          | 3.8                  | Summ                                           | ary                                                                                 | 65 |  |  |  |
|          | 3.7                  | Electro                                        | on trajectories in electric fields and magnetic fields with different $V_{\rm acc}$ | 61 |  |  |  |
|          | 3.6                  | Electro                                        | on trajectories in electric fields and magnetic fields                              | 58 |  |  |  |
|          | 3.5                  | Electro                                        | on trajectories with the magnetic field                                             | 53 |  |  |  |
|          | 3.4                  | Electro                                        | on trajectories with the electric field                                             | 51 |  |  |  |
|          | 3.3                  | The el                                         | ectric field and the magnetic field                                                 | 47 |  |  |  |
|          | 3.2                  | Simpli                                         | fied Model                                                                          | 46 |  |  |  |
|          | 3.1                  | $\overrightarrow{E} \times \overrightarrow{I}$ | $\vec{B}$ drift                                                                     | 44 |  |  |  |
| 3        | $\operatorname{Sim}$ | ulatio                                         |                                                                                     | 43 |  |  |  |
|          | 2.6                  | Summ                                           | ary                                                                                 | 42 |  |  |  |
|          | <b>a a</b>           | 2.5.4                                          | Evaporation rates                                                                   | 41 |  |  |  |
|          |                      | 2.5.3                                          | Characteristic of the E-gun                                                         | 38 |  |  |  |
|          |                      | 2.5.2                                          | Electron currents $I_{\rm e}$ and Powers of E-beam                                  | 37 |  |  |  |
|          |                      | 2.5.1                                          | Actual $V_{\rm acc}$                                                                | 36 |  |  |  |
|          | 2.5                  | Exper                                          | imental results                                                                     | 36 |  |  |  |
|          | 2.4                  | SOP o                                          | f experiments                                                                       | 34 |  |  |  |
|          | 2.3                  | Exper                                          | imental setting                                                                     | 31 |  |  |  |
|          |                      | 2.2.1                                          | Design of the vacuum system                                                         | 30 |  |  |  |
|          | 2.2                  | Vacuu                                          | m system                                                                            | 29 |  |  |  |
|          |                      | 2.1.3                                          | Thrusts and $I_{\rm sp}$                                                            | 29 |  |  |  |
|          |                      | 2.1.2                                          | Ionization rates                                                                    | 28 |  |  |  |
|          |                      | 2.1.1                                          | Evaporation rates                                                                   | 27 |  |  |  |

 $\mathbf{27}$ 

27

| $\mathbf{A}$ | SOP of the vacuum system                                 | 72              |
|--------------|----------------------------------------------------------|-----------------|
|              | A.1 抽真空 Pumping down                                     | 72              |
|              | A.2 破真空 Vacuum venting                                   | 73              |
| в            | Experimental raw data                                    | 74              |
| С            | Baw data of electron trajectories in simulations         | 78              |
|              | naw auta of electron trajectories in simulations         | 10              |
|              | C.1 $\overrightarrow{E} \times \overrightarrow{B}$ drift | 78              |
|              | C.1 $\overrightarrow{E} \times \overrightarrow{B}$ drift | 78<br>81        |
|              | C.1 $\overrightarrow{E} \times \overrightarrow{B}$ drift | 78<br>81<br>114 |

#### D The venders of all components



122

# List of Tables

| 1  | Temperature (T) in kelvin for different vapor pressure (PE) in torr for different           |     |  |  |  |
|----|---------------------------------------------------------------------------------------------|-----|--|--|--|
|    | metallic materials                                                                          | 13  |  |  |  |
| 2  | Comparison of thruster parameters of 1 kV and 5 kV of MIT-MEB under same                    |     |  |  |  |
|    | E-beam power.                                                                               | 18  |  |  |  |
| 3  | Numbers of the item and connect item                                                        | 34  |  |  |  |
| 4  | Actual $V_{\rm acc}$                                                                        | 37  |  |  |  |
| 5  | $I_{\rm e}$ with different $V_{\rm acc}$ .                                                  | 37  |  |  |  |
| 6  | Power of E-beam with different $V_{\text{acc}}$                                             | 37  |  |  |  |
| 7  | $I_{\rm f}$ and $V_{\rm f}$ with different $V_{\rm acc}$ .                                  | 38  |  |  |  |
| 8  | Power of E-gun nd the tungsten temperature with different $V_{\rm acc}$                     | 39  |  |  |  |
| 9  | Evaporation rate with different $V_{\rm acc}$                                               | 42  |  |  |  |
| 10 | The displacement of simulation and the calculation in different $V_{\rm acc}$               | 53  |  |  |  |
| 11 | The initial angle and the initial velocity.                                                 | 54  |  |  |  |
| 12 | $V_{\rm acc}$ and simulated time.                                                           | 62  |  |  |  |
| 13 | Currents, voltages, and powers of filaments of E-gun and neutralizer. $\ldots$ .            | 74  |  |  |  |
| 14 | Currents, voltages, and powers of the E-beam.                                               | 75  |  |  |  |
| 15 | Experimental time and evaporation rates                                                     | 76  |  |  |  |
| 16 | $I_{\rm n}$ and $\beta$                                                                     | 77  |  |  |  |
| 17 | Raw data of electron trajectories with $\overrightarrow{E} \times \overrightarrow{B}$ drift | 79  |  |  |  |
| 18 | Raw data of electron trajectories with $V_{\rm acc} = 500$ V                                | 82  |  |  |  |
| 19 | Raw data of electron trajectories with $V_{\rm acc} = 750$ V                                | 93  |  |  |  |
| 20 | Raw data of electron trajectories with $V_{\rm acc} = 1000$ V                               | 104 |  |  |  |
| 21 | Raw data of electron trajectories with the magnetic field                                   | 115 |  |  |  |
| 22 | The venders of all components.                                                              | 122 |  |  |  |

# List of Figures

| 1  | Thrust density vs specific impulse for different types of thrusters                  |    |  |
|----|--------------------------------------------------------------------------------------|----|--|
| 2  | Resistojet                                                                           | 3  |  |
| 3  | Schematic of gridded ion thrusters.                                                  |    |  |
| 4  | Schematic of pulsed-plasma thruster.                                                 |    |  |
| 5  | Schematic of Hall thruster.                                                          | 6  |  |
| 6  | Zinc demonstration system of Metal Vapor Hall Thruster.                              | 7  |  |
| 7  | The processes of the MIT-MEB.                                                        | 8  |  |
| 8  | Saturation current densities of the thermionic emission from tungsten as a func-     |    |  |
|    | tion of temperature.                                                                 | 10 |  |
| 9  | Hot filament emits free electrons.                                                   | 10 |  |
| 10 | Electron beam evaporation deposition.                                                | 11 |  |
| 11 | Relationship between first ionization energy and atomic number.                      | 14 |  |
| 12 | Regular MIT-MEB.                                                                     | 15 |  |
| 13 | The structure of MIT-MEB.                                                            | 16 |  |
| 14 | The equivalent circuit of MIT-MEB.                                                   | 16 |  |
| 15 | Design of the prototype                                                              | 17 |  |
| 16 | (a) The (CAD) drawing of prototype, and (b) the photograph of the MIT-MEB.           | 18 |  |
| 17 | . The cross section of electron impact ionization for Zin                            | 19 |  |
| 18 | Influence of (a) electric field, (b) magnetic field, and(c) force competition in the |    |  |
|    | MIT-MEB                                                                              | 20 |  |
| 19 | The electrons are accelerated by electric fields.                                    | 20 |  |
| 20 | The charge is deflected by the influence of the magnetic field                       | 21 |  |
| 21 | The magnetic mirror effect.                                                          | 23 |  |
| 22 | The loss cone                                                                        | 24 |  |
| 23 | (a) The positions of the mirror point with different eletric fields (b) The position |    |  |
|    | of the electron cloud in the large electric field (c) The position of the electron   |    |  |
|    | cloud in the small electric field                                                    | 25 |  |
| 24 | The electronic scale Sartorius TE124S.                                               | 28 |  |
| 25 | Design and setting of the vacuum system                                              | 30 |  |

| 26 | (a)<br>Airflow path of the vacuum system (b) Realistic vacuum system<br>$\ . \ . \ . \ .$     | 31 |
|----|-----------------------------------------------------------------------------------------------|----|
| 27 | Power supply system of MIT-MEB                                                                | 32 |
| 28 | Numbers of the MIT-MEB and the instruments                                                    | 34 |
| 29 | The ratio between actual $V_{\rm acc}$ and goal $V_{\rm acc}$ .                               | 37 |
| 30 | Power of E-beam with different $V_{\rm acc}$ .                                                | 38 |
| 31 | $I_{\rm f}$ and $V_{\rm f}$ with different $V_{\rm acc}$ with different $V_{\rm acc}$         | 39 |
| 32 | Power of E-gun and the tungsten temperature with different $V_{\rm acc}$                      | 39 |
| 33 | $I_{\rm f}$ and the tungsten temperature with different $V_{\rm acc}$ .                       | 40 |
| 34 | $I_{\rm e}$ and $J$ with different $V_{\rm acc}$ .                                            | 40 |
| 35 | The ratio between $I_{\rm e}$ and $J$ with different $V_{\rm acc}$ .                          | 41 |
| 36 | Evaporation rate with different $V_{\rm acc}$                                                 | 41 |
| 37 | The cube model.                                                                               | 45 |
| 38 | The $\overrightarrow{E} \times \overrightarrow{B}$ drift of the charged particle              | 45 |
| 39 | The drift distance of the guiding center.                                                     | 46 |
| 40 | The Simplified Model of MIT-MEB (a) in y-z plan, and (b) in x-y plan.                         | 46 |
| 41 | The electric potential and the electric field lines with $V_{\rm acc}$ which is equal 500 V.  | 47 |
| 42 | The electric potential and the electric field lines with $V_{\rm acc}$ which is equal 750 V.  | 48 |
| 43 | The electric potential and the electric field lines with $V_{\rm acc}$ which is equal 1000 V. | 48 |
| 44 | The electric field and the electric field lines with $V_{\rm acc}$ which is equal 500 V       | 49 |
| 45 | The electric field and the electric field lines with $V_{\rm acc}$ which is equal 750 V       | 49 |
| 46 | The electric field and the electric field lines with $V_{\rm acc}$ which is equal 1000 V      | 50 |
| 47 | The magnetic flux density and the magnetic field.                                             | 50 |
| 48 | The electron trajectories with the electric field in $V_{\rm acc}$ which is equal 500 V. $$ . | 51 |
| 49 | The electron trajectories with the electric field in $V_{\rm acc}$ which is equal 750 V. $$ . | 52 |
| 50 | The electron trajectories with the electric field in $V_{\rm acc}$ which is equal 1000 V      | 52 |
| 51 | The electron trajectory with the magnetic field and the initial angle equal to                |    |
|    | 54.8° in the y-z plane. $\ldots$                                                              | 55 |
| 52 | The electron trajectory with the magnetic field and the initial angle equal to                |    |
|    | $56.4^{\circ}$ in the y-z plane                                                               | 55 |

| 53 | The electron trajectory with the magnetic field and the initial angle equal to                  |    |
|----|-------------------------------------------------------------------------------------------------|----|
|    | 54.8° in the x-y plane. $\ldots$                                                                | 56 |
| 54 | The electron trajectory with the magnetic field and the initial angle equal to                  |    |
|    | $56.4^{\circ}$ in the x-y plane                                                                 | 56 |
| 55 | The fitting of the gyroradius.                                                                  | 57 |
| 56 | The electron trajectory with the magnetic field and the initial velocity at z-axis.             | 58 |
| 57 | The electron trajectories with the initial angle equal to $54.8^{\circ}$ in the y-z plane.      | 59 |
| 58 | The electron trajectories with the initial angle equal to $60.0^{\circ}$ in the y-z plane.      | 59 |
| 59 | The electron trajectories with the initial angle equal to $70.0^{\circ}$ in the y-z plane.      | 60 |
| 60 | The electron trajectories with the initial angle equal to $80.0^{\circ}$ in the y-z plane.      | 60 |
| 61 | The electron trajectories with the initial angle equal to $90.0^{\circ}$ in the y-z plane.      | 61 |
| 62 | The electron trajectories with $V_{\rm acc}$ equal to 250 V in the y-z plane                    | 62 |
| 63 | The electron trajectories with $V_{\rm acc}$ equal to 100 V in the y-z plane                    | 63 |
| 64 | The electron trajectories with $V_{\rm acc}$ equal to 50 V in the y-z plane                     | 63 |
| 65 | The electron trajectories with $V_{\rm acc}$ equal to 25 V in the y-z plane                     | 64 |
| 66 | The electron trajectories with $V_{\rm acc}$ equal to 1 V in the y-z plane                      | 64 |
| 67 | The Electric field (a)parallel to the magnetic field and (b)not parallel to the                 |    |
|    | magnetic field, and the suggested position of the filament. $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 68 |
|    |                                                                                                 |    |

### 1 Introduction

The thrust of the propulsion is produced by the momentum change from ejecting propellants. There are different requirements for different space missions. For example, the rocket launching needs a large thrust. The attitude control, however, may need small thrusts for precision controls. On the other hand, the attitude control and deep-space mission need to carry a lot of propellants. Further, the thrust needs to be low in power consumption and can provide a large final velocity, especially for deep-space missions. The specific impulse  $(I_{sp})$ , a measure of how efficient the propellant is used, and thrusts can help us to determine the better type of thrusters for different space missions.

The thrust of an ion thruster is from the exhaust of ions accelerated by an electric force. It can be adjusted by changing the electric field strength. Although the ion thruster only produces the thrust in the range of millinewton (mN), its  $I_{\rm sp}$  is in thousands of seconds, i.e., very efficient. Therefore, the spacecraft using an ion thruster can reach a very high speed. If the ion thruster uses a high-density propellant which is easy to be stored and cheap, we can reduce the size as well as the cost. That means the new development of an ion thruster opens up more possibilities for space missions.

## 1.1 Principle of thrusters

In order to understand the characteristics of the thruster, we must know several parameters, such as thrusts and specific impluses.

#### 1.1.1 Thrusts

The thrust is provided by the reaction force from the accelerated and exhausted propellant. Assuming that the propellant is ejected with a constant exhaust speed  $v_{\text{ex}}$ , we can calculate the thrust F as

$$F = -\frac{d}{dt}(mv_{\rm ex}) = -\dot{m}v_{\rm ex} \equiv \dot{m}_{\rm prop}v_{\rm ex}$$
(1)

where m is the total mass of the vehicle and  $m_{\text{prop}}$  is the ejected propellant mass. Notice that  $v_{\text{ex}}$  is a positive number. The mass reduction rate of the vehicle  $\dot{m}$ , which is less than 0, equals

to the negative of the ejected propellant mass rate  $\dot{m}_{\rm prop}$ .

#### 1.1.2 Specific impulse $(I_{sp})$

Specific impulse,  $I_{sp}$ , is a parameter that measures the thrust efficiency. It indicates how long a kilogram of propellant can provide 9.8 N of thrusts. The larger, the better. Specific impulse is only related to exhaust speed of the propellant  $v_{ex}$ , defined in Eq. 2.

$$I_{\rm sp} \equiv \frac{F}{\dot{m}_{\rm prop}g} = \frac{v_{\rm ex}}{g} \,({\rm sec}) \tag{2}$$

where g is the gravitational acceleration. The larger  $I_{\rm sp}$  means higher efficiency when the propellant is exhausted with higher speed. From the conservation of linear momentum, we can obtain that a spacecraft has a higher final speed using a thruster with a higher  $I_{\rm sp}$ .

$$p(t) = p(t+dt)$$
(3)

$$\Rightarrow mv = (m - dm_{\text{prop}})(v + dv) + dm_{\text{prop}}(v - v_{\text{ex}})$$
(4)

$$\Rightarrow dv = -v_{ex} \frac{dm}{m} \text{ where } dm_{\text{prop}} dv \text{ is neglected and } dm_{\text{prop}} = -dm \tag{5}$$

$$\Rightarrow v_{\rm f} = v_{\rm i} + v_{\rm ex} \ln\left(\frac{m_{\rm i}}{m_{\rm f}}\right) = v_{\rm i} + I_{\rm sp} g \ln\left(\frac{m_{\rm i}}{m_{\rm f}}\right) \tag{6}$$

where p is the total linear momentum of the whole system, m is the total mass,  $m_{\text{prop}}$  is the ejected propellant mass,  $m_i$  and  $m_f$  are the initial and final mass, respectively, and  $v_i$  and  $v_f$  are the initial and final velocity, respectively. According to Eq. 6, we need either larger  $m_i/m_f$  or larger  $I_{\text{sp}}$  to obtain higher final speed of the spacecraft. However, a thruster with a higher  $I_{\text{sp}}$  does not necessarily have a larger thrust. The larger thrust can be provided by a larger mass flow of ejected propellants such as chemical rockets. Fig. 1[1, 2] is the comparison between different types of thrusters. Although ion thrusters provide larger  $I_{\text{sp}}$ , i.e., higher final speed, their thruster density defined as thrusts per unit area is generally too small for a vehicle to overcome the gravitational force on earth. Therefore, an ion thruster is not suitable to be used under the gravitational influence from the earth, but it is one of the best options for deep-space missions after thespacecraft enters the outer space.



Figure 1: Thrust density vs specific impulse for different types of thrusters.

#### **1.2** Different types of electric thrusters

Categories of electric thrusters are depended on how propellants are accelerated. They are electrothermal, electrostatic, and electromagnetic thrusters. One example for each category is introduced below. They are the resistojet, the gridded-ion thruster, and the pulsed-plasma thruster. The Hall thruster is also introduced below.

#### 1.2.1 Electrothermal thruster – Resistojet

The propellant of the electrothermal thruster is heated electrically. Shown in Fig. 2[3], the gas can be heated via efficient ohmic heating by flowing electrical current through resistors. When the propellant expands after leaving a nozzle, its thermal energy is converted to directional kinetic energy. Finally, the gas leaves the thruster with a high speed to provide thrusts. It is used for orbit insertion, attitude control, and deorbit.



Figure 2: Resistojet.

#### 1.2.2 Electrostatic – Gridded-ion thruster

The electrostatic thruster uses the electric field to accelerate and exhaust ionized propellant with high speed. The gridded-ion thruster shown in Fig. 3[4] is a classical electrostatic thruster. It usually uses inert gas with a large atomic mass as the propellant, like Xenon gas. The gas in the device is ionized by the electron impact ionization where electrons are provided by an electron gun (E-gun). The accelerating grids consist of the positive grid and negative grid to provide the electric field. When the charges diffuse to the accelerating grids, the ions are accelerated while electrons are decelerated. Finally, ions are exhausted with electrons emitted from the neutralizing electron gun so that the thruster is kept neutral. The gridded ion thruster usually provides a moderate specific impulse (2000–4000 s) with a thrust of 20–200 mN by exhausting high-speed ions. Therefore, it is usually used for deep-space missions.



Figure 3: Schematic of gridded ion thrusters.

#### 1.2.3 Electromagnetic – Pulsed-plasma thruster (PPT)

The electromagnetic thruster uses electromagnetic forces and pressure from the high temperature gas to accelerate the propellant, which is an electrically conducting fluid. Pulsed-plasma thruster (PPT) shown in Fig. 4[5] is one example of the electromagnetic thruster. An arc discharge is initiated between the cathode and the anode. The solid propellant heated, vaporized, and ionized by the arc current. The plasma is then accelerated by the Lorentz force. On the other hand, the gas diffuses with the high thermal energy at the same time. Therefore, the thrusts are provided by both the high-speed plasma and the high-temperature vapors. The pulsed-plasma thruster has a low ionization rate and  $I_{\rm sp}$ . However, it has a higher thrust compared to ion thrusters because it has a larger mass flow rate. The size of the pulsed-plasma thruster can be small. Therefore, it is usually used for the CubeSat.



Figure 4: Schematic of pulsed-plasma thruster.

#### 1.2.4 Metal-vapor Hall Thruster

Fig. 5[6] is the schematic of a Hall thruster. The gaseous propellant is injected into the circular chamber from the anode and ionized by the electrons generated from the hollow cathode. The axial electric field and the magnetic fields generated by the radial magnetic coils located at the center cylinder induce the  $\vec{E} \times \vec{B}$  drift of electrons. Therefore, the electrons are confined and move around the cylinder forming the electron Hall current. It increases the confinement time of electrons in the chamber and improves ionization efficiency. Since ions are too heavy to be magnetized by the magnetic field, they are accelerated by the electric field in the quasineutral plasma, leave the thruster with high speed and provide the thrust. The same hollow cathode is also a neutralizing electron gun to keep the thruster neutral. Hall thrusters usually provide a moderate specific impulse (1000–5000 s) with a thrust of 40–600 mN. Therefore, it is

usually used for deep-space missions.



Figure 5: Schematic of Hall thruster.

The conventional hall thruster usually uses Xe gas as the propellant. Xe is expensive and with low density. The solid propellants such as Bi, Mg, and Zn were used to replace Xe [7]. They are in high density, plentiful, non-toxic, and cheap. To use the solid metals as propellant, the metal-vapor Hall thruster is separated into two parets. One part is a metal evaporator. The other part includes the acceleration channel, an anode, and a hollow cathode. It is like a conventional Hall thruster with a metal vapor.

For the example shown in Fig. 6[7], the left part is a separated, temperature-controlled reservoir and the right part includes the acceleration channel, the anode and the hollow cathode. There is a heated line connecting the anode and the reservoir. The condensed zinc in a reservoir is heated and produces the vapor. The feed rate is thus determined by the temperature of the slug. The other elements should be hot enough to prevent condensation of the vapor. The vapor diffuses into anode will be ionized by the electrons provided from the hollow cathode flowing Zn gas. The electrons provided from the hollow cathode also neutralize the thruster[7].



Figure 6: Zinc demonstration system of Metal Vapor Hall Thruster.

We also use Zn as a propellant in the MIT-MEB, where we use E-beam to evaporate and ionize the metal. Moreover, the source of the electrons is from the thermionic electron emission of a tungsten filament to reduce the volume of the thruster.

# 1.3 Metal Ion Thruster using Magnetron Ebeam Bombardment (MIT-MEB)

The Metal Ion Thruster using Magnetron E-beam Bombardment (MIT-MEB) is a new ion thruster developed by the formal student Kuo-Yi Cheng[8]. Different from the conventional ion thrusters, the MIT-MEB uses the metal instead of the inert gas as the propellant. The solid propellant has many advantages, such as high density, easy to be stored, cheap, and safe. In this section, I will introduce the basic principles of the MIT-MEB, and explain how we designed the thruster. Finally, how we are going to improve the performance of the MIT-MEB and the physics we would like to study based on the principle will be given.

#### 1.3.1 Background principles of the MIT-MEB

We want to use the metal target instead of the inert gas as the propellant because the solid is high density, easy to be stored, cheap, and safe. First, we need to find a way to make the target change its phase from solid to vapor in an ultra-high vacuum. Therefore, we can avoid bringing the gas cylinder to outer space. The second step is to convert the vapor to plasma. We use the ideal of the physical vapor deposition (PVD) to achieve the two steps. Shown in Fig. 7[8] is the processes of generating thrust in the MIT-MEB. First, the thermionic electrons provided by the heating filament are accelerated by the external electric field. When the thermionic electrons bombard the target, they heat the target so that it is vaporized. Then, the vapor is ionized by the electron impact ionization. Afterward, ions are accelerated by the electric field and exhausted. They attract electrons provided by the neutralizer so that the thruster is kept neutral. Therefore, the thermionic electron emission, the electron-beam evaporation, and the electron-impact ionization are the basic principles we should understand.



**1.3.1.1** Physical vapor deposition (PVD) Physical vapor deposition is commonly used for the processes of semiconductor manufacture. The physical mechanism of the PVD is the phase change of matter. It is a vacuum deposition method that can be used to produce thin films and coatings. The most common PVD processes are evaporation and sputtering.

In evaporation, the target is evaporated by being heated directly, such as joule heating, laser heating, and electron-beam (E-beam) heating. The materials most commonly used to hold the evaporated material are tungsten and molybdenum because they have high electrical resistance, high melting point and are difficult to form alloys with other metals. The evaporated material is attached to the tungsten wire or carried in tungsten boats. The evaporated material is evaporated by the heating tungsten as the result of the high temperature. Then, the vapor forms a film on the substrate whose temperature is low.

In sputtering, the target is bombarded by high-energy ions in the plasma. The ions and plasma are provided by the inert gas ionized by a DC or AC high-voltage discharge. Ions as the working particles are accelerated toward the target by the external electric field. Then, the atoms of the target detach from the surface when working particles bombard on it and transfer their kinetic energy to the target. Finally, leaving atoms form a film on the substrate whose temperature is low. Since ions and electrons in the plasma are charged, they can be controlled by magnetic fields. Therefore, ions can be guided to specific areas of the target by magnetic fields to increase the efficiency of sputtering.

Evaporation and sputtering work differently. Nevertheless, no matter which method is used, the purpose of PVD is to change the material from a solid state into a gaseous state.

**1.3.1.2** The thermionic electron emission When the temperature of a metal rises, the kinetic energy of electrons in the metal increases. The number of electrons whose kinetic energy exceeds the work function, also gradually increases. If the temperature of the metal is over a certain degree, a large number of electrons escape from the metal. This phenomenon is called the thermionic electron emission. In 1901, Richardson gave the mathematical form of the thermal emission [9]:

$$J = \lambda_{\rm R} A_{\rm G} T^2 e^{-\frac{w}{k_{\rm B} T}} \tag{7}$$

where J is the emitted current density, T is the temperature of the metal, w is the work function of the metal,  $k_{\rm B}$  is the Boltzmann constant,  $\lambda_{\rm R}$  is a correction factor for different material and  $A_{\rm G}$  is a universal constant. The constant  $A_{\rm G}$  equals to  $4\pi m k_{\rm B}^2 e/h^3$ . The value is  $1.2 \times 10^6$  $({\rm Am}^{-2}{\rm K}^{-2})$ . The constant  $\lambda_{\rm R}$ , on the other hand, is typically in the order of 0.5. We use tungsten filaments due to its high melting point.

The thermionic emission from a tungsten wire as a function of temperature is shown in Fig. 8[10]. If the temperature of the metal is above 1000 K, a large number of electrons can escape from the metal. However, the escaping hot electrons accumulate near the metal surface as shown in Fig. 9[11]. They prevent more hot electrons from being emitted. Therefore, we have to apply an external electric field to pull out the electrons so that electrons are emitted continuously.

9



Figure 8: Saturation current densities of the thermionic emission from tungsten as a function of temperature.



Figure 9: Hot filament emits free electrons.

**1.3.1.3** The electron beam evaporation Electron-beam (E-beam) evaporation uses accelerated electrons to bombard the coating material. Therefore, the kinetic energy of the electron is connected to the thermal energy of the coating material. Therefore, the material is heated and vaporized. The design of a conventional E-beam evaporator is shown in Fig. 10[12]. There is a heating filament at the bottom as an electron source using the thermal-emission effect. The free electrons are accelerated by an external electric field to get kinetic energy. Then, we can deflect the E-beam using a magnetic field to control the bombardment location. Thus, the coating material is heated and evaporated when electrons bombard on it and transfer their kinetic energy to the thermal energy of the material. Eventually, the coating material forms a

film on the substrate. Materials can be heated to temperatures up to 3000<sup>~</sup>6000 °C locally because the E-beam heating provides extremely high energy density. Therefore, refractory metals or compounds can still be evaporated. Both incoming electrons and secondary electrons on the target surface generated by high-energy electrons bombardments may ionize residual gas molecules. It is a good way for us to evaporate the solid propellant and provide the ions.



Figure 10: Electron beam evaporation deposition.

**1.3.1.4** Temperature of the tungsten filament The tungsten temperature and the thermal velocity are important parameters for the simulation I will perform in Chap. 3. It is because the thermal velocity is assumed to be the initial velocity of the thermionic electrons in MIT-MEB. The estimated tungsten temperature is used to estimate the thermal velocity

$$v_{\rm thermal} = \sqrt{\frac{2k_{\rm B}T}{m_{\rm e}}} \tag{8}$$

where  $v_{\text{thermal}}$  is the thermal velocity,  $k_{\text{B}} = 1.38 \times 10^{-23} \text{ J/K}$  is Boltzmann constant,  $m_{\text{e}} = 9.11 \times 10^{-31} \text{ kg}$  is the mass of the electron, and T(K) is the tungsten temperature. From Fig. 8 and Eq. 7, the thermionic emission current is a function of temperature. However, we do not

know emitted electrons would leave the filament freely or return back to the filament. In other words, we can't obtain the temperature of the tungsten filament by measuring the emitted current. All alternative way to estimate the tungsten temperature is required. Then, we can compare the difference between the measured electric current and the predicted electric current from the estimated filament temperature.

The tungsten is heated by the eletric power P. We can estimate the tungsten temperture T by the balance between the heating power and the radiation power. The radiation power can be estimated using the Stefan-Boltzmann law[13] as

$$\phi = \frac{P(\mathbf{W})}{A(\mathbf{m}^3)} = \epsilon \sigma T^4 \tag{9}$$

where  $\phi$  is the black-body radiant emittance, which is the total energy radiated per unit surface area of a black body across all wavelengths per unit time, A is the surface area of the filament,  $\sigma$ is the Stefan–Boltzmann constant, and  $\epsilon$  is the emissivity of the object. The Stefan–Boltzmann constant  $\sigma$  is  $\frac{2\pi^5 k^4}{15c^2h^3} = 5.67 \times 10^{-8} \text{ (J s}^{-1}\text{m}^{-2}\text{K}^{-4})$ . The parameter  $\epsilon$  of an absolute black body is 1 while  $\epsilon$  of a grey body is less than 1. We use  $\epsilon = 0.5$  to estimate the tungsten temperature. On the other hand, the heating power from the power supply is writen as

$$P = IV \tag{10}$$

where I is the current flowing through the filament, and V is the voltage of across filament. By substituting Eq. 10 into Fig. 9, we can estimate the temperature of the the tungsten filament. Then, the temperature can be used to estimate the thermal velocity of emitted electron using Eq. 8 for the simulation. It can also be used to calculate the saturation current densities of the thermionic emission from tungsten and be compared with the electric current we measure in experiments.

**1.3.1.5** Vapor pressure of the common metals at different temperature To pick the material as the propellant, the easier it is vaporized, the better it is as the propellant. It is because the metal materials which are easier to be vaporized require less heating power. Note that materials with lower melting points do not mean they are evaporated easier. For example, the melting point of Tin is only 231.9 °C while Zinc needs 419.5 °C to be melted. However,

to achieve the same vapor pressure such as  $10^{-3}$  Torr, 1315 °C is needed for Tin achieved while only 565 °C is needed for Zin as shown Table 1[14]. Moreover, Zinc is cheap, easy to be obtained, and low toxic. Therefore, we choose Zinc to be the propellant.

| PE (torr)<br>T (K)           | $10^{-3}$ | $10^{-2}$ | $10^{-1}$ | $10^{0}$ | 101  | $10^{2}$ |
|------------------------------|-----------|-----------|-----------|----------|------|----------|
| Al $(M = 27.0 \text{ amu})$  | 1162      | 1269      | 1396      | 1552     | 1760 | 2022     |
| Fe $(M = 55.8 \text{ amu})$  | 1583      | 1720      | 1875      | 2056     | 2312 | 2633     |
| Cu $(M = 63.5 \text{ amu})$  | 1414      | 1546      | 1705      | 1901     | 2152 | 2480     |
| Zn $(M = 65.4 \text{ amu})$  | 565       | 616       | 678       | 760      | 866  | 1009     |
| Ag $(M = 107.9 \text{ amu})$ | 1209      | 1320      | 1457      | 1626     | 1848 | 2138     |
| Sn $(M = 118.7 \text{ amu})$ | 1315      | 1462      | 1646      | 1882     | 1976 | 2241     |
| Au $(M = 197.0 \text{ amu})$ | 1589      | 1738      | 1919      | 2140     | 2427 | 2794     |
| Pb $(M = 207.2 \text{ amu})$ | 898       | 991       | 1105      | 1248     | 1440 | 1690     |

Table 1: Temperature (T) in kelvin for different vapor pressure (PE) in torr for different metallic materials

**1.3.1.6** Electron impact ionizations Electron impact ionizations use high energy electrons to impact atoms or molecules to achieve ionization. There are two kinds of sources providing electrons to ionize the vapor. A common method is first using a hot filament as an electron source to provide electrons. Then, electrons are accelerated by an external electric field and confined by the magnetic field between the target and the filament. The other ones are the secondary electron with lower energy, including backscattered and true secondary electrons. They are also confined by the electric potential and the magnetic field in a small region forming an electron cloud on top of the target surface. When atoms or molecules are collided by those electrons, the electron of the atoms or molecules is possible to be removed. The ionization reaction formula can be written as

$$M + e^- \to M^+ + 2e^- \tag{11}$$

where M is the atom,  $e^-$  is the electron. The kinetic energy of the electron must be greater than the first ionization energy of the target elements.

The relationship between the first ionization energy and the atomic number is shown in Fig. 11[15]. The material we choose as the propellant is Zinc (Zn) whose atomic number is 30. The first ionization energy of Zn is 9.4 eV. Therefore, we should provide the electrons with the energy over 9.4 eV to impact the Zinc vapor to achieve ionization.



Figure 11: Relationship between first ionization energy and atomic number.

#### 1.3.2 The design of the MIT-MEB

Shown in Fig.12[8], there are two parts of the MIT-MEB: a metal evaporator combining with an ion accelerator and a neutralizer. Similar to an E-beam evaporation, free electrons around the heated filament are accelerated by the high electric field and bombard the target. The target is heated when electrons transfer their kinetic energy to the thermal energy of the target when they bombard on it. As a result, the metal vapor is generated when the target is hot enough. A high-density electron cloud is confined by a magnetic field between the metallic target and the heated filament (E-gun) provided by a focusing magnet. When the metal vapor passes the electrons cloud, a part of the vapor will be ionized by being collided by the highenergy electrons. Those ions are then accelerated by the applied electric field. When ions leave the thruster, they attract electrons provided by the neutralizer so that the thruster is kept neutral.



The structure of MIT-MEB Shown in Fig. 13 is the modified MIT-MEB we 1.3.2.1test. The only difference between Fig. 12 and Fig. 13 is an extra voltage  $V_{\rm ag}$  keeping the potential of the accelerating grid lower than the E-gun and the neutralizer. The high electric field is provided by  $V_{\rm acc}$ , and  $I_{\rm e}$  is the electric current that heats the target. The thermal energy of the free electrons around the filament of the E-gun and the neutralizer is provided by the current  $I_{\rm f}$  and  $I_{\rm nf}$ , respectively.  $V_{\rm f}$  and  $V_{\rm nf}$  are the voltages of the E-gun and the neutralizer, respectively. The parameter  $V_{ag}$  between the accelerating grid and the E-gun and the neutralizer is used to prevent the electrons from the E-gun and the neutralizer passing through the accelerating grid. Therefore, the potential of the accelerating grid is lower than that of the E-gun and the neutralizer providing the small electric fields toward accelerating grid at both sides of the accelerating grid. When ions leave the thruster, they attract electrons with the same charge number to keep the thruster neutral. It can be seen from the equivalent circuit of the MIT-MEB shown in Fig. 14[16]. The current  $I_{\rm ne}$  is provided by leaving electrons which equals to the ion current  $I_{ion}$ . And the current  $I_{nf}$  for the filament of the neutralizer and  $I_{\rm ne}$  merge at point d. Then,  $I_{\rm R}$  including by  $I_{\rm ne}$  and  $I_{\rm nf}$  goes through the resistance  $R_{\rm n}$  of the neutralizer. When  $I_{\rm R}$  arrives at point b,  $I_{\rm R}$  will break into  $I_{\rm b}$  and  $I_{\rm n}$ .  $I_{\rm b}$  is the same as the

current  $I_{nf}$  back to the cathode of the neutralizer. Therefore,  $I_n$  is equal to  $I_{ne}$  and also equal to the ion current  $I_{ion}$ . It is the reason why we measure the ion current with the current monitor between the neutralizer and the accelerating grid to get the ion current  $I_{ion}$ .



Figure 13: The structure of MIT-MEB.



Figure 14: The equivalent circuit of MIT-MEB.

**1.3.2.2** The prototype of the MIT-MEB Shown in Fig. 15 is the design of the MIT-MEB according to the structure given in Fig. 13. We use three focusing magnets whose radius and height are both 10 mm. They are stacked on top of each other. They are placed underneath the metal target such that the gap between the top surface of the magnet and the bottom of the target is 2 mm. The radius of the metal target is 15 mm and the thickness is 0.5 mm. The E-gun is placed 3.5 mm above the metal target. The accelerating grid is 7 mm above the E-gun. Finally, the neutralizer is 7 mm above the accelerating grid . The length of the filaments of the E-gun and neutralizer are both 10 mm. We use this format to build the prototype as shown in Fig. 16[8].

Shown in Fig. 16 (a) and (b), the outer cases of the MIT-MEB are either quartz or ceramics. The melting point and the density of ceramics are 2054 ° C and 3.97 g/cm<sup>3</sup>, respectively. This material is strong, durable and heat-resistant so that it is good for experiments. On the other hand, the melting point and the density of the quartz are 1650 ° C and 2.65 g/cm<sup>3</sup>, respectively. Although it is crystal brittle, it is easier for observation because it is transparent. We use the prototype with the ceramics outer case to conduct experiments and prototypes with the quartz outer case for exhibition.



Figure 15: Design of the prototype.



Figure 16: (a) The (CAD) drawing of prototype, and (b) the photograph of the MIT-MEB.

1.3.2.3 Previous results In Kuo-Yi's thesis[8], he did experiments with the accelerated voltage  $V_{\rm acc}$  equal to 1 and 5 kV. Different electric currents were used to keep the power of the E-beam equal to 15 W. His experimental results are shown in Table 2. The total power was including the powers of E-beam, E-gun, and the neutralizer. We can see that the evaporation rate of using 5 kV was higher than that of using 1 kV. However, the ionization rate of using 5 kV was higher than that of using 1 kV. However, the ionization capability but lower the ability of ionizing gas. It is important to understand how different  $V_{\rm acc}$  influence the performance of the MIT-MEB. Therefore, I did experiments and simulations with different  $V_{\rm acc}$ .

Table 2: Comparison of thruster parameters of 1 kV and 5 kV of MIT-MEB under same E-beam power.

| Condition    | Total power (W) | Evaporation rate $(g/s)$       | Ionization rate (%) |
|--------------|-----------------|--------------------------------|---------------------|
| 5  kV/3  mA  | $24.8 \pm 1.1$  | $(2.2 \pm 0.4) \times 10^{-4}$ | $0.03\pm0.01$       |
| 1  kV/15  mA | $26.2 \pm 0.7$  | $(1.8 \pm 0.3) \times 10^{-5}$ | $1.10\pm0.30$       |

**1.3.2.4** Cross section of electron impact ionization for zinc The cross section of electron impact ionization strongly depends on the electron energy. Larger cross-section means the atom is ionized by the electron impact easier. Therefore, the cross-section for electron impact ionization needs to be considered. As shown in Fig. 17c[17], the cross section of electron impact ionization for Zinc peaks at 60 eV. The voltages, 1 kV and 5 kV, Kou-Yi used in his experiments were too high. Therefore, we should decrease the acceleration voltage to

increase the cross-section of electron impact ionization for Zinc so that the ionization fraction can be increased. However, the electrons are not only used to ionize the vapor but also to generate vapor so that the acceleration voltage should not be too small. Therefore, I want to study the performance of MIT-MEB with lower voltage.



Figure 17: . The cross section of electron impact ionization for Zin.

#### **1.4** Force competitions

Charged particles interact with electromagnetic fields. The Lorentz force  $\overrightarrow{F}$  is the force felt by a charged particle in an electromagnetic field:

$$\overrightarrow{F} = q\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right) \tag{12}$$

where  $\overrightarrow{F}$  is the Lorentz force, q is the charge of the charged particle,  $\overrightarrow{E}$  is the electric field,  $\overrightarrow{V}$  is the velocity of the charged particle, and  $\overrightarrow{B}$  is the magnetic field. It can be used to describe the interactions between charged particles and electromagnetic fields. Therefore, we are able to control the energy and directions of electrons by electromagnetic forces. As shown in Fig. 18 (a) and (b), the electrons are accelerated by the electric field. On the other hand, they gyro around magnetic field lines. Since the magnetic field is not uniform, electrons can be reflected

by the magnetic-mirror effect. Therefore, the trajectories of electrons are determined by the competition between the two forces as shown in Fig. 18 (c).



Figure 18: Influence of (a) electric field, (b) magnetic field, and(c) force competition in the MIT-MEB

#### 1.4.1 The electric force

The positive charge in the electric field is accelerated in the same direction of the electric field, but the negative charge in the electric field is accelerated in the anti direction. Therefore, the electric force of the charged particle is the term  $q\vec{E}$  in Eq. 12. Then, a charged particle can obtain the kinetic energy from the acceleration of the electric field. We can express the electric force:

$$\overrightarrow{F}_{\rm E} = q \,\overrightarrow{E} = q \,(-\nabla V) \tag{13}$$

where V is the electric potential. An electron accelerated by an electric potential of 1 volt obtained the kinetic energy 1 eV equal to  $1.6 \times 10^{-19}$  J as shown in Fig.19. So, we can change the electric potential  $V = V_{acc}$  in the MIT-MEB to provide different strength of the electric field and thus give the charged particle different kinetic energy.



Figure 19: The electrons are accelerated by electric fields.

#### 1.4.2 The magnetic mirror effect

The magnetic force can be categorized into two cases:

- 1. An uniform magnetic field.
- 2. A non-uniform magnetic field.

How charged particles behave in these two cases are giving in the following.

**1.4.2.1 Uniform magnetic fields** The term in Eq. 12,  $q \overrightarrow{v} \times \overrightarrow{B}$ , represents the magnetic force acting on the charged particle. The direction of the force is perpendicular to the direction of the magnetic field and the velocity of the charged particle. The charged particles change their directions as shown in Fig. 20[18]. Therefore, we can use the magnetic field to control the directions of electrons.



Figure 20: The charge is deflected by the influence of the magnetic field.

Since the magnetic force is the centripetal force for the charged particle in a circular motion, we can have the gyroradius defined as the radius of the circular motion of the charged particle in the presence of a uniform magnetic field. It is given by:

$$r_{\rm L} = \frac{m v_{\perp}}{|q|B} \tag{14}$$

where  $r_{\rm L}$  is the Larmor radius, m is the mass of the particle,  $v_{\perp}$  is the component of the velocity perpendicular to the direction of the magnetic field, q is the electric charge of the particle and B is the strength of the magnetic field.

We can use the Larmor radius to estimate the period of the electron circular motion given in Eq. 15. Then, we can use the Larmor radius to check if the simulation with the magnetic field is correct and use the period to estimate the time step used in the simulation.

$$T = \frac{2\pi r_{\perp}}{v_{\perp}} \tag{15}$$

**1.4.2.2** Non-uniform magnetic fields In a non-uniform magnetic field, charged particles are also reflected by the magnetic-mirror effect when charged particles move from the region with a weaker magnetic field into the region with a stronger magnetic field. The reflection force is represented as

$$\overrightarrow{F}_{\rm B} = -\mu \nabla_{\parallel} |\overrightarrow{B}| \tag{16}$$

where  $\overrightarrow{F}_{B}$  is the magnetic-mirror force,  $\nabla_{\parallel} \overrightarrow{B}$  is the gradient of the magnetic field along the magnetic field. The parameter  $\mu$  is the magnetic moment of the gyrating particles defined as

$$\mu \equiv \frac{\frac{1}{2}mv_{\perp}^2}{|B|} \tag{17}$$

The magnetic moment  $\mu$  is a constant for a charged particle in any magnetic field without forcesalong with the magnetic force other twins magnetic force. As the charged particle moves into the region with stronger B, its  $v_{\perp}$  becomes higher. On the contrary,  $v_{\parallel}$ , which is the component of the velocity parallel to the direction of the magnetic field, becomes lower according to the energy conservation:

$$\frac{d}{dt}\left(\frac{1}{2}mv^2\right) = \frac{d}{dt}\left(\frac{1}{2}mv_{\parallel}^2 + \frac{1}{2}mv_{\perp}^2\right) = 0$$
(18)

where *m* is the mass of the charged particle, and *v* is the total velocity. When the whole kinetic energy transfers into the term of  $v_{\perp}$ , the charged particle will be reflected as a result of  $v_{\parallel} = 0$ as shown in Fig. 21[19]. The position where the charged particle is reflected is called the mirror point.



Figure 21: The magnetic mirror effect.

Although charged particles are slow down due to the magnetic-mirror effect, not all charged particles are reflected. Assume that we have a charged particle with the initial velocity  $\overrightarrow{v_0}$  which is composed by  $\overrightarrow{v_{\perp 0}}$  and  $\overrightarrow{v_{\parallel 0}}$ . Velocities  $\overrightarrow{v_{\perp 0}}$  and  $\overrightarrow{v_{\parallel 0}}$  are components perpendicular and parallel to the direction of the magnetic field, respectively. When the ratio  $v_{\perp 0}/v_{\parallel 0}$  is too small,  $v_{\parallel}$  is too large to be decelerated to zero by the magnetic-mirror force. In other words, the initial velocity  $v_0$  can not be transferred completely into the component of  $v_{\perp}$  in the strong-field region. So, the charged particle will go through the strong magnetic field region.

In the case there is no external force parallel to the magnetic field, the magnetic moment  $\mu$  is an invariant and  $v_{\perp}$  in the different field region can be assumed by:

$$\frac{1}{2}\frac{mv_{\perp 0}^2}{B} = \frac{1}{2}\frac{mv_{\perp}^{'2}}{B'} \tag{19}$$

where  $B_0$  is the magnetic field of the initial location at which the charged particle is, B'is the magnetic field at any location other than the initial location, and  $v'_{\perp}$  is the velocity perpendicular to the magnetic field B' at the same location. Assuming that the location with the magnetic field B' is the charged particle stopped, the velocity  $v'_{\parallel}$  parallel to B' becomes zero. Then, conservation of energy requires

$$v_0^2 = v_{0\perp}^2 + v_{0\parallel}^2 = v_{\perp}^{'2} \,. \tag{20}$$

Therefore,

$$\frac{B_0}{B'} = \frac{v_{\perp 0}^2}{v_{\perp}'^2} = \frac{v_{\perp 0}^2}{v_0^2} \equiv \sin^2 \theta \tag{21}$$

where  $\theta$  is the pitch angle of  $\overrightarrow{v_0}$  relative to  $\overrightarrow{B_0}$ . Assuming that  $B_{\rm m}$  is the magnetic field at the location where we want the charged particle to be stopped, which is the mirro point, we can get the angle  $\theta_{\rm m}$  by

$$\sin^2 \theta_{\rm m} = \frac{B_0}{B_{\rm m}} \,. \tag{22}$$

If  $\theta$  is smaller than  $\theta_{\rm m}$ , it means B' is larger than  $B_{\rm m}$ . In the other words,  $B_{\rm m}$  is too small to stop the charged particle with the initial velocity  $\overrightarrow{v_0}$  with the pitch angle  $\theta$ . Therefore, we can get a boundary of a region in velocity space in a cone. This region is called the loss cone as shown in Fig. 22[20].



Figure 22: The loss cone.

For particles not in the loss cone, they are reflected. On the other hand, particles in the loss cone would penetrate through the mirro point. In the MIT-MEB, the magnetic field is not uniform. Electrons in the loss cone can arrive the target and evaporate it. On the contrary, electrons not in the loss cone, they are trapped forming an electron cloud. The loss cone of the system is important to be studied in simulations.
#### 1.4.3 The competition between the electric field and the magnetic-mirror force

We can imagine that if  $v_{\parallel}$  of the charged particle is larger enough, it can go through the region with the strongest magnetic field. The larger the electric field gives the electron more kinetic energy in the term of  $v_{\parallel}$ , the position of the mirror point is closer to the target in MIT-MEB. As shown in Fig. 23 (a),  $h_1$  and  $h_2$  are the distance between Mirror Point<sub>1,2</sub> and the target, respectively. When the electric field  $E_1$  is smaller than  $E_2$ ,  $h_1$  is larger than  $h_2$ . Therefore, the location of the electron cloud is determined by the competition between the electric force and the magnetic-mirror force. If we use a larger electric field, the electron cloud is confined closer to the target as shown in Fig. 23 (b). However, if we use a smaller electric field, the electron cloud is confined farther away from the target as shown in Fig. 23 (c). When the electron cloud is closer to the target, electrons are easier to arrive and evaporate the target. However, the ionization rate is lower as a result of fewer electrons stay in the electron cloud for ionizing the vapor. On the contrary, if the electric field is lower, the electron cloud is farther away from the target. As a result, fewer electrons reach the target leading to a smaller evaporation rate. Nevertheless, the electron cloud may have higher electron density leading to a higher ionization rate. There will be an optimal electric field for providing a sufficient evaporation rate and a higher ionization rate.



Figure 23: (a) The positions of the mirror point with different electric fields (b) The position of the electron cloud in the large electric field (c) The position of the electron cloud in the small electric field

## 1.5 Goal

The MIT-MEB is a new ion thruster developed by the formal student Kuo-Yi Chen. In his thesis, the ionization rates in the MIT-MEB were too small for practical uses. It is important to

study the electron behaviors and potentially increase the efficiency of the MIT-MEB. We would like to focus on the force competitions between the electric force and the magnetic-mirror force. Both experiments and simulations were conducted. In Chap. 2, I will show the experimental results using different  $V_{\rm acc}$ . In Chap. 3, I will show the simulation results for studying the force competitions. Then, the discussion will be shown in Chap. 4. Finally, the summary will be given in Chap. 5.



# 2 Experiments

In this chapter, I will introduce experiments of testing the MIT-MEB including the vacuum system, experimental setup, standard operation procedure (SOP) of experiments, and experimental results.

## 2.1 Parameters in the MIT-MEB

The thrust and the specific impulse are the important parameters of the thruster to be measured. It is not easy to measure them directly. However, the evaporation rate and the ionization rate are the parameters easier for us to measure. Therefore, we use the evaporation rate and ionization rate to calculate the thrust and the specific impulse of the MIT-MEB.

#### 2.1.1 Evaporation rates

The thrust is provided by an exhausted propellant. First, we need to know how many solid propellants become vapor. It is difficult to measure the instant vapor flow during the experiment. So, we measure the mass differences of the target before and after each experiment to calculate the averaged evaporation rate  $\dot{m}_{\text{Metal}}$  defined as

$$\dot{m}_{\rm Metal} = \frac{m_{\rm i} - m_{\rm f}}{\Delta t} \tag{23}$$

where  $m_i$  is the mass of the target before the experiment,  $m_f$  is the mass of the target after the experiment, and  $\Delta t$  is the time difference before and after the experiment.

We used the electronic scale, Sartorius TE124S, shown in Fig. 24 to measure the mass of the target. The precision of the scale is 0.0001 g. Therefore, only the mass difference over 0.001 g was treated as a significant difference when we calculated the averaged evaporation rate.



Figure 24: The electronic scale Sartorius TE124S.

## 2.1.2 Ionization rates

The vapor is ionized via electron impact ionization by electrons located between the target and the E-gun in the MIT-MEB. However, not all vapors are ionized. We measured the ion current to know how many ions were exhausted per second. Then, we could calculate the ratio between the number of ions to the number of neutral gas called ionization rate  $\beta$  as

$$\beta = \frac{I_{\rm n}}{q} \times \left(\frac{\dot{m}_{\rm Metal}}{m_{\rm atom}}\right)^{-1} \tag{24}$$

where  $I_{\rm n}$  is the ion current measured according to the equivalent circuit of the MIT-MEB in Fig. 14,  $q = 1.6 \times 10^{-19}$  coulomb is the elementary charge, and  $m_{\rm atom}$  is the mass of a metal particle.

#### 2.1.3 Thrusts and $I_{\rm sp}$

From Eq. 1, thrusts are from the ejected propellant mass per second with a constant exhaust speed. In the MIT-MEB, the thrusts are provided by both vapor and ions. So, we can express the total thrust  $F_{\text{total}}$  as

$$F_{\text{total}} = F_{\text{vapor}} + F_{\text{ion}} = \dot{m}_{\text{vapor}} v_{\text{vapor}} + \dot{m}_{\text{ion}} v_{\text{ion}} = \dot{m}_{\text{Metal}} \left(1 - \beta\right) \sqrt{\frac{2k_{\text{B}}T_{\text{vapor}}}{m_{\text{atom}}}} + \dot{m}_{\text{Metal}} \beta \sqrt{\frac{2qV_{\text{acc}}}{m_{\text{atom}}}}$$
(25)

where thrusts from vapor and from ions are  $F_{\text{vapor}}$  and  $F_{\text{ion}}$ , respectively. The exhaust speed of the vapor,  $v_{\text{vapor}}$ , is the thermal velocity  $\sqrt{\frac{2k_{\text{B}}T_{\text{vapor}}}{m_{\text{ion}}}}$  where  $T_{\text{vapor}}$  is the temperature of the vapor. It is smaller than the exhaust speed of the ions  $\sqrt{\frac{2qV_{\text{acc}}}{m_{\text{ion}}}}$ . Therefore, more ions, higher thrusts.

Then, we can express Eq. 2 with Eq. 25 as

$$I_{\rm sp} = \frac{F_{\rm total}}{\dot{m}_{\rm Metal}g} = \frac{1}{g} \left[ (1-\beta) \sqrt{\frac{2k_{\rm B}T_{\rm vapor}}{m_{\rm ion}}} + \beta \sqrt{\frac{2qV_{\rm acc}}{m_{\rm ion}}} \right].$$
(26)

The electrical energy  $qV_{\rm acc}$  is easier to control than the thermal energy  $k_{\rm B}T_{\rm vapor}$ . Most importantly,  $qV_{\rm acc}$  is generally much higher than  $k_{\rm B}T_{\rm vapor}$ . Therefore, we want to get higher  $\beta$  in the MIT-MEB to make this thruster have higher thrusts and  $I_{\rm sp}$ . However, we only focused on evaporation rates in this thesis.

## 2.2 Vacuum system

The experiment was done in a vacuum chamber. It was because the tungsten wire used in the Neutralizer and the E-gun would be oxidized and damaged in the atmosphere. On the other hand, the mean free path must be larger than the size of the experimental environment in order to avoid the loss of energy due to the collision of accelerated electrons with ions and background gas molecules. Moreover, we can verify whether it can operate in the space environment in the future.

#### 2.2.1 Design of the vacuum system

The design of the vacuum system I used is shown in Fig. 25. I used the quartz tube as the vacuum chamber whose diameter, height, and wall thickness were 200 mm, 250 mm, and 5 mm, respectively. There were two stainless-steel plates as the top cover plate and the bottom cover plate.

- 1. The top cover plate: It had five KF 25 flanges for connecting the ball valve, the low vacuum gauge, the ion gauge, and two electronic feedthroughs.
- 2. The bottom cover plate: It had one KF 50 flange and four KF 16 flanges.
  - (a) KF 50 flange: It was for connecting the high vacuum pump. I used a diffusion pump to be the high vacuum pump instead of the turbomolecular pump Kuo-Yi used.
     Back of the diffusion pump was connected to a KF25 Radius 90° Elbow.
  - (b) KF 16 flanges: One of them was connected to the electronic feed through for  $V_{\rm acc}$ . The others were not used.



Figure 25: Design and setting of the vacuum system

Another side of the KF25 Radius 90° Elbow was connected to the angle valve and the rotary pump originally. According to the airflow path of the vacuum system shown in Fig. 26(a), I added a gate valve between the chamber and the diffusion pump and a ball valve between the diffusion pump and the rotary pump. Therefore, it reduced the time for experiments since we don't need to vent the chamber after the diffusion pump was cooled down. The SOP of the vacuum system is in Appendix A. The actual experiment setup of the MIT-MEB in the vacuum system is shown in Fig. 26(b).



Figure 26: (a)Airflow path of the vacuum system (b) Realistic vacuum system

In Kuo-Yi Cheng's thesis, the background pressure he started to do experiments was about  $1.3 \times 10^{-3}$  Pa ( $1 \times 10^{-5}$  torr).[8] However, the diffusion pumps in my vacuum system only provided about  $7.3 \times 10^{-3}$  Pa ( $5.5 \times 10^{-5}$  torr) as the background pressure. The mean free path is  $5.9 \times 10^{-1} \sim 5.9 \times 10^{0}$  m for pressure equal to  $10^{-2} \sim 10^{-3}$  Pa. The size of the chamber is smaller than the mean free path. Therefore, I did experiments in this vacuum system even the background pressure was a little higher than that in Kuo-Yi's experiments.

## 2.3 Experimental setting

According to Fig. 13, I needed some power supplies to provide voltages and currents to the MIT-MEB. I also had the multimeter and the vacuum gauge to measure the ion current and the background pressure. The instruments I used were shown in Fig. 27.



Figure 27: Power supply system of MIT-MEB.

1. Power supply 1:

It provided the currents and the voltage for controlling the filament temperature. The filament temperature influenced the amount of electron emission.

- (a)  $I_{\rm f}$  and  $V_{\rm f}$ : They were the current and the voltage of the E-gun, respectively. Adjusting  $I_{\rm f}$  could control the emitted electron current  $I_{\rm e}$  from the filament.
- (b)  $I_{\rm nf}$  and  $V_{\rm nf}$ : They were the current and the voltage of the neutralizer, respectively.
- 2. Power supply 2:
  - (a) V<sub>acc</sub>: The voltage between the E-gun and the target for providing the high electric field. Electrons from the E-gun were accelerated by this electric field to bombard the target. The ions were also accelerated by this electric field to exhaust the thruster.

- (b)  $I_{\rm e}$ : The electric current that heated the target. It was determined by the ability to release free electrons from the E-gun filament. It is controlled by adjusting  $I_{\rm f}$ .
- 3. Power supply 3: It provided the voltage  $V_{ag}$  between the accelerating grid and the E-gun and the neutralizer. The potential of the accelerating grid was lower than that of the Egun and the neutralizer to provide the small electric fields at both sides of the accelerating grid. It prevented electrons from passing through the accelerating grid.
- 4. Multimeter: It was to measure  $I_n$  which equaled the ion current  $I_{ion}$  as a result of the equivalent circuit of the MIT-MEB shown in Fig. 14.
- 5. Vacuum gauge:
  - (a) Low: It showed the pressure measured by the Pirani vacuum gauge whose range was  $10^5 \sim 10^{-1}$  Pa, which was a low vacuum condition.
  - (b) High: It showed the pressure measured by the ion gauge whose range was  $1 \sim 10^{-5}$ Pa, which was a high vacuum condition. It was turned on only if the pressure in the chamber was less than 6.7 Pa or the diffusion pump had been turned on for over one hour.

I label all terminals of the MIT-MEB and the instruments as shown in Fig. 28. It can help to connect the instruments and the MIT-MEB with Table 3.



Figure 28: Numbers of the MIT-MEB and the instruments

| Item              | Number | Connect Numbers       |
|-------------------|--------|-----------------------|
| E-gun +           | 1      | 7                     |
| E-gun -           | 2      | 6, 11, 12, 16, Ground |
| neutralizer +     | 3      | 9                     |
| neutralizer -     | 4      | 8, 13                 |
| target            | 5      | 10                    |
| accelerating grid | 15     | 17                    |

Table 3: Numbers of the item and connect item

## 2.4 SOP of experiments

- 1. Put the MIT-MEB without the focusing magnet into the vacuum chamber, and connect terminals of the thruster to the corresponding feedthrough shown in Table 3.
- 2. Pump the pressure of the vacuum chamber down to  $4.5 \times 10^{-5}$  torr ( $6.0 \times 10^{-3}$  Pa).
- 3. Bake the MIT-MEB.
  - (a) Connect E-gun and neutralize to the power supply 1 (power 1).Note: Refer to Fig. 28, connect 1 and 7, 2 and 6, 3 and 9, 4 and 8 by wires with alligator clips.
  - (b) Set  $V_{\rm f}$ ,  $V_{\rm nf}$ ,  $I_{\rm f}$  and  $I_{\rm nf}$  to zero.

- (c) Turn on Power supply 1 and press the "output" button.
- (d) Turn  $V_{\rm f}$  and  $V_{\rm nf}$  to more than 4 V.
- (e) Turn  $I_{\rm f}$  and  $I_{\rm nf}$  to 2 A to make filament glow and bake the thruster. Note: In order to drive  $I_{\rm f}$  and  $I_{\rm nf}$  to the set current,  $V_{\rm f}$  and  $V_{\rm nf}$  need to be high enough so that the power supply is at constant-current (C.C.) mode.
- (f) The pressure may increase when the MIT-MEB is being baked.
- (g) Check if the pressure decreases back to the original pressure or if the MIT-MEB has been baked for two hours.
- 4. Turn off power supply for driving the E-gun and the neutralizer.
- 5. Vent the chamber.
- 6. Take MIT-MEB out of the chamber and measure the mass of the target immediately.
- 7. Put the focusing magnet in the MIT-MEB.
- 8. Put the MIT-MEB with the focusing magnet into the vacuum chamber. Connect all terminals of MIT-MEB to the corresponding feedthroughs.
- 9. Pump the pressure of the vacuum chamber down to  $4.5 \times 10^{-5}$  torr ( $6.0 \times 10^{-3}$  Pa).
- 10. Repeat step 3 and step 4 to bake the MIT-MEB again to dry the MIT-MEB.
- Connect all terminals of the MIT-MEB to all instruments according to Fig. 28 and Table
   3.
- 12. Zeroing
  - (a) Set  $V_{\rm f}$ ,  $V_{\rm nf}$ ,  $I_{\rm f}$  and  $I_{\rm nf}$  to zero.
  - (b) Turn on Power supply 2 and adjust  $V_{\rm acc}$  to the voltage required for the experiment.
  - (c) Turn on Power supply 1 and press the "output" button.
  - (d) Turn  $V_{\rm nf}$  to more than 3 V.
  - (e) Turn  $I_{\rm nf}$  to 2.33 ~ 2.55 A.
  - (f) Turn on Power supply 3 and press the "output" button.

- (g) Adjust  $V_{ag}$  until  $I_n$  becomes zero.
- (h) Turn off Power supply 2 without adjusting the output voltage.
- (i) Turn  $V_{\rm nf}$  to zero.
- 13. Turn on Power supply 2.
- 14. Turn on Power supply 1 and adjust  $V_{\rm f}$  to more than 3 V for driving the E-gun.
- 15. Adjust  $I_{\rm f}$  and observe  $I_{\rm e}$  until  $I_{\rm e}$  reaches the set current. Note:  $I_{\rm f}$  should not be over 3 A to prevent the filament from being broken.
- 16. Turn  $V_{\rm nf}$  to 3 V.
- 17. Use the camera to record all data and experimental time or write down experimental time manually.
- 18. Turn all Power supply off.
- 19. Vent the chamber.

20. Take the MIT-MEB out of the chamber and measure the mass of the target immediately.

21. Calculate the averaged evaporation rate and the ionization rate using Eq. 23 and Eq. 24.

## 2.5 Experimental results

I did experiments with the accelerated voltage  $V_{\rm acc}$  equal to 500, 750, and 1000 V. Different electric current  $I_{\rm e}$  were used to keep the power of E-beam equal to 7.5 W. To provide different  $I_{\rm e}$ , different filament current  $I_{\rm f}$  was used. Therefore, I show the experimental results include  $I_{\rm f}$ , power of the E-gun,  $I_{\rm e}$ , power of E-beam, actual  $V_{\rm acc}$ , and evaporation rate with different  $V_{\rm acc}$ .

#### 2.5.1 Actual $V_{\rm acc}$

Power supply 2 might not provide stable  $V_{acc}$ . Actual  $V_{acc}$  shown in Table 4 are the averaged voltages I used in experiments. In Fig. 29, the x-axis is the set  $V_{acc}$ , and the y-axis is the ratio between actual  $V_{acc}$  and the set  $V_{acc}$ . The ratio of each  $V_{acc}$  was around 1. It means  $V_{acc}$  was well controlled.

| Table 4. Actual Vacc |                          |                              |  |  |  |
|----------------------|--------------------------|------------------------------|--|--|--|
| $V_{\rm acc}$ (V)    | Actual $V_{\rm acc}$ (V) | $Actual V_{acc}/set V_{acc}$ |  |  |  |
| 500                  | $505 \pm 1$              | $1.0 \pm 0.0$                |  |  |  |
| 750                  | $753 \pm 2$              | $1.0 \pm 0.0$                |  |  |  |
| 1000                 | $1003 \pm 1$             | $1.0 \pm 0.0$                |  |  |  |

Table 4: Actual  $V_{\rm acc}$ 



Figure 29: The ratio between actual  $V_{\rm acc}$  and goal  $V_{\rm acc}$ .

## 2.5.2 Electron currents $I_{\rm e}$ and Powers of E-beam

I would like to study how evaporation rates depend on  $V_{\rm acc}$ . In order to keep the powers of E-beams in all experiments the same, the electron currents  $I_{\rm e}$  were different with different  $V_{\rm acc}$ . The power was kept at 7.5 W. The electron currents  $I_{\rm e}$  are shown in Table 5. The corresponding powers are shown in Table 6 and Fig. 30. Therefore, I can exclude the influence of the power of the E-beam on the evaporation rate.

| Tab | le 5: $I_{\rm e}$ wi | th different             | $V_{\rm acc}$ . |
|-----|----------------------|--------------------------|-----------------|
|     | $V_{\rm acc}$ (V)    | $I_{\rm e} \ ({\rm mA})$ | ]               |
|     | 500                  | $15.0\pm0.5$             |                 |
|     | 750                  | $10.0\pm0.5$             |                 |
|     | 1000                 | $7.5\pm0.3$              |                 |

| Table | 6: | Power | of | E-beam | with | different | $V_{\rm acc}$ |
|-------|----|-------|----|--------|------|-----------|---------------|
|       |    |       |    |        |      |           |               |

| $V_{\rm acc}$ (V) | Power of E-beam (W) |
|-------------------|---------------------|
| 500               | $7.6 \pm 0.2$       |
| 750               | $7.5 \pm 0.4$       |
| 1000              | $7.5 \pm 0.3$       |



Figure 30: Power of E-beam with different  $V_{\rm acc}$ .

## 2.5.3 Characteristic of the E-gun

Electrons of the electron current  $I_{\rm e}$  were provided by the tungsten filament as the E-gun heated by the current  $I_{\rm f}$ . Table 7 and Fig. 31 are the current  $I_{\rm f}$  and the voltage  $V_{\rm f}$  of the tungsten filament with different  $V_{\rm acc}$ . The powers of the tungsten filament with different  $V_{\rm acc}$ were calculated by the current  $I_{\rm f}$  and the voltage  $V_{\rm f}$ . I calculated the temperatures of the tungsten filament according to the heating powers of different  $V_{\rm acc}$  using Eq. 9 and show them in Table 8 and Fig. 32. These temperatures influenced the thermionic electron emission. I got the emission current density J using Eq. 7 with the calculated temperatures of the tungsten filament shown in Fig. 33. When  $I_{\rm e}$  and J were compared to each other and as shown in Fig. 34 and 35, I found that  $I_{\rm e}$  was much smaller than the current emitted from the tungsten filament with  $V_{\rm acc}$  equal to 500 V. It means emitted electrons may not reach the target contributing to the current  $I_{\rm e}$  if the accelerating voltage  $V_{\rm acc}$  deceased.

| able 1. $I_1$ and $v_1$ with unitient $v_{acc}$ |                 |                      |  |  |
|-------------------------------------------------|-----------------|----------------------|--|--|
| $V_{\rm acc}$ (V)                               | $I_{\rm f}$ (A) | $V_{\rm f}~({ m V})$ |  |  |
| 500                                             | $2.19\pm0.05$   | $3.6 \pm 0.1$        |  |  |
| 750                                             | $2.06\pm0.02$   | $2.8\pm0.1$          |  |  |
| 1000                                            | $1.95\pm0.01$   | $2.8\pm0.1$          |  |  |

Table 7:  $I_{\rm f}$  and  $V_{\rm f}$  with different  $V_{\rm acc}$ 



Figure 31:  $I_{\rm f}$  and  $V_{\rm f}$  with different  $V_{\rm acc}$  with different  $V_{\rm acc}$ .

Table 8: Power of E-gun nd the tungsten temperature with different  $V_{\rm acc}$ .

| $V_{\rm acc}$ (V) | Power of E-gun (W) | Temperature (K) |
|-------------------|--------------------|-----------------|
| 500               | $7.8 \pm 0.3$      | $3060 \pm 30$   |
| 750               | $5.8 \pm 0.2$      | $2840 \pm 20$   |
| 1000              | $5.4 \pm 0.2$      | $2790 \pm 20$   |



Figure 32: Power of E-gun and the tungsten temperature with different  $V_{\rm acc}$ .



Figure 33:  $I_{\rm f}$  and the tungsten temperature with different  $V_{\rm acc}.$ 



Figure 34:  $I_{\rm e}$  and J with different  $V_{\rm acc}.$ 



Figure 35: The ratio between  $I_{\rm e}$  and J with different  $V_{\rm acc}$ .

## 2.5.4 Evaporation rates

Table 9 shows evaporation rates with different  $V_{\rm acc}$  calculated using Eq. 23. Evaporation rates in experiments with 750 V was an order higher than evaporation rates in experiments with the other two cases. However, the variation of evaporation rates in experiments with 750 V was very large. That means the position of the electron cloud in experiments with 750 V was not stable.



Figure 36: Evaporation rate with different  $V_{\rm acc}$ .

| $V_{\rm acc}$ (V) | $\dot{m}_{\rm Metal}~({\rm g/s})$ |
|-------------------|-----------------------------------|
| 500               | $(1.6 \pm 0.1) \times 10^{-6}$    |
| 750               | $(1.4 \pm 1.9) \times 10^{-5}$    |
| 1000              | $(2.0 \pm 1.0) \times 10^{-6}$    |

Table 9: Evaporation rate with different  $V_{\rm acc}$ .

## 2.6 Summary

In experimental results, the variation of evaporation rates with 750 V showed that the position of the electron cloud in experiments with 750 V was not stable. Then,  $I_{\rm e}$  was much smaller than the current emitted from the tungsten filament if the accelerating voltage  $V_{\rm acc}$  deceased. I suspected that emitted electrons did not reach the target contributing to the current  $I_{\rm e}$ . The hypothesis is that force competitions between the force from the electric field and that from the magnetic field as described in section 1.4 play an important role in the MIT-MEB. Therefore, I did the simulation of the electron trajectories and show them in Chap

3 to verify the hypothesis.



# 3 Simulations

After I did experiments with different  $V_{\text{acc}}$ , I found that the electric currents  $I_{\text{e}}$  were much smaller than the expected current emitted from the filament as the E-gun due to the thermal emission. In other words, emitted electrons may not reach the target contributing to the current  $I_{\text{e}}$ . So, as described in section 1.4, I thought force competitions between the force from the electric field and that from the magnetic field would influence the electron trajectories. Therefore, I did the simulations on electron trajectories using COMSOL[21] to check if this hypothesis is correct or not.

We have done the following simulation to check our hypothesis:

- 1.  $\overrightarrow{E} \times \overrightarrow{B}$  drift: it was used to verify that COMSOL could simulate electron trajectories with the electric field and the magnetic field.
- 2. Simplified Model: it was used to simplify the electric field and the magnetic field to axial symmetric.
- 3. The electric field and the magnetic field : they were simulated first without electrons.
- 4. Electron trajectories with the electric field only: to check if electrons were accelerated by the electric field.
- 5. Electron trajectories with the magnetic field only: to check if electrons had the gyro motion in the magnetic field and were reflected by the magnetic mirror force.
- 6. Electron trajectories with the electric field and the magnetic field.
  - (a) Electron trajectories with the electric field and the magnetic field with different initial pitch angles: to check if some electrons accelerated by the electric field were in the loss cone while some electrons were still outside the loss cone.
  - (b) Electron trajectories with the electric field and the magnetic field with different  $V_{\rm acc}$ : to find the best  $V_{\rm acc}$  which can support the hypothesis of the force competitions.

# **3.1** $\overrightarrow{E} \times \overrightarrow{B}$ drift

I need to check whether the electron trajectories with the electric field and the magnetic field simulated using COMSOL is correct or not. Therefore, we simulated the  $\vec{E} \times \vec{B}$  drift and compared it with the analytical solution. When the charged particle moves in the uniform electric field and an uniform magnetic field which are not parallel to each other, the particle drifts across the magnetic field lines. The electron gyro around a guiding center while the guiding center drifts in the direction perpendicular to the electric field and the magnetic field. This drift is called  $\vec{E} \times \vec{B}$  drift. The  $\vec{E} \times \vec{B}$  drift is a simple case to check if we can simulate the charged particle trajectory using COMSOL.

First, I set the model as shown in Fig. 37. Second, I set the uniform electric field  $\vec{E} = 1$ V/m in  $\hat{x}$  and the uniform magnetic field  $\vec{B} = 1$  T in  $\hat{z}$ . Third, I put a charged particle whose mass was 1 kg and charge was -1 coul at the origin. Fourth, the total simulation time I set was 4 seconds. The number of steps was 4001. The charged-particle trajectory is shown in Fig. 38. The guiding center of the gyromotion drifts in  $-\hat{y}$ . The drift velocity of the guiding center  $V_{\rm gc}$  in theory[20] is

$$\overrightarrow{V}_{\rm gc,th} = \frac{\overrightarrow{E} \times \overrightarrow{B}}{B^2} = -1 \,({\rm m/s})\hat{y}$$
 (27)

where B is the amplitude of  $\overrightarrow{B}$ .

I picked the drift distance L of the guiding center during the time different  $\Delta t$  shown in Fig. 39 to calculate the drift velocity of the guiding center in simulation:

$$V_{\rm gc,sim} = \frac{L}{\Delta t} = \frac{-2.00 - (-0.42)\,(\rm m)}{1.57\,(\rm s)} = \frac{-1.576\,(\rm m)}{1.57\,(\rm s)} = -1.003\,(\rm m/s)\,.$$
(28)

The difference between the analytical solution and the simulation result is less than 1 %. We can simulate the electron trajectories using COMSOL.



Figure 38: The  $\overrightarrow{E} \times \overrightarrow{B}$  drift of the charged particle.



Figure 39: The drift distance of the guiding center.

## 3.2 Simplified Model

Shown in Fig. 40 is the simplified model of MIT-MEB in simulation. The filament of the E-gun is replaced by a disc filament whose radius is the same as the length of the filament. In this case, the electric field and the magnetic field are simplified to axial symmetric. However, electron trajectories are simulated in 3D.



Figure 40: The Simplified Model of MIT-MEB (a) in y-z plan, and (b) in x-y plan.

## 3.3 The electric field and the magnetic field

Shown in Fig. 41–43 is the electric potential and the electric field lines in y-z plane with  $V_{\rm acc}$  equal to 500 V, 750 V and 1000 V, respectively. Shown in Fig. 44–46 is the electric field and the electric field lines in y-z plane with  $V_{\rm acc}$  equal to 500 V, 750 V and 1000 V, respectively. I set the filament at ground and the target at  $V_{\rm acc}$ . The electric fields around the center of the filament are uniform. Therefore, I can use this region to check if the electron trajectory with only the electric field is correct or not.

Shown in Fig. 47 is the magnetic flux density and the magnetic field lines in y-z plane. I use 1050,000 [A/m] for the magnetization of the magnet according to Kuo-Yi's thesis[8]. The magnetic field line at the center of the filament is a straight line. Therefore, I can use this field line to check if the electron trajectory with the magnetic field in this simulation is correct or not.



Figure 41: The electric potential and the electric field lines with  $V_{\rm acc}$  which is equal 500 V.



Figure 42: The electric potential and the electric field lines with  $V_{\rm acc}$  which is equal 750 V.



Figure 43: The electric potential and the electric field lines with  $V_{\rm acc}$  which is equal 1000 V.



Figure 44: The electric field and the electric field lines with  $V_{\rm acc}$  which is equal 500 V.



Figure 45: The electric field and the electric field lines with  $V_{\rm acc}$  which is equal 750 V.



Figure 46: The electric field and the electric field lines with  $V_{\rm acc}$  which is equal 1000 V.



Figure 47: The magnetic flux density and the magnetic field.

## 3.4 Electron trajectories with the electric field

Shown in Fig. 48–50 are the electron trajectories in y-z plane with the electric field of  $V_{\rm acc}$  equal to 500 V, 750 V and 1000 V, respectively.

Points in figures are locations of electrons at the end of each simulation. All electrons were from the same initial positions with an initial velocity equal to zero. The initial positions in x-z plane were  $0\hat{x} + 3.8\hat{z}$ . The initial positions in  $\hat{y}$  were from 0 to 5 after each interval of 1 mm. The total simulated time was  $5 \times 10^{-10}$  seconds with 1001 steps. Electrons without a magnetic field moved along electric field lines. However, the electron from the edge of the filament was accelerated too fast such that the trajectory was not totally aligned with electric field lines. The electron acceleration from the electric field is smaller when  $V_{\rm acc}$  is lower. As a result, the electrons accelerated by 500 V are further away from the focusing magnet than the electrons accelerated by 1000 V at the end of the simulations.



Figure 48: The electron trajectories with the electric field in  $V_{\rm acc}$  which is equal 500 V.



Figure 49: The electron trajectories with the electric field in  $V_{\rm acc}$  which is equal 750 V.



Figure 50: The electron trajectories with the electric field in  $V_{\rm acc}$  which is equal 1000 V.

I chose the electron at the center of the filament to check if the simulated electron trajectory with the electric field was correct or not. Table 10 shows the displacements of electrons at the center from the analytic calculations and from simulations in different  $V_{\text{acc}}$ . D is the displacement from the simulation, and S is the displacement from the analytic calculation. S is calculated using Eq. 29 and 30.

$$F = m_{\rm e}a = qE \approx q \frac{V_{\rm acc}}{d},\tag{29}$$

$$S = \frac{1}{2}at^{2} = \frac{1}{2}\frac{qV_{\text{vacc}}}{m_{\text{e}}d}t^{2}$$
(30)

where F is the electric force,  $m_{\rm e}$  is the mass of the electron equal to  $9.1 \times 10^{-31}$  kg, a is the acceleration of the electron by the electric field E, and d is the distance between the filament and the target equal to 3.5 mm.

Differences between D and S are 2 %. It means that the electron trajectory with the electric field in simulation is promising.

Table 10: The displacement of simulation and the calculation in different  $V_{\rm acc}$ .

| $V_{\rm acc}$ (V) | time (s)               | $D (\mathrm{mm})$ | $S (\mathrm{mm})$ | S/D  |
|-------------------|------------------------|-------------------|-------------------|------|
| 500               | $5.00 \times 10^{-10}$ | 3.20              | 3.14              | 0.98 |
| 750               | $4.10 \times 10^{-10}$ | 3.22              | 3.17              | 0.98 |
| 1000              | $3.55 \times 10^{-10}$ | 3.22              | 3.17              | 0.98 |

## 3.5 Electron trajectories with the magnetic field

I set the value of initial velocity as the thermal velocity calculated by Eq. 8 and 9. The value of initial velocity is about  $3 \times 10^{-5}$  m/s. The magnetic field in MIT-MEB was not uniform. Electrons might be trapped by the magnetic-mirror effect. The angle of the loss cone in MIT-MEB supposed to be

$$\sin^2 \theta = \frac{B_0}{B'} = \frac{0.3(T)}{0.45(T)} = \frac{2}{3} \Rightarrow \theta = 54.7^{\circ}$$
(31)

where  $B_0$  is the magnetic field at the center of the disc filament and B' is the magnetic field above the center of the target. Then, I built Table 11 which shows initial angles and their corresponding initial velocities whose value is around  $3.00 \times 10^5$  m/s.  $v_y$  is the initial velocity in  $\hat{y}$  and  $v_z$  is the initial velocity in  $\hat{z}$ . I can follow this table to set the initial velocities in simulations.

| The initial angle | $v_{\rm y} ~({\rm m/s})$ | $v_{\rm z} \ ({\rm m/s})$ |
|-------------------|--------------------------|---------------------------|
| 54.8°             | $2.45 \times 10^5$       | $-1.73 \times 10^{5}$     |
| 56.4°             | $2.50 \times 10^5$       | $-1.66 \times 10^{5}$     |
| 60.0°             | $2.60 \times 10^5$       | $-1.50 \times 10^{5}$     |
| 70.0°             | $2.82 \times 10^{5}$     | $-1.03 \times 10^{5}$     |
| 80.0°             | $2.95 \times 10^{5}$     | $-0.52 \times 10^{5}$     |
| 90.0°             | $3.00 \times 10^{5}$     | $0.00 \times 10^{5}$      |

Table 11: The initial angle and the initial velocity.

To show that electrons not in loss cone will be reflected by the magnetic-mirror froce, I did simulations of electron trajectories where the pitch angles of the initial velocity relative to the magnetic field line larger the angle of the loss cone. The total simulated time was  $4 \times 10^{-8}$  seconds with 40001 steps. Shown in Fig. 51 and Fig. 52 are the electron trajectories with the magnetic field in y-z plane with the initial angles equal to 54.8° and 56.4°, respectively. The points in the figures are the locations where the electrons at the end of the simulation. In both cases, we can see electrons are reflected back up due to the magnetic mirror effect. To show that electrons do gyro motion around magnetic field lines, I chose the electron trajectories with the magnetic field in x-y plane with initial angles equal to 54.8° and 56.4°, respectively. The trajectories are looked like a lot of circles. It means converged. Then, I can also check that electrons have gyro motions in simulations in the x-y plane when they have the initial velocity perpendicular to the magnetic field at the center of the filament.



Figure 51: The electron trajectory with the magnetic field and the initial angle equal to  $54.8^{\circ}$  in the y-z plane.



Figure 52: The electron trajectory with the magnetic field and the initial angle equal to  $56.4^{\circ}$  in the y-z plane.



Figure 53: The electron trajectory with the magnetic field and the initial angle equal to  $54.8^{\circ}$  in the x-y plane.



Figure 54: The electron trajectory with the magnetic field and the initial angle equal to  $56.4^{\circ}$  in the x-y plane.

To show that electrons do gyro motions around magnetic field lines, I chose the electron

from the center of the filament in the case with the initial angle equal to 56.4°. Top view of the simulated trajectry is shown in Fig. 55. We found the radius of the circle, which was the gyrodadius of the first circle. The gyroradius of the fitting was  $4.73 \times 10^{-3}$  mm. The gyroradius of the calculation was  $4.74 \times 10^{-3}$  using the Eq.

$$r = \frac{m_{\rm e} v_\perp}{|q| B_0} \tag{32}$$

where  $v_{\perp}$  is  $2.5 \times 10^5$  m/s. The difference between the simulated radius and the calculated radius was less than 0.5 %. The gyroradius from the fitting and the calculation were similar. Therefore, the simulated electron trajectory with the magnetic field was correct.



Figure 55: The fitting of the gyroradius.

To show that the electrons are not reflected in the loss cone. I did the simulation with the magnetic field and initial velocities of all electrons equal to  $-3 \times 10^5$  m/s  $\hat{z}$  as shown in Fig. 56. Electrons were magnetized so that they follow magnetic field lines and pass through the target.



Figure 56: The electron trajectory with the magnetic field and the initial velocity at z-axis.

In summary, for electrons in loss cone as shown in Fig. 56, they penetrate through the mirror point and reach the target. They follow magnetic field lines and collide the center of the target. Contrary, electrons in loss cone as shown in 51 and 52, they were reflected by the magnetic mirror effect.

## 3.6 Electron trajectories in electric fields and magnetic fields

I did experiments with  $V_{\rm acc}$  equal to 500 V, 750 V and 1000 V. In the case where  $V_{\rm acc}$  equal to 500 V, the electric force was the smallest. Therefore, I chose this case to simulate the electron trajectory in the electric field and the magnetic field with electrons with different initial pitch angles relative to the magnetic field lines. Shown in Fig. 57–61 are the electron trajectories in the y-z plane with the initial angle equal to 54.8°, 60.0°, 70.0°, 80.0° and 90.0°, respectively. The corresponding initial velocities are shown in Table 11. The total simulated time was  $6 \times 10^{-10}$  with 601 steps. I found that electrons in all cases were magnetized so that they followed magnetic field lines. However, they were not returned and reached the target in all case. It means the electric force in  $V_{\rm acc}$  equal to 500 V was large enough such that all electrons were accelerated downward and were in the loss cone. For example, in the case where

the initial pitch angle was 54.8°, electrons were reflected as shown in Fig. 51. However, with electric fields, electrons were not reflected.



Figure 57: The electron trajectories with the initial angle equal to 54.8° in the y-z plane.



Figure 58: The electron trajectories with the initial angle equal to  $60.0^{\circ}$  in the y-z plane.



Figure 59: The electron trajectories with the initial angle equal to 70.0° in the y-z plane.



Figure 60: The electron trajectories with the initial angle equal to 80.0° in the y-z plane.


Figure 61: The electron trajectories with the initial angle equal to 90.0° in the y-z plane.

# 3.7 Electron trajectories in electric fields and magnetic fields with different $V_{\rm acc}$

Shown in section 3.6, all electrons were accelerated by electric fields and reached the target in all cases. Therefore, we would like to lowered  $V_{\rm acc}$  more and see if electrons could be reflected. Electrons have different accelerations with dfifferent  $V_{\rm acc}$ . Therefore, different simulated time and steps in the simulation are needed. I chose the simulated time when the electrons passed through the target. Shown in Table 12 are different  $V_{\rm acc}$  with different total simulated time. Initial velocities and pitch angles were  $3.00 \times 10^5$  m/s and  $90.0^{\circ}$  in all cases. Simulated results are shown in Fig. 62–66 for  $V_{\rm acc} = 250,100, 50, 25, and 1$  V. All electrons were accelerated into the loss cone since no electrons were reflected in any cases. Nevertheless, electrons in all cases were magnetized and followed magnetic field lines.

| $V_{\rm acc}$ (V) | Time (s)             | Steps |
|-------------------|----------------------|-------|
| 250               | $6 \times 10^{-10}$  | 601   |
| 100               | $1.5 \times 10^{-9}$ | 1501  |
| 50                | $2 \times 10^{-9}$   | 2001  |
| 25                | $2.5 \times 10^{-9}$ | 2501  |
| 1                 | $1.5 \times 10^{-8}$ | 15001 |

Table 12:  $V_{\rm acc}$  and simulated time.



Figure 62: The electron trajectories with  $V_{\rm acc}$  equal to 250 V in the y-z plane.



Figure 63: The electron trajectories with  $V_{\rm acc}{\rm equal}$  to 100 V in the y-z plane.



Figure 64: The electron trajectories with  $V_{\rm acc}$  equal to 50 V in the y-z plane.



Figure 66: The electron trajectories with  $V_{\rm acc}$  equal to 1 V in the y-z plane.

#### 3.8 Summary

In all simulations, no electrons were reflected once there were electric fields. It means the electric force was much larger than the magnetic mirror force. Therefore, the hypothesis that electrons were confined by the magnetic mirror effect was not correct.



#### 4 Discussions

In Chap. 2, the electric currents  $I_{\rm e}$  with  $V_{\rm acc}$  equal to 500 V, 750 V, and 1000 V were 15 mA, 10 mA, and 7.5 mA, respectively. Based on the calculated temperature of the filament as the E-gun from the power that heats the filament, the expected emission current density J using Eq. 7 with  $V_{\rm acc}$  equal to 500 V and 1000 V were 226.07 kA/m<sup>2</sup> and 34.89 kA/m<sup>2</sup>, respectively. The expected current density J with  $V_{\rm acc}$  equal to 500 V and 1000 V were 226.07 kA/m<sup>2</sup> and 34.89 kA/m<sup>2</sup>, respectively. The expected current density J with  $V_{\rm acc}$  equal to 500 V supposed to be 6.48 times larger than J with  $V_{\rm acc}$  equal to 1000 V. However,  $I_{\rm e}$  with  $V_{\rm acc}$  equal to 500 V was only 2 times higher than  $I_{\rm e}$  with  $V_{\rm acc}$  equal to 1000 V. I suspected that emitted electrons might not reach the target contributing to the current  $I_{\rm e}$  because the magnetic mirror force might be larger than the electric force.

In Chap. 3, I simulated electron trajectories using COMSOL to verify the hypothesis. However, the simulation results showed that no electrons were reflected by the magnetic-mirror force once there was an electric force from  $V_{\rm acc}$  greater than 1 V. Electrons originally not in the loss cone without electric forces were moved into the loss cone so that they reached the target. It means that the electric force was much larger than the magnetic-mirror force. Therefore, the result of the simulation didn't support the hypothesis.

In order to verify our simulation results, we estimated the electric force and the magneticmirror force. The force from the electric field  $F_{\rm E}$  could be calculated by

$$|\overrightarrow{F}_{\rm E}| = qE \thickapprox q \frac{V_{\rm acc}}{d}$$

where d = 3.5 mm is the distance between the filament and the target. The force from the magnetic-mirror effect  $F_{\rm B}$  could be calculated by

$$|\overrightarrow{F}_{\rm B}| = |-\mu\nabla_{\parallel}B| \approx \mu |\frac{\triangle B}{d}| = \frac{1}{2} \frac{m_{\rm e} v_{\perp}^2}{B_0} \frac{|B' - B_0|}{d}$$
(33)

where  $m_{\rm e}$  is the mass of the electron,  $v_{\perp}$  is the velocity perpendicular to the magnetic field,  $B_0 = 0.3$  T is the magnetic field at the center of the disc filament, and B' = 0.45 T is the magnetic field at the center of the target. For the extreme case, the initial pitch angle is set to 90°, i.e.,  $v_{\perp}$  equals to the thermal velocity  $3 \times 10^5$  m/s. If the electron is reflected,  $F_{\rm E}$  is smaller than  $F_{\rm B}$ . In other words,

$$|\overrightarrow{F}_{\rm E}| \approx q \frac{V_{\rm acc}}{d} < |F_{\rm B}| \approx \frac{1}{2} \frac{m_{\rm e} v_{\perp}^2}{B_0} \frac{|B' - B_0|}{d}$$
(34)

$$\Rightarrow V_{\rm acc} < \frac{1}{2} m_{\rm e} v_{\perp}^2 \frac{B' - B_0}{B_0} = 0.13 \,\,(\text{V}) \,. \tag{35}$$

The estimation shows that only when  $V_{\rm acc}$  less than 0.13 V can electrons be reflected by the magnetic-mirror force. In other words, once  $V_{\rm acc}$  is larger than 0.13 V, electrons will not be reflected. The estimated results support the simulation results where  $V_{\rm acc}$  was larger than 1 V in all cases.

When I did the simulation of the electron trajectories, I assumed that initial locations of the electrons were 0.2 mm under the filament. In other words, I assumed that electrons had already been emitted from the filament since thermionic electron emission was not simulated. Therefore, even the simulation results didn't support the hypothesis we obtained from experiments, we have rolled out the magnetic mirror effect in our system. To understand more details of the electron behaviors in MIT-MEB, we need to study thermionic electron emission more carefully.

In our experiments, we set  $V_{\text{acc}}$  larger than 0.13 V which provided the electric field large enough to pull out the electrons from the thermal filament. In those case, we know that the electric force  $|\vec{F}_{\text{E}}|$  is much larger than the magnetic-mirror force  $|\vec{F}_{\text{B}}|$  when the electric force is parallel to the magnetic field as shown in Fig. 67 (a). In order to have a magnetic-mirror effect comparable to the electric field, we can redesign the system such that the electric field is not paralleled to the magnetic-mirror force. We can set the relation between the electric force and the magnetic-mirror force as shown in Fig. 67 (b). In this case, the component of the electric field  $\vec{F}_{\text{E}}$  parallel to  $\vec{F}_{\text{B}}$ , writen as  $\vec{F}_{\parallel}$ , is much smaller  $\vec{F}_{\text{B}}$ . Therefore, electrons can be reflected by  $\vec{F}_{\text{B}}$ . In fact, the component of  $\vec{F}_{\text{E}}$  perpendicular to  $\vec{F}_{\text{B}}$ , writen as  $\vec{F}_{\perp}$ , increases the component of the velocity perpendicular to  $\vec{F}_{\text{B}}$ . The magnetic moment and thus the magnetic-mirror force increase. It also helps reflecting the electrons. Therefore, moving the filament as the E-gun sideway as shown in Fig. 67 (c) may enhance the magnetic-mirror effect. Electrons may be trapped easier.

Therefore, using other simulations which can simulate the thermionic electron emission to study the electron behavior in MIT-MEB and changing the design of the MIT-MEB are left as the future work for our group.



Figure 67: The Electric field (a)parallel to the magnetic field and (b)not parallel to the magnetic field, and the suggested position of the filament.



#### 5 Summary

Electron trajectories play an important role in the MIT-MEB. Therefore, we have done a series of experiments with experiments with different accelerating voltage  $V_{\rm acc}$  and see if the performance of the MIT-MEB can be improved. In our experiments, we had  $V_{\rm acc}$  equal to 500, 750, and 1000 V. We found that the filament as the E-gun for providing the thermionic emitted electrons  $I_{\rm e}$  needed to be heated to much a higher temperature for  $V_{\rm acc} = 500$  V than that for  $V_{\rm acc} = 1000$  V. We could calculate the expected emitted current from the temperature using Eq. 7. We found that the expected current with  $V_{\rm acc} = 500$  V supposed to be 6.48 times higher than that with  $V_{\rm acc} = 1000$  V. However,  $I_{\rm e}$  with  $V_{\rm acc}$  equal to 500 V was only 2 times higher than  $I_{\rm e}$  with  $V_{\rm acc}$  equal to 1000 V in experiments. It means that the electric current  $I_{\rm e}$  was much smaller than the expected current emitted from the E-gun due to the thermal emission. We suspected that electrons emitted from the E-gun were confined by the magnetic-mirror effect due to the non-uniform magnetic field. The confinement would have depended on the competition between the electric force and the magnetic-mirror force. The electric force would accelerate electrons toward the target while the magnetic-mirror force would reflect electrons back to the filament of the E-gun preventing them to reach the target. Therefore, we studied the electron trajectories in simulations. However, in simulation results, no electrons were reflected by the magnetic mirror force once there was an electric force from  $V_{\rm acc}$  greater than 1 V. To verify the simulation results, we used a simple model to estimate the required electric potential  $V_{\rm acc}$  such that the electric force would overcome the magnetic mirror force. We found that  $V_{\rm acc} = 0.13$ V was enough in the model. It explained all electrons reached the target in our simulations. However, it didn't explain the experimental results. Nevertheless, if we provide the electric force whose component parallel to the magnetic field, electrons may still be reflected by the magnetic-mirror effect. In fact, I assumed electrons had already been emitted from the filament since thermionic electron emission was not simulated in my simulations. In other words, we only rolled out the possibilities of electrons being reflected by the magnetic-mirror effect. However, how electrons were emitted from the filament with different  $V_{\rm acc}$  was not considered. Therefore, using other simulations, which could simulate the thermionic electron emission, need to be conducted more carefully. It is left as the future work for our group.

#### References

- Ming-Hsueh Shen. Development of a micro ecr ion thruster for space propulsion. Master's thesis, National Cheng Kung University, 2016. Replotted from Kuriki, K. and Arakawa. Y.,Introduction to electric propulsion, U. Tokyo Press., Tokyo, 2003.
- [2] K. Kuriki and Y. Arakawa. Introduction to electric propulsion. University of Tokyo Press, 2003.
- [3] Robert G. Jahn. *Physics of electric propulsion*. Dover Publications, 2006.
- [4] S. Anthony. Nasa's next ion drive breaks world record, will eventually powerinterplanetary missions., December 2012.
- [5] Riccardo Albertoni Anuscheh Nawaz and Monika Auweter-Kurtz. Thrust efficiency optimization of the pulsed plasma thruster simp-lex. Acta Astronautica, 67(3):440 - 448, 2010.
- [6] Joseph Ashkenazy, G Appelbaum, T Ram-Cohen, A Warshavsky, I Tidhar, and L Rabinovich. Venµs technological payload - the israeli hall effect thruster electric propulsion system. 2007.
- [7] Mike Robin James Szabo and John Duggan. Light metal propellant hall thrusters. IEPC-2009-138, Presented at the 31st International Electric Propulsion Conference, University of Michigan • Ann Arbor, Michigan • USA, September 20 – 24, 2009.
- [8] Kuo-Yi Chen. Development of metallic ion thruster using magnetron electron-beam bombardment. Master's thesis, National Cheng Kung University, Institute of Space and Plasma Sciences, 2019.
- C.R. Crowell. The richardson constant for thermionic emission in schottky barrier diodes. Solid-State Electronics, 1965.
- [10] K.S Sree Harsha. Principle of Vapor Deposition of Thin Films. Elsevier Science, 2006.
- [11] Thermionic emission, [online] http://spmphysics.onlinetuition.com.my/2013/06/thermionicemission.html.

- [12] Jatosado. Electron beam deposition, wikipedia.
- [13] J Stefan. über die beziehung zwischen der wärmestrahlung und der temperatur. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Vol. 79, Aus der k.k. Hof-und Staatsdruckerei, 391-428, 1879.
- [14] [online] https://luxel.com/wp-content/uploads/2013/04/luxel-vapor-pressure-chart.pdf.
- [15] First ionization energy. wikipedia.
- [16] Kuo-Yi Chen, Po-Yu Chang, and Wan-Yi Lin. Metal ion thruster using magnetron electron-beam bombardment (mit-meb). Plasma Sources Science and Technology, 2019.
- [17] Rahla Naghma Debdeep Ghoshal Jaspreet Kaur, Dhanoj Gupta and Bobby Antony. Electron impact ionization cross sections of atoms. *Canadian Journal of Physics*, 93(6):617–625, 2015.
- [18] Jaro.p. Lorentz force.svg. wikipedia.
- [19] Paul Urone. College physics Vol. 1. OpenStax, Houston, Texas, 2017.
- [20] Francis Chen. Introduction to plasma physics and controlled fusion. Plenum Press, New York, 1984.
- [21] Comsol multiphysics, http://www.comsol.com, comsol ab, stockholm, sweden.

## Appendix

#### A SOP of the vacuum system

#### A.1 抽真空 Pumping down

1. 確認粗抽閥(角閥)與閘閥開啓。

Open the angle valve and the gate valve.

2. 球閥(1)和球閥(2)關閉。

Close the ball valve(1) and the ball valve(2).

3. 開啓粗抽泵。

Turn on the rotary pump.

4. 確認低真空計低於10<sup>-1</sup> torr (10 Pa)。

Check the low vacuum gauge if the pressure in the chamber is less than  $10^{-1}$  torr (10 Pa).

5. 打開擴散泵。

Turn on the diffusion pump.

6. 確認低真空計低於 $5.0 \times 10^{-2}$  torr (6.7 Pa)或擴散泵已開啓超過一小時。

Check the low vacuum gauge if the pressure in the chamber is less than  $5.0 \times 10^{-2}$  torr (6.7 Pa) or the diffusion pump has been turned on for over one hour.

7. 可開啓高真空計(Ion gauge)。

Turn on the ion gauge.

注意:氣壓大於5.0×10<sup>-2</sup> torr (6.7 Pa)不可開啓高眞空計,且不使用高眞空計時記得 關閉避免燒壞。

Note: The ion gauge can't be truned on when the pressure in the chamber is higher than  $5.0 \times 10^{-2}$  torr (6.7 Pa) or the diffusion pump hasn't been turned on for over one hour, and should be turned off if it is not used.

8. 確認高真空計低於4.5×10<sup>-5</sup> torr (6.0×10<sup>-3</sup> Pa)。

Check the ion gauge if the pressure in the chamber is less than  $4.5 \times 10^{-5}$  torr ( $6.0 \times 10^{-3}$  Pa).

- 9. 可開始做實驗。
- 10. We can start doing the experiment.

#### A.2 破真空 Vacuum venting

1. 關掉高真空計。

Turn off the ion gauge.

注意:高真空計必須關閉以免燒壞。

Note: The ion gauge has to be turned off of it will be damaged.

2. 關掉擴散泵。

Turn off the diffusion pump.

3. 關閉閘閥。

Close the gate valve.

- 打開球閥(1)將真空腔破真空。
   Open the ball valve (1) to vent the chamber.
- 5. 等待擴散泵的温度冷卻至 35°C以下。

Wait until the diffusion pump cools down to less than 35°C. 注意:擴散泵未冷卻前不可破真空。

Note: Do not vent the diffusion pump before it cools down.

6. 關閉角閥。

Close the angle valve.

7. 關閉粗抽泵。

Turn off the rotary pump.

8. 打開球閥(2)破擴散泵的真空。

Open the ball value (2) to vent the diffusion pump .

## B Experimental raw data

| Date     | $V_{\rm acc}(V)$ | $I_{\rm f}({\rm A})$ | $\mathrm{std}_{I_{\mathrm{f}}}(\mathrm{A})$ | $V_{\mathbf{f}}(\mathbf{V})$ | $\operatorname{std}_{V_{\mathbf{f}}}(\mathbf{V})$ | $I_{\rm nf}(A)$ | $\mathrm{std}_{I_{\mathrm{nf}}}(\mathrm{A})$ | $V_{\rm nf}({ m V})$ | $\mathrm{std}_{V_{\mathrm{nf}}}(\mathrm{V})$ |
|----------|------------------|----------------------|---------------------------------------------|------------------------------|---------------------------------------------------|-----------------|----------------------------------------------|----------------------|----------------------------------------------|
| 20190905 | 1000             | 2.26                 | 0.05                                        | 2.0                          | 0.1                                               | 2.34            | 0.00                                         | 2.2                  | 0.0                                          |
| 20190906 | 1000             | 2.20                 | 0.01                                        | 1.8                          | 0.0                                               | 2.33            | 0.00                                         | 2.8                  | 0.2                                          |
| 20190910 | 1000             | 2.16                 | 0.39                                        | 1.8                          | 0.3                                               | 0.00            | 0.00                                         | 16.3                 | 9.3                                          |
| 20190911 | 1000             | 2.43                 | 0.01                                        | 2.5                          | 0.2                                               | 2.33            | 0.00                                         | 2.0                  | 0.0                                          |
| 20190912 | 1000             | 2.34                 | 0.07                                        | 2.2                          | 0.1                                               | 2.33            | 0.00                                         | 2.0                  | 0.1                                          |
| 20190917 | 1000             | 2.41                 | 0.02                                        | 2.1                          | 0.0                                               | 2.33            | 0.01                                         | 2.1                  | 0.0                                          |
| 20190919 | 1000             | 2.37                 | 0.01                                        | 19                           | 0.0                                               | 2.34            | 0.00                                         | 2.2                  | 0.2                                          |
| 20191007 | 250              | 2.61                 | 0.05                                        | 3.3                          | 0.0                                               | 2.33            | 0.00                                         | 2.5                  | 0.2                                          |
| 20191015 | 1000             | 2.01                 | 0.00                                        | 1.0                          | 0.1                                               | 2.00            | 0.00                                         | 2.0                  | 0.2                                          |
| 20101019 | 1000             | 2.00                 | 0.01                                        | 1.0                          | 0.1                                               | 2.02            | 0.10                                         | 2.0                  | 0.1                                          |
| 20191018 | 1000             | 2.20                 | 0.02                                        | 1.9                          | 0.0                                               | 2.00            | 0.03                                         | 2.4                  | 28                                           |
| 20191025 | 1000             | 2.24                 | 0.03                                        | 1.9                          | 0.0                                               | 2.04            | 0.02                                         | 9.9                  | 2.0                                          |
| 20191029 | 1000             | 2.10                 | 0.05                                        | 2.2                          | 0.1                                               | 2.00            | 0.00                                         | 2.0                  | 0.0                                          |
| 20191031 | 1000             | 2.10                 | 0.02                                        | 2.0                          | 0.2                                               | 2.33            | 0.00                                         | 2.3                  | 0.1                                          |
| 20191101 | 1000             | 1.94                 | 0.04                                        | 2.8                          | 0.1                                               | 2.34            | 0.00                                         | 2.3                  | 0.0                                          |
| 20191104 | 1000             | 1.86                 | 0.03                                        | 2.6                          | 0.1                                               | 2.33            | 0.00                                         | 2.4                  | 0.1                                          |
| 20191230 | 1000             | 2.01                 | 0.03                                        | 3.1                          | 0.1                                               | 2.27            | 0.40                                         | 3.2                  | 0.6                                          |
| 20200102 | 1000             | 1.98                 | 0.07                                        | 3.1                          | 0.2                                               | 2.34            | 0.00                                         | 3.4                  | 0.1                                          |
| 20200106 | 1000             | 2.00                 | 0.06                                        | 2.9                          | 0.2                                               | 2.36            | 0.17                                         | 3.4                  | 0.1                                          |
| 20200109 | 1000             | 2.02                 | 0.04                                        | 3.2                          | 0.2                                               | 2.33            | 0.00                                         | 3.0                  | 0.0                                          |
| 20200117 | 250              | 2.34                 | 0.19                                        | 3.6                          | 0.4                                               | 2.33            | 0.00                                         | 2.8                  | 0.0                                          |
| 20200120 | 250              | 2.27                 | 0.05                                        | 3.8                          | 0.3                                               | 2.33            | 0.00                                         | 3.1                  | 0.1                                          |
| 20200122 | 250              | 2.32                 | 0.00                                        | 3.4                          | 0.0                                               | 2.33            | 0.00                                         | 3.5                  | 0.1                                          |
| 20200213 | 250              | 2.37                 | 0.01                                        | 3.2                          | 0.1                                               | 2.33            | 0.01                                         | 2.2                  | 0.1                                          |
| 20200218 | 250              | 2.20                 | 0.00                                        | 2.8                          | 0.1                                               | 2.32            | 0.00                                         | 2.6                  | 0.1                                          |
| 20200224 | 250              | 2.32                 | 0.00                                        | 3.5                          | 0.1                                               | 2.24            | 0.49                                         | 3.3                  | 0.7                                          |
| 20200303 | 250              | 2.44                 | 0.04                                        | 3.6                          | 0.1                                               | 2.32            | 0.01                                         | 2.2                  | 0.0                                          |
| 20200305 | 500              | 2.01                 | 0.07                                        | 2.7                          | 0.3                                               | 2.32            | 0.00                                         | 2.4                  | 0.1                                          |
| 20200309 | 500              | 2.11                 | 0.17                                        | 3.2                          | 0.3                                               | 2.32            | 0.01                                         | 2.2                  | 0.1                                          |
| 20200317 | 500              | 2.40                 | 0.00                                        | 3.1                          | 0.0                                               | 2.34            | 0.00                                         | 2.0                  | 0.0                                          |
| 20200326 | 500              | 2.38                 | 0.02                                        | 3.0                          | 0.1                                               | 2.37            | 0.30                                         | 2.4                  | 0.5                                          |
| 20200422 | 750              | 2.00                 | 0.02                                        | 2.6                          | 0.1                                               | 2.35            | 0.4                                          | 4.1                  | 1.2                                          |
| 20200422 | 750              | 2.21                 | 0.02                                        | 2.0                          | 0.0                                               | 2.50            | 0.01                                         | 2.6                  | 0.1                                          |
| 20200420 | 750              | 2.15                 | 0.01                                        | 2.0                          | 0.0                                               | 0.18            | 0.66                                         | 0.2                  | 0.1                                          |
| 20200505 | 750              | 2.17                 | 0.01                                        | 2.1                          | 0.1                                               | 1.09            | 1.21                                         | 1.4                  | 1.6                                          |
| 20200505 | 750              | 2.10                 | 0.02                                        | 2.0                          | 0.1                                               | 1.00            | 0.02                                         | 1.4                  | 1.0                                          |
| 20200508 | 750              | 2.00                 | 0.02                                        | 2.0                          | 0.1                                               | 2.45            | 0.02                                         | 0.4                  | 0.1                                          |
| 20200520 | 001              | 1.98                 | 0.04                                        | 2.1                          | 1.0                                               | 2.45            | 0.00                                         | 3                    | 0.1                                          |
| 20200526 | 900              | 1.98                 | 0.02                                        | 2.6                          | 0.0                                               | 2.5             | 0.02                                         | 2.7                  | 0.1                                          |
| 20200529 | 900              | 1.83                 | 0.00                                        | 2.5                          | 0.0                                               | 2.46            | 0.02                                         | 3.3                  | 0.1                                          |
| 20200602 | 900              | 1.84                 | 0.05                                        | 2.6                          | 0.1                                               | 2.55            | 0.00                                         | 2.8                  | 0.0                                          |
| 20200605 | 900              | 1.86                 | 0.02                                        | 2.8                          | 0.1                                               | 0.00            | 0.00                                         | 0.0                  | 0.0                                          |
| 20200611 | 1000             | 1.91                 | 0.03                                        | 2.7                          | 0.1                                               | 2.55            | 0.00                                         | 3.3                  | 0.1                                          |
| 20200612 | 1000             | 2.02                 | 0.00                                        | 2.6                          | 0.1                                               | 2.48            | 0.28                                         | 3.2                  | 0.3                                          |
| 20200616 | 500              | 2.26                 | 0.06                                        | 3.8                          | 0.1                                               | 1.13            | 1.34                                         | 8.2                  | 4.1                                          |
| 20200617 | 500              | 2.25                 | 0.04                                        | 3.8                          | 0.1                                               | 2.56            | 0.01                                         | 3.0                  | 0.1                                          |
| 20200619 | 500              | 2.17                 | 0.10                                        | 3.6                          | 0.2                                               | 0.28            | 0.81                                         | 0.4                  | 1.1                                          |
| 20200624 | 500              | 2.07                 | 0.00                                        | 3.2                          | 0.0                                               | 2.55            | 0.00                                         | 2.3                  | 0                                            |
| 20200626 | 1000             | 1.96                 | 0.01                                        | 2.7                          | 0.1                                               | 2.55            | 0.00                                         | 3.0                  | 0.1                                          |
| 20200629 | 1000             | 1.96                 | 0.01                                        | 2.6                          | 0.0                                               | 2.54            | 0.00                                         | 2.9                  | 0.1                                          |
| 20200703 | 1000             | 1.95                 | 0.01                                        | 3                            | 0.1                                               | 2.54            | 0.00                                         | 2.4                  | 0.1                                          |
| 20200706 | 1000             | 1.93                 | 0.01                                        | 2.8                          | 0.2                                               | 2.53            | 0.00                                         | 2.7                  | 0                                            |
| 20200708 | 1000             | 1.91                 | 0.01                                        | 3                            | 0.1                                               | 0               | 0.00                                         | 0.0                  | 0.0                                          |
| 20200709 | 1000             | 1.9                  | 0.01                                        | 2.8                          | 0.1                                               | 2.54            | 0.00                                         | 2.8                  | 0                                            |
| 20200714 | 1000             | 1.9                  | 0.01                                        | 2.7                          | 0.1                                               | 1.46            | 1.26                                         | 1.9                  | 1.6                                          |
| 20200716 | 750              | 1.89                 | 0.01                                        | 2.9                          | 0.2                                               | 2.55            | 0.00                                         | 3.5                  | 0.1                                          |
| 20200722 | 750              | 1.82                 | 0.00                                        | 3.0                          | 0.1                                               | 2.54            | 0.00                                         | 3.4                  | 0.2                                          |
| 20200724 | 750              | 1.97                 | 0.01                                        | 3.0                          | 01                                                | 1.23            | 1.30                                         | 21                   | 2.6                                          |
| 20200729 | 750              | 2.08                 | 0.01                                        | 3.2                          | 0.1                                               | 2.54            | 0.00                                         | 2.7                  | 0.1                                          |
| 20200720 | 750              | 2.00                 | 0.02                                        | 2.0                          | 0.0                                               | 1 40            | 1.00                                         | 1.8                  | 1.6                                          |
| 20200100 | 100              | 2.00                 | 0.04                                        | 2.9                          | 0.0                                               | 1.45            | 1.41                                         | 1.0                  | 1.0                                          |

Table 13: Currents, voltages, and powers of filaments of E-gun and neutralizer.

| Date     | $V_{\rm acc}(V)$ | Actual $V_{\rm acc}(V)$ | std <sub>Vace</sub> (V) | I <sub>e</sub> (mA) | $std_{I_e}(A)$ | Power(W) | std <sub>Power</sub> (W) |
|----------|------------------|-------------------------|-------------------------|---------------------|----------------|----------|--------------------------|
| 20190905 | 1000             | NA                      | NA                      | 14.6                | 1.2            | 14.6     | 1.2                      |
| 20190906 | 1000             | NA                      | NA                      | 15.1                | 0.6            | 15.1     | 0.6                      |
| 20190910 | 1000             | NA                      | NA                      | 14.1                | 2.1            | 14.1     | 2.1                      |
| 20190911 | 1000             | NA                      | NA                      | 15.1                | 0.9            | 15.1     | 0.9                      |
| 20190912 | 1000             | 730                     | 276                     | 9.6                 | 5.4            | 7.1      | 4.8                      |
| 20190917 | 1000             | NA                      | NA                      | 15.0                | 1.0            | 15.0     | 1.0                      |
| 20190919 | 1000             | NA                      | NA                      | 14.8                | 0.9            | 14.8     | 0.9                      |
| 20191007 | 250              | NA                      | NA                      | 6.0                 | 0.1            | 1.5      | 0.1                      |
| 20191015 | 1000             | 1008                    | 1                       | 14.6                | 2.1            | 14.8     | 2.2                      |
| 20191018 | 1000             | 1007                    | 1                       | 14.8                | 1.2            | 14.9     | 1.2                      |
| 20191025 | 1000             | NA                      | NA                      | 13.8                | 2.8            | 13.8     | 2.8                      |
| 20191029 | 1000             | 877                     | 299                     | 12.9                | 4.9            | 12.9     | 5.0                      |
| 20191031 | 1000             | 857                     | 302                     | 12.9                | 2.7            | 11.7     | 4.8                      |
| 20191101 | 1000             | 949                     | 165                     | 13.7                | 4.5            | 13.2     | 4.7                      |
| 20191104 | 1000             | 808                     | 363                     | 8.6                 | 5.4            | 8.2      | 5.6                      |
| 20191230 | 1000             | 916                     | 267                     | 13.7                | 4.1            | 13.3     | 4.5                      |
| 20200102 | 1000             | 903                     | 190                     | 12.4                | 3.3            | 11.4     | 4.3                      |
| 20200106 | 1000             | 1006                    | 33                      | 14.2                | 3.1            | 14.4     | 3.2                      |
| 20200109 | 1000             | 956                     | 182                     | 12.8                | 3.7            | 12.4     | 4.3                      |
| 20200117 | 250              | 251                     | 0                       | 8.5                 | 0.7            | 2.1      | 0.2                      |
| 20200120 | 250              | 249                     | 1                       | 10.1                | 0.2            | 2.5      | 0.1                      |
| 20200122 | 250              | 249                     | 1                       | 5.8                 | 0.1            | 1.4      | 0.0                      |
| 20200213 | 250              | 251                     | 0                       | 8.0                 | 0.1            | 1.9      | 0.4                      |
| 20200218 | 250              | 252                     | 1                       | 9.9                 | 0.2            | 2.5      | 0.1                      |
| 20200224 | 250              | 254                     | 2                       | 10.1                | 0.1            | 2.6      | 0.0                      |
| 20200303 | 250              | 251                     | 0                       | 6.1                 | 0.2            | 1.5      | 0.1                      |
| 20200305 | 500              | 501                     | 1                       | 6.3                 | 2.3            | 3.1      | 1.2                      |
| 20200309 | 500              | 500                     | 2                       | 9.9                 | 6.0            | 5.0      | 3.0                      |
| 20200317 | 500              | 504                     | 1                       | 10.0                | 0.2            | 5.0      | 0.1                      |
| 20200326 | 500              | 503                     | 1                       | 9.1                 | 0.3            | 4.6      | 0.1                      |
| 20200422 | 750              | 752                     | 1                       | 10.0                | 1.6            | 7.5      | 1.2                      |
| 20200426 | 750              | 751                     | 1                       | 10.9                | 0.8            | 8.2      | 0.6                      |
| 20200501 | 750              | 754                     | 2                       | 10.6                | 0.4            | 8.0      | 0.3                      |
| 20200505 | 750              | 752                     | 1                       | 10.1                | 0.6            | 7.6      | 0.5                      |
| 20200508 | 750              | 758                     | 56                      | 10.2                | 0.6            | 7.7      | 0.6                      |
| 20200520 | 750              | 752                     | 1                       | 10.2                | 0.4            | 7.7      | 0.3                      |
| 20200526 | 900              | 903                     | 0                       | 8.7                 | 0.8            | 7.8      | 0.8                      |
| 20200529 | 900              | 903                     | 0                       | 8.3                 | 0.3            | 7.5      | 0.3                      |
| 20200602 | 900              | 903                     | 1                       | 8.0                 | 0.5            | 7.2      | 0.5                      |
| 20200605 | 900              | 898                     | 19                      | 7.8                 | 0.8            | 7.0      | 0.7                      |
| 20200611 | 1000             | 957                     | 150                     | 13.3                | 3.4            | 12.9     | 4.0                      |
| 20200612 | 1000             | 1006                    | 1                       | 7.5                 | 0.3            | 7.5      | 0.3                      |
| 20200616 | 500              | 504                     | 1                       | 15.0                | 0.4            | 7.5      | 0.2                      |
| 20200617 | 500              | 506                     | 1                       | 15.0                | 0.5            | 7.6      | 0.2                      |
| 20200619 | 500              | 506                     | 1                       | 15.1                | 0.7            | 7.7      | 0.4                      |
| 20200624 | 500              | 506                     | 1                       | 15.0                | 0.2            | 7.6      | 0.1                      |
| 20200626 | 1000             | 1003                    | 1                       | 7.4                 | 0.3            | 7.4      | 0.3                      |
| 20200629 | 1000             | 1003                    | 1                       | 7.4                 | 0.4            | 7.4      | 0.4                      |
| 20200703 | 1000             | 1003                    | 1                       | 7.5                 | 0.2            | 7.5      | 0.2                      |
| 20200706 | 1000             | 1004                    | 3                       | 7.5                 | 0.3            | 7.5      | 0.3                      |
| 20200708 | 1000             | 1002                    | 1                       | 7.5                 | 0.2            | 7.6      | 0.2                      |
| 20200709 | 1000             | 1003                    | 1                       | 7.5                 | 0.2            | 7.6      | 0.2                      |
| 20200714 | 1000             | 1003                    | 1                       | 7.5                 | 0.2            | 7.5      | 0.2                      |
| 20200716 | 750              | 752                     | 0                       | 10.0                | 0.4            | 7.6      | 0.3                      |
| 20200722 | 750              | 752                     | 1                       | 10.0                | 0.2            | 7.5      | 0.1                      |
| 20200724 | 750              | 750                     | 14                      | 9.9                 | 0.3            | 7.5      | 0.2                      |
| 20200729 | 750              | 753                     | 1                       | 10.0                | 0.1            | 7.5      | 0.1                      |
| 20200730 | 750              | 754                     | 1                       | 9.9                 | 0.1            | 7.5      | 0.1                      |

Table 14: Currents, voltages, and powers of the E-beam.

| Date     | $V_{aaa}(V)$ | time(s) | $m_i - m_i(\sigma)$ | Evaporation rate $(g/s)$ |
|----------|--------------|---------|---------------------|--------------------------|
| 20190905 | 1000         | 600     | 1.01E-01            | 1.70E-04                 |
| 20190906 | 1000         | 310     | 6.28E-02            | 2.00E-04                 |
| 20190910 | 1000         | 320     | 2 44E-02            | 7.60E-05                 |
| 20190911 | 1000         | 390     | 4.01E-02            | 1.00E-04                 |
| 20190912 | 1000         | 320     | 3.03E-02            | 9.50E-05                 |
| 20190912 | 1000         | 380     | 6.73E-02            | 6 70E-02                 |
| 20190919 | 1000         | 330     | 4.71E-02            | 1.40E-04                 |
| 20100010 | 250          | 310     | 1.00E-04            | 3.20E-07                 |
| 20191015 | 1000         | 560     | 4 00E-04            | 7.10E-07                 |
| 20101010 | 1000         | 320     | 7.01E-02            | 2 20E-04                 |
| 20101010 | 1000         | 360     | 2 10E-03            | 5.80E-06                 |
| 20101020 | 1000         | 310     | 8.21E-02            | 2.60E-04                 |
| 20101020 | 1000         | 320     | 7.54E-02            | 2.00E-04                 |
| 20191001 | 1000         | 350     | 9.30E-02            | 2.40E-04                 |
| 20101101 | 1000         | 310     | 2.34E-01            | 7.50E-04                 |
| 2010104  | 1000         | 330     | 9.00F-04            | 2 70E-04                 |
| 20191250 | 1000         | 300     | 3.71E-02            | 1.20E-04                 |
| 20200102 | 1000         | 320     | 5.40E-03            | 1.20E-04                 |
| 20200100 | 1000         | 380     | 1.33E-02            | 3.50E-05                 |
| 20200105 | 250          | 360     | 1.00E-04            | 2.80E-07                 |
| 20200117 | 250          | 600     | 7.00E-04            | 1.20E-07                 |
| 20200120 | 250          | 1140    | 2.04E.02            | 2.50E.06                 |
| 20200122 | 250          | 2180    | 1.30E-03            | 4.10E-07                 |
| 20200213 | 250          | 2040    | 1.30E-03            | 2.70E.07                 |
| 20200218 | 250          | 12940   | 1.10E-03            | 3.70E-07                 |
| 20200224 | 250          | 1020    | 6.00E.04            | 5.60E.07                 |
| 20200303 | 200          | 1500    | 0.00E-04            | 5.00E-07                 |
| 20200305 | 500          | 1000    | 7.70E-02            | 1.10E-05                 |
| 20200309 | 500          | 120     | 7.70E-03            | 0.40E-00<br>2.70E-06     |
| 20200317 | 500          | 1440    | 3.90E-03            | 2.70E-00<br>2.10E-06     |
| 20200320 | 500          | 1440    | 4.40E-03            | 3.10E-00                 |
| 20200422 | 750          | 180     | 2.50E-03            | 1.40E-05                 |
| 20200420 | 750          | 200     | -1.00E-04           | -3.80E-07                |
| 20200501 | 750          | 3000    | 1.20E-03            | 5.50E-07                 |
| 20200505 | 750          | 3000    | 0.00E-03            | 1.80E-00                 |
| 20200508 | 750          | 1380    | 7.97E-02            | 5.80E-05                 |
| 20200520 | 061          | 3000    | 3.28E-02            | 9.10E-00                 |
| 20200526 | 900          | 600     | 2.58E-02            | 4.30E-05                 |
| 20200529 | 900          | 360     | 1.74E-02            | 4.80E-05                 |
| 20200602 | 900          | 360     | 4.27E-02            | 1.20E-04                 |
| 20200605 | 900          | 360     | 9.82E-02            | 2.70E-04                 |
| 20200611 | 1000         | 300     | 2.44E-02            | 8.10E-05                 |
| 20200612 | 1000         | 300     | 1.10E-03            | 3.70E-06                 |
| 20200616 | 500          | 600     | 9.00E-04            | 1.50E-06                 |
| 20200617 | 500          | 3600    | 6.30E-03            | 1.70E-06                 |
| 20200619 | 500          | 3600    | 5.80E-03            | 1.60E-06                 |
| 20200624 | 500          | 3600    | 6.00E-03            | 1.70E-06                 |
| 20200626 | 1000         | 720     | 1.70E-03            | 2.40E-06                 |
| 20200629 | 1000         | 1800    | 5.10E-03            | 2.80E-06                 |
| 20200703 | 1000         | 3600    | 5.40E-03            | 1.50E-06                 |
| 20200706 | 1000         | 3600    | 4.70E-03            | 1.30E-06                 |
| 20200708 | 1000         | 3600    | -3.00E-04           | -8.30E-08                |
| 20200709 | 1000         | 3600    | 2.90E-03            | 8.10E-07                 |
| 20200714 | 1000         | 3600    | 4.70E-03            | 1.30E-06                 |
| 20200716 | 750          | 780     | 1.58E-02            | 2.00E-05                 |
| 20200722 | 750          | 900     | -1.60E-03           | -1.80E-06                |
| 20200724 | 750          | 2400    | 5.54E-02            | 2.30E-05                 |
| 20200729 | 750          | 1800    | 1.10E-03            | 6.11E-07                 |
| 20200730 | 750          | 2700    | 2.30E-03            | 8.52E-07                 |

Table 15: Experimental time and evaporation rates.

Table 16:  $I_{\rm n}$  and  $\beta$ .

| Date     | Vace | $I_{n}(\mu A)$ | $std_{I}(\mu A)$ | $\beta(\%)$ | $\mathrm{std}_{\beta}(\%)$ | $I_{n(max)}(\mu A)$ | $\beta_{max}(\%)$ |
|----------|------|----------------|------------------|-------------|----------------------------|---------------------|-------------------|
| 20190905 | 1000 | 54.42          | 53.96            | 2.21E-02    | 0.021892058                | 184.90              | 0.07501808        |
| 20190906 | 1000 | -0.58          | 15.96            | -1.95E-04   | -0.000194851               | -40.86              | -0.013734336      |
| 20190910 | 1000 | 0.00           | 10.60            | 8 02E-03    | 0.000154001                | 39.39               | 0.02886282        |
| 20190910 | 1000 | 1.01           | 11.00            | 6.67E 04    | 0.0072257                  | 40.76               | 0.02000202        |
| 20190911 | 1000 | 200.20         | 176.46           | 1.60F.01    | 0.126000171                | -49.10<br>612.40    | 0.44119165        |
| 20190912 | 1000 | 222.00         | 170.40           | 1.00E-01    | 0.120900171                | 448.00              | 0.44112105        |
| 20190917 | 1000 | 207.80         | 100.19           | 8.41E-02    | 0.031401201                | 448.90              | 0.140905032       |
| 20190919 | 1000 | 1.80           | 0.14             | 8.89E-04    | 0.002929647                | -12.01              | -0.006016104      |
| 20191007 | 250  | 0.56           | 0.61             | 1.18E-01    | 0.129578166                | 1.39                | 0.293415969       |
| 20191015 | 1000 | 9.34           | 18.11            | 9.33E-01    | 1.711620013                | 34.22               | 3.262235375       |
| 20191018 | 1000 | -2.70          | 16.51            | -8.40E-04   | 0.005133393                | -85.84              | -0.026682648      |
| 20191025 | 1000 | 156.71         | 76.37            | 1.83E+00    | 0.891444056                | 329.85              | 3.850409732       |
| 20191029 | 1000 | 23.46          | 39.67            | 6.03E-03    | 0.01019844                 | 191.29              | 0.049183344       |
| 20191031 | 1000 | 200.84         | 195.62           | 5.80E-02    | 0.056531849                | 693.40              | 0.200387082       |
| 20191101 | 1000 | 188.01         | 121.61           | 4.82E-02    | 0.03116442                 | 439.72              | 0.112685638       |
| 20191104 | 1000 | 110.06         | 90.18            | 9.95E-03    | 0.008148859                | 371.53              | 0.033572988       |
| 20191230 | 1000 | 48.71          | 26.37            | 1.22E + 00  | 0.658275319                | 110.00              | 2.746447917       |
| 20200102 | 1000 | 372.34         | 373.23           | 2.05E-01    | 0.205507042                | 1364.30             | 0.751215389       |
| 20200106 | 1000 | 94.34          | 46.62            | 3.81E-01    | 0.188110275                | 192.04              | 0.774916963       |
| 20200109 | 1000 | 240.42         | 302.97           | 4.68E-01    | 0.589431506                | 1306.00             | 2.540869643       |
| 20200117 | 250  | 108.47         | 9.90             | 2.66E + 01  | 2.427557621                | 131.40              | 32.2110675        |
| 20200120 | 250  | 11.67          | 2.42             | 6.81E-01    | 0.141081794                | 14.19               | 0.828214554       |
| 20200122 | 250  | 31.00          | 8.88             | 6.11E-01    | 0.174874815                | 42.02               | 0.827888652       |
| 20200213 | 250  | 4.38           | 0.53             | 7.29E-01    | 0.088863829                | 5.26                | 0.876146567       |
| 20200218 | 250  | 7.83           | 3.22             | 1.43E+00    | 0.586842067                | 19.21               | 3.496143597       |
| 20200224 | 250  | 2.49           | 5.48             | 1.20E-02    | 0.026336264                | 12.94               | 0.062197632       |
| 20200303 | 250  | 0.53           | 0.32             | 6.53E-02    | 0.039573327                | 1.00                | 0.12256875        |
| 20200305 | 500  | 2.18           | 1.88             | 1.39E-02    | 0.011988374                | 4.21                | 0.026875752       |
| 20200309 | 500  | 2.68           | 3.50             | 2.84E-03    | 0.00371424                 | 6.64                | 0.007046377       |
| 20200317 | 500  | -0.02          | 0.26             | -6.03E-04   | 0.006549076                | 0.61                | 0.015336808       |
| 20200326 | 500  | 2.22           | 0.49             | 4.94E-02    | 0.011015705                | 3.12                | 0.069529909       |
| 20200422 | 750  | 18.38          | 20.52            | 2.25E+00    | 2 514742653                | 47.13               | 5.776665188       |
| 20200426 | 750  | 1.00           | 0.13             | 3.86E-02    | 0.00468612                 | 1 30                | 0.049218163       |
| 20200420 | 750  | 0.36           | 0.15             | 7.35E 02    | 0.00408012                 | 2 10                | 0.428000625       |
| 20200505 | 750  | 0.00           | 2 41             | 1.01E-02    | 0.126772582                | 12.10               | 0.462004148       |
| 20200505 | 750  | 0.56           | 01.91            | 1.01E-01    | 0.120772582                | 12.49               | 0.403904140       |
| 20200508 | 750  | 9.00           | 21.81            | 1.13E-02    | 0.023713897                | 100.10              | 0.118021702       |
| 20200520 | 750  | 13.90          | 9.95             | 1.04E-01    | 0.0743811                  | 24.33               | 0.181835225       |
| 20200526 | 900  | 2.52           | 0.98             | 3.98E-03    | 0.001548772                | 3.29                | 0.005209964       |
| 20200529 | 900  | 3.91           | 0.41             | 5.50E-03    | 0.000578233                | 4.89                | 0.006889209       |
| 20200602 | 900  | 17.03          | 18.85            | 9.78E-03    | 0.010821859                | 63.26               | 0.036317092       |
| 20200605 | 900  | 6.67           | 5.50             | 1.67E-03    | 0.001373996                | 23.90               | 0.005966177       |
| 20200611 | 1000 | 12.36          | 10.78            | 1.04E-02    | 0.009029021                | 53.16               | 0.044506522       |
| 20200612 | 1000 | 15.32          | 6.42             | 2.85E-01    | 0.119210694                | 27.98               | 0.519617216       |
| 20200616 | 500  | 0.30           | 0.27             | 1.37E-02    | 0.012157225                | 0.85                | 0.038586458       |
| 20200617 | 500  | 2.59           | 1.02             | 1.01E-01    | 0.03955245                 | 3.99                | 0.15525375        |
| 20200619 | 500  | 69.15          | 46.31            | 2.92E+00    | 1.957383802                | 103.80              | 4.387115948       |
| 20200624 | 500  | 1.20           | 0.31             | 4.89E-02    | 0.01248932                 | 1.51                | 0.061692938       |
| 20200626 | 1000 | 4.43           | 1.20             | 1.28E-01    | 0.034540567                | 6.88                | 0.198417177       |
| 20200629 | 1000 | 5.49           | 1.51             | 1.32E-01    | 0.036297904                | 7.69                | 0.184814449       |
| 20200703 | 1000 | 2.43           | 0.43             | 1.10E-01    | 0.01959688                 | 3.11                | 0.141181042       |
| 20200706 | 1000 | 2.82           | 0.65             | 1.47E-01    | 0.034141479                | 3.85                | 0.200804122       |
| 20200708 | 1000 | 0.42           | 0.00             | -3.39F-01   | 0.07164417                 | 0.61                | -0 49844625       |
| 20200700 | 1000 | 3.15           | 0.03             | 2.66E_01    | 0.07022221                 | 4 58                | 0.38714810        |
| 20200709 | 1000 | 2.10           | 1.92             | 1.98E 01    | 0.064106046                | 4.00                | 0.00114019        |
| 20200714 | 750  | 2.40           | 1.20             | 1.20E-01    | 0.004190940                | 4.09                | 0.220908800       |
| 20200716 | 750  | 0.38           | 4.92             | 1.00E-02    | 0.0106248                  | 17.60               | 0.059163987       |
| 20200722 | 750  | 17.93          | 4.05             | -0.87E-01   | 0.155088498                | 27.58               | -1.056389414      |
| 20200724 | 750  | 9.12           | 7.99             | 2.69E-02    | 0.02356004                 | 22.40               | 0.066077978       |
| 20200729 | 750  | 0.58           | 0.47             | 6.50E-02    | 0.052078017                | 3.04                | 0.338735455       |
| 20200730 | 750  | 0.53           | 0.24             | 4.23E-02    | 0.019153925                | 1.05                | 0.083932948       |

The raw data, which were chosen to be the experimental results shown in this thesis, are:

- 1. 500 V: 20200616, 20200617, 20200619, 20200624
- 750 V: 20200422, 20200501, 20200505, 20200508, 20200520, 20200716, 20200724, 20200729, 20200730
- 3. 1000 V: 20200612, 20200626, 20200629, 20200703, 20200706, 20200709, 20200714

Locations of the experimental data in the lab drive are:

- 1. 「Shares\WYL\Data\YYYYMM\YYYYMM-MMDD.csv」, YYYY is year, MM is month, and DD is date.
- C Shares\WYL\Data\OO\(YYYYMM-MMDD.csv) 」, OO is the value of V<sub>acc</sub>, for example: 1kV, 500 V etc..

### C Raw data of electron trajectories in simulations

Locations of the simulatied data in the lab drive are:

- 1.  $\overrightarrow{E} \times \overrightarrow{B}$  drift:  $\lceil \text{Shares} \backslash \text{WYL} \rangle \text{simulation} \setminus \text{test} \rfloor$
- 2. Electron trajectories with the electric field:  $\lceil Shares \backslash WYL \backslash simulation \backslash E \backslash OO \rfloor$ , OO is the value of  $V_{acc}$ , for example: 1kV, 500 V etc..
- 3. Electron trajectory with the magnetic field: 「Shares\WYL\simulation\B\XX」, XX is the value of the initial angle, for example: 56.4° etc..
- Electron trajectories in electric fields and magnetic fields: 「Shares\WYL\simulation\EB\XX」,
   XX is the value of the initial angle, for example: 56.4° etc..

## C.1 $\overrightarrow{E} \times \overrightarrow{B}$ drift

- 1. The initial positions:  $0\hat{x} + 0\hat{y} + 0\hat{z}$  (m).
- 2. The initial velocities:  $0\hat{x} + 0\hat{y} + 0\hat{z}$  (m/s).
- 3.  $\overrightarrow{E} = 1\hat{x}$  (V/m).

- 4.  $\overrightarrow{B} = 1\hat{z}$  (T).
- 5. The total simulated time: 4 (s).
- 6. Steps: 4001.
- 7. qx, qy, and qz are the positions in  $\hat{x}$ ,  $\hat{y}$ , and  $\hat{z}$ , respectively.

| q2x (m) @ t=0    | 0.000  | q2x (m) @ t=0.46 | -0.309 | q2x (m) @ t=0.92 | -0.355 |
|------------------|--------|------------------|--------|------------------|--------|
| q2y (m) @ t=0    | 0.000  | q2y (m) @ t=0.46 | -0.571 | q2y (m) @ t=0.92 | -1.357 |
| q2x (m) @ t=0.02 | -0.101 | q2x (m) @ t=0.48 | -0.36  | q2x (m) @ t=0.94 | -0.301 |
| q2y (m) @ t=0.02 | -0.016 | q2y (m) @ t=0.48 | -0.679 | q2y (m) @ t=0.94 | -1.463 |
| q2x (m) @ t=0.04 | -0.199 | q2x (m) @ t=0.5  | -0.38  | q2x (m) @ t=0.96 | -0.222 |
| q2y (m) @ t=0.04 | -0.065 | q2v (m) @ t=0.5  | -0.799 | q2y (m) @ t=0.96 | -1.547 |
| q2x (m) @ t=0.06 | -0.283 | q2x (m) @ t=0.52 | -0.368 | q2x (m) @ t=0.98 | -0.127 |
| q2y (m) @ t=0.06 | -0.142 | q2y (m) @ t=0.52 | -0.92  | q2y (m) @ t=0.98 | -1.604 |
| q2x (m) @ t=0.08 | -0.344 | q2x (m) @ t=0.54 | -0.325 | q2x (m) @ t=1    | -0.026 |
| q2y (m) @ t=0.08 | -0.243 | q2y (m) @ t=0.54 | -1.032 | q2y (m) @ t=1    | -1.628 |
| q2x (m) @ t=0.1  | -0.376 | q2x (m) @ t=0.56 | -0.255 | q2x (m) @ t=1.02 | 0.072  |
| q2y (m) @ t=0.1  | -0.359 | q2y (m) @ t=0.56 | -1.125 | q2y (m) @ t=1.02 | -1.621 |
| q2x (m) @ t=0.12 | -0.377 | q2x (m) @ t=0.58 | -0.166 | q2x (m) @ t=1.04 | 0.156  |
| q2v (m) @ t=0.12 | -0.481 | q2v (m) @ t=0.58 | -1.193 | q2v (m) @ t=1.04 | -1.584 |
| q2x (m) @ t=0.14 | -0.345 | q2x (m) @ t=0.6  | -0.066 | g2x (m) @ t=1.06 | 0.218  |
| q2v (m) @ t=0.14 | -0.598 | a2v (m) @ t=0.6  | -1.23  | q2v (m) @ t=1.06 | -1.523 |
| q2x (m) @ t=0.16 | -0.285 | q2x (m) @ t=0.62 | 0.035  | q2x (m) @ t=1.08 | 0.251  |
| q2y (m) @ t=0.16 | -0.699 | q2y (m) @ t=0.62 | -1.235 | q2y (m) @ t=1.08 | -1.447 |
| q2x (m) @ t=0.18 | -0.202 | q2x (m) @ t=0.64 | 0.125  | q2x (m) @ t=1.1  | 0.252  |
| q2y (m) @ t=0.18 | -0.778 | q2y (m) @ t=0.64 | -1.209 | q2y (m) @ t=1.1  | -1.366 |
| q2x (m) @ t=0.2  | -0.105 | q2x (m) @ t=0.66 | 0.197  | q2x (m) @ t=1.12 | 0:222  |
| q2y (m) @ t=0.2  | -0.827 | q2y (m) @ t=0.66 | -1.157 | q2y (m) @ t=1.12 | -1.289 |
| q2x (m) @ t=0.22 | -0.004 | q2x (m) @ t=0.68 | 0.242  | q2x (m) @ t=1.14 | 0.162  |
| q2y (m) @ t=0.22 | -0.845 | q2y (m) @ t=0.68 | -1.086 | q2y (m) @ t=1.14 | -1.227 |
| q2x (m) @ t=0.24 | 0.092  | q2x (m) @ t=0.7  | 0.256  | q2x (m) @ t=1.16 | 0.080  |
| q2y (m) @ t=0.24 | -0.830 | q2y (m) @ t=0.7  | -1.005 | q2y (m) @ t=1.16 | -1.187 |
| q2x (m) @ t=0.26 | 0.172  | q2x (m) @ t=0.72 | 0.237  | q2x (m) @ t=1.18 | -0.017 |
| q2y (m) @ t=0.26 | -0.788 | q2y (m) @ t=0.72 | -0.926 | q2y (m) @ t=1.18 | -1.177 |
| q2x (m) @ t=0.28 | 0.228  | q2x (m) @ t=0.74 | 0.189  | q2x (m) @ t=1.2  | -0.118 |
| q2y (m) @ t=0.28 | -0.723 | q2y (m) @ t=0.74 | -0.857 | q2y (m) @ t=1.2  | -1.199 |
| q2x (m) @ t=0.3  | 0.254  | q2x (m) @ t=0.76 | 0.114  | q2x (m) @ t=1.22 | -0.214 |
| q2y (m) @ t=0.3  | -0.645 | q2y (m) @ t=0.76 | -0.807 | q2y (m) @ t=1.22 | -1.252 |
| q2x (m) @ t=0.32 | 0.248  | q2x (m) @ t=0.78 | 0.022  | q2x (m) @ t=1.24 | -0.295 |
| q2y (m) @ t=0.32 | -0.564 | q2y (m) @ t=0.78 | -0.785 | q2y (m) @ t=1.24 | -1.334 |
| q2x (m) @ t=0.34 | 0.211  | q2x (m) @ t=0.8  | -0.079 | q2x (m) @ t=1.26 | -0.351 |
| q2y (m) @ t=0.34 | -0.489 | q2y (m) @ t=0.8  | -0.794 | q2y (m) @ t=1.26 | -1.439 |
| q2x (m) @ t=0.36 | 0.146  | q2x (m) @ t=0.82 | -0.178 | q2x (m) @ t=1.28 | -0.379 |
| q2y (m) @ t=0.36 | -0.431 | q2y (m) @ t=0.82 | -0.836 | q2y (m) @ t=1.28 | -1.556 |
| q2x (m) @ t=0.38 | 0.059  | q2x (m) @ t=0.84 | -0.266 | q2x (m) @ t=1.3  | -0.374 |
| q2y (m) @ t=0.38 | -0.398 | q2y (m) @ t=0.84 | -0.907 | q2y (m) @ t=1.3  | -1.678 |
| q2x (m) @ t=0.4  | -0.039 | q2x (m) @ t=0.86 | -0.332 | q2x (m) @ t=1.32 | -0.337 |
| q2y (m) @ t=0.4  | -0.395 | q2y (m) @ t=0.86 | -1.004 | q2y (m) @ t=1.32 | -1.792 |
| q2x (m) @ t=0.42 | -0.141 | q2x (m) @ t=0.88 | -0.372 | q2x (m) @ t=1.34 | -0.273 |
| q2y (m) @ t=0.42 | -0.424 | q2y (m) @ t=0.88 | -1.117 | q2y (m) @ t=1.34 | -1.891 |
| q2x (m) @ t=0.44 | -0.234 | q2x (m) @ t=0.9  | -0.38  | q2x (m) @ t=1.36 | -0.187 |
| q2y (m) @ t=0.44 | -0.484 | q2y (m) @ t=0.9  | -1.239 | q2y (m) @ t=1.36 | -1.965 |

Table 17: Raw data of electron trajectories with  $\overrightarrow{E} \times \overrightarrow{B}$  drift.

| q2x (m) @ t=1.38 | -0.088 | q2x (m) @ t=1.84 | 0.206  | q2x (m) @ t=2.3  | 0.214  |
|------------------|--------|------------------|--------|------------------|--------|
| q2y (m) @ t=1.38 | -2.009 | q2y (m) @ t=1.84 | -2.323 | q2y (m) @ t=2.3  | -2.454 |
| q2x (m) @ t=1.4  | 0.013  | q2x (m) @ t=1.86 | 0.246  | q2x (m) @ t=2.32 | 0.150  |
| q2y (m) @ t=1.4  | -2.021 | q2y (m) @ t=1.86 | -2.250 | q2y (m) @ t=2.32 | -2.395 |
| q2x (m) @ t=1.42 | 0.106  | q2x (m) @ t=1.88 | 0.255  | q2x (m) @ t=2.34 | 0.065  |
| q2y (m) @ t=1.42 | -2.002 | q2y (m) @ t=1.88 | -2.169 | q2y (m) @ t=2.34 | -2.360 |
| q2x (m) @ t=1.44 | 0.183  | q2x (m) @ t=1.9  | 0.231  | q2x (m) @ t=2.36 | -0.034 |
| q2y (m) @ t=1.44 | -1.955 | q2y (m) @ t=1.9  | -2.090 | q2y (m) @ t=2.36 | -2.355 |
| q2x (m) @ t=1.46 | 0.234  | q2x (m) @ t=1.92 | 0.178  | q2x (m) @ t=2.38 | -0.135 |
| q2y (m) @ t=1.46 | -1.887 | q2y (m) @ t=1.92 | -2.023 | q2y (m) @ t=2.38 | -2.382 |
| q2x (m) @ t=1.48 | 0.255  | q2x (m) @ t=1.94 | 0.100  | q2x (m) @ t=2.4  | -0.229 |
| q2y (m) @ t=1.48 | -1.808 | q2y (m) @ t=1.94 | -1.978 | q2y (m) @ t=2.4  | -2.441 |
| q2x (m) @ t=1.5  | 0.244  | q2x (m) @ t=1.96 | 0.006  | q2x (m) @ t=2.42 | -0.306 |
| q2y (m) @ t=1.5  | -1.727 | q2y (m) @ t=1.96 | -1.961 | q2y (m) @ t=2.42 | -2.527 |
| q2x (m) @ t=1.52 | 0.202  | q2x (m) @ t=1.98 | -0.096 | q2x (m) @ t=2.44 | -0.358 |
| q2y (m) @ t=1.52 | -1.655 | q2y (m) @ t=1.98 | -1.976 | q2y (m) @ t=2.44 | -2.634 |
| q2x (m) @ t=1.54 | 0.133  | q2x (m) @ t=2    | -0.194 | q2x (m) @ t=2.46 | -0.380 |
| q2y (m) @ t=1.54 | -1.601 | q2y (m) @ t=2    | -2.022 | q2y (m) @ t=2.46 | -2.753 |
| q2x (m) @ t=1.56 | 0.044  | q2x (m) @ t=2.02 | -0.278 | q2x (m) @ t=2.48 | -0.370 |
| q2y (m) @ t=1.56 | -1.572 | q2y (m) @ t=2.02 | -2.098 | q2y (m) @ t=2.48 | -2.874 |
| q2x (m) @ t=1.58 | -0.056 | q2x (m) @ t=2.04 | -0.341 | q2x (m) @ t=2.5  | -0.329 |
| q2y (m) @ t=1.58 | -1.574 | q2y (m) @ t=2.04 | -2.198 | q2y (m) @ t=2.5  | -2.987 |
| q2x (m) @ t=1.6  | -0.157 | q2x (m) @ t=2.06 | -0.375 | q2x (m) @ t=2.52 | -0.260 |
| q2y (m) @ t=1.6  | -1.608 | q2y (m) @ t=2.06 | -2.314 | q2y (m) @ t=2.52 | -3.082 |
| q2x (m) @ t=1.62 | -0.248 | q2x (m) @ t=2.08 | -0.378 | q2x (m) @ t=2.54 | -0.171 |
| q2y (m) @ t=1.62 | -1.673 | q2y (m) @ t=2.08 | -2.435 | q2y (m) @ t=2.54 | -3.151 |
| q2x (m) @ t=1.64 | -0.320 | q2x (m) @ t=2.1  | -0.348 | q2x (m) @ t=2.56 | -0.072 |
| q2y (m) @ t=1.64 | -1.765 | q2y (m) @ t=2.1  | -2.552 | q2y (m) @ t=2.56 | -3.190 |
| q2x (m) @ t=1.66 | -0.366 | q2x (m) @ t=2.12 | -0.289 | q2x (m) @ t=2.58 | 0.029  |
| q2y (m) @ t=1.66 | -1.875 | q2y (m) @ t=2.12 | -2.655 | q2y (m) @ t=2.58 | -3.197 |
| q2x (m) @ t=1.68 | -0.381 | q2x (m) @ t=2.14 | -0.208 | q2x (m) @ t=2.6  | 0.120  |
| q2y (m) @ t=1.68 | -1.996 | q2y (m) @ t=2.14 | -2.735 | q2y (m) @ t=2.6  | -3.173 |
| q2x (m) @ t=1.7  | -0.363 | q2x (m) @ t=2.16 | -0.111 | q2x (m) @ t=2.62 | 0.193  |
| q2y (m) @ t=1.7  | -2.116 | q2y (m) @ t=2.16 | -2.787 | q2y (m) @ t=2.62 | -3.122 |
| q2x (m) @ t=1.72 | -0.315 | q2x (m) @ t=2.18 | -0.009 | q2x (m) @ t=2.64 | 0.240  |
| q2y (m) @ t=1.72 | -2.225 | q2y (m) @ t=2.18 | -2.806 | q2y (m) @ t=2.64 | -3.052 |
| q2x (m) @ t=1.74 | -0.242 | q2x (m) @ t=2.2  | 0.087  | q2x (m) @ t=2.66 | 0.256  |
| q2y (m) @ t=1.74 | -2.315 | q2y (m) @ t=2.2  | -2.793 | q2y (m) @ t=2.66 | -2.971 |
| q2x (m) @ t=1.76 | -0.150 | q2x (m) @ t=2.22 | 0.168  | q2x (m) @ t=2.68 | 0.239  |
| q2y (m) @ t=1.76 | -2.378 | q2y (m) @ t=2.22 | -2.752 | q2y (m) @ t=2.68 | -2.891 |
| q2x (m) @ t=1.78 | -0.049 | q2x (m) @ t=2.24 | 0.225  | q2x (m) @ t=2.7  | 0.192  |
| q2y (m) @ t=1.78 | -2.410 | q2y (m) @ t=2.24 | -2.688 | q2y (m) @ t=2.7  | -2.821 |
| q2x (m) @ t=1.8  | 0.051  | q2x (m) @ t=2.26 | 0.254  | q2x (m) @ t=2.72 | 0.119  |
| q2y (m) @ t=1.8  | -2.410 | q2y (m) @ t=2.26 | -2.611 | q2y (m) @ t=2.72 | -2.771 |
| q2x (m) @ t=1.82 | 0.139  | q2x (m) @ t=2.28 | 0.250  | q2x (m) @ t=2.74 | 0.028  |
| q2y (m) @ t=1.82 | -2.379 | q2y (m) @ t=2.28 | -2.529 | q2y (m) @ t=2.74 | -2.747 |

| $a_{2x}$ (m) @ t=2.76                        | -0.073 | $a_{2x}$ (m) @ t=3.22         | -0.349 | $a_{2x}$ (m) $\hat{u}$ t=3.68 | -0.319 |
|----------------------------------------------|--------|-------------------------------|--------|-------------------------------|--------|
| $q_{2x}$ (m) @ t=2.76                        | -2.754 | $q_{2x}$ (m) $\bar{q}$ t=3.22 | -3.393 | $q_{2x}(m) = t = 3.68$        | -4.180 |
| $a^{2x}$ (m) @ t=2.78                        | -0.173 | $a_{2x}$ (m) $\bar{a}$ t=3.24 | -0.378 | $a^{2x}$ (m) $\bar{a}$ t=3.7  | -0.247 |
| $a_{2y}$ (m) @ t=2.78                        | -2.793 | $a_{2v}(m) = t_{=3.24}$       | -3.510 | $a_{2y}$ (m) $\hat{a}$ t=3.7  | -4.272 |
| $a^{2x}$ (m) $\hat{a}$ t=2.8                 | -0.261 | $a_{2x}$ (m) $\bar{a}$ t=3.26 | -0.375 | $a_{2x}$ (m) $\bar{a}$ t=3.72 | -0.156 |
| $q_{2x}$ (m) $\bar{q}$ t=2.8                 | -2.863 | $a_{2x}(m) \equiv t = 3.26$   | -3.632 | $a_{2x}(m) \equiv t = 3.72$   | -4.336 |
| $\frac{q_{2y}}{a_{2x}}$ (m) $\hat{u}$ t=2.82 | -0.329 | $q_{2y}$ (m) $@$ t=3.28       | -0.340 | $q_{2y}$ (m) @ t=3.74         | -0.055 |
| $a_{2x}$ (m) $\bar{a}$ t=2.82                | -2.959 | $q_{2x}(m) = t = 3.28$        | -3.747 | $a_{2x}$ (m) @ t=3.74         | -4.370 |
| $a_{2x}$ (m) @ t=2.84                        | -0.370 | $q_{2x}(m) \oplus t=3.3$      | -0.277 | $a_{2x}$ (m) @ t=3.76         | 0.045  |
| $a_{2v}$ (m) $@$ t=2.84                      | -3.071 | $q_{2v}(m) @ t=3.3$           | -3.847 | $a_{2v}(m) = t = 3.76$        | -4.372 |
| $a_{2x}$ (m) @ t=2.86                        | -0.380 | $a_{2x}$ (m) $\bar{a}$ t=3.32 | -0.193 | $q_{2x}$ (m) @ t=3.78         | 0.134  |
| q2v (m) @ t=2.86                             | -3.193 | $q_{2v}(m) = t=3.32$          | -3.923 | $q_{2v}(m) @ t=3.78$          | -4.343 |
| q2x (m) @ t=2.88                             | -0.357 | q2x (m) @ t=3.34              | -0.094 | q2x (m) @ t=3.8               | 0.203  |
| q2v (m) @ t=2.88                             | -3.312 | q2v (m) @ t=3.34              | -3.969 | q2v (m) @ t=3.8               | -4.288 |
| q2x (m) @ t=2.9                              | -0.305 | o2x (m) @ t=3.36              | 0.007  | q2x (m) @ t=3.82              | 0.245  |
| a2v (m) @ t=2.9                              | -3.418 | $a_{2v}$ (m) $\bar{a}$ t=3.36 | -3.983 | $a_{2y}$ (m) $\hat{a}$ t=3.82 | -4.216 |
| q2x (m) @ t=2.92                             | -0.228 | q2x (m) @ t=3.38              | 0.101  | q2x (m) @ t=3.84              | 0.255  |
| g2v (m) @ t=2.92                             | -3.504 | q2v (m) @ t=3.38              | -3.965 | q2v (m) @ t=3.84              | -4.135 |
| a2x (m) @ t=2.94                             | -0.133 | a2x (m) @ t=3.4               | 0.179  | q2x (m) @ t=3.86              | 0.234  |
| a2v (m) @ t=2.94                             | -3.562 | $q_{2v}(m) \otimes t=3.4$     | -3.920 | $q_{2v}$ (m) @ t=3.86         | -4.056 |
| $a_{2x}$ (m) @ t=2.96                        | -0.032 | $a_{2x}$ (m) @ t=3.42         | 0.232  | $q_{2x}$ (m) @ t=3.88         | 0.182  |
| q2v (m) @ t=2.96                             | -3.589 | q2v (m) @ t=3.42              | -3.853 | q2v (m) @ t=3.88              | -3.988 |
| q2x (m) @ t=2.98                             | 0.066  | q2x (m) @ t=3.44              | 0.255  | q2x (m) @ t=3.9               | 0.106  |
| q2v (m) @ t=2.98                             | -3.583 | q2v (m) @ t=3.44              | -3.774 | q2v (m) @ t=3.9               | -3.942 |
| q2x (m) @ t=3                                | 0.151  | q2x (m) @ t=3.46              | 0.246  | q2x (m) @ t=3.92              | 0.012  |
| q2v (m) @ t=3                                | -3.548 | q2v (m) @ t=3.46              | -3.693 | q2v (m) @ t=3.92              | -3.923 |
| q2x (m) @ t=3.02                             | 0.215  | q2x (m) @ t=3.48              | 0.205  | q2x (m) @ t=3.94              | -0.089 |
| q2y (m) @ t=3.02                             | -3.489 | q2y (m) @ t=3.48              | -3.620 | q2y (m) @ t=3.94              | -3.935 |
| q2x (m) @ t=3.04                             | 0.250  | q2x (m) @ t=3.5               | 0.138  | q2x (m) @ t=3.96              | -0.188 |
| q2y (m) @ t=3.04                             | -3.413 | q2y (m) @ t=3.5               | -3.564 | q2y (m) @ t=3.96              | -3.980 |
| q2x (m) @ t=3.06                             | 0.253  | q2x (m) @ t=3.52              | 0.050  | q2x (m) @ t=3.98              | -0.274 |
| q2y (m) @ t=3.06                             | -3.332 | q2y (m) @ t=3.52              | -3.534 | q2y (m) @ t=3.98              | -4.054 |
| q2x (m) @ t=3.08                             | 0.225  | q2x (m) @ t=3.54              | -0.050 | q2x (m) @ t=4                 | -0.338 |
| q2y (m) @ t=3.08                             | -3.255 | q2y (m) @ t=3.54              | -3.534 | q2y (m) @ t=4                 | -4.153 |
| q2x (m) @ t=3.1                              | 0.167  | q2x (m) @ t=3.56              | -0.151 |                               |        |
| q2y (m) @ t=3.1                              | -3.191 | q2y (m) @ t=3.56              | -3.566 |                               |        |
| q2x (m) @ t=3.12                             | 0.085  | q2x (m) @ t=3.58              | -0.243 |                               |        |
| q2y (m) @ t=3.12                             | -3.150 | q2y (m) @ t=3.58              | -3.630 |                               |        |
| q2x (m) @ t=3.14                             | -0.011 | q2x (m) @ t=3.6               | -0.316 |                               |        |
| q2y (m) @ t=3.14                             | -3.138 | q2y (m) @ t=3.6               | -3.720 |                               |        |
| q2x (m) @ t=3.16                             | -0.112 | q2x (m) @ t=3.62              | -0.364 |                               |        |
| q2y (m) @ t=3.16                             | -3.158 | q2y (m) @ t=3.62              | -3.830 |                               |        |
| q2x (m) @ t=3.18                             | -0.209 | q2x (m) @ t=3.64              | -0.381 |                               |        |
| q2y (m) @ t=3.18                             | -3.209 | q2y (m) @ t=3.64              | -3.950 |                               |        |
| q2x (m) @ t=3.2                              | -0.290 | q2x (m) @ t=3.66              | -0.365 |                               |        |
| q2y (m) @ t=3.2                              | -3.290 | q2y (m) @ t=3.66              | -4.070 |                               |        |
|                                              |        |                               | -      |                               |        |

#### C.2 Electron trajectory with the electric field

- 1. The initial positions:  $0\hat{x} + 0\hat{y} + 3.8\hat{z}$  (mm).
- 2. The initial velocities:  $0\hat{x} + 0\hat{y} + 0\hat{z}$  (m/s).
- 3.  $V_{\rm acc}{:}$  500 V, 750 V, and 1000 V.

- 4. The total simulated time:  $5 \times 10^{-10}$  (s).
- 5. Steps: 1001.
- 6. qz is the position in  $\hat{z}$ .

| qz (mm) @ t=0        | 3.80000 | qz (mm) @ t=2.3E-11  | 3.79319 |
|----------------------|---------|----------------------|---------|
| qz (mm) @ t=5E-13    | 3.80000 | qz (mm) @ t=2.35E-11 | 3.79289 |
| qz (mm) @ t=1E-12    | 3.79999 | qz (mm) @ t=2.4E-11  | 3.79258 |
| qz (mm) @ t=1.5E-12  | 3.79997 | qz (mm) @ t=2.45E-11 | 3.79227 |
| qz (mm) @ t=2E-12    | 3.79995 | qz (mm) @ t=2.5E-11  | 3.79195 |
| qz (mm) @ t=2.5E-12  | 3.79992 | qz (mm) @ t=2.55E-11 | 3.79163 |
| qz (mm) @ t=3E-12    | 3.79988 | qz (mm) @ t=2.6E-11  | 3.79129 |
| qz (mm) @ t=3.5E-12  | 3.79984 | qz (mm) @ t=2.65E-11 | 3.79096 |
| qz (mm) @ t=4E-12    | 3.79979 | qz (mm) @ t=2.7E-11  | 3.79061 |
| qz (mm) @ t=4.5E-12  | 3.79974 | qz (mm) @ t=2.75E-11 | 3.79026 |
| qz (mm) @ t=5E-12    | 3.79968 | qz (mm) @ t=2.8E-11  | 3.78990 |
| qz (mm) @ t=5.5E-12  | 3.79961 | qz (mm) @ t=2.85E-11 | 3.78954 |
| qz (mm) @ t=6E-12    | 3.79954 | qz (mm) @ t=2.9E-11  | 3.78917 |
| qz (mm) @ t=6.5E-12  | 3.79946 | qz (mm) @ t=2.95E-11 | 3.78879 |
| qz (mm) @ t=7E-12    | 3.79937 | qz (mm) @ t=3E-11    | 3.78841 |
| qz (mm) @ t=7.5E-12  | 3.79928 | qz (mm) @ t=3.05E-11 | 3.78802 |
| qz (mm) @ t=8E-12    | 3.79918 | qz (mm) @ t=3.1E-11  | 3.78762 |
| qz (mm) @ t=8.5E-12  | 3.79907 | qz (mm) @ t=3.15E-11 | 3.78722 |
| qz (mm) @ t=9E-12    | 3.79896 | qz (mm) @ t=3.2E-11  | 3.78681 |
| qz (mm) @ t=9.5E-12  | 3.79884 | qz (mm) @ t=3.25E-11 | 3.78640 |
| qz (mm) @ t=1E-11    | 3.79871 | qz (mm) @ t=3.3E-11  | 3.78598 |
| qz (mm) @ t=1.05E-11 | 3.79858 | qz (mm) @ t=3.35E-11 | 3.78555 |
| qz (mm) @ t=1.1E-11  | 3.79844 | qz (mm) @ t=3.4E-11  | 3.78511 |
| qz (mm) @ t=1.15E-11 | 3.79830 | qz (mm) @ t=3.45E-11 | 3.78467 |
| qz (mm) @ t=1.2E-11  | 3.79815 | qz (mm) @ t=3.5E-11  | 3.78422 |
| qz (mm) @ t=1.25E-11 | 3.79799 | qz (mm) @ t=3.55E-11 | 3.78377 |
| qz (mm) @ t=1.3E-11  | 3.79782 | qz (mm) @ t=3.6E-11  | 3.78331 |
| qz (mm) @ t=1.35E-11 | 3.79765 | qz (mm) @ t=3.65E-11 | 3.78284 |
| qz (mm) @ t=1.4E-11  | 3.79748 | qz (mm) @ t=3.7E-11  | 3.78237 |
| qz (mm) @ t=1.45E-11 | 3.79729 | qz (mm) @ t=3.75E-11 | 3.78189 |
| qz (mm) @ t=1.5E-11  | 3.79710 | qz (mm) @ t=3.8E-11  | 3.78140 |
| qz (mm) @ t=1.55E-11 | 3.79691 | qz (mm) @ t=3.85E-11 | 3.78091 |
| qz (mm) @ t=1.6E-11  | 3.79670 | qz (mm) @ t=3.9E-11  | 3.78041 |
| qz (mm) @ t=1.65E-11 | 3.79649 | qz (mm) @ t=3.95E-11 | 3.77991 |
| qz (mm) @ t=1.7E-11  | 3.79628 | qz (mm) @ t=4E-11    | 3.77940 |
| qz (mm) @ t=1.75E-11 | 3.79606 | qz (mm) @ t=4.05E-11 | 3.77888 |
| qz (mm) @ t=1.8E-11  | 3.79583 | qz (mm) @ t=4.1E-11  | 3.77835 |
| qz (mm) @ t=1.85E-11 | 3.79559 | qz (mm) @ t=4.15E-11 | 3.77782 |
| qz (mm) @ t=1.9E-11  | 3.79535 | qz (mm) @ t=4.2E-11  | 3.77728 |
| qz (mm) @ t=1.95E-11 | 3.79510 | qz (mm) @ t=4.25E-11 | 3.77674 |
| qz (mm) @ t=2E-11    | 3.79485 | qz (mm) @ t=4.3E-11  | 3.77619 |
| qz (mm) @ t=2.05E-11 | 3.79459 | qz (mm) @ t=4.35E-11 | 3.77563 |
| qz (mm) @ t=2.1E-11  | 3.79432 | qz (mm) @ t=4.4E-11  | 3.77507 |
| qz (mm) @ t=2.15E-11 | 3.79405 | qz (mm) @ t=4.45E-11 | 3.77450 |
| qz (mm) @ t=2.2E-11  | 3.79377 | qz (mm) @ t=4.5E-11  | 3.77392 |
| qz (mm) @ t=2.25E-11 | 3.79348 | qz (mm) @ t=4.55E-11 | 3.77334 |

Table 18: Raw data of electron trajectories with  $V_{\rm acc} = 500$  V.

| qz (mm) @ t=4.6E-11  | 3.77275 | qz (mm) @ t=6.9E-11  | 3.73869 |
|----------------------|---------|----------------------|---------|
| qz (mm) @ t=4.65E-11 | 3.77215 | qz (mm) @ t=6.95E-11 | 3.73780 |
| qz (mm) @ t=4.7E-11  | 3.77155 | qz (mm) @ t=7E-11    | 3.73690 |
| qz (mm) @ t=4.75E-11 | 3.77094 | qz (mm) @ t=7.05E-11 | 3.73600 |
| qz (mm) @ t=4.8E-11  | 3.77033 | qz (mm) @ t=7.1E-11  | 3.73508 |
| qz (mm) @ t=4.85E-11 | 3.76971 | qz (mm) @ t=7.15E-11 | 3.73417 |
| qz (mm) @ t=4.9E-11  | 3.76908 | qz (mm) @ t=7.2E-11  | 3.73324 |
| qz (mm) @ t=4.95E-11 | 3.76845 | qz (mm) @ t=7.25E-11 | 3.73231 |
| qz (mm) @ t=5E-11    | 3.76781 | qz (mm) @ t=7.3E-11  | 3.73138 |
| qz (mm) @ t=5.05E-11 | 3.76716 | qz (mm) @ t=7.35E-11 | 3.73043 |
| qz (mm) @ t=5.1E-11  | 3.76650 | qz (mm) @ t=7.4E-11  | 3.72948 |
| qz (mm) @ t=5.15E-11 | 3.76584 | qz (mm) @ t=7.45E-11 | 3.72853 |
| qz (mm) @ t=5.2E-11  | 3.76518 | qz (mm) @ t=7.5E-11  | 3.72756 |
| qz (mm) @ t=5.25E-11 | 3.76451 | qz (mm) @ t=7.55E-11 | 3.72660 |
| qz (mm) @ t=5.3E-11  | 3.76383 | qz (mm) @ t=7.6E-11  | 3.72562 |
| qz (mm) @ t=5.35E-11 | 3.76314 | qz (mm) @ t=7.65E-11 | 3.72464 |
| qz (mm) @ t=5.4E-11  | 3.76245 | qz (mm) @ t=7.7E-11  | 3.72365 |
| qz (mm) @ t=5.45E-11 | 3.76175 | qz (mm) @ t=7.75E-11 | 3.72266 |
| qz (mm) @ t=5.5E-11  | 3.76104 | qz (mm) @ t=7.8E-11  | 3.72165 |
| qz (mm) @ t=5.55E-11 | 3.76033 | qz (mm) @ t=7.85E-11 | 3.72065 |
| qz (mm) @ t=5.6E-11  | 3.75962 | qz (mm) @ t=7.9E-11  | 3.71963 |
| qz (mm) @ t=5.65E-11 | 3.75889 | qz (mm) @ t=7.95E-11 | 3.71861 |
| qz (mm) @ t=5.7E-11  | 3.75816 | qz (mm) @ t=8E-11    | 3.71759 |
| qz (mm) @ t=5.75E-11 | 3.75742 | qz (mm) @ t=8.05E-11 | 3.71655 |
| qz (mm) @ t=5.8E-11  | 3.75668 | qz (mm) @ t=8.1E-11  | 3.71551 |
| qz (mm) @ t=5.85E-11 | 3.75593 | qz (mm) @ t=8.15E-11 | 3.71447 |
| qz (mm) @ t=5.9E-11  | 3.75517 | qz (mm) @ t=8.2E-11  | 3.71341 |
| qz (mm) @ t=5.95E-11 | 3.75441 | qz (mm) @ t=8.25E-11 | 3.71235 |
| qz (mm) @ t=6E-11    | 3.75364 | qz (mm) @ t=8.3E-11  | 3.71129 |
| qz (mm) @ t=6.05E-11 | 3.75286 | qz (mm) @ t=8.35E-11 | 3.71022 |
| qz (mm) @ t=6.1E-11  | 3.75208 | qz (mm) @ t=8.4E-11  | 3.70914 |
| qz (mm) @ t=6.15E-11 | 3.75129 | qz (mm) @ t=8.45E-11 | 3.70805 |
| qz (mm) @ t=6.2E-11  | 3.75050 | qz (mm) @ t=8.5E-11  | 3.70696 |
| qz (mm) @ t=6.25E-11 | 3.74970 | qz (mm) @ t=8.55E-11 | 3.70586 |
| qz (mm) @ t=6.3E-11  | 3.74889 | qz (mm) @ t=8.6E-11  | 3.70476 |
| qz (mm) @ t=6.35E-11 | 3.74807 | qz (mm) @ t=8.65E-11 | 3.70365 |
| qz (mm) @ t=6.4E-11  | 3.74725 | qz (mm) @ t=8.7E-11  | 3.70253 |
| qz (mm) @ t=6.45E-11 | 3.74643 | qz (mm) @ t=8.75E-11 | 3.70141 |
| qz (mm) @ t=6.5E-11  | 3.74559 | qz (mm) @ t=8.8E-11  | 3.70028 |
| qz (mm) @ t=6.55E-11 | 3.74475 | qz (mm) @ t=8.85E-11 | 3.69914 |
| qz (mm) @ t=6.6E-11  | 3.74391 | qz (mm) @ t=8.9E-11  | 3.69800 |
| qz (mm) @ t=6.65E-11 | 3.74305 | qz (mm) @ t=8.95E-11 | 3.69685 |
| qz (mm) @ t=6.7E-11  | 3.74219 | qz (mm) @ t=9E-11    | 3.69570 |
| qz (mm) @ t=6.75E-11 | 3.74133 | qz (mm) @ t=9.05E-11 | 3.69453 |
| qz (mm) @ t=6.8E-11  | 3.74045 | qz (mm) @ t=9.1E-11  | 3.69337 |
| qz (mm) @ t=6.85E-11 | 3.73958 | qz (mm) @ t=9.15E-11 | 3.69219 |

| qz (mm) @ t=9.2E-11   | 3.69101 | qz (mm) @ t=1.15E-10  | 3.62971 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=9.25E-11  | 3.68982 | qz (mm) @ t=1.155E-10 | 3.62823 |
| qz (mm) @ t=9.3E-11   | 3.68863 | qz (mm) @ t=1.16E-10  | 3.62674 |
| qz (mm) @ t=9.35E-11  | 3.68743 | qz (mm) @ t=1.165E-10 | 3.62524 |
| qz (mm) @ t=9.4E-11   | 3.68622 | qz (mm) @ t=1.17E-10  | 3.62374 |
| qz (mm) @ t=9.45E-11  | 3.68501 | qz (mm) @ t=1.175E-10 | 3.62223 |
| qz (mm) @ t=9.5E-11   | 3.68379 | qz (mm) @ t=1.18E-10  | 3.62071 |
| qz (mm) @ t=9.55E-11  | 3.68256 | qz (mm) @ t=1.185E-10 | 3.61919 |
| qz (mm) @ t=9.6E-11   | 3.68133 | qz (mm) @ t=1.19E-10  | 3.61766 |
| qz (mm) @ t=9.65E-11  | 3.68009 | qz (mm) @ t=1.195E-10 | 3.61613 |
| qz (mm) @ t=9.7E-11   | 3.67884 | qz (mm) @ t=1.2E-10   | 3.61458 |
| qz (mm) @ t=9.75E-11  | 3.67759 | qz (mm) @ t=1.205E-10 | 3.61304 |
| qz (mm) @ t=9.8E-11   | 3.67633 | qz (mm) @ t=1.21E-10  | 3.61148 |
| qz (mm) @ t=9.85E-11  | 3.67507 | qz (mm) @ t=1.215E-10 | 3.60992 |
| qz (mm) @ t=9.9E-11   | 3.67379 | qz (mm) @ t=1.22E-10  | 3.60835 |
| qz (mm) @ t=9.95E-11  | 3.67252 | qz (mm) @ t=1.225E-10 | 3.60678 |
| qz (mm) @ t=1E-10     | 3.67123 | qz (mm) @ t=1.23E-10  | 3.60520 |
| qz (mm) @ t=1.005E-10 | 3.66994 | qz (mm) @ t=1.235E-10 | 3.60361 |
| qz (mm) @ t=1.01E-10  | 3.66864 | qz (mm) @ t=1.24E-10  | 3.60202 |
| qz (mm) @ t=1.015E-10 | 3.66734 | qz (mm) @ t=1.245E-10 | 3.60042 |
| qz (mm) @ t=1.02E-10  | 3.66603 | qz (mm) @ t=1.25E-10  | 3.59881 |
| qz (mm) @ t=1.025E-10 | 3.66471 | qz (mm) @ t=1.255E-10 | 3.59720 |
| qz (mm) @ t=1.03E-10  | 3.66339 | qz (mm) @ t=1.26E-10  | 3.59558 |
| qz (mm) @ t=1.035E-10 | 3.66206 | qz (mm) @ t=1.265E-10 | 3.59396 |
| qz (mm) @ t=1.04E-10  | 3.66073 | qz (mm) @ t=1.27E-10  | 3.59233 |
| qz (mm) @ t=1.045E-10 | 3.65938 | qz (mm) @ t=1.275E-10 | 3.59069 |
| qz (mm) @ t=1.05E-10  | 3.65804 | qz (mm) @ t=1.28E-10  | 3.58904 |
| qz (mm) @ t=1.055E-10 | 3.65668 | qz (mm) @ t=1.285E-10 | 3.58739 |
| qz (mm) @ t=1.06E-10  | 3.65532 | qz (mm) @ t=1.29E-10  | 3.58573 |
| qz (mm) @ t=1.065E-10 | 3.65395 | qz (mm) @ t=1.295E-10 | 3.58407 |
| qz (mm) @ t=1.07E-10  | 3.65258 | qz (mm) @ t=1.3E-10   | 3.58240 |
| qz (mm) @ t=1.075E-10 | 3.65120 | qz (mm) @ t=1.305E-10 | 3.58072 |
| qz (mm) @ t=1.08E-10  | 3.64981 | qz (mm) @ t=1.31E-10  | 3.57904 |
| qz (mm) @ t=1.085E-10 | 3.64841 | qz (mm) @ t=1.315E-10 | 3.57735 |
| qz (mm) @ t=1.09E-10  | 3.64701 | qz (mm) @ t=1.32E-10  | 3.57565 |
| qz (mm) @ t=1.095E-10 | 3.64561 | qz (mm) @ t=1.325E-10 | 3.57395 |
| qz (mm) @ t=1.1E-10   | 3.64419 | qz (mm) @ t=1.33E-10  | 3.57224 |
| qz (mm) @ t=1.105E-10 | 3.64278 | qz (mm) @ t=1.335E-10 | 3.57053 |
| qz (mm) @ t=1.11E-10  | 3.64135 | qz (mm) @ t=1.34E-10  | 3.56881 |
| qz (mm) @ t=1.115E-10 | 3.63992 | qz (mm) @ t=1.345E-10 | 3.56708 |
| qz (mm) @ t=1.12E-10  | 3.63848 | qz (mm) @ t=1.35E-10  | 3.56534 |
| qz (mm) @ t=1.125E-10 | 3.63703 | qz (mm) @ t=1.355E-10 | 3.56360 |
| qz (mm) @ t=1.13E-10  | 3.63558 | qz (mm) @ t=1.36E-10  | 3.56186 |
| qz (mm) @ t=1.135E-10 | 3.63412 | qz (mm) @ t=1.365E-10 | 3.56010 |
| qz (mm) @ t=1.14E-10  | 3.63266 | qz (mm) @ t=1.37E-10  | 3.55834 |
| qz (mm) @ t=1.145E-10 | 3.63119 | qz (mm) @ t=1.375E-10 | 3.55657 |

| qz (mm) @ t=1.38E-10  | 3.55480 | qz (mm) @ t=1.61E-10  | 3.46629 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=1.385E-10 | 3.55302 | qz (mm) @ t=1.615E-10 | 3.46421 |
| qz (mm) @ t=1.39E-10  | 3.55124 | qz (mm) @ t=1.62E-10  | 3.46213 |
| qz (mm) @ t=1.395E-10 | 3.54944 | qz (mm) @ t=1.625E-10 | 3.46004 |
| qz (mm) @ t=1.4E-10   | 3.54764 | qz (mm) @ t=1.63E-10  | 3.45795 |
| qz (mm) @ t=1.405E-10 | 3.54584 | qz (mm) @ t=1.635E-10 | 3.45585 |
| qz (mm) @ t=1.41E-10  | 3.54403 | qz (mm) @ t=1.64E-10  | 3.45374 |
| qz (mm) @ t=1.415E-10 | 3.54221 | qz (mm) @ t=1.645E-10 | 3.45163 |
| qz (mm) @ t=1.42E-10  | 3.54038 | qz (mm) @ t=1.65E-10  | 3.44951 |
| qz (mm) @ t=1.425E-10 | 3.53855 | qz (mm) @ t=1.655E-10 | 3.44738 |
| qz (mm) @ t=1.43E-10  | 3.53672 | qz (mm) @ t=1.66E-10  | 3.44525 |
| qz (mm) @ t=1.435E-10 | 3.53487 | qz (mm) @ t=1.665E-10 | 3.44311 |
| qz (mm) @ t=1.44E-10  | 3.53302 | qz (mm) @ t=1.67E-10  | 3.44096 |
| qz (mm) @ t=1.445E-10 | 3.53117 | qz (mm) @ t=1.675E-10 | 3.43881 |
| qz (mm) @ t=1.45E-10  | 3.52930 | qz (mm) @ t=1.68E-10  | 3.4366  |
| qz (mm) @ t=1.455E-10 | 3.52743 | qz (mm) @ t=1.685E-10 | 3.4344  |
| qz (mm) @ t=1.46E-10  | 3.52556 | qz (mm) @ t=1.69E-10  | 3.4323  |
| qz (mm) @ t=1.465E-10 | 3.52367 | qz (mm) @ t=1.695E-10 | 3.4301  |
| qz (mm) @ t=1.47E-10  | 3.52179 | qz (mm) @ t=1.7E-10   | 3.4279  |
| qz (mm) @ t=1.475E-10 | 3.51989 | qz (mm) @ t=1.705E-10 | 3.4257  |
| qz (mm) @ t=1.48E-10  | 3.51799 | qz (mm) @ t=1.71E-10  | 3.4235  |
| qz (mm) @ t=1.485E-10 | 3.51608 | qz (mm) @ t=1.715E-10 | 3.42130 |
| qz (mm) @ t=1.49E-10  | 3.51417 | qz (mm) @ t=1.72E-10  | 3.4191  |
| qz (mm) @ t=1.495E-10 | 3.51224 | qz (mm) @ t=1.725E-10 | 3.4169  |
| qz (mm) @ t=1.5E-10   | 3.51032 | qz (mm) @ t=1.73E-10  | 3.4147  |
| qz (mm) @ t=1.505E-10 | 3.50838 | qz (mm) @ t=1.735E-10 | 3.4124  |
| qz (mm) @ t=1.51E-10  | 3.50644 | qz (mm) @ t=1.74E-10  | 3.4102  |
| qz (mm) @ t=1.515E-10 | 3.50450 | qz (mm) @ t=1.745E-10 | 3.4080  |
| qz (mm) @ t=1.52E-10  | 3.50254 | qz (mm) @ t=1.75E-10  | 3.4057  |
| qz (mm) @ t=1.525E-10 | 3.50058 | qz (mm) @ t=1.755E-10 | 3.4035  |
| qz (mm) @ t=1.53E-10  | 3.49862 | qz (mm) @ t=1.76E-10  | 3.4012  |
| qz (mm) @ t=1.535E-10 | 3.49665 | qz (mm) @ t=1.765E-10 | 3.3989  |
| qz (mm) @ t=1.54E-10  | 3.49467 | qz (mm) @ t=1.77E-10  | 3.3967  |
| qz (mm) @ t=1.545E-10 | 3.49268 | qz (mm) @ t=1.775E-10 | 3.3944  |
| qz (mm) @ t=1.55E-10  | 3.49069 | qz (mm) @ t=1.78E-10  | 3.3921  |
| qz (mm) @ t=1.555E-10 | 3.48869 | qz (mm) @ t=1.785E-10 | 3.3898  |
| qz (mm) @ t=1.56E-10  | 3.48669 | qz (mm) @ t=1.79E-10  | 3.3875  |
| qz (mm) @ t=1.565E-10 | 3.48468 | qz (mm) @ t=1.795E-10 | 3.3852  |
| qz (mm) @ t=1.57E-10  | 3.48266 | qz (mm) @ t=1.8E-10   | 3.3829  |
| qz (mm) @ t=1.575E-10 | 3.48064 | qz (mm) @ t=1.805E-10 | 3.3806  |
| qz (mm) @ t=1.58E-10  | 3.47861 | qz (mm) @ t=1.81E-10  | 3.3782  |
| qz (mm) @ t=1.585E-10 | 3.47657 | qz (mm) @ t=1.815E-10 | 3.3759  |
| qz (mm) @ t=1.59E-10  | 3.47453 | qz (mm) @ t=1.82E-10  | 3.3736  |
| qz (mm) @ t=1.595E-10 | 3.47248 | qz (mm) @ t=1.825E-10 | 3.3712  |
| qz (mm) @ t=1.6E-10   | 3.47042 | qz (mm) @ t=1.83E-10  | 3.3689  |
| qz (mm) @ t=1.605E-10 | 3.46836 | qz (mm) @ t=1.835E-10 | 3.3665  |
|                       |         |                       |         |

| qz (mm) @ t=1.84E-10  | 3.36419 | qz (mm) @ t=2.07E-10  | 3.24851 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=1.845E-10 | 3.36182 | qz (mm) @ t=2.075E-10 | 3.24584 |
| qz (mm) @ t=1.85E-10  | 3.35944 | qz (mm) @ t=2.08E-10  | 3.24317 |
| qz (mm) @ t=1.855E-10 | 3.35706 | qz (mm) @ t=2.085E-10 | 3.24049 |
| qz (mm) @ t=1.86E-10  | 3.35467 | qz (mm) @ t=2.09E-10  | 3.23781 |
| qz (mm) @ t=1.865E-10 | 3.35227 | qz (mm) @ t=2.095E-10 | 3.23512 |
| qz (mm) @ t=1.87E-10  | 3.34987 | qz (mm) @ t=2.1E-10   | 3.23242 |
| qz (mm) @ t=1.875E-10 | 3.34746 | qz (mm) @ t=2.105E-10 | 3.22972 |
| qz (mm) @ t=1.88E-10  | 3.34504 | qz (mm) @ t=2.11E-10  | 3.22701 |
| qz (mm) @ t=1.885E-10 | 3.34262 | qz (mm) @ t=2.115E-10 | 3.22429 |
| qz (mm) @ t=1.89E-10  | 3.34019 | qz (mm) @ t=2.12E-10  | 3.22157 |
| qz (mm) @ t=1.895E-10 | 3.33776 | qz (mm) @ t=2.125E-10 | 3.21884 |
| qz (mm) @ t=1.9E-10   | 3.33532 | qz (mm) @ t=2.13E-10  | 3.21610 |
| qz (mm) @ t=1.905E-10 | 3.33287 | qz (mm) @ t=2.135E-10 | 3.21336 |
| qz (mm) @ t=1.91E-10  | 3.33042 | qz (mm) @ t=2.14E-10  | 3.21061 |
| qz (mm) @ t=1.915E-10 | 3.32796 | qz (mm) @ t=2.145E-10 | 3.20785 |
| qz (mm) @ t=1.92E-10  | 3.32549 | qz (mm) @ t=2.15E-10  | 3.20509 |
| qz (mm) @ t=1.925E-10 | 3.32302 | qz (mm) @ t=2.155E-10 | 3.20233 |
| qz (mm) @ t=1.93E-10  | 3.32054 | qz (mm) @ t=2.16E-10  | 3.19955 |
| qz (mm) @ t=1.935E-10 | 3.31805 | qz (mm) @ t=2.165E-10 | 3.19677 |
| qz (mm) @ t=1.94E-10  | 3.31556 | qz (mm) @ t=2.17E-10  | 3.19398 |
| qz (mm) @ t=1.945E-10 | 3.31306 | qz (mm) @ t=2.175E-10 | 3.19119 |
| qz (mm) @ t=1.95E-10  | 3.31055 | qz (mm) @ t=2.18E-10  | 3.18839 |
| qz (mm) @ t=1.955E-10 | 3.30804 | qz (mm) @ t=2.185E-10 | 3.18558 |
| qz (mm) @ t=1.96E-10  | 3.30552 | qz (mm) @ t=2.19E-10  | 3.18277 |
| qz (mm) @ t=1.965E-10 | 3.30300 | qz (mm) @ t=2.195E-10 | 3.17995 |
| qz (mm) @ t=1.97E-10  | 3.30047 | qz (mm) @ t=2.2E-10   | 3.17713 |
| qz (mm) @ t=1.975E-10 | 3.29793 | qz (mm) @ t=2.205E-10 | 3.17430 |
| qz (mm) @ t=1.98E-10  | 3.29539 | qz (mm) @ t=2.21E-10  | 3.17146 |
| qz (mm) @ t=1.985E-10 | 3.29284 | qz (mm) @ t=2.215E-10 | 3.16861 |
| qz (mm) @ t=1.99E-10  | 3.29028 | qz (mm) @ t=2.22E-10  | 3.16576 |
| qz (mm) @ t=1.995E-10 | 3.28772 | qz (mm) @ t=2.225E-10 | 3.16290 |
| qz (mm) @ t=2E-10     | 3.28515 | qz (mm) @ t=2.23E-10  | 3.16004 |
| qz (mm) @ t=2.005E-10 | 3.28257 | qz (mm) @ t=2.235E-10 | 3.15717 |
| qz (mm) @ t=2.01E-10  | 3.27999 | qz (mm) @ t=2.24E-10  | 3.15429 |
| qz (mm) @ t=2.015E-10 | 3.27740 | qz (mm) @ t=2.245E-10 | 3.15141 |
| qz (mm) @ t=2.02E-10  | 3.27481 | qz (mm) @ t=2.25E-10  | 3.14852 |
| qz (mm) @ t=2.025E-10 | 3.27221 | qz (mm) @ t=2.255E-10 | 3.14563 |
| qz (mm) @ t=2.03E-10  | 3.26960 | qz (mm) @ t=2.26E-10  | 3.14272 |
| qz (mm) @ t=2.035E-10 | 3.26699 | qz (mm) @ t=2.265E-10 | 3.13981 |
| qz (mm) @ t=2.04E-10  | 3.26437 | qz (mm) @ t=2.27E-10  | 3.13690 |
| qz (mm) @ t=2.045E-10 | 3.26174 | qz (mm) @ t=2.275E-10 | 3.13398 |
| qz (mm) @ t=2.05E-10  | 3.25910 | qz (mm) @ t=2.28E-10  | 3.13105 |
| qz (mm) @ t=2.055E-10 | 3.25647 | qz (mm) @ t=2.285E-10 | 3.12812 |
| qz (mm) @ t=2.06E-10  | 3.25382 | qz (mm) @ t=2.29E-10  | 3.12518 |
| qz (mm) @ t=2.065E-10 | 3.25117 | qz (mm) @ t=2.295E-10 | 3.12223 |

| qz (mm) @ t=2.3E-10   | 3.11928 | qz (mm) @ t=2.53E-10  | 2.97652 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=2.305E-10 | 3.11632 | qz (mm) @ t=2.535E-10 | 2.97326 |
| qz (mm) @ t=2.31E-10  | 3.11335 | qz (mm) @ t=2.54E-10  | 2.97000 |
| qz (mm) @ t=2.315E-10 | 3.11038 | qz (mm) @ t=2.545E-10 | 2.96674 |
| qz (mm) @ t=2.32E-10  | 3.10740 | qz (mm) @ t=2.55E-10  | 2.96346 |
| qz (mm) @ t=2.325E-10 | 3.10441 | qz (mm) @ t=2.555E-10 | 2.96018 |
| qz (mm) @ t=2.33E-10  | 3.10142 | qz (mm) @ t=2.56E-10  | 2.95690 |
| qz (mm) @ t=2.335E-10 | 3.09842 | qz (mm) @ t=2.565E-10 | 2.95361 |
| qz (mm) @ t=2.34E-10  | 3.09542 | qz (mm) @ t=2.57E-10  | 2.95031 |
| qz (mm) @ t=2.345E-10 | 3.09241 | qz (mm) @ t=2.575E-10 | 2.94701 |
| qz (mm) @ t=2.35E-10  | 3.08939 | qz (mm) @ t=2.58E-10  | 2.94369 |
| qz (mm) @ t=2.355E-10 | 3.08637 | qz (mm) @ t=2.585E-10 | 2.94038 |
| qz (mm) @ t=2.36E-10  | 3.08334 | qz (mm) @ t=2.59E-10  | 2.93705 |
| qz (mm) @ t=2.365E-10 | 3.08030 | qz (mm) @ t=2.595E-10 | 2.93372 |
| qz (mm) @ t=2.37E-10  | 3.07726 | qz (mm) @ t=2.6E-10   | 2.93039 |
| qz (mm) @ t=2.375E-10 | 3.07421 | qz (mm) @ t=2.605E-10 | 2.92704 |
| qz (mm) @ t=2.38E-10  | 3.07115 | qz (mm) @ t=2.61E-10  | 2.92370 |
| qz (mm) @ t=2.385E-10 | 3.06809 | qz (mm) @ t=2.615E-10 | 2.92034 |
| qz (mm) @ t=2.39E-10  | 3.06502 | qz (mm) @ t=2.62E-10  | 2.91698 |
| qz (mm) @ t=2.395E-10 | 3.06195 | qz (mm) @ t=2.625E-10 | 2.91361 |
| qz (mm) @ t=2.4E-10   | 3.05887 | qz (mm) @ t=2.63E-10  | 2.91024 |
| qz (mm) @ t=2.405E-10 | 3.05578 | qz (mm) @ t=2.635E-10 | 2.90685 |
| qz (mm) @ t=2.41E-10  | 3.05268 | qz (mm) @ t=2.64E-10  | 2.90347 |
| qz (mm) @ t=2.415E-10 | 3.04958 | qz (mm) @ t=2.645E-10 | 2.90007 |
| qz (mm) @ t=2.42E-10  | 3.04648 | qz (mm) @ t=2.65E-10  | 2.89667 |
| qz (mm) @ t=2.425E-10 | 3.04336 | qz (mm) @ t=2.655E-10 | 2.89327 |
| qz (mm) @ t=2.43E-10  | 3.04025 | qz (mm) @ t=2.66E-10  | 2.88985 |
| qz (mm) @ t=2.435E-10 | 3.03712 | qz (mm) @ t=2.665E-10 | 2.88644 |
| qz (mm) @ t=2.44E-10  | 3.03399 | qz (mm) @ t=2.67E-10  | 2.88301 |
| qz (mm) @ t=2.445E-10 | 3.03085 | qz (mm) @ t=2.675E-10 | 2.87958 |
| qz (mm) @ t=2.45E-10  | 3.02770 | qz (mm) @ t=2.68E-10  | 2.87614 |
| qz (mm) @ t=2.455E-10 | 3.02455 | qz (mm) @ t=2.685E-10 | 2.87270 |
| qz (mm) @ t=2.46E-10  | 3.02139 | qz (mm) @ t=2.69E-10  | 2.86924 |
| qz (mm) @ t=2.465E-10 | 3.01823 | qz (mm) @ t=2.695E-10 | 2.86579 |
| qz (mm) @ t=2.47E-10  | 3.01506 | qz (mm) @ t=2.7E-10   | 2.86232 |
| qz (mm) @ t=2.475E-10 | 3.01188 | qz (mm) @ t=2.705E-10 | 2.85885 |
| qz (mm) @ t=2.48E-10  | 3.00870 | qz (mm) @ t=2.71E-10  | 2.85538 |
| qz (mm) @ t=2.485E-10 | 3.00551 | qz (mm) @ t=2.715E-10 | 2.85189 |
| qz (mm) @ t=2.49E-10  | 3.00231 | qz (mm) @ t=2.72E-10  | 2.84841 |
| qz (mm) @ t=2.495E-10 | 2.99911 | qz (mm) @ t=2.725E-10 | 2.84491 |
| qz (mm) @ t=2.5E-10   | 2.99590 | qz (mm) @ t=2.73E-10  | 2.84141 |
| qz (mm) @ t=2.505E-10 | 2.99269 | qz (mm) @ t=2.735E-10 | 2.83790 |
| qz (mm) @ t=2.51E-10  | 2.98947 | qz (mm) @ t=2.74E-10  | 2.83439 |
| qz (mm) @ t=2.515E-10 | 2.98624 | qz (mm) @ t=2.745E-10 | 2.83086 |
| qz (mm) @ t=2.52E-10  | 2.98300 | qz (mm) @ t=2.75E-10  | 2.82734 |
| qz (mm) @ t=2.525E-10 | 2.97976 | qz (mm) @ t=2.755E-10 | 2.82380 |

| qz (mm) @ t=2.76E-10  | 2.82026 | qz (mm) @ t=2.99E-10  | 2.65056 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=2.765E-10 | 2.81672 | qz (mm) @ t=2.995E-10 | 2.64672 |
| qz (mm) @ t=2.77E-10  | 2.81316 | qz (mm) @ t=3E-10     | 2.64287 |
| qz (mm) @ t=2.775E-10 | 2.80961 | qz (mm) @ t=3.005E-10 | 2.63902 |
| qz (mm) @ t=2.78E-10  | 2.80604 | qz (mm) @ t=3.01E-10  | 2.63517 |
| qz (mm) @ t=2.785E-10 | 2.80247 | qz (mm) @ t=3.015E-10 | 2.63130 |
| qz (mm) @ t=2.79E-10  | 2.79889 | qz (mm) @ t=3.02E-10  | 2.62743 |
| qz (mm) @ t=2.795E-10 | 2.79531 | qz (mm) @ t=3.025E-10 | 2.62356 |
| qz (mm) @ t=2.8E-10   | 2.79171 | qz (mm) @ t=3.03E-10  | 2.61967 |
| qz (mm) @ t=2.805E-10 | 2.78812 | qz (mm) @ t=3.035E-10 | 2.61578 |
| qz (mm) @ t=2.81E-10  | 2.78451 | qz (mm) @ t=3.04E-10  | 2.61189 |
| qz (mm) @ t=2.815E-10 | 2.78090 | qz (mm) @ t=3.045E-10 | 2.60799 |
| qz (mm) @ t=2.82E-10  | 2.77729 | qz (mm) @ t=3.05E-10  | 2.60408 |
| qz (mm) @ t=2.825E-10 | 2.77366 | qz (mm) @ t=3.055E-10 | 2.60017 |
| qz (mm) @ t=2.83E-10  | 2.77004 | qz (mm) @ t=3.06E-10  | 2.59624 |
| qz (mm) @ t=2.835E-10 | 2.76640 | qz (mm) @ t=3.065E-10 | 2.59232 |
| qz (mm) @ t=2.84E-10  | 2.76276 | qz (mm) @ t=3.07E-10  | 2.58838 |
| qz (mm) @ t=2.845E-10 | 2.75911 | qz (mm) @ t=3.075E-10 | 2.58444 |
| qz (mm) @ t=2.85E-10  | 2.75546 | qz (mm) @ t=3.08E-10  | 2.58050 |
| qz (mm) @ t=2.855E-10 | 2.75180 | qz (mm) @ t=3.085E-10 | 2.57655 |
| qz (mm) @ t=2.86E-10  | 2.74813 | qz (mm) @ t=3.09E-10  | 2.57259 |
| qz (mm) @ t=2.865E-10 | 2.74446 | qz (mm) @ t=3.095E-10 | 2.56862 |
| qz (mm) @ t=2.87E-10  | 2.74078 | qz (mm) @ t=3.1E-10   | 2.56465 |
| qz (mm) @ t=2.875E-10 | 2.73709 | qz (mm) @ t=3.105E-10 | 2.56067 |
| qz (mm) @ t=2.88E-10  | 2,73340 | qz (mm) @ t=3.11E-10  | 2.55669 |
| qz (mm) @ t=2.885E-10 | 2.72970 | qz (mm) @ t=3.115E-10 | 2.55270 |
| qz (mm) @ t=2.89E-10  | 2.72599 | qz (mm) @ t=3.12E-10  | 2.54870 |
| qz (mm) @ t=2.895E-10 | 2.72228 | qz (mm) @ t=3.125E-10 | 2.54470 |
| qz (mm) @ t=2.9E-10   | 2.71856 | qz (mm) @ t=3.13E-10  | 2.54069 |
| qz (mm) @ t=2.905E-10 | 2.71484 | qz (mm) @ t=3.135E-10 | 2.53668 |
| qz (mm) @ t=2.91E-10  | 2.71111 | qz (mm) @ t=3.14E-10  | 2.53265 |
| qz (mm) @ t=2.915E-10 | 2.70737 | qz (mm) @ t=3.145E-10 | 2.52863 |
| qz (mm) @ t=2.92E-10  | 2.70363 | qz (mm) @ t=3.15E-10  | 2.52459 |
| qz (mm) @ t=2.925E-10 | 2.69988 | qz (mm) @ t=3.155E-10 | 2.52055 |
| qz (mm) @ t=2.93E-10  | 2.69612 | qz (mm) @ t=3.16E-10  | 2.51650 |
| qz (mm) @ t=2.935E-10 | 2.69236 | qz (mm) @ t=3.165E-10 | 2.51245 |
| qz (mm) @ t=2.94E-10  | 2.68859 | qz (mm) @ t=3.17E-10  | 2.50839 |
| qz (mm) @ t=2.945E-10 | 2.68482 | qz (mm) @ t=3.175E-10 | 2.50432 |
| qz (mm) @ t=2.95E-10  | 2.68104 | qz (mm) @ t=3.18E-10  | 2.50025 |
| qz (mm) @ t=2.955E-10 | 2.67725 | qz (mm) @ t=3.185E-10 | 2.49617 |
| qz (mm) @ t=2.96E-10  | 2.67345 | qz (mm) @ t=3.19E-10  | 2.49209 |
| qz (mm) @ t=2.965E-10 | 2.66965 | qz (mm) @ t=3.195E-10 | 2.48800 |
| qz (mm) @ t=2.97E-10  | 2.66585 | qz (mm) @ t=3.2E-10   | 2.48390 |
| qz (mm) @ t=2.975E-10 | 2.66203 | qz (mm) @ t=3.205E-10 | 2.47979 |
| qz (mm) @ t=2.98E-10  | 2.65821 | qz (mm) @ t=3.21E-10  | 2.47568 |
| qz (mm) @ t=2.985E-10 | 2.65439 | qz (mm) @ t=3.215E-10 | 2.47157 |

| qz (mm) @ t=3.22E-10  | 2.46745 | qz (mm) @ t=3.45E-10  | 2.27098 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=3.225E-10 | 2.46332 | qz (mm) @ t=3.455E-10 | 2.26656 |
| qz (mm) @ t=3.23E-10  | 2.45918 | qz (mm) @ t=3.46E-10  | 2.26214 |
| qz (mm) @ t=3.235E-10 | 2.45504 | qz (mm) @ t=3.465E-10 | 2.25770 |
| qz (mm) @ t=3.24E-10  | 2.45089 | qz (mm) @ t=3.47E-10  | 2.25327 |
| qz (mm) @ t=3.245E-10 | 2.44674 | qz (mm) @ t=3.475E-10 | 2.24882 |
| qz (mm) @ t=3.25E-10  | 2.44258 | qz (mm) @ t=3.48E-10  | 2.24437 |
| qz (mm) @ t=3.255E-10 | 2.43841 | qz (mm) @ t=3.485E-10 | 2.23992 |
| qz (mm) @ t=3.26E-10  | 2.43423 | qz (mm) @ t=3.49E-10  | 2.23545 |
| qz (mm) @ t=3.265E-10 | 2.43006 | qz (mm) @ t=3.495E-10 | 2.23098 |
| qz (mm) @ t=3.27E-10  | 2.42587 | qz (mm) @ t=3.5E-10   | 2.22651 |
| qz (mm) @ t=3.275E-10 | 2.42168 | qz (mm) @ t=3.505E-10 | 2.22203 |
| qz (mm) @ t=3.28E-10  | 2.41748 | qz (mm) @ t=3.51E-10  | 2.21754 |
| qz (mm) @ t=3.285E-10 | 2.41327 | qz (mm) @ t=3.515E-10 | 2.21305 |
| qz (mm) @ t=3.29E-10  | 2.40906 | qz (mm) @ t=3.52E-10  | 2.20854 |
| qz (mm) @ t=3.295E-10 | 2.40484 | qz (mm) @ t=3.525E-10 | 2.20404 |
| qz (mm) @ t=3.3E-10   | 2.40062 | qz (mm) @ t=3.53E-10  | 2.19952 |
| qz (mm) @ t=3.305E-10 | 2.39639 | qz (mm) @ t=3.535E-10 | 2.19501 |
| qz (mm) @ t=3.31E-10  | 2.39215 | qz (mm) @ t=3.54E-10  | 2.19048 |
| qz (mm) @ t=3.315E-10 | 2.38791 | qz (mm) @ t=3.545E-10 | 2.18595 |
| qz (mm) @ t=3.32E-10  | 2.38366 | qz (mm) @ t=3.55E-10  | 2.18141 |
| qz (mm) @ t=3.325E-10 | 2.37941 | qz (mm) @ t=3.555E-10 | 2.17687 |
| qz (mm) @ t=3.33E-10  | 2,37515 | qz (mm) @ t=3.56E-10  | 2.17232 |
| qz (mm) @ t=3.335E-10 | 2.37088 | qz (mm) @ t=3.565E-10 | 2.16776 |
| qz (mm) @ t=3.34E-10  | 2.36660 | qz (mm) @ t=3.57E-10  | 2.16319 |
| qz (mm) @ t=3.345E-10 | 2.36232 | qz (mm) @ t=3.575E-10 | 2.15863 |
| qz (mm) @ t=3.35E-10  | 2.35804 | qz (mm) @ t=3.58E-10  | 2.15405 |
| qz (mm) @ t=3.355E-10 | 2.35374 | qz (mm) @ t=3.585E-10 | 2.14947 |
| qz (mm) @ t=3.36E-10  | 2.34944 | qz (mm) @ t=3.59E-10  | 2.14488 |
| qz (mm) @ t=3.365E-10 | 2.34514 | qz (mm) @ t=3.595E-10 | 2.14029 |
| qz (mm) @ t=3.37E-10  | 2.34083 | qz (mm) @ t=3.6E-10   | 2.13568 |
| qz (mm) @ t=3.375E-10 | 2.33651 | qz (mm) @ t=3.605E-10 | 2.13108 |
| qz (mm) @ t=3.38E-10  | 2.33218 | qz (mm) @ t=3.61E-10  | 2.12646 |
| qz (mm) @ t=3.385E-10 | 2.32785 | qz (mm) @ t=3.615E-10 | 2.12184 |
| qz (mm) @ t=3.39E-10  | 2.32352 | qz (mm) @ t=3.62E-10  | 2.11722 |
| qz (mm) @ t=3.395E-10 | 2.31917 | qz (mm) @ t=3.625E-10 | 2.11259 |
| qz (mm) @ t=3.4E-10   | 2.31482 | qz (mm) @ t=3.63E-10  | 2.10795 |
| qz (mm) @ t=3.405E-10 | 2.31047 | qz (mm) @ t=3.635E-10 | 2.10330 |
| qz (mm) @ t=3.41E-10  | 2.30610 | qz (mm) @ t=3.64E-10  | 2.09865 |
| qz (mm) @ t=3.415E-10 | 2.30174 | qz (mm) @ t=3.645E-10 | 2.09400 |
| qz (mm) @ t=3.42E-10  | 2.29736 | qz (mm) @ t=3.65E-10  | 2.08933 |
| qz (mm) @ t=3.425E-10 | 2.29298 | qz (mm) @ t=3.655E-10 | 2.08466 |
| qz (mm) @ t=3.43E-10  | 2.28859 | qz (mm) 🖭 t=3.66E-10  | 2.07999 |
| qz (mm) @ t=3.435E-10 | 2.28420 | qz (mm) @ t=3.665E-10 | 2.07530 |
| qz (mm) @ t=3.44E-10  | 2.27980 | qz (mm) @ t=3.67E-10  | 2.07062 |
| qz (mm) @ t=3.445E-10 | 2.27539 | qz (mm) @ t=3.675E-10 | 2.06592 |

| qz (mm) @ t=3.68E-10  | 2.06122 | qz (mm) @ t=3.91E-10  | 1.83823 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=3.685E-10 | 2.05651 | qz (mm) @ t=3.915E-10 | 1.83324 |
| qz (mm) @ t=3.69E-10  | 2.05180 | qz (mm) @ t=3.92E-10  | 1.82824 |
| qz (mm) @ t=3.695E-10 | 2.04708 | qz (mm) @ t=3.925E-10 | 1.82323 |
| qz (mm) @ t=3.7E-10   | 2.04235 | qz (mm) @ t=3.93E-10  | 1.81822 |
| qz (mm) @ t=3.705E-10 | 2.03762 | qz (mm) @ t=3.935E-10 | 1.81320 |
| qz (mm) @ t=3.71E-10  | 2.03288 | qz (mm) @ t=3.94E-10  | 1.80817 |
| qz (mm) @ t=3.715E-10 | 2.02814 | qz (mm) @ t=3.945E-10 | 1.80314 |
| qz (mm) @ t=3.72E-10  | 2.02339 | qz (mm) @ t=3.95E-10  | 1.79810 |
| qz (mm) @ t=3.725E-10 | 2.01863 | qz (mm) @ t=3.955E-10 | 1.79306 |
| qz (mm) @ t=3.73E-10  | 2.01387 | qz (mm) @ t=3.96E-10  | 1.78801 |
| qz (mm) @ t=3.735E-10 | 2.00910 | qz (mm) @ t=3.965E-10 | 1.78295 |
| qz (mm) @ t=3.74E-10  | 2.00432 | qz (mm) @ t=3.97E-10  | 1.77789 |
| qz (mm) @ t=3.745E-10 | 1.99954 | qz (mm) @ t=3.975E-10 | 1.77282 |
| qz (mm) @ t=3.75E-10  | 1.99475 | qz (mm) @ t=3.98E-10  | 1.76775 |
| qz (mm) @ t=3.755E-10 | 1.98996 | qz (mm) @ t=3.985E-10 | 1.76267 |
| qz (mm) @ t=3.76E-10  | 1.98516 | qz (mm) @ t=3.99E-10  | 1.75758 |
| qz (mm) @ t=3.765E-10 | 1.98035 | qz (mm) @ t=3.995E-10 | 1.75248 |
| qz (mm) @ t=3.77E-10  | 1.97554 | qz (mm) @ t=4E-10     | 1.74738 |
| qz (mm) @ t=3.775E-10 | 1.97072 | qz (mm) @ t=4.005E-10 | 1.74228 |
| qz (mm) @ t=3.78E-10  | 1.96589 | qz (mm) @ t=4.01E-10  | 1.73717 |
| qz (mm) @ t=3.785E-10 | 1.96106 | qz (mm) @ t=4.015E-10 | 1.73205 |
| qz (mm) @ t=3.79E-10  | 1.95622 | qz (mm) @ t=4.02E-10  | 1.72692 |
| qz (mm) @ t=3.795E-10 | 1.95138 | qz (mm) @ t=4.025E-10 | 1.72179 |
| qz (mm) @ t=3.8E-10   | 1.94652 | qz (mm) @ t=4.03E-10  | 1.71666 |
| qz (mm) @ t=3.805E-10 | 1.94167 | qz (mm) @ t=4.035E-10 | 1.71151 |
| qz (mm) @ t=3.81E-10  | 1.93680 | qz (mm) @ t=4.04E-10  | 1.70636 |
| qz (mm) @ t=3.815E-10 | 1.93193 | qz (mm) @ t=4.045E-10 | 1.70121 |
| qz (mm) @ t=3.82E-10  | 1.92706 | qz (mm) @ t=4.05E-10  | 1.69604 |
| qz (mm) @ t=3.825E-10 | 1.92218 | qz (mm) @ t=4.055E-10 | 1.69088 |
| qz (mm) @ t=3.83E-10  | 1.91729 | qz (mm) @ t=4.06E-10  | 1.68570 |
| qz (mm) @ t=3.835E-10 | 1.91239 | qz (mm) @ t=4.065E-10 | 1.68052 |
| qz (mm) @ t=3.84E-10  | 1.90749 | qz (mm) @ t=4.07E-10  | 1.67534 |
| qz (mm) @ t=3.845E-10 | 1.90259 | qz (mm) @ t=4.075E-10 | 1.67014 |
| qz (mm) @ t=3.85E-10  | 1.89767 | qz (mm) @ t=4.08E-10  | 1.66494 |
| qz (mm) @ t=3.855E-10 | 1.89275 | qz (mm) @ t=4.085E-10 | 1.65974 |
| qz (mm) @ t=3.86E-10  | 1.88783 | qz (mm) @ t=4.09E-10  | 1.65453 |
| qz (mm) @ t=3.865E-10 | 1.88290 | qz (mm) @ t=4.095E-10 | 1.64931 |
| qz (mm) @ t=3.87E-10  | 1.87796 | qz (mm) @ t=4.1E-10   | 1.64409 |
| qz (mm) @ t=3.875E-10 | 1.87301 | qz (mm) @ t=4.105E-10 | 1.63885 |
| qz (mm) @ t=3.88E-10  | 1.86806 | qz (mm) @ t=4.11E-10  | 1.63362 |
| qz (mm) @ t=3.885E-10 | 1.86311 | qz (mm) @ t=4.115E-10 | 1.62838 |
| qz (mm) @ t=3.89E-10  | 1.85814 | qz (mm) @ t=4.12E-10  | 1.62313 |
| qz (mm) @ t=3.895E-10 | 1.85317 | qz (mm) @ t=4.125E-10 | 1.61787 |
| qz (mm) @ t=3.9F=10   | 1.84820 | qz (mm) @ t=4 13F-10  | 1.61261 |
| qz (mm) @ t=3.905E-10 | 1.84322 | qz (mm) @ t=4.135E-10 | 1.60734 |

| qz (mm) @ t=3.68E-10  | 2.06122 | qz (mm) @ t=3.91E-10  | 1.83823 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=3.685E-10 | 2.05651 | qz (mm) @ t=3.915E-10 | 1.83324 |
| qz (mm) @ t=3.69E-10  | 2.05180 | qz (mm) @ t=3.92E-10  | 1.82824 |
| qz (mm) @ t=3.695E-10 | 2.04708 | qz (mm) @ t=3.925E-10 | 1.82323 |
| qz (mm) @ t=3.7E-10   | 2.04235 | qz (mm) @ t=3.93E-10  | 1.81822 |
| qz (mm) @ t=3.705E-10 | 2.03762 | qz (mm) @ t=3.935E-10 | 1.81320 |
| qz (mm) @ t=3.71E-10  | 2.03288 | qz (mm) @ t=3.94E-10  | 1.80817 |
| qz (mm) @ t=3.715E-10 | 2.02814 | qz (mm) @ t=3.945E-10 | 1.80314 |
| qz (mm) @ t=3.72E-10  | 2.02339 | qz (mm) @ t=3.95E-10  | 1.79810 |
| qz (mm) @ t=3.725E-10 | 2.01863 | qz (mm) @ t=3.955E-10 | 1.79306 |
| qz (mm) @ t=3.73E-10  | 2.01387 | qz (mm) @ t=3.96E-10  | 1.78801 |
| qz (mm) @ t=3.735E-10 | 2.00910 | qz (mm) @ t=3.965E-10 | 1.78295 |
| qz (mm) @ t=3.74E-10  | 2.00432 | qz (mm) @ t=3.97E-10  | 1.77789 |
| qz (mm) @ t=3.745E-10 | 1.99954 | qz (mm) @ t=3.975E-10 | 1.77282 |
| qz (mm) @ t=3.75E-10  | 1.99475 | qz (mm) @ t=3.98E-10  | 1.76775 |
| qz (mm) @ t=3.755E-10 | 1.98996 | qz (mm) @ t=3.985E-10 | 1.76267 |
| qz (mm) @ t=3.76E-10  | 1.98516 | qz (mm) @ t=3.99E-10  | 1.75758 |
| qz (mm) @ t=3.765E-10 | 1.98035 | qz (mm) @ t=3.995E-10 | 1.75248 |
| qz (mm) @ t=3.77E-10  | 1.97554 | qz (mm) @ t=4E-10     | 1.74738 |
| qz (mm) @ t=3.775E-10 | 1.97072 | qz (mm) @ t=4.005E-10 | 1.74228 |
| qz (mm) @ t=3.78E-10  | 1.96589 | qz (mm) @ t=4.01E-10  | 1.73717 |
| qz (mm) @ t=3.785E-10 | 1.96106 | qz (mm) @ t=4.015E-10 | 1.73205 |
| qz (mm) @ t=3.79E-10  | 1.95622 | qz (mm) @ t=4.02E-10  | 1.72692 |
| qz (mm) @ t=3.795E-10 | 1.95138 | qz (mm) @ t=4.025E-10 | 1.72179 |
| qz (mm) @ t=3.8E-10   | 1.94652 | qz (mm) @ t=4.03E-10  | 1.71666 |
| qz (mm) @ t=3.805E-10 | 1.94167 | qz (mm) @ t=4.035E-10 | 1.71151 |
| qz (mm) @ t=3.81E-10  | 1.93680 | qz (mm) @ t=4.04E-10  | 1.70636 |
| qz (mm) @ t=3.815E-10 | 1.93193 | qz (mm) @ t=4.045E-10 | 1.70121 |
| qz (mm) @ t=3.82E-10  | 1.92706 | qz (mm) @ t=4.05E-10  | 1.69604 |
| qz (mm) @ t=3.825E-10 | 1.92218 | qz (mm) @ t=4.055E-10 | 1.69088 |
| qz (mm) @ t=3.83E-10  | 1.91729 | qz (mm) @ t=4.06E-10  | 1.68570 |
| qz (mm) @ t=3.835E-10 | 1.91239 | qz (mm) @ t=4.065E-10 | 1.68052 |
| qz (mm) @ t=3.84E-10  | 1.90749 | qz (mm) @ t=4.07E-10  | 1.67534 |
| qz (mm) @ t=3.845E-10 | 1.90259 | qz (mm) @ t=4.075E-10 | 1.67014 |
| qz (mm) @ t=3.85E-10  | 1.89767 | qz (mm) @ t=4.08E-10  | 1.66494 |
| qz (mm) @ t=3.855E-10 | 1.89275 | qz (mm) @ t=4.085E-10 | 1.65974 |
| qz (mm) @ t=3.86E-10  | 1.88783 | qz (mm) @ t=4.09E-10  | 1.65453 |
| qz (mm) @ t=3.865E-10 | 1.88290 | qz (mm) @ t=4.095E-10 | 1.64931 |
| qz (mm) @ t=3.87E-10  | 1.87796 | qz (mm) @ t=4.1E-10   | 1.64409 |
| qz (mm) @ t=3.875E-10 | 1.87301 | qz (mm) @ t=4.105E-10 | 1.63885 |
| qz (mm) @ t=3.88E-10  | 1.86806 | qz (mm) @ t=4.11E-10  | 1.63362 |
| qz (mm) @ t=3.885E-10 | 1.86311 | qz (mm) @ t=4.115E-10 | 1.62838 |
| qz (mm) @ t=3.89E-10  | 1.85814 | qz (mm) @ t=4.12E-10  | 1.62313 |
| qz (mm) @ t=3.895E-10 | 1.85317 | qz (mm) @ t=4.125E-10 | 1.61787 |
| qz (mm) @ t=3.9E-10   | 1.84820 | qz (mm) @ t=4.13E-10  | 1.61261 |
| qz (mm) @ t=3.905E-10 | 1.84322 | qz (mm) @ t=4.135E-10 | 1.60734 |

| qz (mm) @ t=4.6E-10   | 1.09049 | qz (mm) @ t=4.83E-10  | 0.81517 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=4.605E-10 | 1.08464 | qz (mm) @ t=4.835E-10 | 0.80904 |
| qz (mm) @ t=4.61E-10  | 1.07879 | qz (mm) @ t=4.84E-10  | 0.80290 |
| qz (mm) @ t=4.615E-10 | 1.07293 | qz (mm) @ t=4.845E-10 | 0.79676 |
| qz (mm) @ t=4.62E-10  | 1.06706 | qz (mm) @ t=4.85E-10  | 0.79061 |
| qz (mm) @ t=4.625E-10 | 1.06119 | qz (mm) @ t=4.855E-10 | 0.78446 |
| qz (mm) @ t=4.63E-10  | 1.05531 | qz (mm) @ t=4.86E-10  | 0.77830 |
| qz (mm) @ t=4.635E-10 | 1.04943 | qz (mm) @ t=4.865E-10 | 0.77213 |
| qz (mm) @ t=4.64E-10  | 1.04354 | qz (mm) @ t=4.87E-10  | 0.76596 |
| qz (mm) @ t=4.645E-10 | 1.03764 | qz (mm) @ t=4.875E-10 | 0.75978 |
| qz (mm) @ t=4.65E-10  | 1.03174 | qz (mm) @ t=4.88E-10  | 0.75360 |
| qz (mm) @ t=4.655E-10 | 1.02583 | qz (mm) @ t=4.885E-10 | 0.74741 |
| qz (mm) @ t=4.66E-10  | 1.01992 | qz (mm) @ t=4.89E-10  | 0.74121 |
| qz (mm) @ t=4.665E-10 | 1.01400 | qz (mm) @ t=4.895E-10 | 0.73501 |
| qz (mm) @ t=4.67E-10  | 1.00807 | qz (mm) @ t=4.9E-10   | 0.72880 |
| qz (mm) @ t=4.675E-10 | 1.00214 | qz (mm) @ t=4.905E-10 | 0.72258 |
| qz (mm) @ t=4.68E-10  | 0.99620 | qz (mm) @ t=4.91E-10  | 0.71636 |
| qz (mm) @ t=4.685E-10 | 0.99025 | qz (mm) @ t=4.915E-10 | 0.71013 |
| qz (mm) @ t=4.69E-10  | 0.98430 | qz (mm) @ t=4.92E-10  | 0.70390 |
| qz (mm) @ t=4.695E-10 | 0.97834 | qz (mm) @ t=4.925E-10 | 0.69766 |
| qz (mm) @ t=4.7E-10   | 0.97238 | qz (mm) @ t=4.93E-10  | 0.69141 |
| qz (mm) @ t=4.705E-10 | 0.96641 | qz (mm) @ t=4.935E-10 | 0.68516 |
| qz (mm) @ t=4.71E-10  | 0.96043 | qz (mm) @ t=4.94E-10  | 0.67890 |
| qz (mm) @ t=4.715E-10 | 0.95445 | qz (mm) @ t=4.945E-10 | 0.67264 |
| qz (mm) @ t=4.72E-10  | 0.94846 | qz (mm) @ t=4.95E-10  | 0.66637 |
| qz (mm) @ t=4.725E-10 | 0.94247 | qz (mm) @ t=4.955E-10 | 0.66009 |
| qz (mm) @ t=4.73E-10  | 0.93647 | qz (mm) @ t=4.96E-10  | 0.65381 |
| qz (mm) @ t=4.735E-10 | 0.93046 | qz (mm) @ t=4.965E-10 | 0.64752 |
| qz (mm) @ t=4.74E-10  | 0.92445 | qz (mm) @ t=4.97E-10  | 0.64123 |
| qz (mm) @ t=4.745E-10 | 0.91843 | qz (mm) @ t=4.975E-10 | 0.63493 |
| qz (mm) @ t=4.75E-10  | 0.91240 | qz (mm) @ t=4.98E-10  | 0.62862 |
| qz (mm) @ t=4.755E-10 | 0.90637 | qz (mm) @ t=4.985E-10 | 0.62231 |
| qz (mm) @ t=4.76E-10  | 0.90034 | qz (mm) @ t=4.99E-10  | 0.61599 |
| qz (mm) @ t=4.765E-10 | 0.89429 | qz (mm) @ t=4.995E-10 | 0.60966 |
| qz (mm) @ t=4.77E-10  | 0.88824 | qz (mm) @ t=5E-10     | 0.60333 |
| qz (mm) @ t=4.775E-10 | 0.88219 |                       |         |
| qz (mm) @ t=4.78E-10  | 0.87612 |                       |         |
| qz (mm) @ t=4.785E-10 | 0.87006 |                       |         |
| qz (mm) @ t=4.79E-10  | 0.86398 |                       |         |
| qz (mm) @ t=4.795E-10 | 0.85790 |                       | 1       |
| qz (mm) @ t=4.8E-10   | 0.85182 |                       |         |
| qz (mm) @ t=4.805E-10 | 0.84572 |                       | -       |
| qz (mm) @ t=4.81E-10  | 0.83962 |                       |         |
| qz (mm) @ t=4.815E-10 | 0.83352 |                       |         |
| qz (mm) @ t=4.82E-10  | 0.82741 |                       |         |
| qz (mm) @ t=4.825E-10 | 0.82129 |                       |         |

|                      |         | 1                    |         |
|----------------------|---------|----------------------|---------|
| qz (mm) @ t=0        | 3.80000 | qz (mm) @ t=2.3E-11  | 3.78978 |
| qz (mm) @ t=5E-13    | 3.80000 | qz (mm) @ t=2.35E-11 | 3.78933 |
| qz (mm) @ t=1E-12    | 3.79998 | qz (mm) @ t=2.4E-11  | 3.78887 |
| qz (mm) @ t=1.5E-12  | 3.79996 | qz (mm) @ t=2.45E-11 | 3.78840 |
| qz (mm) @ t=2E-12    | 3.79992 | qz (mm) @ t=2.5E-11  | 3.78793 |
| qz (mm) @ t=2.5E-12  | 3.79988 | qz (mm) @ t=2.55E-11 | 3.78744 |
| qz (mm) @ t=3E-12    | 3.79983 | qz (mm) @ t=2.6E-11  | 3.78694 |
| qz (mm) @ t=3.5E-12  | 3.79976 | qz (mm) @ t=2.65E-11 | 3.78643 |
| qz (mm) @ t=4E-12    | 3.79969 | qz (mm) @ t=2.7E-11  | 3.78592 |
| qz (mm) @ t=4.5E-12  | 3.79961 | qz (mm) @ t=2.75E-11 | 3.78539 |
| qz (mm) @ t=5E-12    | 3.79952 | qz (mm) @ t=2.8E-11  | 3.78486 |
| qz (mm) @ t=5.5E-12  | 3.79942 | qz (mm) @ t=2.85E-11 | 3.78431 |
| qz (mm) @ t=6E-12    | 3.79930 | qz (mm) @ t=2.9E-11  | 3.78375 |
| qz (mm) @ t=6.5E-12  | 3.79918 | qz (mm) @ t=2.95E-11 | 3.78319 |
| qz (mm) @ t=7E-12    | 3.79905 | qz (mm) @ t=3E-11    | 3.78261 |
| gz (mm) @ t=7.5E-12  | 3.79891 | qz (mm) @ t=3.05E-11 | 3.78203 |
| qz (mm) @ t=8E-12    | 3.79876 | qz (mm) @ t=3.1E-11  | 3.78144 |
| qz (mm) @ t=8.5E-12  | 3.79860 | qz (mm) @ t=3.15E-11 | 3.78083 |
| gz (mm) @ t=9E-12    | 3.79844 | qz (mm) @ t=3.2E-11  | 3.78022 |
| gz (mm) @ t=9.5E-12  | 3.79826 | gz (mm) @ t=3.25E-11 | 3.77960 |
| gz (mm) @ t=1E-11    | 3.79807 | qz (mm) @ t=3.3E-11  | 3.77896 |
| qz (mm) @ t=1.05E-11 | 3.79787 | qz (mm) @ t=3.35E-11 | 3.77832 |
| gz (mm) @ t=1.1E-11  | 3.79766 | gz (mm) @ t=3.4E-11  | 3.77767 |
| qz (mm) @ t=1.15E-11 | 3.79745 | qz (mm) @ t=3.45E-11 | 3.77701 |
| qz (mm) @ t=1.2E-11  | 3.79722 | qz (mm) @ t=3.5E-11  | 3.77634 |
| qz (mm) @ t=1.25E-11 | 3.79698 | qz (mm) @ t=3.55E-11 | 3.77566 |
| qz (mm) @ t=1.3E-11  | 3.79674 | qz (mm) @ t=3.6E-11  | 3.77497 |
| qz (mm) @ t=1.35E-11 | 3.79648 | qz (mm) @ t=3.65E-11 | 3.77427 |
| qz (mm) @ t=1.4E-11  | 3.79621 | qz (mm) @ t=3.7E-11  | 3.77356 |
| qz (mm) @ t=1.45E-11 | 3.79594 | qz (mm) @ t=3.75E-11 | 3.77284 |
| qz (mm) @ t=1.5E-11  | 3.79565 | qz (mm) @ t=3.8E-11  | 3.77211 |
| qz (mm) @ t=1.55E-11 | 3.79536 | qz (mm) @ t=3.85E-11 | 3.77137 |
| qz (mm) @ t=1.6E-11  | 3.79505 | qz (mm) @ t=3.9E-11  | 3.77062 |
| qz (mm) @ t=1.65E-11 | 3.79474 | qz (mm) @ t=3.95E-11 | 3.76986 |
| qz (mm) @ t=1.7E-11  | 3.79442 | qz (mm) @ t=4E-11    | 3.76909 |
| qz (mm) @ t=1.75E-11 | 3.79408 | qz (mm) @ t=4.05E-11 | 3.76832 |
| qz (mm) @ t=1.8E-11  | 3.79374 | qz (mm) @ t=4.1E-11  | 3.76753 |
| qz (mm) @ t=1.85E-11 | 3.79339 | qz (mm) @ t=4.15E-11 | 3.76673 |
| qz (mm) @ t=1.9E-11  | 3.79303 | qz (mm) @ t=4.2E-11  | 3.76593 |
| qz (mm) @ t=1.95E-11 | 3.79265 | qz (mm) @ t=4.25E-11 | 3.76511 |
| qz (mm) @ t=2E-11    | 3.79227 | qz (mm) @ t=4.3E-11  | 3.76428 |
| qz (mm) @ t=2.05E-11 | 3.79188 | qz (mm) @ t=4.35E-11 | 3.76345 |
| qz (mm) @ t=2.1E-11  | 3.79148 | qz (mm) @ t=4.4E-11  | 3.76260 |
| qz (mm) @ t=2.15E-11 | 3.79107 | qz (mm) @ t=4.45E-11 | 3.76175 |
| qz (mm) @ t=2.2E-11  | 3.79065 | qz (mm) @ t=4.5E-11  | 3.76088 |
| qz (mm) @ t=2.25E-11 | 3.79022 | qz (mm) @ t=4.55E-11 | 3.76001 |

Table 19: Raw data of electron trajectories with  $V_{\rm acc} = 750$  V.

| qz (mm) @ t=4.6E-11  | 3.75913 | qz (mm) @ t=6.9E-11  | 3.70804 |
|----------------------|---------|----------------------|---------|
| qz (mm) @ t=4.65E-11 | 3.75823 | qz (mm) @ t=6.95E-11 | 3.70670 |
| qz (mm) @ t=4.7E-11  | 3.75733 | qz (mm) @ t=7E-11    | 3.70535 |
| qz (mm) @ t=4.75E-11 | 3.75642 | qz (mm) @ t=7.05E-11 | 3.70400 |
| qz (mm) @ t=4.8E-11  | 3.75549 | qz (mm) @ t=7.1E-11  | 3.70263 |
| qz (mm) @ t=4.85E-11 | 3.75456 | qz (mm) @ t=7.15E-11 | 3.70125 |
| qz (mm) @ t=4.9E-11  | 3.75362 | qz (mm) @ t=7.2E-11  | 3.69987 |
| qz (mm) @ t=4.95E-11 | 3.75267 | qz (mm) @ t=7.25E-11 | 3.69847 |
| qz (mm) @ t=5E-11    | 3.75171 | qz (mm) @ t=7.3E-11  | 3.69707 |
| qz (mm) @ t=5.05E-11 | 3.75074 | qz (mm) @ t=7.35E-11 | 3.69565 |
| qz (mm) @ t=5.1E-11  | 3.74976 | qz (mm) @ t=7.4E-11  | 3.69423 |
| qz (mm) @ t=5.15E-11 | 3.74877 | qz (mm) @ t=7.45E-11 | 3.69279 |
| qz (mm) @ t=5.2E-11  | 3.74777 | qz (mm) @ t=7.5E-11  | 3.69135 |
| qz (mm) @ t=5.25E-11 | 3.74676 | qz (mm) @ t=7.55E-11 | 3.68990 |
| qz (mm) @ t=5.3E-11  | 3.74574 | qz (mm) @ t=7.6E-11  | 3.68843 |
| qz (mm) @ t=5.35E-11 | 3.74471 | qz (mm) @ t=7.65E-11 | 3.68696 |
| qz (mm) @ t=5.4E-11  | 3.74367 | qz (mm) @ t=7.7E-11  | 3.68548 |
| qz (mm) @ t=5.45E-11 | 3.74263 | qz (mm) @ t=7.75E-11 | 3.68399 |
| qz (mm) @ t=5.5E-11  | 3.74157 | qz (mm) @ t=7.8E-11  | 3.68249 |
| qz (mm) @ t=5.55E-11 | 3.74050 | qz (mm) @ t=7.85E-11 | 3.68097 |
| qz (mm) @ t=5.6E-11  | 3.73942 | qz (mm) @ t=7.9E-11  | 3.67945 |
| qz (mm) @ t=5.65E-11 | 3.73834 | qz (mm) @ t=7.95E-11 | 3.67792 |
| qz (mm) @ t=5.7E-11  | 3.73724 | qz (mm) @ t=8E-11    | 3.67638 |
| qz (mm) @ t=5.75E-11 | 3.73614 | qz (mm) @ t=8.05E-11 | 3.67483 |
| qz (mm) @ t=5.8E-11  | 3.73502 | qz (mm) @ t=8.1E-11  | 3.67327 |
| qz (mm) @ t=5.85E-11 | 3.73390 | qz (mm) @ t=8.15E-11 | 3.67170 |
| qz (mm) @ t=5.9E-11  | 3.73276 | qz (mm) @ t=8.2E-11  | 3.67013 |
| qz (mm) @ t=5.95E-11 | 3.73162 | qz (mm) @ t=8.25E-11 | 3.66854 |
| qz (mm) @ t=6E-11    | 3.73046 | qz (mm) @ t=8.3E-11  | 3.66694 |
| qz (mm) @ t=6.05E-11 | 3.72930 | qz (mm) 😐 t=8.35E-11 | 3.66533 |
| qz (mm) @ t=6.1E-11  | 3.72812 | qz (mm) @ t=8.4E-11  | 3.66371 |
| qz (mm) @ t=6.15E-11 | 3.72694 | qz (mm) @ t=8.45E-11 | 3.66209 |
| qz (mm) @ t=6.2E-11  | 3.72575 | qz (mm) @ t=8.5E-11  | 3.66045 |
| qz (mm) @ t=6.25E-11 | 3.72455 | qz (mm) @ t=8.55E-11 | 3.65880 |
| qz (mm) @ t=6.3E-11  | 3.72333 | qz (mm) @ t=8.6E-11  | 3.65715 |
| qz (mm) @ t=6.35E-11 | 3.72211 | qz (mm) 🖲 t=8.65E-11 | 3.65548 |
| qz (mm) @ t=6.4E-11  | 3.72088 | qz (mm) @ t=8.7E-11  | 3.65381 |
| qz (mm) @ t=6.45E-11 | 3.71964 | qz (mm) @ t=8.75E-11 | 3.65212 |
| qz (mm) @ t=6.5E-11  | 3.71839 | qz (mm) @ t=8.8E-11  | 3.65043 |
| qz (mm) @ t=6.55E-11 | 3.71713 | qz (mm) @ t=8.85E-11 | 3.64872 |
| qz (mm) 🖻 t=6.6E-11  | 3.71586 | qz (mm) @ t=8.9E-11  | 3.64701 |
| qz (mm) @ t=6.65E-11 | 3.71458 | qz (mm) 🖻 t=8.95E-11 | 3.64528 |
| qz (mm) @ t=6.7E-11  | 3.71329 | qz (mm) @ t=9E-11    | 3.64355 |
| qz (mm) @ t=6.75E-11 | 3.71199 | qz (mm) @ t=9.05E-11 | 3.64181 |
| qz (mm) @ t=6.8E-11  | 3.71068 | qz (mm) @ t=9.1E-11  | 3.64006 |
| qz (mm) @ t=6.85E-11 | 3.70937 | qz (mm) @ t=9.15E-11 | 3.63829 |

| qz (mm) @ t=9.2E-11   | 3.63652 | qz (mm) @ t=1.15E-10  | 3.54459 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=9.25E-11  | 3.63474 | qz (mm) @ t=1.155E-10 | 3.54236 |
| qz (mm) @ t=9.3E-11   | 3.63295 | qz (mm) @ t=1.16E-10  | 3.54013 |
| qz (mm) @ t=9.35E-11  | 3.63115 | qz (mm) @ t=1.165E-10 | 3.53788 |
| qz (mm) @ t=9.4E-11   | 3.62934 | qz (mm) @ t=1.17E-10  | 3,53563 |
| qz (mm) @ t=9.45E-11  | 3.62752 | qz (mm) @ t=1.175E-10 | 3.53337 |
| qz (mm) @ t=9.5E-11   | 3.62569 | qz (mm) @ t=1.18E-10  | 3.53109 |
| qz (mm) @ t=9.55E-11  | 3.62385 | qz (mm) @ t=1.185E-10 | 3.52881 |
| qz (mm) @ t=9.6E-11   | 3.62200 | qz (mm) @ t=1.19E-10  | 3.52652 |
| qz (mm) @ t=9.65E-11  | 3.62014 | qz (mm) @ t=1.195E-10 | 3.52421 |
| qz (mm) @ t=9.7E-11   | 3.61827 | qz (mm) @ t=1.2E-10   | 3.52190 |
| qz (mm) @ t=9.75E-11  | 3.61639 | qz (mm) @ t=1.205E-10 | 3.51958 |
| qz (mm) @ t=9.8E-11   | 3.61451 | qz (mm) @ t=1.21E-10  | 3.51725 |
| qz (mm) @ t=9.85E-11  | 3.61261 | qz (mm) @ t=1.215E-10 | 3.51491 |
| qz (mm) @ t=9.9E-11   | 3.61070 | qz (mm) @ t=1.22E-10  | 3.51256 |
| qz (mm) @ t=9.95E-11  | 3.60879 | qz (mm) @ t=1.225E-10 | 3.51020 |
| qz (mm) @ t=1E-10     | 3.60686 | qz (mm) @ t=1.23E-10  | 3.50783 |
| qz (mm) @ t=1.005E-10 | 3.60492 | qz (mm) @ t=1.235E-10 | 3.50545 |
| qz (mm) @ t=1.01E-10  | 3.60298 | qz (mm) @ t=1.24E-10  | 3.50306 |
| qz (mm) @ t=1.015E-10 | 3.60102 | qz (mm) @ t=1.245E-10 | 3.50066 |
| qz (mm) @ t=1.02E-10  | 3.59906 | qz (mm) @ t=1.25E-10  | 3.49825 |
| qz (mm) @ t=1.025E-10 | 3.59708 | qz (mm) @ t=1.255E-10 | 3.49583 |
| qz (mm) @ t=1.03E-10  | 3.59510 | qz (mm) @ t=1.26E-10  | 3.49341 |
| qz (mm) @ t=1.035E-10 | 3.59311 | qz (mm) @ t=1.265E-10 | 3,49097 |
| qz (mm) @ t=1.04E-10  | 3.59110 | qz (mm) @ t=1.27E-10  | 3,48852 |
| qz (mm) @ t=1.045E-10 | 3.58909 | qz (mm) @ t=1.275E-10 | 3.48607 |
| qz (mm) @ t=1.05E-10  | 3.58707 | qz (mm) @ t=1.28E-10  | 3.48360 |
| qz (mm) @ t=1.055E-10 | 3.58503 | qz (mm) @ t=1.285E-10 | 3.48112 |
| qz (mm) @ t=1.06E-10  | 3.58299 | qz (mm) @ t=1.29E-10  | 3.47864 |
| qz (mm) @ t=1.065E-10 | 3.58094 | qz (mm) @ t=1.295E-10 | 3.47614 |
| qz (mm) @ t=1.07E-10  | 3.57888 | qz (mm) @ t=1.3E-10   | 3.47364 |
| qz (mm) @ t=1.075E-10 | 3.57681 | qz (mm) @ t=1.305E-10 | 3,47112 |
| qz (mm) @ t=1.08E-10  | 3.57473 | qz (mm) @ t=1.31E-10  | 3.46860 |
| qz (mm) @ t=1.085E-10 | 3.57264 | qz (mm) @ t=1.315E-10 | 3.46607 |
| qz (mm) @ t=1.09E-10  | 3.57054 | qz (mm) @ t=1.32E-10  | 3.46352 |
| qz (mm) @ t=1.095E-10 | 3.56843 | qz (mm) @ t=1.325E-10 | 3.46097 |
| qz (mm) @ t-1.1E-10   | 3.56631 | qz (mm) @ t-1.33E-10  | 3,45841 |
| qz (mm) @ t=1.105E-10 | 3.56418 | qz (mm) @ t=1.335E-10 | 3.45583 |
| qz (mm) @ t=1.11E-10  | 3.56204 | qz (mm) @ t=1.34E-10  | 3.45325 |
| qz (mm) @ t=1.115E-10 | 3.55989 | qz (mm) @ t=1.345E-10 | 3.45066 |
| qz (mm) @ t=1.12E-10  | 3.55774 | qz (mm) @ t=1.35E-10  | 3.44806 |
| qz (mm) @ t=1.125E-10 | 3.55557 | qz (mm) @ t=1.355E-10 | 3.44545 |
| qz (mm) @ t=1.13E-10  | 3.55339 | qz (mm) @ t=1.36E-10  | 3.44283 |
| qz (mm) @ t=1.135E-10 | 3.55121 | qz (mm) @ t=1.365E-10 | 3.44020 |
| qz (mm) @ t=1.14E-10  | 3.54901 | qz (mm) @ t=1.37E-10  | 3.43756 |
| qz (mm) @ t=1.145E-10 | 3.54680 | qz (mm) @ t=1.375E-10 | 3.43491 |

| qz (mm) @ t=1.38E-10  | 3.43225 | qz (mm) @ t=1.61E-10  | 3.29954 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=1.385E-10 | 3.42958 | qz (mm) @ t=1.615E-10 | 3.29643 |
| qz (mm) @ t=1.39E-10  | 3.42691 | qz (mm) @ t=1.62E-10  | 3.29330 |
| qz (mm) @ t=1.395E-10 | 3.42422 | qz (mm) @ t=1.625E-10 | 3.29017 |
| qz (mm) @ t=1.4E-10   | 3.42152 | qz (mm) @ t=1.63E-10  | 3.28703 |
| qz (mm) @ t=1.405E-10 | 3.41881 | qz (mm) @ t=1.635E-10 | 3.28388 |
| qz (mm) @ t=1.41E-10  | 3.41610 | qz (mm) @ t=1.64E-10  | 3.28073 |
| qz (mm) @ t=1.415E-10 | 3.41337 | qz (mm) @ t=1.645E-10 | 3.27756 |
| qz (mm) @ t=1.42E-10  | 3.41063 | qz (mm) @ t=1.65E-10  | 3.27438 |
| qz (mm) @ t=1.425E-10 | 3.40789 | qz (mm) @ t=1.655E-10 | 3.27119 |
| qz (mm) @ t=1.43E-10  | 3.40513 | qz (mm) @ t=1.66E-10  | 3.26799 |
| qz (mm) @ t=1.435E-10 | 3.40237 | qz (mm) @ t=1.665E-10 | 3.26479 |
| qz (mm) @ t=1.44E-10  | 3.39959 | qz (mm) @ t=1.67E-10  | 3.26157 |
| qz (mm) @ t=1.445E-10 | 3.39681 | qz (mm) @ t=1.675E-10 | 3.25834 |
| qz (mm) @ t=1.45E-10  | 3.39402 | qz (mm) @ t=1.68E-10  | 3.25511 |
| qz (mm) @ t=1.455E-10 | 3.39121 | qz (mm) @ t=1.685E-10 | 3.25186 |
| qz (mm) @ t=1.46E-10  | 3.38840 | qz (mm) @ t=1.69E-10  | 3.24860 |
| qz (mm) @ t=1.465E-10 | 3.38558 | qz (mm) @ t=1.695E-10 | 3.24534 |
| qz (mm) @ t=1.47E-10  | 3.38275 | qz (mm) @ t=1.7E-10   | 3.24206 |
| qz (mm) @ t=1.475E-10 | 3.37990 | qz (mm) @ t=1.705E-10 | 3.23878 |
| qz (mm) @ t=1.48E-10  | 3.37705 | qz (mm) @ t=1.71E-10  | 3.23549 |
| qz (mm) @ t=1.485E-10 | 3.37419 | qz (mm) @ t=1.715E-10 | 3.23218 |
| qz (mm) @ t=1.49E-10  | 3.37132 | qz (mm) @ t=1.72E-10  | 3.22887 |
| qz (mm) @ t=1.495E-10 | 3.36844 | qz (mm) @ t=1.725E-10 | 3.22555 |
| qz (mm) @ t=1.5E-10   | 3.36555 | qz (mm) @ t=1.73E-10  | 3.22222 |
| qz (mm) @ t=1.505E-10 | 3.36265 | qz (mm) @ t=1.735E-10 | 3.21887 |
| qz (mm) @ t=1.51E-10  | 3.35974 | qz (mm) @ t=1.74E-10  | 3.21552 |
| qz (mm) @ t=1.515E-10 | 3.35682 | qz (mm) @ t=1.745E-10 | 3.21216 |
| qz (mm) @ t=1.52E-10  | 3.35389 | qz (mm) @ t=1.75E-10  | 3.20879 |
| qz (mm) @ t=1.525E-10 | 3.35096 | qz (mm) @ t=1.755E-10 | 3.20541 |
| qz (mm) @ t=1.53E-10  | 3.34801 | qz (mm) @ t=1.76E-10  | 3.20202 |
| qz (mm) @ t=1.535E-10 | 3.34505 | qz (mm) @ t=1.765E-10 | 3.19862 |
| qz (mm) @ t=1.54E-10  | 3.34208 | qz (mm) @ t=1.77E-10  | 3.19521 |
| qz (mm) @ t=1.545E-10 | 3.33911 | qz (mm) @ t=1.775E-10 | 3.19179 |
| qz (mm) @ t=1.55E-10  | 3.33612 | qz (mm) @ t=1.78E-10  | 3.18836 |
| qz (mm) @ t=1.555E-10 | 3.33313 | qz (mm) @ t=1.785E-10 | 3.18493 |
| qz (mm) @ t=1.56E-10  | 3.33012 | qz (mm) @ t=1.79E-10  | 3.18148 |
| qz (mm) @ t=1.565E-10 | 3.32710 | qz (mm) @ t=1.795E-10 | 3.17802 |
| qz (mm) @ t=1.57E-10  | 3.32408 | qz (mm) @ t=1.8E-10   | 3.17456 |
| qz (mm) @ t=1.575E-10 | 3.32105 | qz (mm) @ t=1.805E-10 | 3.17108 |
| qz (mm) @ t=1.58E-10  | 3.31800 | qz (mm) @ t=1.81E-10  | 3.16759 |
| qz (mm) @ t=1.585E-10 | 3.31495 | qz (mm) @ t=1.815E-10 | 3,16410 |
| qz (mm) @ t=1.59E-10  | 3.31189 | qz (mm) @ t=1.82E-10  | 3.16059 |
| qz (mm) @ t=1.595E-10 | 3.30881 | qz (mm) @ t=1.825E-10 | 3.15708 |
| qz (mm) @ t=1.6E-10   | 3.30573 | qz (mm) @ t=1.83E-10  | 3.15355 |
| qz (mm) @ t=1.605E-10 | 3.30264 | qz (mm) @ t=1.835E-10 | 3.15002 |
| qz (mm) @ t=1.84E-10  | 3.14648 | qz (mm) @ t=2.07E-10  | 2.97312 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=1.845E-10 | 3.14292 | qz (mm) @ t=2.075E-10 | 2.96912 |
| qz (mm) @ t=1.85E-10  | 3.13936 | qz (mm) @ t=2.08E-10  | 2.96512 |
| qz (mm) @ t=1.855E-10 | 3.13579 | qz (mm) @ t=2.085E-10 | 2.96111 |
| qz (mm) @ t=1.86E-10  | 3.13221 | qz (mm) @ t=2.09E-10  | 2.95709 |
| qz (mm) @ t=1.865E-10 | 3.12862 | qz (mm) @ t=2.095E-10 | 2.95305 |
| qz (mm) @ t=1.87E-10  | 3.12502 | qz (mm) @ t=2.1E-10   | 2.94901 |
| qz (mm) @ t=1.875E-10 | 3.12140 | qz (mm) @ t=2.105E-10 | 2.94496 |
| qz (mm) @ t=1.88E-10  | 3.11778 | qz (mm) @ t=2.11E-10  | 2.94090 |
| qz (mm) @ t=1.885E-10 | 3.11415 | qz (mm) @ t=2.115E-10 | 2.93683 |
| qz (mm) @ t=1.89E-10  | 3.11052 | qz (mm) @ t=2.12E-10  | 2.93275 |
| qz (mm) @ t=1.895E-10 | 3.10687 | qz (mm) @ t=2.125E-10 | 2.92866 |
| qz (mm) @ t=1.9E-10   | 3.10321 | qz (mm) @ t=2.13E-10  | 2.92456 |
| qz (mm) @ t=1.905E-10 | 3.09954 | qz (mm) @ t=2.135E-10 | 2.92045 |
| qz (mm) @ t=1.91E-10  | 3.09586 | qz (mm) @ t=2.14E-10  | 2.91634 |
| qz (mm) @ t=1.915E-10 | 3.09218 | qz (mm) @ t=2.145E-10 | 2.91221 |
| qz (mm) @ t=1.92E-10  | 3.08848 | qz (mm) @ t=2.15E-10  | 2.90807 |
| qz (mm) @ t=1.925E-10 | 3.08477 | qz (mm) @ t=2.155E-10 | 2.90393 |
| qz (mm) @ t=1.93E-10  | 3.08106 | qz (mm) @ t=2.16E-10  | 2.89977 |
| qz (mm) @ t=1.935E-10 | 3.07733 | qz (mm) @ t=2.165E-10 | 2.89560 |
| qz (mm) @ t=1.94E-10  | 3.07359 | qz (mm) @ t=2.17E-10  | 2.89143 |
| qz (mm) @ t=1.945E-10 | 3.06985 | qz (mm) @ t=2.175E-10 | 2.88724 |
| qz (mm) @ t=1.95E-10  | 3.06610 | qz (mm) @ t=2.18E-10  | 2.88305 |
| qz (mm) @ t=1.955E-10 | 3.06233 | qz (mm) @ t=2.185E-10 | 2.87885 |
| qz (mm) @ t=1.96E-10  | 3.05856 | qz (mm) @ t=2.19E-10  | 2.87463 |
| qz (mm) @ t=1.965E-10 | 3.05478 | qz (mm) @ t=2.195E-10 | 2.87041 |
| qz (mm) @ t=1.97E-10  | 3.05098 | qz (mm) @ t=2.2E-10   | 2.86618 |
| qz (mm) @ t=1.975E-10 | 3.04718 | qz (mm) @ t=2.205E-10 | 2.86193 |
| qz (mm) @ t=1.98E-10  | 3.04337 | qz (mm) @ t=2.21E-10  | 2.85768 |
| qz (mm) @ t=1.985E-10 | 3.03955 | qz (mm) @ t=2.215E-10 | 2.85342 |
| qz (mm) @ t=1.99E-10  | 3.03572 | qz (mm) @ t=2.22E-10  | 2.84915 |
| qz (mm) @ t=1.995E-10 | 3.03188 | qz (mm) @ t=2.225E-10 | 2.84487 |
| qz (mm) @ t=2E-10     | 3.02803 | qz (mm) @ t=2.23E-10  | 2.84058 |
| qz (mm) @ t=2.005E-10 | 3.02417 | qz (mm) @ t=2.235E-10 | 2.83628 |
| qz (mm) @ t=2.01E-10  | 3.02030 | qz (mm) @ t=2.24E-10  | 2.83197 |
| qz (mm) @ t=2.015E-10 | 3.01642 | qz (mm) @ t=2.245E-10 | 2.82765 |
| qz (mm) @ t=2.02E-10  | 3.01253 | qz (mm) @ t=2.25E-10  | 2.82333 |
| qz (mm) @ t=2.025E-10 | 3.00863 | qz (mm) @ t=2.255E-10 | 2.81899 |
| qz (mm) @ t=2.03E-10  | 3.00472 | qz (mm) @ t=2.26E-10  | 2.81464 |
| qz (mm) @ t=2.035E-10 | 3.00081 | qz (mm) @ t=2.265E-10 | 2.81028 |
| qz (mm) @ t=2.04E-10  | 2.99688 | qz (mm) @ t=2.27E-10  | 2.80592 |
| qz (mm) @ t=2.045E-10 | 2.99294 | qz (mm) @ t=2.275E-10 | 2.80154 |
| qz (mm) @ t=2.05E-10  | 2.98900 | qz (mm) @ t=2.28E-10  | 2.79716 |
| qz (mm) @ t=2.055E-10 | 2.98504 | qz (mm) @ t=2.285E-10 | 2.79276 |
| qz (mm) @ t=2.06E-10  | 2.98108 | qz (mm) @ t=2.29E-10  | 2.78836 |
| qz (mm) @ t=2.065E-10 | 2.97710 | qz (mm) @ t=2.295E-10 | 2.78394 |

| qz (mm) @ t=2.3E-10   | 2.77952 | qz (mm) @ t=2.53E-10  | 2.56576 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=2.305E-10 | 2.77509 | qz (mm) @ t=2.535E-10 | 2.56089 |
| qz (mm) @ t=2.31E-10  | 2.77065 | qz (mm) @ t=2.54E-10  | 2.55601 |
| qz (mm) @ t=2.315E-10 | 2.76619 | qz (mm) @ t=2.545E-10 | 2.55112 |
| qz (mm) @ t=2.32E-10  | 2.76173 | qz (mm) @ t=2.55E-10  | 2.54622 |
| qz (mm) @ t=2.325E-10 | 2.75726 | qz (mm) @ t=2.555E-10 | 2.54131 |
| qz (mm) @ t=2.33E-10  | 2.75278 | qz (mm) @ t=2.56E-10  | 2.53640 |
| qz (mm) @ t=2.335E-10 | 2.74829 | qz (mm) @ t=2.565E-10 | 2.53147 |
| qz (mm) @ t=2.34E-10  | 2.74379 | qz (mm) @ t=2.57E-10  | 2.52653 |
| qz (mm) @ t=2.345E-10 | 2.73928 | qz (mm) @ t=2.575E-10 | 2.52159 |
| qz (mm) @ t=2.35E-10  | 2.73476 | qz (mm) @ t=2.58E-10  | 2.51663 |
| qz (mm) @ t=2.355E-10 | 2.73024 | qz (mm) @ t=2.585E-10 | 2.51167 |
| qz (mm) @ t=2.36E-10  | 2.72570 | qz (mm) @ t=2.59E-10  | 2.50669 |
| qz (mm) @ t=2.365E-10 | 2.72115 | qz (mm) @ t=2.595E-10 | 2.50171 |
| qz (mm) @ t=2.37E-10  | 2.71659 | qz (mm) @ t=2.6E-10   | 2.49671 |
| qz (mm) @ t=2.375E-10 | 2.71203 | qz (mm) @ t=2.605E-10 | 2.49171 |
| qz (mm) @ t=2.38E-10  | 2.70745 | qz (mm) @ t=2.61E-10  | 2.48670 |
| qz (mm) @ t=2.385E-10 | 2.70287 | qz (mm) @ t=2.615E-10 | 2.48168 |
| qz (mm) @ t=2.39E-10  | 2.69827 | qz (mm) @ t=2.62E-10  | 2.47665 |
| qz (mm) @ t=2.395E-10 | 2.69367 | qz (mm) @ t=2.625E-10 | 2.47161 |
| qz (mm) @ t=2.4E-10   | 2.68905 | qz (mm) @ t=2.63E-10  | 2.46655 |
| qz (mm) @ t=2.405E-10 | 2.68443 | qz (mm) @ t=2.635E-10 | 2.46150 |
| qz (mm) @ t=2.41E-10  | 2.67980 | qz (mm) @ t=2.64E-10  | 2.45643 |
| qz (mm) @ t=2.415E-10 | 2.67516 | qz (mm) @ t=2.645E-10 | 2.45135 |
| qz (mm) @ t=2.42E-10  | 2.67050 | qz (mm) @ t=2.65E-10  | 2.44626 |
| qz (mm) @ t=2.425E-10 | 2.66584 | qz (mm) @ t=2.655E-10 | 2.44116 |
| qz (mm) @ t=2.43E-10  | 2.66117 | qz (mm) @ t=2.66E-10  | 2.43605 |
| qz (mm) @ t=2.435E-10 | 2.65649 | qz (mm) @ t=2.665E-10 | 2.43094 |
| qz (mm) @ t=2.44E-10  | 2.65180 | qz (mm) @ t=2.67E-10  | 2.42581 |
| qz (mm) @ t=2.445E-10 | 2.64710 | qz (mm) @ t=2.675E-10 | 2.42068 |
| qz (mm) @ t=2.45E-10  | 2.64239 | qz (mm) @ t=2.68E-10  | 2.41553 |
| qz (mm) @ t=2.455E-10 | 2.63768 | qz (mm) @ t=2.685E-10 | 2.41038 |
| qz (mm) @ t=2.46E-10  | 2.63295 | qz (mm) @ t=2.69E-10  | 2.40521 |
| qz (mm) @ t=2.465E-10 | 2.62821 | qz (mm) @ t=2.695E-10 | 2.40004 |
| qz (mm) @ t=2.47E-10  | 2.62346 | qz (mm) @ t=2.7E-10   | 2.39486 |
| qz (mm) @ t=2.475E-10 | 2.61871 | qz (mm) @ t=2.705E-10 | 2.38967 |
| qz (mm) @ t=2.48E-10  | 2.61394 | qz (mm) @ t=2.71E-10  | 2.38446 |
| qz (mm) @ t=2.485E-10 | 2.60917 | qz (mm) @ t=2.715E-10 | 2.37925 |
| qz (mm) @ t=2.49E-10  | 2.60438 | qz (mm) @ t=2.72E-10  | 2.37403 |
| qz (mm) @ t=2.495E-10 | 2.59959 | qz (mm) @ t=2.725E-10 | 2.36880 |
| qz (mm) @ t=2.5E-10   | 2.59478 | qz (mm) @ t=2.73E-10  | 2.36356 |
| qz (mm) @ t=2.505E-10 | 2.58997 | qz (mm) @ t=2.735E-10 | 2.35831 |
| qz (mm) @ t=2.51E-10  | 2.58515 | qz (mm) @ t=2.74E-10  | 2.35306 |
| qz (mm) @ t=2.515E-10 | 2.58031 | qz (mm) @ t=2.745E-10 | 2.34779 |
| qz (mm) @ t=2.52E-10  | 2.57547 | qz (mm) @ t=2.75E-10  | 2.34251 |
| qz (mm) @ t=2.525E-10 | 2.57062 | qz (mm) @ t=2.755E-10 | 2.33722 |

| qz (mm) @ t=2.76E-10  | 2.33193 | qz (mm) @ t=2.99E-10  | 2.07813 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=2.765E-10 | 2.32662 | qz (mm) @ t=2.995E-10 | 2.07239 |
| qz (mm) @ t=2.77E-10  | 2.32131 | qz (mm) @ t=3E-10     | 2.06664 |
| qz (mm) @ t=2.775E-10 | 2.31598 | qz (mm) @ t=3.005E-10 | 2.06088 |
| qz (mm) @ t=2.78E-10  | 2.31065 | qz (mm) @ t=3.01E-10  | 2.05512 |
| qz (mm) @ t=2.785E-10 | 2.30531 | qz (mm) @ t=3.015E-10 | 2.04934 |
| qz (mm) @ t=2.79E-10  | 2.29995 | qz (mm) @ t=3.02E-10  | 2.04356 |
| qz (mm) @ t=2.795E-10 | 2.29459 | qz (mm) @ t=3.025E-10 | 2.03776 |
| qz (mm) @ t=2.8E-10   | 2.28922 | qz (mm) @ t=3.03E-10  | 2.03196 |
| qz (mm) @ t=2.805E-10 | 2.28384 | qz (mm) @ t=3.035E-10 | 2.02614 |
| qz (mm) @ t=2.81E-10  | 2.27845 | qz (mm) @ t=3.04E-10  | 2.02032 |
| qz (mm) @ t=2.815E-10 | 2.27305 | qz (mm) @ t=3.045E-10 | 2.01449 |
| qz (mm) @ t=2.82E-10  | 2.26764 | qz (mm) @ t=3.05E-10  | 2.00865 |
| qz (mm) @ t=2.825E-10 | 2.26222 | qz (mm) @ t=3.055E-10 | 2.00280 |
| qz (mm) @ t=2.83E-10  | 2.25679 | qz (mm) @ t=3.06E-10  | 1.99694 |
| qz (mm) @ t=2.835E-10 | 2.25136 | qz (mm) @ t=3.065E-10 | 1.9910  |
| qz (mm) @ t=2.84E-10  | 2.24591 | qz (mm) @ t=3.07E-10  | 1.98519 |
| qz (mm) @ t=2.845E-10 | 2.24045 | qz (mm) @ t=3.075E-10 | 1.97930 |
| qz (mm) @ t=2.85E-10  | 2.23499 | qz (mm) @ t=3.08E-10  | 1.9734  |
| qz (mm) @ t=2.855E-10 | 2.22951 | qz (mm) @ t=3.085E-10 | 1.96750 |
| qz (mm) @ t=2.86E-10  | 2.22403 | gz (mm) @ t=3.09E-10  | 1.96158 |
| qz (mm) @ t=2.865E-10 | 2.21853 | qz (mm) @ t=3.095E-10 | 1.9556  |
| qz (mm) @ t=2.87E-10  | 2.21303 | gz (mm) @ t=3.1E-10   | 1.9497  |
| qz (mm) @ t=2.875E-10 | 2.20752 | qz (mm) @ t=3.105E-10 | 1.9437  |
| qz (mm) @ t=2.88E-10  | 2.20199 | qz (mm) @ t=3.11E-10  | 1.9378  |
| qz (mm) @ t=2.885E-10 | 2.19646 | qz (mm) @ t=3.115E-10 | 1.9318  |
| qz (mm) @ t=2.89E-10  | 2.19092 | qz (mm) @ t=3.12E-10  | 1.9258  |
| qz (mm) @ t=2.895E-10 | 2.18537 | qz (mm) @ t=3.125E-10 | 1.9199  |
| qz (mm) @ t=2.9E-10   | 2.17981 | qz (mm) @ t=3.13E-10  | 1.9139  |
| qz (mm) @ t=2.905E-10 | 2.17424 | gz (mm) @ t=3.135E-10 | 1.9079  |
| gz (mm) @ t=2.91E-10  | 2.16866 | gz (mm) @ t=3.14E-10  | 1.90190 |
| qz (mm) @ t=2.915E-10 | 2.16308 | gz (mm) @ t=3.145E-10 | 1.8958  |
| gz (mm) @ t=2.92E-10  | 2.15748 | qz (mm) @ t=3.15E-10  | 1.8898  |
| qz (mm) @ t=2.925E-10 | 2.15187 | qz (mm) @ t=3.155E-10 | 1.8838  |
| qz (mm) @ t=2.93E-10  | 2.14625 | qz (mm) @ t=3.16E-10  | 1.8777  |
| qz (mm) @ t=2.935E-10 | 2.14063 | qz (mm) @ t=3.165E-10 | 1.8717  |
| gz (mm) @ t=2.94E-10  | 2.13499 | gz (mm) @ t=3.17E-10  | 1.8656  |
| qz (mm) @ t=2.945E-10 | 2.12935 | qz (mm) @ t=3.175E-10 | 1.8595  |
| qz (mm) @ t=2.95E-10  | 2.12370 | qz (mm) @ t=3.18E-10  | 1.8534  |
| qz (mm) @ t=2.955E-10 | 2.11803 | qz (mm) @ t=3.185E-10 | 1.84739 |
| gz (mm) @ t=2.96E-10  | 2.11236 | gz (mm) @ t=3.19E-10  | 1.8412  |
| gz (mm) @ t=2.965E-10 | 2.10668 | gz (mm) @ t=3.195E-10 | 1.8351  |
| gz (mm) @ t=2.97E-10  | 2.10099 | gz (mm) @ t=3.2E-10   | 1.8290  |
| gz (mm) @ t=2.975E-10 | 2.09529 | gz (mm) @ t=3.205E-10 | 1.8229  |
| gz (mm) @ t=2.98E-10  | 2.08958 | gz (mm) @ t=3.21E-10  | 1.8167  |
| gz (mm) @ t=2.985E-10 | 2.08386 | gz (mm) @ t=3.215E-10 | 1.8106  |
|                       |         |                       |         |

| qz (mm) @ t=3.22E-10  | 1.80447 | qz (mm) @ t=3.45E-10  | 1.51108 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=3.225E-10 | 1.79830 | qz (mm) @ t=3.455E-10 | 1.50448 |
| qz (mm) @ t=3.23E-10  | 1.79212 | qz (mm) @ t=3.46E-10  | 1.49787 |
| qz (mm) @ t=3.235E-10 | 1.78594 | qz (mm) @ t=3.465E-10 | 1.49126 |
| qz (mm) @ t=3.24E-10  | 1.77974 | qz (mm) @ t=3.47E-10  | 1.48464 |
| qz (mm) @ t=3.245E-10 | 1.77353 | qz (mm) @ t=3.475E-10 | 1.47800 |
| qz (mm) @ t=3.25E-10  | 1.76732 | qz (mm) @ t=3.48E-10  | 1.47136 |
| qz (mm) @ t=3.255E-10 | 1.76109 | qz (mm) @ t=3.485E-10 | 1.46471 |
| qz (mm) @ t=3.26E-10  | 1.75486 | qz (mm) @ t=3.49E-10  | 1.45805 |
| qz (mm) @ t=3.265E-10 | 1.74862 | qz (mm) @ t=3.495E-10 | 1.45137 |
| qz (mm) @ t=3.27E-10  | 1.74236 | qz (mm) @ t=3.5E-10   | 1.44469 |
| qz (mm) @ t=3.275E-10 | 1.73610 | qz (mm) @ t=3.505E-10 | 1.43801 |
| qz (mm) @ t=3.28E-10  | 1.72983 | qz (mm) @ t=3.51E-10  | 1.43131 |
| qz (mm) @ t=3.285E-10 | 1.72355 | qz (mm) @ t=3.515E-10 | 1.42460 |
| qz (mm) @ t=3.29E-10  | 1.71726 | qz (mm) @ t=3.52E-10  | 1.41788 |
| qz (mm) @ t=3.295E-10 | 1.71096 | qz (mm) @ t=3.525E-10 | 1.41116 |
| qz (mm) @ t=3.3E-10   | 1.70465 | qz (mm) @ t=3.53E-10  | 1.40442 |
| qz (mm) @ t=3.305E-10 | 1.69834 | qz (mm) @ t=3.535E-10 | 1.39768 |
| qz (mm) @ t=3.31E-10  | 1.69201 | qz (mm) @ t=3.54E-10  | 1.39092 |
| qz (mm) @ t=3.315E-10 | 1.68567 | qz (mm) @ t=3.545E-10 | 1.38416 |
| qz (mm) @ t=3.32E-10  | 1.67933 | qz (mm) @ t=3.55E-10  | 1.37739 |
| qz (mm) @ t=3.325E-10 | 1.67297 | qz (mm) @ t=3.555E-10 | 1.37060 |
| qz (mm) @ t=3.33E-10  | 1.66661 | qz (mm) @ t=3.56E-10  | 1.36381 |
| qz (mm) @ t=3.335E-10 | 1.66023 | qz (mm) @ t=3.565E-10 | 1.35701 |
| qz (mm) @ t=3.34E-10  | 1.65385 | qz (mm) @ t=3.57E-10  | 1.35020 |
| qz (mm) @ t=3.345E-10 | 1.64746 | qz (mm) @ t=3.575E-10 | 1.34338 |
| qz (mm) @ t=3.35E-10  | 1.64106 | qz (mm) @ t=3.58E-10  | 1.33656 |
| qz (mm) @ t=3.355E-10 | 1.63465 | qz (mm) @ t=3.585E-10 | 1.32972 |
| qz (mm) @ t=3.36E-10  | 1.62823 | qz (mm) @ t=3.59E-10  | 1.32287 |
| qz (mm) @ t=3.365E-10 | 1.62180 | qz (mm) @ t=3.595E-10 | 1.31602 |
| qz (mm) @ t=3.37E-10  | 1.61536 | qz (mm) @ t=3.6E-10   | 1.30915 |
| qz (mm) @ t=3.375E-10 | 1.60891 | qz (mm) @ t=3.605E-10 | 1.30228 |
| qz (mm) @ t=3.38E-10  | 1.60245 | qz (mm) @ t=3.61E-10  | 1.29539 |
| qz (mm) @ t=3.385E-10 | 1.59599 | qz (mm) @ t=3.615E-10 | 1.28850 |
| qz (mm) @ t=3.39E-10  | 1.58951 | qz (mm) @ t=3.62E-10  | 1.28160 |
| qz (mm) @ t=3.395E-10 | 1.58303 | qz (mm) @ t=3.625E-10 | 1.27469 |
| qz (mm) @ t=3.4E-10   | 1.57653 | qz (mm) @ t=3.63E-10  | 1.26777 |
| qz (mm) @ t=3.405E-10 | 1.57003 | qz (mm) @ t=3.635E-10 | 1.26084 |
| qz (mm) @ t=3.41E-10  | 1.56352 | qz (mm) @ t=3.64E-10  | 1.25390 |
| qz (mm) @ t=3.415E-10 | 1.55699 | qz (mm) @ t=3.645E-10 | 1.24695 |
| qz (mm) @ t=3.42E-10  | 1.55046 | qz (mm) @ t=3.65E-10  | 1.23999 |
| qz (mm) @ t=3.425E-10 | 1.54392 | qz (mm) @ t=3.655E-10 | 1.23303 |
| qz (mm) @ t=3.43E-10  | 1.53737 | qz (mm) @ t=3.66E-10  | 1.22605 |
| qz (mm) @ t=3.435E-10 | 1.53081 | qz (mm) @ t=3.665E-10 | 1.21907 |
| qz (mm) @ t=3.44E-10  | 1.52424 | qz (mm) @ t=3.67E-10  | 1.21207 |
| qz (mm) @ t=3.445E-10 | 1.51766 | qz (mm) @ t=3.675E-10 | 1.20507 |

| qz (mm) @ t=3.68E-10  | 1.19805 | qz (mm) @ t=3.91E-10  | 0.86550 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=3.685E-10 | 1.19103 | qz (mm) @ t=3.915E-10 | 0.85805 |
| qz (mm) @ t=3.69E-10  | 1.18400 | qz (mm) @ t=3.92E-10  | 0.85060 |
| qz (mm) @ t=3.695E-10 | 1.17696 | qz (mm) @ t=3.925E-10 | 0.84313 |
| qz (mm) @ t=3.7E-10   | 1.16991 | qz (mm) @ t=3.93E-10  | 0.83566 |
| qz (mm) @ t=3.705E-10 | 1.16285 | qz (mm) @ t=3.935E-10 | 0.82818 |
| qz (mm) @ t=3.71E-10  | 1.15578 | qz (mm) @ t=3.94E-10  | 0.82069 |
| qz (mm) @ t=3.715E-10 | 1.14871 | qz (mm) @ t=3.945E-10 | 0.81319 |
| qz (mm) @ t=3.72E-10  | 1.14162 | qz (mm) @ t=3.95E-10  | 0.80567 |
| qz (mm) @ t=3.725E-10 | 1.13452 | qz (mm) @ t=3.955E-10 | 0.79816 |
| qz (mm) @ t=3.73E-10  | 1.12742 | qz (mm) @ t=3.96E-10  | 0.79063 |
| qz (mm) @ t=3.735E-10 | 1.12030 | qz (mm) @ t=3.965E-10 | 0.78309 |
| qz (mm) @ t=3.74E-10  | 1.11318 | qz (mm) @ t=3.97E-10  | 0.77554 |
| qz (mm) @ t=3.745E-10 | 1.10605 | qz (mm) @ t=3.975E-10 | 0.76799 |
| qz (mm) @ t=3.75E-10  | 1.09891 | qz (mm) @ t=3.98E-10  | 0.76042 |
| qz (mm) @ t=3.755E-10 | 1.09176 | qz (mm) @ t=3.985E-10 | 0.75285 |
| qz (mm) @ t=3.76E-10  | 1.08459 | qz (mm) @ t=3.99E-10  | 0.74526 |
| qz (mm) @ t=3.765E-10 | 1.07743 | qz (mm) @ t=3.995E-10 | 0.73767 |
| qz (mm) @ t=3.77E-10  | 1.07025 | qz (mm) @ t=4E-10     | 0.73007 |
| qz (mm) @ t=3.775E-10 | 1.06306 | qz (mm) @ t=4.005E-10 | 0.72246 |
| qz (mm) @ t=3.78E-10  | 1.05586 | qz (mm) @ t=4.01E-10  | 0.71483 |
| qz (mm) @ t=3.785E-10 | 1.04865 | qz (mm) @ t=4.015E-10 | 0.70720 |
| qz (mm) @ t=3.79E-10  | 1.04144 | qz (mm) @ t=4.02E-10  | 0.69957 |
| qz (mm) @ t=3.795E-10 | 1.03421 | qz (mm) @ t=4.025E-10 | 0.69192 |
| qz (mm) @ t=3.8E-10   | 1.02698 | qz (mm) @ t=4.03E-10  | 0.68426 |
| qz (mm) @ t=3.805E-10 | 1.01974 | qz (mm) @ t=4.035E-10 | 0.67659 |
| qz (mm) @ t=3.81E-10  | 1.01248 | qz (mm) @ t=4.04E-10  | 0.66892 |
| qz (mm) @ t=3.815E-10 | 1.00522 | qz (mm) @ t=4.045E-10 | 0.66123 |
| qz (mm) @ t=3.82E-10  | 0.99795 | qz (mm) @ t=4.05E-10  | 0.65354 |
| qz (mm) @ t=3.825E-10 | 0.99067 | qz (mm) @ t=4.055E-10 | 0.64584 |
| qz (mm) @ t=3.83E-10  | 0.98338 | qz (mm) @ t=4.06E-10  | 0.63812 |
| qz (mm) @ t=3.835E-10 | 0.97608 | qz (mm) @ t=4.065E-10 | 0.63040 |
| qz (mm) @ t=3.84E-10  | 0.96878 | qz (mm) @ t=4.07E-10  | 0.62267 |
| qz (mm) @ t=3.845E-10 | 0.96146 | qz (mm) @ t=4.075E-10 | 0.61493 |
| qz (mm) @ t=3.85E-10  | 0.95413 | qz (mm) @ t=4.08E-10  | 0.60718 |
| qz (mm) @ t=3.855E-10 | 0.94680 | qz (mm) @ t=4.085E-10 | 0.59942 |
| qz (mm) @ t=3.86E-10  | 0.93945 | qz (mm) @ t=4.09E-10  | 0.59166 |
| qz (mm) @ t=3.865E-10 | 0.93210 | qz (mm) @ t=4.095E-10 | 0.58388 |
| qz (mm) @ t=3.87E-10  | 0.92473 | qz (mm) @ t=4.1E-10   | 0.57609 |
| qz (mm) @ t=3.875E-10 | 0.91736 | qz (mm) @ t=4.105E-10 | 0.56830 |
| qz (mm) @ t=3.88E-10  | 0.90998 | qz (mm) @ t=4.11E-10  | 0.56049 |
| qz (mm) @ t=3.885E-10 | 0.90259 | qz (mm) @ t=4.115E-10 | 0.55268 |
| qz (mm) @ t=3.89E-10  | 0.89519 | qz (mm) @ t=4.12E-10  | 0.54486 |
| qz (mm) @ t=3.895E-10 | 0.88778 | qz (mm) @ t=4.125E-10 | 0.53702 |
| qz (mm) @ t=3.9E-10   | 0.88036 | qz (mm) @ t=4.13E-10  | 0.52918 |
| qz (mm) @ t=3.905E-10 | 0.87294 | qz (mm) @ t=4.135E-10 | 0.52133 |

| qz (mm) @ t=3.68E-10  | 2.06122 | qz (mm) @ t=3.91E-10  | 1.83823 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=3.685E-10 | 2.05651 | qz (mm) @ t=3.915E-10 | 1.83324 |
| qz (mm) @ t=3.69E-10  | 2.05180 | qz (mm) @ t=3.92E-10  | 1.82824 |
| qz (mm) @ t=3.695E-10 | 2.04708 | qz (mm) @ t=3.925E-10 | 1.82323 |
| qz (mm) @ t=3.7E-10   | 2.04235 | qz (mm) @ t=3.93E-10  | 1.81822 |
| qz (mm) @ t=3.705E-10 | 2.03762 | qz (mm) @ t=3.935E-10 | 1.81320 |
| qz (mm) @ t=3.71E-10  | 2.03288 | qz (mm) @ t=3.94E-10  | 1.80817 |
| qz (mm) @ t=3.715E-10 | 2.02814 | qz (mm) @ t=3.945E-10 | 1.80314 |
| qz (mm) @ t=3.72E-10  | 2.02339 | qz (mm) @ t=3.95E-10  | 1.79810 |
| qz (mm) @ t=3.725E-10 | 2.01863 | qz (mm) @ t=3.955E-10 | 1.79306 |
| qz (mm) @ t=3.73E-10  | 2.01387 | qz (mm) @ t=3.96E-10  | 1.78801 |
| qz (mm) @ t=3.735E-10 | 2.00910 | qz (mm) @ t=3.965E-10 | 1.78295 |
| qz (mm) @ t=3.74E-10  | 2.00432 | qz (mm) @ t=3.97E-10  | 1.77789 |
| qz (mm) @ t=3.745E-10 | 1.99954 | qz (mm) @ t=3.975E-10 | 1.77282 |
| qz (mm) @ t=3.75E-10  | 1.99475 | qz (mm) @ t=3.98E-10  | 1.76775 |
| qz (mm) @ t=3.755E-10 | 1.98996 | qz (mm) @ t=3.985E-10 | 1.76267 |
| qz (mm) @ t=3.76E-10  | 1.98516 | qz (mm) @ t=3.99E-10  | 1.75758 |
| qz (mm) @ t=3.765E-10 | 1.98035 | qz (mm) @ t=3.995E-10 | 1.75248 |
| qz (mm) @ t=3.77E-10  | 1.97554 | qz (mm) @ t=4E-10     | 1.74738 |
| qz (mm) @ t=3.775E-10 | 1.97072 | qz (mm) @ t=4.005E-10 | 1.74228 |
| qz (mm) @ t=3.78E-10  | 1.96589 | qz (mm) @ t=4.01E-10  | 1.73717 |
| qz (mm) @ t=3.785E-10 | 1.96106 | qz (mm) @ t=4.015E-10 | 1.73205 |
| qz (mm) @ t=3.79E-10  | 1.95622 | qz (mm) @ t=4.02E-10  | 1.72692 |
| qz (mm) @ t=3.795E-10 | 1.95138 | qz (mm) @ t=4.025E-10 | 1.72179 |
| qz (mm) @ t=3.8E-10   | 1.94652 | qz (mm) @ t=4.03E-10  | 1.71666 |
| qz (mm) @ t=3.805E-10 | 1.94167 | qz (mm) @ t=4.035E-10 | 1.71151 |
| qz (mm) @ t=3.81E-10  | 1.93680 | qz (mm) @ t=4.04E-10  | 1.70636 |
| qz (mm) @ t=3.815E-10 | 1.93193 | qz (mm) @ t=4.045E-10 | 1.70121 |
| qz (mm) @ t=3.82E-10  | 1.92706 | qz (mm) @ t=4.05E-10  | 1.69604 |
| qz (mm) @ t=3.825E-10 | 1.92218 | qz (mm) @ t=4.055E-10 | 1.69088 |
| qz (mm) @ t=3.83E-10  | 1.91729 | qz (mm) @ t=4.06E-10  | 1.68570 |
| qz (mm) @ t=3.835E-10 | 1.91239 | qz (mm) @ t=4.065E-10 | 1.68052 |
| qz (mm) @ t=3.84E-10  | 1.90749 | qz (mm) @ t=4.07E-10  | 1.67534 |
| qz (mm) @ t=3.845E-10 | 1.90259 | qz (mm) @ t=4.075E-10 | 1.67014 |
| qz (mm) @ t=3.85E-10  | 1.89767 | qz (mm) @ t=4.08E-10  | 1.66494 |
| qz (mm) @ t=3.855E-10 | 1.89275 | qz (mm) @ t=4.085E-10 | 1.65974 |
| qz (mm) @ t=3.86E-10  | 1.88783 | qz (mm) @ t=4.09E-10  | 1.65453 |
| qz (mm) @ t=3.865E-10 | 1.88290 | qz (mm) @ t=4.095E-10 | 1.64931 |
| qz (mm) @ t=3.87E-10  | 1.87796 | qz (mm) @ t=4.1E-10   | 1.64409 |
| qz (mm) @ t=3.875E-10 | 1.87301 | qz (mm) @ t=4.105E-10 | 1.63885 |
| qz (mm) @ t=3.88E-10  | 1.86806 | qz (mm) @ t=4.11E-10  | 1.63362 |
| qz (mm) @ t=3.885E-10 | 1.86311 | qz (mm) @ t=4.115E-10 | 1.62838 |
| qz (mm) @ t=3.89E-10  | 1.85814 | qz (mm) @ t=4.12E-10  | 1.62313 |
| qz (mm) @ t=3.895E-10 | 1.85317 | qz (mm) @ t=4.125E-10 | 1.61787 |
| qz (mm) @ t=3.9E-10   | 1.84820 | qz (mm) @ t=4.13E-10  | 1.61261 |
| qz (mm) @ t=3.905E-10 | 1.84322 | qz (mm) @ t=4.135E-10 | 1.60734 |

| qz (mm) @ t=4.6E-10   | -0.20968 | qz (mm) @ t=4.83E-10  | -0.55919 |
|-----------------------|----------|-----------------------|----------|
| qz (mm) @ t=4.605E-10 | -0.21741 | qz (mm) @ t=4.835E-10 | -0.56665 |
| qz (mm) @ t=4.61E-10  | -0.22513 | qz (mm) @ t=4.84E-10  | -0.57411 |
| qz (mm) @ t=4.615E-10 | -0.23284 | qz (mm) @ t=4.845E-10 | -0.58156 |
| qz (mm) @ t=4.62E-10  | -0.24055 | qz (mm) @ t=4.85E-10  | -0.58901 |
| qz (mm) @ t=4.625E-10 | -0.24826 | qz (mm) @ t=4.855E-10 | -0.59645 |
| qz (mm) @ t=4.63E-10  | -0.25595 | qz (mm) @ t=4.86E-10  | -0.60388 |
| qz (mm) @ t=4.635E-10 | -0.26365 | qz (mm) @ t=4.865E-10 | -0.61131 |
| qz (mm) @ t=4.64E-10  | -0.27133 | qz (mm) @ t=4.87E-10  | -0.61874 |
| qz (mm) @ t=4.645E-10 | -0.27901 | qz (mm) @ t=4.875E-10 | -0.62615 |
| qz (mm) @ t=4.65E-10  | -0.28669 | qz (mm) @ t=4.88E-10  | -0.63357 |
| qz (mm) @ t=4.655E-10 | -0.29436 | qz (mm) @ t=4.885E-10 | -0.64097 |
| qz (mm) @ t=4.66E-10  | -0.30202 | qz (mm) @ t=4.89E-10  | -0.64837 |
| qz (mm) @ t=4.665E-10 | -0.30968 | qz (mm) @ t=4.895E-10 | -0.65577 |
| qz (mm) @ t=4.67E-10  | -0.31733 | qz (mm) @ t=4.9E-10   | -0.66316 |
| qz (mm) @ t=4.675E-10 | -0.32498 | qz (mm) @ t=4.905E-10 | -0.67054 |
| qz (mm) @ t=4.68E-10  | -0.33262 | qz (mm) @ t=4.91E-10  | -0.67792 |
| qz (mm) @ t=4.685E-10 | -0.34025 | qz (mm) @ t=4.915E-10 | -0.68529 |
| qz (mm) @ t=4.69E-10  | -0.34788 | qz (mm) @ t=4.92E-10  | -0.69266 |
| qz (mm) @ t=4.695E-10 | -0.35551 | qz (mm) @ t=4.925E-10 | -0.70002 |
| qz (mm) @ t=4.7E-10   | -0.36312 | qz (mm) @ t=4.93E-10  | -0.70738 |
| qz (mm) @ t=4.705E-10 | -0.37074 | qz (mm) @ t=4.935E-10 | -0.71472 |
| qz (mm) @ t=4.71E-10  | -0.37834 | qz (mm) @ t=4.94E-10  | -0.72207 |
| qz (mm) @ t=4.715E-10 | -0.38594 | qz (mm) @ t=4.945E-10 | -0.72941 |
| qz (mm) @ t=4.72E-10  | -0.39354 | qz (mm) @ t=4.95E-10  | -0.73674 |
| qz (mm) @ t=4.725E-10 | -0.40113 | qz (mm) @ t=4.955E-10 | -0.74407 |
| qz (mm) @ t=4.73E-10  | -0.40871 | qz (mm) @ t=4.96E-10  | -0.75139 |
| qz (mm) @ t=4.735E-10 | -0.41629 | qz (mm) @ t=4.965E-10 | -0.75870 |
| qz (mm) @ t=4.74E-10  | -0.42386 | qz (mm) @ t=4.97E-10  | -0,76601 |
| qz (mm) @ t=4.745E-10 | -0.43143 | qz (mm) @ t=4.975E-10 | -0.77332 |
| qz (mm) @ t=4.75E-10  | -0.43899 | qz (mm) @ t=4.98E-10  | -0.78061 |
| qz (mm) @ t=4.755E-10 | -0.44654 | qz (mm) @ t=4.985E-10 | -0.78791 |
| qz (mm) @ t=4.76E-10  | -0.45409 | qz (mm) @ t=4.99E-10  | -0.79519 |
| qz (mm) @ t=4.765E-10 | -0.46164 | qz (mm) @ t=4.995E-10 | -0.80247 |
| qz (mm) @ t=4.77E-10  | -0.46918 | qz (mm) @ t=5E-10     | -0.80975 |
| qz (mm) @ t=4.775E-10 | -0.47671 |                       |          |
| qz (mm) @ t=4.78E-10  | -0.48423 |                       |          |
| qz (mm) @ t=4.785E-10 | -0.49176 |                       |          |
| qz (mm) @ t=4.79E-10  | -0.49927 |                       |          |
| qz (mm) @ t=4.795E-10 | -0.50678 |                       |          |
| qz (mm) @ t=4.8E-10   | -0.51428 |                       |          |
| qz (mm) @ t=4.805E-10 | -0.52178 |                       |          |
| qz (mm) @ t=4.81E-10  | -0.52927 |                       |          |
| qz (mm) @ t=4.815E-10 | -0.53676 |                       |          |
| qz (mm) @ t=4.82E-10  | -0.54424 |                       |          |
| qz (mm) @ t=4.825E-10 | -0.55172 |                       |          |
| qz (mm) @ t=4.825E-10 | -0.55172 |                       |          |

|                      | C       |                      |         |
|----------------------|---------|----------------------|---------|
| qz (mm) @ t=0        | 3.80000 | qz (mm) @ t=2.3E-11  | 3.78638 |
| qz (mm) @ t=5E-13    | 3.79999 | qz (mm) @ t=2.35E-11 | 3.78578 |
| qz (mm) @ t=1E-12    | 3.79997 | qz (mm) @ t=2.4E-11  | 3.78517 |
| qz (mm) @ t=1.5E-12  | 3.79994 | qz (mm) @ t=2.45E-11 | 3.78454 |
| qz (mm) @ t=2E-12    | 3.79990 | qz (mm) @ t=2.5E-11  | 3.78391 |
| qz (mm) @ t=2.5E-12  | 3.79984 | qz (mm) @ t=2.55E-11 | 3.78326 |
| qz (mm) @ t=3E-12    | 3.79977 | qz (mm) @ t=2.6E-11  | 3.78259 |
| qz (mm) @ t=3.5E-12  | 3.79968 | qz (mm) @ t=2.65E-11 | 3.78192 |
| qz (mm) @ t=4E-12    | 3.79959 | qz (mm) @ t=2.7E-11  | 3.78123 |
| qz (mm) @ t=4.5E-12  | 3.79948 | qz (mm) @ t=2.75E-11 | 3.78053 |
| qz (mm) @ t=5E-12    | 3.79936 | qz (mm) @ t=2.8E-11  | 3.77981 |
| qz (mm) @ t=5.5E-12  | 3.79922 | qz (mm) @ t=2.85E-11 | 3.77908 |
| qz (mm) @ t=6E-12    | 3.79907 | qz (mm) @ t=2.9E-11  | 3.77834 |
| qz (mm) @ t=6.5E-12  | 3.79891 | qz (mm) @ t=2.95E-11 | 3.77759 |
| qz (mm) @ t=7E-12    | 3.79874 | qz (mm) @ t=3E-11    | 3.77682 |
| qz (mm) @ t=7.5E-12  | 3.79855 | qz (mm) @ t=3.05E-11 | 3.77605 |
| qz (mm) @ t=8E-12    | 3.79835 | qz (mm) @ t=3.1E-11  | 3.77525 |
| qz (mm) @ t=8.5E-12  | 3.79814 | qz (mm) @ t=3.15E-11 | 3.77445 |
| qz (mm) @ t=9E-12    | 3.79791 | qz (mm) @ t=3.2E-11  | 3.77363 |
| qz (mm) @ t=9.5E-12  | 3.79768 | qz (mm) @ t=3.25E-11 | 3.77280 |
| qz (mm) @ t=1E-11    | 3.79742 | qz (mm) @ t=3.3E-11  | 3.77196 |
| qz (mm) @ t=1.05E-11 | 3.79716 | qz (mm) @ t=3.35E-11 | 3.77110 |
| qz (mm) @ t=1.1E-11  | 3.79688 | qz (mm) @ t=3.4E-11  | 3.77023 |
| qz (mm) @ t=1.15E-11 | 3.79659 | qz (mm) @ t=3.45E-11 | 3.76935 |
| qz (mm) @ t=1.2E-11  | 3.79629 | qz (mm) @ t=3.5E-11  | 3.76846 |
| qz (mm) @ t=1.25E-11 | 3.79598 | qz (mm) @ t=3.55E-11 | 3.76755 |
| qz (mm) @ t=1.3E-11  | 3.79565 | qz (mm) @ t=3.6E-11  | 3.76663 |
| qz (mm) @ t=1.35E-11 | 3.79531 | qz (mm) @ t=3.65E-11 | 3.76569 |
| qz (mm) @ t=1.4E-11  | 3.79495 | qz (mm) @ t=3.7E-11  | 3.76475 |
| qz (mm) @ t=1.45E-11 | 3.79459 | qz (mm) @ t=3.75E-11 | 3.76379 |
| qz (mm) @ t=1.5E-11  | 3.79421 | qz (mm) @ t=3.8E-11  | 3.76282 |
| qz (mm) @ t=1.55E-11 | 3.79381 | qz (mm) @ t=3.85E-11 | 3.76183 |
| qz (mm) @ t=1.6E-11  | 3.79341 | qz (mm) @ t=3.9E-11  | 3.76083 |
| qz (mm) @ t=1.65E-11 | 3.79299 | qz (mm) @ t=3.95E-11 | 3.75982 |
| qz (mm) @ t=1.7E-11  | 3.79256 | qz (mm) @ t=4E-11    | 3.75880 |
| qz (mm) @ t=1.75E-11 | 3.79211 | qz (mm) @ t=4.05E-11 | 3.75776 |
| qz (mm) @ t=1.8E-11  | 3.79166 | qz (mm) @ t=4.1E-11  | 3.75671 |
| qz (mm) @ t=1.85E-11 | 3.79119 | qz (mm) @ t=4.15E-11 | 3.75565 |
| qz (mm) @ t=1.9E-11  | 3.79070 | qz (mm) @ t=4.2E-11  | 3.75458 |
| qz (mm) @ t=1.95E-11 | 3.79021 | qz (mm) @ t=4.25E-11 | 3.75349 |
| qz (mm) @ t=2E-11    | 3.78970 | qz (mm) @ t=4.3E-11  | 3.75239 |
| qz (mm) @ t=2.05E-11 | 3.78918 | qz (mm) @ t=4.35E-11 | 3.75128 |
| qz (mm) @ t=2.1E-11  | 3.78864 | qz (mm) @ t=4.4E-11  | 3.75015 |
| qz (mm) @ t=2.15E-11 | 3.78810 | qz (mm) @ t=4.45E-11 | 3.74901 |
| qz (mm) @ t=2.2E-11  | 3.78754 | qz (mm) @ t=4.5E-11  | 3.74786 |
| qz (mm) @ t=2.25E-11 | 3.78696 | qz (mm) @ t=4.55E-11 | 3.74669 |

Table 20: Raw data of electron trajectories with  $V_{\rm acc} = 1000$  V.

| qz (mm) @ t=4.6E-11  | 3.74551 | qz (mm) @ t=6.9E-11  | 3.67741 |
|----------------------|---------|----------------------|---------|
| qz (mm) @ t=4.65E-11 | 3.74432 | qz (mm) @ t=6.95E-11 | 3.67563 |
| qz (mm) @ t=4.7E-11  | 3.74312 | qz (mm) @ t=7E-11    | 3.67383 |
| qz (mm) @ t=4.75E-11 | 3.74190 | qz (mm) @ t=7.05E-11 | 3.67202 |
| qz (mm) @ t=4.8E-11  | 3.74067 | qz (mm) @ t=7.1E-11  | 3.67020 |
| qz (mm) @ t=4.85E-11 | 3.73943 | qz (mm) @ t=7.15E-11 | 3.66837 |
| qz (mm) @ t=4,9E-11  | 3.73818 | qz (mm) @ t=7.2E-11  | 3.66652 |
| qz (mm) @ t=4.95E-11 | 3.73691 | qz (mm) @ t=7.25E-11 | 3.66466 |
| qz (mm) @ t=5E-11    | 3.73563 | qz (mm) @ t=7.3E-11  | 3.66279 |
| qz (mm) @ t=5.05E-11 | 3.73433 | qz (mm) @ t=7.35E-11 | 3.66090 |
| qz (mm) @ t=5.1E-11  | 3.73303 | qz (mm) @ t=7.4E-11  | 3.65900 |
| qz (mm) @ t=5.15E-11 | 3.73171 | qz (mm) @ t=7.45E-11 | 3.65709 |
| qz (mm) @ t=5.2E-11  | 3.73037 | qz (mm) @ t=7.5E-11  | 3.65517 |
| qz (mm) @ t=5.25E-11 | 3.72903 | qz (mm) @ t=7.55E-11 | 3.65323 |
| qz (mm) @ t=5.3E-11  | 3.72767 | qz (mm) @ t=7.6E-11  | 3.65128 |
| qz (mm) @ t=5.35E-11 | 3.72630 | qz (mm) @ t=7.65E-11 | 3.64932 |
| qz (mm) @ t=5.4E-11  | 3.72491 | qz (mm) @ t=7.7E-11  | 3.64734 |
| qz (mm) @ t=5.45E-11 | 3.72352 | qz (mm) @ t=7.75E-11 | 3.64535 |
| qz (mm) @ t=5.5E-11  | 3.72211 | qz (mm) @ t=7.8E-11  | 3.64335 |
| qz (mm) @ t=5.55E-11 | 3.72069 | qz (mm) @ t=7.85E-11 | 3.64134 |
| qz (mm) @ t=5.6E-11  | 3.71925 | qz (mm) @ t=7.9E-11  | 3.63931 |
| qz (mm) @ t=5.65E-11 | 3.71780 | qz (mm) @ t=7.95E-11 | 3.63727 |
| qz (mm) @ t=5.7E-11  | 3.71634 | qz (mm) @ t=8E-11    | 3.63521 |
| qz (mm) @ t=5.75E-11 | 3.71487 | qz (mm) @ t=8.05E-11 | 3.63315 |
| qz (mm) @ t=5.8E-11  | 3.71338 | qz (mm) @ t=8.1E-11  | 3.63107 |
| qz (mm) @ t=5.85E-11 | 3.71188 | qz (mm) @ t=8.15E-11 | 3.62898 |
| qz (mm) @ t=5.9E-11  | 3.71037 | qz (mm) @ t=8.2E-11  | 3.62687 |
| qz (mm) @ t=5.95E-11 | 3.70884 | qz (mm) @ t=8.25E-11 | 3.62476 |
| qz (mm) @ t=6E-11    | 3.70730 | qz (mm) @ t=8.3E-11  | 3.62263 |
| qz (mm) @ t=6.05E-11 | 3.70575 | qz (mm) @ t=8.35E-11 | 3.62048 |
| qz (mm) @ t=6.1E-11  | 3.70419 | qz (mm) @ t=8.4E-11  | 3.61833 |
| qz (mm) @ t=6.15E-11 | 3.70261 | qz (mm) @ t=8.45E-11 | 3.61616 |
| qz (mm) @ t=6.2E-11  | 3.70102 | qz (mm) @ t=8.5E-11  | 3.61398 |
| qz (mm) @ t=6.25E-11 | 3.69942 | qz (mm) @ t=8.55E-11 | 3.61178 |
| qz (mm) @ t=6.3E-11  | 3.69780 | qz (mm) @ t=8.6E-11  | 3.60957 |
| qz (mm) @ t=6.35E-11 | 3.69617 | qz (mm) @ t=8.65E-11 | 3.60735 |
| qz (mm) @ t=6.4E-11  | 3.69453 | qz (mm) @ t=8.7E-11  | 3.60512 |
| qz (mm) @ t=6.45E-11 | 3.69288 | qz (mm) @ t=8.75E-11 | 3.60287 |
| qz (mm) @ t=6.5E-11  | 3.69121 | qz (mm) @ t=8.8E-11  | 3.60062 |
| qz (mm) @ t=6.55E-11 | 3.68953 | qz (mm) @ t=8.85E-11 | 3.59834 |
| qz (mm) @ t=6.6E-11  | 3.68784 | qz (mm) @ t=8.9E-11  | 3.59606 |
| qz (mm) @ t=6.65E-11 | 3.68613 | qz (mm) @ t=8.95E-11 | 3.59376 |
| qz (mm) @ t=6.7E-11  | 3.68441 | qz (mm) @ t=9E-11    | 3.59145 |
| qz (mm) @ t=6.75E-11 | 3.68268 | qz (mm) @ t=9.05E-11 | 3.58913 |
| qz (mm) @ t=6.8E-11  | 3.68094 | qz (mm) @ t=9.1E-11  | 3.58679 |
| qz (mm) @ t=6.85E-11 | 3.67918 | qz (mm) @ t=9.15E-11 | 3.58444 |

| qz (mm) @ t=9.2E-11   | 3.58208 | qz (mm) @ t=1.15E-10  | 3.45954 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=9.25E-11  | 3.57971 | qz (mm) @ t=1.155E-10 | 3.45658 |
| qz (mm) @ t=9.3E-11   | 3.57732 | qz (mm) @ t=1.16E-10  | 3.45360 |
| qz (mm) @ t=9.35E-11  | 3.57492 | qz (mm) @ t=1.165E-10 | 3.45061 |
| qz (mm) @ t=9.4E-11   | 3.57251 | qz (mm) @ t=1.17E-10  | 3.44760 |
| qz (mm) @ t=9.45E-11  | 3.57008 | qz (mm) @ t=1.175E-10 | 3.44459 |
| qz (mm) @ t=9.5E-11   | 3.56764 | qz (mm) @ t=1.18E-10  | 3.44156 |
| qz (mm) @ t=9.55E-11  | 3.56519 | qz (mm) @ t=1.185E-10 | 3.43851 |
| qz (mm) @ t=9.6E-11   | 3.56272 | qz (mm) @ t=1.19E-10  | 3.43546 |
| qz (mm) @ t=9.65E-11  | 3.56025 | qz (mm) @ t=1.195E-10 | 3.43239 |
| qz (mm) @ t=9.7E-11   | 3.55776 | qz (mm) @ t=1.2E-10   | 3.42931 |
| qz (mm) @ t=9.75E-11  | 3.55525 | qz (mm) @ t=1.205E-10 | 3.42621 |
| qz (mm) @ t=9.8E-11   | 3.55274 | qz (mm) @ t=1.21E-10  | 3.42311 |
| qz (mm) @ t=9.85E-11  | 3.55021 | qz (mm) @ t=1.215E-10 | 3.41999 |
| qz (mm) @ t=9.9E-11   | 3.54767 | qz (mm) @ t=1.22E-10  | 3.41686 |
| qz (mm) @ t=9.95E-11  | 3.54511 | qz (mm) @ t=1.225E-10 | 3.41371 |
| qz (mm) @ t=1E-10     | 3.54254 | qz (mm) @ t=1.23E-10  | 3.41055 |
| qz (mm) @ t=1.005E-10 | 3.53996 | qz (mm) @ t=1.235E-10 | 3.40738 |
| qz (mm) @ t=1.01E-10  | 3.53737 | qz (mm) @ t=1.24E-10  | 3.40420 |
| qz (mm) @ t=1.015E-10 | 3.53476 | qz (mm) @ t=1.245E-10 | 3.40100 |
| qz (mm) @ t=1.02E-10  | 3.53215 | qz (mm) @ t=1.25E-10  | 3.39779 |
| qz (mm) @ t=1.025E-10 | 3.52951 | qz (mm) @ t=1.255E-10 | 3.39457 |
| qz (mm) @ t=1.03E-10  | 3.52687 | qz (mm) @ t=1.26E-10  | 3.39133 |
| qz (mm) @ t=1.035E-10 | 3.52421 | qz (mm) @ t=1.265E-10 | 3.38808 |
| qz (mm) @ t=1.04E-10  | 3.52154 | qz (mm) @ t=1.27E-10  | 3.38482 |
| qz (mm) @ t=1.045E-10 | 3.51886 | qz (mm) @ t=1.275E-10 | 3.38155 |
| qz (mm) @ t=1.05E-10  | 3.51616 | qz (mm) @ t=1.28E-10  | 3.37826 |
| qz (mm) @ t=1.055E-10 | 3.51345 | qz (mm) @ t=1.285E-10 | 3.37496 |
| qz (mm) @ t=1.06E-10  | 3.51073 | qz (mm) @ t=1.29E-10  | 3.37165 |
| qz (mm) @ t=1.065E-10 | 3.50800 | qz (mm) @ t=1.295E-10 | 3.36833 |
| qz (mm) @ t=1.07E-10  | 3.50525 | qz (mm) @ t=1.3E-10   | 3.36499 |
| qz (mm) @ t=1.075E-10 | 3.50249 | qz (mm) @ t=1.305E-10 | 3.36164 |
| qz (mm) @ t=1.08E-10  | 3.49972 | qz (mm) @ t=1.31E-10  | 3.35827 |
| qz (mm) @ t=1.085E-10 | 3.49693 | qz (mm) @ t=1.315E-10 | 3.35490 |
| qz (mm) @ t=1.09E-10  | 3.49413 | qz (mm) @ t=1.32E-10  | 3.35151 |
| qz (mm) @ t=1.095E-10 | 3.49132 | qz (mm) @ t=1.325E-10 | 3.34811 |
| qz (mm) @ t=1.1E-10   | 3.48849 | qz (mm) @ t=1.33E-10  | 3.34469 |
| qz (mm) @ t=1.105E-10 | 3.48566 | qz (mm) @ t=1.335E-10 | 3.34126 |
| qz (mm) @ t=1.11E-10  | 3.48281 | qz (mm) @ t=1.34E-10  | 3.33782 |
| qz (mm) @ t=1.115E-10 | 3.47994 | qz (mm) @ t=1.345E-10 | 3.33437 |
| qz (mm) @ t=1.12E-10  | 3.47707 | qz (mm) @ t=1.35E-10  | 3.33090 |
| qz (mm) @ t=1.125E-10 | 3.47418 | qz (mm) @ t=1.355E-10 | 3.32742 |
| qz (mm) @ t=1.13E-10  | 3.47128 | qz (mm) @ t=1.36E-10  | 3.32393 |
| qz (mm) @ t=1.135E-10 | 3.46836 | qz (mm) @ t=1.365E-10 | 3.32043 |
| qz (mm) @ t=1.14E-10  | 3.46544 | qz (mm) @ t=1.37E-10  | 3.31691 |
| qz (mm) @ t=1.145E-10 | 3.46250 | qz (mm) @ t=1.375E-10 | 3.31338 |

| qz (mm) @ t=1.38E-10  | 3.30984 | qz (mm) @ t=1.61E-10  | 3.13301 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=1.385E-10 | 3.30628 | qz (mm) @ t=1.615E-10 | 3.12886 |
| qz (mm) @ t=1.39E-10  | 3.30271 | qz (mm) @ t=1.62E-10  | 3.12470 |
| qz (mm) @ t=1.395E-10 | 3.29913 | qz (mm) @ t=1.625E-10 | 3.12053 |
| qz (mm) @ t=1.4E-10   | 3.29554 | qz (mm) @ t=1.63E-10  | 3.11635 |
| qz (mm) @ t=1.405E-10 | 3.29193 | qz (mm) @ t=1.635E-10 | 3.11215 |
| qz (mm) @ t=1.41E-10  | 3.28831 | qz (mm) @ t=1.64E-10  | 3.10794 |
| qz (mm) @ t=1.415E-10 | 3.28468 | qz (mm) @ t=1.645E-10 | 3.10372 |
| qz (mm) @ t=1.42E-10  | 3.28103 | qz (mm) @ t=1.65E-10  | 3.09949 |
| qz (mm) @ t=1.425E-10 | 3.27737 | qz (mm) @ t=1.655E-10 | 3.09524 |
| qz (mm) @ t=1.43E-10  | 3.27370 | qz (mm) @ t=1.66E-10  | 3.09098 |
| qz (mm) @ t=1.435E-10 | 3.27002 | qz (mm) @ t=1.665E-10 | 3.08671 |
| qz (mm) @ t=1.44E-10  | 3.26632 | qz (mm) @ t=1.67E-10  | 3.08242 |
| qz (mm) @ t=1.445E-10 | 3.26261 | qz (mm) @ t=1.675E-10 | 3.07812 |
| qz (mm) @ t=1.45E-10  | 3.25889 | qz (mm) @ t=1.68E-10  | 3.07381 |
| qz (mm) @ t=1.455E-10 | 3.25515 | qz (mm) @ t=1.685E-10 | 3.06949 |
| qz (mm) @ t=1.46E-10  | 3.25140 | qz (mm) @ t=1.69E-10  | 3.06515 |
| qz (mm) @ t=1.465E-10 | 3.24764 | qz (mm) @ t=1.695E-10 | 3.06080 |
| qz (mm) @ t=1.47E-10  | 3.24387 | qz (mm) @ t=1.7E-10   | 3.05644 |
| qz (mm) @ t=1.475E-10 | 3.24008 | qz (mm) @ t=1.705E-10 | 3.05207 |
| qz (mm) @ t=1.48E-10  | 3.23628 | qz (mm) @ t=1.71E-10  | 3.04768 |
| qz (mm) @ t=1.485E-10 | 3.23247 | qz (mm) @ t=1.715E-10 | 3.04328 |
| qz (mm) @ t=1.49E-10  | 3.22865 | qz (mm) @ t=1.72E-10  | 3.03886 |
| qz (mm) @ t=1.495E-10 | 3.22481 | qz (mm) @ t=1.725E-10 | 3.03444 |
| qz (mm) @ t=1.5E-10   | 3.22096 | qz (mm) @ t=1.73E-10  | 3.03000 |
| qz (mm) @ t=1.505E-10 | 3.21709 | qz (mm) @ t=1.735E-10 | 3.02555 |
| qz (mm) @ t=1.51E-10  | 3.21322 | qz (mm) @ t=1.74E-10  | 3.02108 |
| qz (mm) @ t=1.515E-10 | 3.20933 | qz (mm) @ t=1.745E-10 | 3.01661 |
| qz (mm) @ t=1.52E-10  | 3.20543 | qz (mm) @ t=1.75E-10  | 3.01212 |
| qz (mm) @ t=1.525E-10 | 3.20151 | qz (mm) @ t=1.755E-10 | 3.00761 |
| qz (mm) @ t=1.53E-10  | 3.19759 | qz (mm) @ t=1.76E-10  | 3.00310 |
| qz (mm) @ t=1.535E-10 | 3.19365 | qz (mm) @ t=1.765E-10 | 2.99857 |
| qz (mm) @ t=1.54E-10  | 3.18969 | qz (mm) @ t=1.77E-10  | 2.99403 |
| qz (mm) @ t=1.545E-10 | 3.18573 | qz (mm) @ t=1.775E-10 | 2.98948 |
| qz (mm) @ t=1.55E-10  | 3.18175 | qz (mm) @ t=1.78E-10  | 2.98491 |
| qz (mm) @ t=1.555E-10 | 3.17776 | qz (mm) @ t=1.785E-10 | 2.98033 |
| qz (mm) @ t=1.56E-10  | 3.17375 | qz (mm) @ t=1.79E-10  | 2.97574 |
| qz (mm) @ t=1.565E-10 | 3.16973 | qz (mm) @ t=1.795E-10 | 2.97113 |
| qz (mm) @ t=1.57E-10  | 3.16570 | qz (mm) @ t=1.8E-10   | 2.96652 |
| qz (mm) @ t=1.575E-10 | 3.16166 | qz (mm) @ t=1.805E-10 | 2.96189 |
| qz (mm) @ t=1.58E-10  | 3.15761 | qz (mm) @ t=1.81E-10  | 2.95724 |
| qz (mm) @ t=1.585E-10 | 3.15354 | qz (mm) @ t=1.815E-10 | 2.95259 |
| qz (mm) @ t=1.59E-10  | 3.14946 | qz (mm) @ t=1.82E-10  | 2.94792 |
| qz (mm) @ t=1.595E-10 | 3.14536 | qz (mm) @ t=1.825E-10 | 2.94324 |
| qz (mm) @ t=1.6E-10   | 3.14126 | qz (mm) @ t=1.83E-10  | 2.93854 |
| qz (mm) @ t=1.605E-10 | 3.13714 | qz (mm) @ t=1.835E-10 | 2.93384 |

| qx (mm) @ t=1.2E-10  | -0.0000309 | qx (mm) @ t=1.35E-10 | -0.0018484 |
|----------------------|------------|----------------------|------------|
| qy (mm) @ t=1.2E-10  | 0.0005347  | qy (mm) @ t=1.35E-10 | 0.0037443  |
| qz (mm) @ t=1.2E-10  | 3.7801116  | qz (mm) @ t=1.35E-10 | 3.7776294  |
| qx (mm) @ t=1.21E-10 | -0.0000665 | qx (mm) @ t=1.36E-10 | -0.0020528 |
| qy (mm) @ t=1.21E-10 | 0.0007847  | qy (mm) @ t=1.36E-10 | 0.0038927  |
| qz (mm) @ t=1.21E-10 | 3.7799462  | qz (mm) @ t=1.36E-10 | 3.7774640  |
| qx (mm) @ t=1.22E-10 | -0.0001154 | qx (mm) @ t=1.37E-10 | -0.0022648 |
| qy (mm) @ t=1.22E-10 | 0.0010325  | qy (mm) @ t=1.37E-10 | 0.0040300  |
| qz (mm) @ t=1.22E-10 | 3.7797807  | qz (mm) @ t=1.37E-10 | 3.7772985  |
| qx (mm) @ t=1.23E-10 | -0.0001774 | qx (mm) @ t=1.38E-10 | -0.0024838 |
| qy (mm) @ t=1.23E-10 | 0.0012773  | qy (mm) @ t=1.38E-10 | 0.0041558  |
| qz (mm) @ t=1.23E-10 | 3.7796152  | qz (mm) @ t=1.38E-10 | 3.7771330  |
| qx (mm) @ t=1.24E-10 | -0.0002525 | qx (mm) @ t=1.39E-10 | -0.0027092 |
| qy (mm) @ t=1.24E-10 | 0.0015185  | qy (mm) @ t=1.39E-10 | 0.0042698  |
| qz (mm) @ t=1.24E-10 | 3.7794497  | qz (mm) @ t=1.39E-10 | 3.7769675  |
| qx (mm) @ t=1.25E-10 | -0.0003403 | qx (mm) @ t=1.4E-10  | -0.0029404 |
| qy (mm) @ t=1.25E-10 | 0.0017553  | qy (mm) @ t=1,4E-10  | 0.0043715  |
| qz (mm) @ t=1.25E-10 | 3.7792842  | qz (mm) @ t=1.4E-10  | 3.7768021  |
| qx (mm) @ t=1.26E-10 | -0.0004406 | qx (mm) @ t=1.41E-10 | -0.0031767 |
| qy (mm) @ t=1.26E-10 | 0.0019871  | qy (mm) @ t=1.41E-10 | 0.0044607  |
| qz (mm) @ t=1.26E-10 | 3.7791187  | qz (mm) @ t=1.41E-10 | 3.7766366  |
| qx (mm) @ t=1.27E-10 | -0.0005531 | qx (mm) @ t=1.42E-10 | -0.0034174 |
| qy (mm) @ t=1.27E-10 | 0.0022132  | qy (mm) @ t=1.42E-10 | 0.0045372  |
| qz (mm) @ t=1.27E-10 | 3.7789533  | qz (mm) @ t=1.42E-10 | 3.7764712  |
| qx (mm) @ t=1.28E-10 | -0.0006776 | qx (mm) @ t=1.43E-10 | -0.0036619 |
| qy (mm) @ t=1.28E-10 | 0.0024330  | qy (mm) @ t=1.43E-10 | 0.0046008  |
| qz (mm) @ t=1.28E-10 | 3.7787878  | qz (mm) @ t=1.43E-10 | 3.7763057  |
| qx (mm) @ t=1.29E-10 | -0.0008136 | qx (mm) @ t=1.44E-10 | -0.0039094 |
| qy (mm) @ t=1.29E-10 | 0.0026458  | qy (mm) @ t=1,44E-10 | 0.0046511  |
| qz (mm) @ t=1.29E-10 | 3.7786223  | qz (mm) @ t=1.44E-10 | 3.7761403  |
| qx (mm) @ t=1.3E-10  | -0.0009607 | qx (mm) @ t=1.45E-10 | -0.0041593 |
| qy (mm) @ t=1.3E-10  | 0.0028511  | qy (mm) @ t=1.45E-10 | 0.0046882  |
| qz (mm) @ t=1.3E-10  | 3.7784568  | qz (mm) @ t=1.45E-10 | 3.7759748  |
| qx (mm) @ t=1.31E-10 | -0.0011187 | qx (mm) @ t=1.46E-10 | -0.0044108 |
| qy (mm) @ t=1.31E-10 | 0.0030482  | qy (mm) @ t=1.46E-10 | 0.0047119  |
| qz (mm) @ t=1.31E-10 | 3.7782913  | qz (mm) @ t=1.46E-10 | 3.7758094  |
| qx (mm) @ t=1.32E-10 | -0.0012869 | qx (mm) @ t=1.47E-10 | -0.0046632 |
| qy (mm) @ t=1.32E-10 | 0.0032366  | qy (mm) @ t=1.47E-10 | 0.0047221  |
| qz (mm) @ t=1.32E-10 | 3.7781259  | qz (mm) @ t=1.47E-10 | 3.7756439  |
| qx (mm) @ t=1.33E-10 | -0.0014649 | qx (mm) @ t=1.48E-10 | -0.0049158 |
| qy (mm) @ t=1.33E-10 | 0.0034158  | qy (mm) @ t=1.48E-10 | 0.0047189  |
| qz (mm) @ t=1.33E-10 | 3.7779604  | qz (mm) @ t=1.48E-10 | 3.7754785  |
| qx (mm) @ t=1.34E-10 | -0.0016523 | qx (mm) @ t=1.49E-10 | -0.0051678 |
| qy (mm) @ t=1.34E-10 | 0.0035851  | qy (mm) @ t=1.49E-10 | 0.0047021  |
| qz (mm) @ t=1.34E-10 | 3.7777949  | qz (mm) @ t=1.49E-10 | 3.7753131  |

| qx (mm) @ t=1.2E-10  | -0.0000309 | qx (mm) @ t=1.35E-10 | -0.0018484 |
|----------------------|------------|----------------------|------------|
| qy (mm) @ t=1.2E-10  | 0.0005347  | qy (mm) @ t=1.35E-10 | 0.0037443  |
| qz (mm) @ t=1.2E-10  | 3.7801116  | qz (mm) @ t=1.35E-10 | 3.7776294  |
| qx (mm) @ t=1.21E-10 | -0.0000665 | qx (mm) @ t=1.36E-10 | -0.0020528 |
| qy (mm) @ t=1.21E-10 | 0.0007847  | qy (mm) @ t=1.36E-10 | 0.0038927  |
| qz (mm) @ t=1.21E-10 | 3.7799462  | qz (mm) @ t=1.36E-10 | 3.7774640  |
| qx (mm) @ t=1.22E-10 | -0.0001154 | qx (mm) @ t=1.37E-10 | -0.0022648 |
| qy (mm) @ t=1.22E-10 | 0.0010325  | qy (mm) @ t=1.37E-10 | 0.0040300  |
| qz (mm) @ t=1.22E-10 | 3.7797807  | qz (mm) @ t=1.37E-10 | 3.7772985  |
| qx (mm) @ t=1.23E-10 | -0.0001774 | qx (mm) @ t=1.38E-10 | -0.0024838 |
| qy (mm) @ t=1.23E-10 | 0.0012773  | qy (mm) @ t=1.38E-10 | 0.0041558  |
| qz (mm) @ t=1.23E-10 | 3.7796152  | qz (mm) @ t=1.38E-10 | 3.7771330  |
| qx (mm) @ t=1.24E-10 | -0.0002525 | qx (mm) @ t=1.39E-10 | -0.0027092 |
| qy (mm) @ t=1.24E-10 | 0.0015185  | qy (mm) @ t=1.39E-10 | 0.0042698  |
| qz (mm) @ t=1.24E-10 | 3.7794497  | qz (mm) @ t=1.39E-10 | 3.7769675  |
| qx (mm) @ t=1.25E-10 | -0.0003403 | qx (mm) @ t=1.4E-10  | -0.0029404 |
| qy (mm) @ t=1.25E-10 | 0.0017553  | qy (mm) @ t=1,4E-10  | 0.0043715  |
| qz (mm) @ t=1.25E-10 | 3.7792842  | qz (mm) @ t=1.4E-10  | 3.7768021  |
| qx (mm) @ t=1.26E-10 | -0.0004406 | qx (mm) @ t=1.41E-10 | -0.0031767 |
| qy (mm) @ t=1.26E-10 | 0.0019871  | qy (mm) @ t=1.41E-10 | 0.0044607  |
| qz (mm) @ t=1.26E-10 | 3.7791187  | qz (mm) @ t=1.41E-10 | 3.7766366  |
| qx (mm) @ t=1.27E-10 | -0.0005531 | qx (mm) @ t=1.42E-10 | -0.0034174 |
| qy (mm) @ t=1.27E-10 | 0.0022132  | qy (mm) @ t=1.42E-10 | 0.0045372  |
| qz (mm) @ t=1.27E-10 | 3.7789533  | qz (mm) @ t=1.42E-10 | 3.7764712  |
| qx (mm) @ t=1.28E-10 | -0.0006776 | qx (mm) @ t=1.43E-10 | -0.0036619 |
| qy (mm) @ t=1.28E-10 | 0.0024330  | qy (mm) @ t=1.43E-10 | 0.0046008  |
| qz (mm) @ t=1.28E-10 | 3.7787878  | qz (mm) @ t=1.43E-10 | 3.7763057  |
| qx (mm) @ t=1.29E-10 | -0.0008136 | qx (mm) @ t=1.44E-10 | -0.0039094 |
| qy (mm) @ t=1.29E-10 | 0.0026458  | qy (mm) @ t=1.44E-10 | 0.0046511  |
| qz (mm) @ t=1.29E-10 | 3.7786223  | qz (mm) @ t=1.44E-10 | 3.7761403  |
| qx (mm) @ t=1.3E-10  | -0.0009607 | qx (mm) @ t=1.45E-10 | -0.0041593 |
| qy (mm) @ t=1.3E-10  | 0.0028511  | qy (mm) @ t=1.45E-10 | 0.0046882  |
| qz (mm) 🗉 t=1.3E-10  | 3.7784568  | qz (mm) @ t=1.45E-10 | 3.7759748  |
| qx (mm) @ t=1.31E-10 | -0.0011187 | qx (mm) @ t=1.46E-10 | -0.0044108 |
| qy (mm) @ t=1.31E-10 | 0.0030482  | qy (mm) @ t=1.46E-10 | 0.0047119  |
| qz (mm) @ t=1.31E-10 | 3.7782913  | qz (mm) @ t=1.46E-10 | 3.7758094  |
| qx (mm) @ t=1.32E-10 | -0.0012869 | qx (mm) @ t=1.47E-10 | -0.0046632 |
| qy (mm) @ t=1.32E-10 | 0.0032366  | qy (mm) @ t=1.47E-10 | 0.0047221  |
| qz (mm) @ t=1.32E-10 | 3.7781259  | qz (mm) @ t=1.47E-10 | 3.7756439  |
| qx (mm) @ t=1.33E-10 | -0.0014649 | qx (mm) @ t=1.48E-10 | -0.0049158 |
| qy (mm) @ t=1.33E-10 | 0.0034158  | qy (mm) @ t=1.48E-10 | 0.0047189  |
| qz (mm) @ t=1.33E-10 | 3.7779604  | qz (mm) @ t=1.48E-10 | 3.7754785  |
| qx (mm) @ t=1,34E-10 | -0.0016523 | qx (mm) @ t=1.49E-10 | -0.0051678 |
| qy (mm) @ t=1.34E-10 | 0.0035851  | qy (mm) @ t=1.49E-10 | 0.0047021  |
| qz (mm) @ t=1.34E-10 | 3.7777949  | qz (mm) @ t=1.49E-10 | 3.7753131  |

| qz (mm) @ t=2.76E-10  | 1.84533 | qz (mm) @ t=2.99E-10  | 1.50809  |
|-----------------------|---------|-----------------------|----------|
| qz (mm) @ t=2.765E-10 | 1.83827 | qz (mm) @ t=2.995E-10 | 1.50047  |
| qz (mm) @ t=2.77E-10  | 1.83121 | qz (mm) @ t=3E-10     | 1.49283  |
| qz (mm) @ t=2.775E-10 | 1.82413 | qz (mm) @ t=3.005E-10 | 1.48519  |
| qz (mm) @ t=2.78E-10  | 1.81704 | qz (mm) @ t=3.01E-10  | 1.47753  |
| qz (mm) @ t=2.785E-10 | 1.80994 | qz (mm) @ t=3.015E-10 | 1.46986  |
| qz (mm) @ t=2.79E-10  | 1.80283 | qz (mm) @ t=3.02E-10  | 1.46217  |
| qz (mm) @ t=2.795E-10 | 1.79570 | qz (mm) @ t=3.025E-10 | 1,45448  |
| qz (mm) @ t=2.8E-10   | 1.78856 | qz (mm) @ t=3.03E-10  | 1,44677  |
| qz (mm) @ t=2.805E-10 | 1.78141 | qz (mm) @ t=3.035E-10 | 1.43904  |
| qz (mm) @ t=2.81E-10  | 1.77425 | qz (mm) @ t=3.04E-10  | 1.43131  |
| qz (mm) @ t=2.815E-10 | 1.76707 | qz (mm) @ t=3.045E-10 | 1.42357  |
| qz (mm) @ t=2.82E-10  | 1.75988 | qz (mm) @ t=3.05E-10  | 1.41581  |
| qz (mm) @ t=2.825E-10 | 1.75268 | qz (mm) @ t=3.055E-10 | 1.40804  |
| qz (mm) @ t=2.83E-10  | 1.74547 | qz (mm) @ t=3.06E-10  | 1.40025  |
| qz (mm) @ t=2.835E-10 | 1.73824 | qz (mm) @ t=3.065E-10 | 1.39246  |
| qz (mm) @ t=2.84E-10  | 1.73101 | qz (mm) @ t=3.07E-10  | 1.38465  |
| qz (mm) @ t=2.845E-10 | 1.72376 | qz (mm) @ t=3.075E-10 | 1.37683  |
| qz (mm) @ t=2.85E-10  | 1.71649 | qz (mm) @ t=3.08E-10  | 1.36900  |
| qz (mm) @ t=2.855E-10 | 1.70922 | qz (mm) @ t=3.085E-10 | 1.36115  |
| qz (mm) @ t=2.86E-10  | 1.70193 | qz (mm) @ t=3.09E-10  | -1.35330 |
| qz (mm) @ t=2.865E-10 | 1.69463 | qz (mm) @ t=3.095E-10 | 1.34543  |
| qz (mm) @ t=2.87E-10  | 1.68732 | qz (mm) @ t=3.1E-10   | 1.33754  |
| qz (mm) @ t=2.875E-10 | 1.67999 | qz (mm) @ t=3.105E-10 | 1.32965  |
| qz (mm) @ t=2.88E-10  | 1.67265 | qz (mm) @ t=3.11E-10  | 1.32174  |
| qz (mm) @ t=2.885E-10 | 1.66530 | qz (mm) @ t=3.115E-10 | 1.31382  |
| qz (mm) @ t=2.89E-10  | 1.65794 | qz (mm) @ t=3.12E-10  | 1.30589  |
| qz (mm) @ t=2.895E-10 | 1.65057 | qz (mm) @ t=3.125E-10 | 1.29795  |
| qz (mm) @ t=2.9E-10   | 1.64318 | qz (mm) @ t=3.13E-10  | 1.28999  |
| qz (mm) @ t=2.905E-10 | 1.63578 | qz (mm) @ t=3.135E-10 | 1,28203  |
| qz (mm) @ t=2.91E-10  | 1.62837 | qz (mm) @ t=3.14E-10  | 1,27405  |
| qz (mm) @ t=2.915E-10 | 1,62094 | qz (mm) @ t=3.145E-10 | 1.26605  |
| qz (mm) @ t=2.92E-10  | 1.61351 | qz (mm) @ t=3.15E-10  | 1.25805  |
| qz (mm) @ t=2.925E-10 | 1.60606 | qz (mm) @ t=3.155E-10 | 1.25003  |
| qz (mm) @ t=2.93E-10  | 1.59860 | qz (mm) @ t=3.16E-10  | 1.24200  |
| qz (mm) @ t=2.935E-10 | 1.59112 | qz (mm) @ t=3.165E-10 | 1.23396  |
| qz (mm) @ t=2.94E-10  | 1.58364 | qz (mm) @ t=3.17E-10  | 1.22591  |
| qz (mm) @ t=2.945E-10 | 1.57614 | qz (mm) @ t=3.175E-10 | 1.21784  |
| qz (mm) @ t=2.95E-10  | 1.56863 | qz (mm) @ t=3.18E-10  | 1.20976  |
| qz (mm) @ t=2.955E-10 | 1.56110 | qz (mm) @ t=3.185E-10 | 1.20167  |
| qz (mm) @ t=2.96E-10  | 1.55357 | qz (mm) @ t=3.19E-10  | 1.19356  |
| qz (mm) @ t=2.965E-10 | 1.54602 | qz (mm) @ t=3.195E-10 | 1.18545  |
| qz (mm) @ t=2.97E-10  | 1.53846 | qz (mm) @ t=3.2E-10   | 1.17732  |
| qz (mm) @ t=2.975E-10 | 1.53089 | qz (mm) @ t=3.205E-10 | 1.16918  |
| qz (mm) @ t=2.98E-10  | 1.52330 | qz (mm) @ t=3.21E-10  | 1.16103  |
| qz (mm) @ t=2.985E-10 | 1.51570 | qz (mm) @ t=3.215E-10 | 1.15286  |

| qz (mm) @ t=3.22E-10  | 1.14468 | qz (mm) @ t=3.45E-10  | 0.75524 |
|-----------------------|---------|-----------------------|---------|
| qz (mm) @ t=3.225E-10 | 1.13650 | qz (mm) @ t=3.455E-10 | 0.74649 |
| qz (mm) @ t=3.23E-10  | 1.12829 | qz (mm) @ t=3.46E-10  | 0.73772 |
| qz (mm) @ t=3.235E-10 | 1.12008 | qz (mm) @ t=3.465E-10 | 0.72894 |
| qz (mm) @ t=3.24E-10  | 1.11185 | qz (mm) @ t=3.47E-10  | 0.72015 |
| qz (mm) @ t=3.245E-10 | 1.10361 | qz (mm) @ t=3.475E-10 | 0.71135 |
| qz (mm) @ t=3.25E-10  | 1.09536 | qz (mm) @ t=3.48E-10  | 0.70253 |
| qz (mm) @ t=3.255E-10 | 1.08710 | qz (mm) @ t=3.485E-10 | 0.69370 |
| qz (mm) @ t=3.26E-10  | 1.07882 | qz (mm) @ t=3.49E-10  | 0.68486 |
| qz (mm) @ t=3.265E-10 | 1.07053 | qz (mm) @ t=3.495E-10 | 0.67601 |
| qz (mm) @ t=3.27E-10  | 1.06223 | qz (mm) @ t=3.5E-10   | 0.66715 |
| qz (mm) @ t=3.275E-10 | 1.05392 | qz (mm) @ t=3.505E-10 | 0.65827 |
| qz (mm) @ t=3.28E-10  | 1.04560 | qz (mm) @ t=3.51E-10  | 0.64938 |
| qz (mm) @ t=3.285E-10 | 1.03726 | qz (mm) @ t=3.515E-10 | 0.64048 |
| qz (mm) @ t=3.29E-10  | 1.02891 | qz (mm) @ t=3.52E-10  | 0.63157 |
| qz (mm) @ t=3.295E-10 | 1.02055 | qz (mm) @ t=3.525E-10 | 0.62264 |
| qz (mm) @ t=3.3E-10   | 1.01217 | qz (mm) @ t=3.53E-10  | 0.61370 |
| qz (mm) @ t=3.305E-10 | 1.00379 | qz (mm) @ t=3.535E-10 | 0.60475 |
| qz (mm) @ t=3.31E-10  | 0.99539 | qz (mm) @ t=3.54E-10  | 0.59579 |
| qz (mm) @ t=3.315E-10 | 0.98698 | qz (mm) @ t=3.545E-10 | 0.58681 |
| qz (mm) @ t=3.32E-10  | 0.97855 | qz (mm) @ t=3.55E-10  | 0.57783 |
| qz (mm) @ t=3.325E-10 | 0.97012 | qz (mm) @ t=3.555E-10 | 0.56883 |
| qz (mm) @ t=3.33E-10  | 0.96167 | qz (mm) @ t=3.56E-10  | 0.55981 |
| qz (mm) @ t=3.335E-10 | 0.95321 | qz (mm) @ t=3.565E-10 | 0.55079 |
| qz (mm) @ t=3.34E-10  | 0.94474 | qz (mm) @ t=3.57E-10  | 0.54175 |
| qz (mm) @ t=3.345E-10 | 0.93625 | qz (mm) @ t=3.575E-10 | 0.53270 |
| qz (mm) @ t=3.35E-10  | 0.92776 | qz (mm) @ t=3.58E-10  | 0.52364 |
| qz (mm) @ t=3.355E-10 | 0.91925 | qz (mm) @ t=3.585E-10 | 0.51457 |
| qz (mm) @ t=3.36E-10  | 0.91073 | qz (mm) @ t=3.59E-10  | 0.50549 |
| qz (mm) @ t=3.365E-10 | 0.90219 | qz (mm) @ t=3.595E-10 | 0.49639 |
| qz (mm) @ t=3.37E-10  | 0.89365 | qz (mm) @ t=3.6E-10   | 0.48728 |
| qz (mm) @ t=3.375E-10 | 0.88509 | qz (mm) @ t=3.605E-10 | 0.47818 |
| qz (mm) @ t=3.38E-10  | 0.87652 | qz (mm) @ t=3.61E-10  | 0.46908 |
| qz (mm) @ t=3.385E-10 | 0.86794 | qz (mm) @ t=3.615E-10 | 0.45997 |
| qz (mm) @ t=3.39E-10  | 0.85934 | qz (mm) @ t=3.62E-10  | 0.45087 |
| qz (mm) @ t-3.395E-10 | 0.85073 | qz (mm) @ t-3.625E-10 | 0.44177 |
| qz (mm) @ t=3.4E-10   | 0.84211 | qz (mm) @ t=3.63E-10  | 0.43266 |
| qz (mm) @ t=3.405E-10 | 0.83348 | qz (mm) @ t=3.635E-10 | 0.42356 |
| qz (mm) @ t=3.41E-10  | 0.82484 | qz (mm) @ t=3.64E-10  | 0.41445 |
| qz (mm) @ t=3.415E-10 | 0.81618 | qz (mm) @ t=3.645E-10 | 0.40535 |
| qz (mm) @ t=3.42E-10  | 0.80751 | qz (mm) @ t=3.65E-10  | 0.39625 |
| qz (mm) @ t=3.425E-10 | 0.79883 | qz (mm) @ t=3.655E-10 | 0.38714 |
| qz (mm) @ t=3.43E-10  | 0.79014 | qz (mm) @ t=3.66E-10  | 0.37804 |
| qz (mm) @ t=3.435E-10 | 0.78143 | qz (mm) @ t=3.665E-10 | 0.36894 |
| qz (mm) @ t=3.44E-10  | 0.77272 | qz (mm) @ t=3.67E-10  | 0.35983 |
| qz (mm) @ t=3.445E-10 | 0.76399 | qz (mm) @ t=3.675E-10 | 0.35073 |

| qz (mm) @ t=3.68E-10  | 0.34162  | qz (mm) @ t=3.91E-10  | -0.07690 |
|-----------------------|----------|-----------------------|----------|
| qz (mm) @ t=3.685E-10 | 0.33252  | qz (mm) @ t=3.915E-10 | -0.08594 |
| qz (mm) @ t=3.69E-10  | 0.32342  | qz (mm) @ t=3.92E-10  | -0.09497 |
| qz (mm) @ t=3.695E-10 | 0.31431  | qz (mm) @ t=3.925E-10 | -0.10400 |
| qz (mm) @ t=3.7E-10   | 0.30521  | qz (mm) @ t=3.93E-10  | -0.11301 |
| qz (mm) @ t=3.705E-10 | 0.29611  | qz (mm) @ t=3.935E-10 | -0.12202 |
| qz (mm) @ t=3.71E-10  | 0.28700  | qz (mm) @ t=3.94E-10  | -0.13102 |
| qz (mm) @ t=3.715E-10 | 0.27790  | qz (mm) @ t=3.945E-10 | -0.14002 |
| qz (mm) @ t=3.72E-10  | 0.26879  | qz (mm) @ t=3.95E-10  | -0.14900 |
| qz (mm) @ t=3.725E-10 | 0.25969  | qz (mm) @ t=3.955E-10 | -0.15798 |
| qz (mm) @ t=3.73E-10  | 0.25059  | qz (mm) @ t=3.96E-10  | -0.16695 |
| qz (mm) @ t=3.735E-10 | 0.24148  | qz (mm) @ t=3.965E-10 | -0.17591 |
| qz (mm) @ t=3.74E-10  | 0.23238  | qz (mm) @ t=3.97E-10  | -0.18487 |
| qz (mm) @ t=3.745E-10 | 0.22328  | qz (mm) @ t=3.975E-10 | -0.19382 |
| qz (mm) @ t=3.75E-10  | 0.21417  | qz (mm) @ t=3.98E-10  | -0.20276 |
| qz (mm) @ t=3.755E-10 | 0.20507  | qz (mm) @ t=3.985E-10 | -0.21169 |
| qz (mm) @ t=3.76E-10  | 0.19596  | qz (mm) @ t=3.99E-10  | -0.22061 |
| qz (mm) @ t=3.765E-10 | 0.18686  | qz (mm) @ t=3.995E-10 | -0.22953 |
| qz (mm) @ t=3.77E-10  | 0.17776  | qz (mm) @ t=4E-10     | -0.23844 |
| qz (mm) @ t=3.775E-10 | 0.16865  | qz (mm) @ t=4.005E-10 | -0.24734 |
| qz (mm) @ t=3.78E-10  | 0.15955  | qz (mm) @ t=4.01E-10  | -0.25624 |
| qz (mm) @ t=3.785E-10 | 0.15045  | qz (mm) @ t=4.015E-10 | -0.26512 |
| qz (mm) @ t=3.79E-10  | 0.14134  | qz (mm) @ t=4.02E-10  | -0.27400 |
| qz (mm) @ t=3.795E-10 | 0.13224  | qz (mm) @ t=4.025E-10 | -0.28288 |
| qz (mm) @ t=3.8E-10   | 0.12313  | qz (mm) @ t=4.03E-10  | -0.29174 |
| qz (mm) @ t=3.805E-10 | 0.11403  | qz (mm) @ t=4.035E-10 | -0.30060 |
| qz (mm) @ t=3.81E-10  | 0.10493  | qz (mm) @ t=4.04E-10  | -0.30944 |
| qz (mm) @ t=3.815E-10 | 0.09582  | qz (mm) @ t=4.045E-10 | -0.31829 |
| qz (mm) @ t-3.82E-10  | 0.08672  | qz (mm) @ t-4.05E-10  | -0.32712 |
| qz (mm) @ t=3.825E-10 | 0.07762  | qz (mm) @ t=4.055E-10 | -0.33594 |
| qz (mm) @ t=3.83E-10  | 0.06851  | qz (mm) @ t=4.06E-10  | -0.34476 |
| qz (mm) @ t=3.835E-10 | 0.05941  | qz (mm) @ t=4.065E-10 | -0.35357 |
| qz (mm) @ t=3.84E-10  | 0.05030  | qz (mm) @ t=4.07E-10  | -0.36238 |
| qz (mm) @ t=3.845E-10 | 0.04120  | qz (mm) @ t=4.075E-10 | -0.37117 |
| qz (mm) @ t=3.85E-10  | 0.03210  | qz (mm) @ t=4.08E-10  | -0.37996 |
| qz (mm) @ t=3.855E-10 | 0.02299  | qz (mm) @ t=4.085E-10 | -0.38874 |
| qz (mm) @ t-3.86E-10  | 0.01389  | qz (mm) @ t-4.09E-10  | -0.39751 |
| qz (mm) @ t=3.865E-10 | 0.00479  | qz (mm) @ t=4.095E-10 | -0.40628 |
| qz (mm) @ t=3.87E-10  | -0.00432 | qz (mm) @ t=4.1E-10   | -0.41503 |
| qz (mm) @ t=3.875E-10 | -0.01342 | qz (mm) @ t=4.105E-10 | -0.42378 |
| qz (mm) @ t=3.88E-10  | -0.02251 | qz (mm) @ t=4.11E-10  | -0.43253 |
| qz (mm) @ t=3.885E-10 | -0.03159 | qz (mm) @ t=4.115E-10 | -0.44126 |
| qz (mm) @ t=3.89E-10  | -0.04067 | qz (mm) @ t=4.12E-10  | -0.44999 |
| qz (mm) @ t=3.895E-10 | -0.04974 | qz (mm) @ t=4.125E-10 | -0.45871 |
| qz (mm) @ t=3.9E-10   | -0.05880 | qz (mm) @ t=4.13E-10  | -0.46742 |
| qz (mm) @ t=3.905E-10 | -0.06786 | qz (mm) @ t=4.135E-10 | -0.47612 |

| qz (mm) @ t=4.14E-10  | -0.48482 | qz (mm) @ t=4.37E-10  | -0.87662 |
|-----------------------|----------|-----------------------|----------|
| qz (mm) @ t=4.145E-10 | -0.49351 | qz (mm) @ t=4.375E-10 | -0.88496 |
| qz (mm) @ t=4.15E-10  | -0.50219 | qz (mm) @ t=4.38E-10  | -0.89329 |
| qz (mm) @ t=4.155E-10 | -0.51086 | qz (mm) @ t=4.385E-10 | -0.90162 |
| qz (mm) @ t=4.16E-10  | -0.51953 | qz (mm) @ t=4.39E-10  | -0.90993 |
| qz (mm) @ t=4.165E-10 | -0.52819 | qz (mm) @ t=4.395E-10 | -0.91824 |
| qz (mm) @ t=4.17E-10  | -0.53684 | qz (mm) @ t=4.4E-10   | -0.92654 |
| qz (mm) @ t=4.175E-10 | -0.54548 | qz (mm) @ t=4.405E-10 | -0.93483 |
| qz (mm) @ t=4.18E-10  | -0.55412 | qz (mm) @ t=4.41E-10  | -0.94312 |
| qz (mm) @ t=4.185E-10 | -0.56274 | qz (mm) @ t=4.415E-10 | -0.95140 |
| qz (mm) @ t=4.19E-10  | -0.57136 | qz (mm) @ t=4.42E-10  | -0.95967 |
| qz (mm) @ t=4.195E-10 | -0.57998 | qz (mm) @ t=4.425E-10 | -0.96793 |
| qz (mm) @ t=4.2E-10   | -0.58858 | qz (mm) @ t=4.43E-10  | -0.97619 |
| qz (mm) @ t=4.205E-10 | -0.59718 | qz (mm) @ t=4.435E-10 | -0.98443 |
| qz (mm) @ t=4.21E-10  | -0.60577 | qz (mm) @ t=4.44E-10  | -0.99267 |
| qz (mm) @ t=4.215E-10 | -0.61435 | qz (mm) @ t=4.445E-10 | -1.00090 |
| qz (mm) @ t=4.22E-10  | -0.62293 | qz (mm) @ t=4.45E-10  | -1.00913 |
| qz (mm) @ t=4.225E-10 | -0.63149 | qz (mm) @ t=4.455E-10 | -1.01735 |
| qz (mm) @ t=4.23E-10  | -0.64005 | qz (mm) @ t=4.46E-10  | -1.02555 |
| qz (mm) @ t=4.235E-10 | -0.64860 | qz (mm) @ t=4.465E-10 | -1.03376 |
| qz (mm) @ t=4.24E-10  | -0.65715 | qz (mm) @ t=4.47E-10  | -1.04195 |
| qz (mm) @ t=4.245E-10 | -0.66569 | qz (mm) @ t=4.475E-10 | -1.05014 |
| qz (mm) @ t=4.25E-10  | -0.67421 | qz (mm) @ t=4.48E-10  | -1.05831 |
| qz (mm) @ t=4.255E-10 | -0.68274 | qz (mm) @ t=4.485E-10 | -1.06649 |
| qz (mm) @ t=4.26E-10  | -0.69125 | qz (mm) @ t=4.49E-10  | -1.07465 |
| qz (mm) @ t=4.265E-10 | -0.69976 | qz (mm) @ t=4.495E-10 | -1.08281 |
| qz (mm) @ t=4.27E-10  | -0.70825 | qz (mm) @ t=4.5E-10   | -1.09095 |
| qz (mm) @ t=4.275E-10 | -0.71674 | qz (mm) @ t=4.505E-10 | -1.09909 |
| qz (mm) @ t=4.28E-10  | -0.72523 | qz (mm) @ t=4.51E-10  | -1.10723 |
| qz (mm) @ t=4.285E-10 | -0.73370 | qz (mm) @ t=4.515E-10 | -1.11535 |
| qz (mm) @ t=4.29E-10  | -0.74217 | qz (mm) @ t=4.52E-10  | -1.12347 |
| qz (mm) @ t=4.295E-10 | -0.75063 | qz (mm) @ t=4.525E-10 | -1.13158 |
| qz (mm) @ t=4.3E-10   | -0.75908 | qz (mm) @ t=4.53E-10  | -1.13968 |
| qz (mm) @ t=4.305E-10 | -0.76753 | qz (mm) @ t=4.535E-10 | -1.14778 |
| qz (mm) @ t=4.31E-10  | -0.77597 | qz (mm) @ t=4.54E-10  | -1.15587 |
| qz (mm) @ t=4.315E-10 | -0.78440 | qz (mm) @ t=4.545E-10 | -1.16395 |
| qz (mm) @ t=4.32E-10  | -0.79282 | qz (mm) @ t=4.55E-10  | -1.17202 |
| qz (mm) @ t=4.325E-10 | -0.80123 | qz (mm) @ t=4.555E-10 | -1.18008 |
| qz (mm) @ t=4.33E-10  | -0.80964 | qz (mm) @ t=4.56E-10  | -1.18814 |
| qz (mm) @ t=4.335E-10 | -0.81804 | qz (mm) @ t=4.565E-10 | -1.19619 |
| qz (mm) @ t=4.34E-10  | -0.82643 | qz (mm) @ t=4.57E-10  | -1.20423 |
| qz (mm) @ t=4.345E-10 | -0.83482 | qz (mm) @ t=4.575E-10 | -1.21226 |
| qz (mm) @ t=4.35E-10  | -0.84319 | qz (mm) @ t=4.58E-10  | -1.22029 |
| qz (mm) @ t=4.355E-10 | -0.85156 | qz (mm) @ t=4.585E-10 | -1.22831 |
| qz (mm) @ t=4.36E-10  | -0.85992 | qz (mm) @ t=4.59E-10  | -1.23632 |
| qz (mm) @ t=4.365E-10 | -0.86828 | qz (mm) @ t=4.595E-10 | -1.24432 |

| qz (mm) @ t=4.6E-10   | -1.25232 | qz (mm) @ t=4.83E-10  | -1.61191 |
|-----------------------|----------|-----------------------|----------|
| qz (mm) @ t=4.605E-10 | -1.26031 | qz (mm) @ t=4.835E-10 | -1.61954 |
| qz (mm) @ t=4.61E-10  | -1.26829 | qz (mm) @ t=4.84E-10  | -1.62717 |
| qz (mm) @ t=4.615E-10 | -1.27626 | qz (mm) @ t=4.845E-10 | -1.63480 |
| qz (mm) @ t=4.62E-10  | -1.28423 | qz (mm) @ t=4.85E-10  | -1.64241 |
| qz (mm) @ t=4.625E-10 | -1.29219 | qz (mm) @ t=4.855E-10 | -1.65002 |
| qz (mm) @ t=4.63E-10  | -1.30014 | qz (mm) @ t=4.86E-10  | -1.65762 |
| qz (mm) @ t=4.635E-10 | -1.30808 | qz (mm) @ t=4.865E-10 | -1.66521 |
| qz (mm) @ t=4.64E-10  | -1.31601 | qz (mm) @ t=4.87E-10  | -1.67280 |
| qz (mm) @ t=4.645E-10 | -1.32394 | qz (mm) @ t=4.875E-10 | -1.68038 |
| qz (mm) @ t=4.65E-10  | -1.33186 | qz (mm) @ t=4.88E-10  | -1.68794 |
| qz (mm) @ t=4.655E-10 | -1.33977 | qz (mm) @ t=4.885E-10 | -1.69551 |
| qz (mm) @ t=4.66E-10  | -1.34768 | qz (mm) @ t=4.89E-10  | -1.70306 |
| qz (mm) @ t=4.665E-10 | -1.35558 | qz (mm) @ t=4.895E-10 | -1.71061 |
| qz (mm) @ t=4.67E-10  | -1.36346 | qz (mm) @ t=4.9E-10   | -1.71815 |
| qz (mm) @ t=4,675E-10 | -1.37135 | qz (mm) @ t=4.905E-10 | -1.72568 |
| qz (mm) @ t=4.68E-10  | -1.37922 | qz (mm) @ t=4.91E-10  | -1.73320 |
| qz (mm) @ t=4.685E-10 | -1.38709 | qz (mm) @ t=4.915E-10 | -1.74072 |
| qz (mm) @ t=4.69E-10  | -1.39495 | qz (mm) @ t=4.92E-10  | -1.74823 |
| qz (mm) @ t=4.695E-10 | -1.40280 | qz (mm) @ t=4.925E-10 | -1.75573 |
| qz (mm) @ t=4.7E-10   | -1.41064 | qz (mm) @ t=4.93E-10  | -1.76322 |
| qz (mm) @ t=4.705E-10 | -1.41848 | qz (mm) @ t=4.935E-10 | -1.77071 |
| qz (mm) @ t=4.71E-10  | -1.42631 | qz (mm) @ t=4.94E-10  | -1.77819 |
| qz (mm) @ t=4.715E-10 | -1.43413 | qz (mm) @ t=4.945E-10 | -1.78566 |
| qz (mm) @ t=4.72E-10  | -1.44194 | qz (mm) @ t=4.95E-10  | -1.79312 |
| qz (mm) @ t=4.725E-10 | -1.44975 | qz (mm) @ t=4.955E-10 | -1.80058 |
| qz (mm) @ t=4.73E-10  | -1.45754 | qz (mm) @ t=4.96E-10  | -1.80802 |
| qz (mm) @ t=4.735E-10 | -1.46533 | qz (mm) @ t=4.965E-10 | -1.81546 |
| qz (mm) @ t=4.74E-10  | -1.47312 | qz (mm) @ t=4.97E-10  | -1.82290 |
| qz (mm) @ t=4.745E-10 | -1.48089 | qz (mm) @ t=4.975E-10 | -1.83032 |
| qz (mm) @ t=4.75E-10  | -1.48866 | qz (mm) @ t=4.98E-10  | -1.83774 |
| qz (mm) @ t=4.755E-10 | -1.49642 | qz (mm) @ t=4.985E-10 | -1.84515 |
| qz (mm) @ t=4.76E-10  | -1.50417 | qz (mm) @ t=4.99E-10  | -1.85255 |
| qz (mm) @ t=4.765E-10 | -1.51192 | qz (mm) @ t=4.995E-10 | -1.85995 |
| qz (mm) @ t=4.77E-10  | -1.51965 | qz (mm) @ t=5E-10     | -1.86733 |
| qz (mm) @ t=4.775E-10 | -1.52738 |                       |          |
| qz (mm) @ t=4.78E-10  | -1.53511 |                       |          |
| qz (mm) @ t=4.785E-10 | -1.54282 |                       |          |
| qz (mm) @ t=4.79E-10  | -1.55053 |                       |          |
| qz (mm) @ t=4.795E-10 | -1.55823 |                       |          |
| qz (mm) @ t=4.8E-10   | -1.56592 |                       |          |
| qz (mm) @ t=4.805E-10 | -1.57360 |                       |          |
| qz (mm) @ t=4.81E-10  | -1.58128 |                       |          |
| qz (mm) @ t=4.815E-10 | -1.58895 |                       |          |
| qz (mm) @ t=4.82E-10  | -1.59661 |                       |          |
| qz (mm) @ t=4.825E-10 | -1.60426 |                       |          |

## C.3 Electron trajectory with the magnetic field

- 1. The initial positions:  $0\hat{x} + 0\hat{y} + 3.8\hat{z}$  (mm).
- 2. The initial angle: 56.4°.

- 3. The initial velocities:  $0\hat{x} + 2.50 \times 10^5 \hat{y} + -1.66 \times 10^5 \hat{z}$  (m/s).
- 4. The total simulated time:  $4 \times 10^{-8}$  (s).
- 5. Steps: 40001.
- 6. qx, qy, and qz are the positions in  $\hat{x},\,\hat{y},\,\mathrm{and}\,\,\hat{z},\,\mathrm{respectively.}$

| ( ) @ + 0           | 0.000000   | at (max) @ + 1 TP 11 | 0.0014002  |
|---------------------|------------|----------------------|------------|
| qx (mm) @ t=0       | 0.000000   | qx (mm) @ t=1.5E-11  | -0.0014290 |
| qy (mm) @ t=0       | 0.0000000  | qy (mm) @ t=1.5E-11  | 0.0033848  |
| dz (mm) @ t=0       | 3.8000000  | qz (mm) @ t=1.5E-11  | 3.7975100  |
| qx (mm) @ t=1E-12   | -0.0000067 | qx (mm) @ t=1.6E-11  | -0.0016149 |
| qy (mm) @ t=1E-12   | 0.0002499  | qy (mm) @ t=1.6E-11  | 0.0035560  |
| qz (mm) @ t=1E-12   | 3.7998340  | qz (mm) @ t=1.6E-11  | 3.7973440  |
| qx (mm) @ t=2E-12   | -0.0000266 | qx (mm) @ t=1.7E-11  | -0.0018090 |
| qy (mm) @ t=2E-12   | 0.0004993  | qy (mm) @ t=1.7E-11  | 0.0037171  |
| qz (mm) @ t=2E-12   | 3.7996680  | qz (mm) @ t=1.7E-11  | 3.7971781  |
| qx (mm) @ t=3E-12   | -0.0000598 | qx (mm) @ t=1.8E-11  | -0.0020114 |
| qy (mm) @ t=3E-12   | 0.0007475  | qy (mm) @ t=1.8E-11  | 0.0038676  |
| qz (mm) @ t=3E-12   | 3.7995020  | qz (mm) @ t=1.8E-11  | 3.7970121  |
| qx (mm) @ t=4E-12   | -0.0001063 | qx (mm) @ t=1.9E-11  | -0.0022215 |
| qy (mm) @ t=4E-12   | 0.0009938  | qy (mm) @ t=1.9E-11  | 0.0040072  |
| qz (mm) @ t=4E-12   | 3.7993360  | qz (mm) @ t=1.9E-11  | 3.7968461  |
| qx (mm) @ t=5E-12   | -0.0001658 | qx (mm) @ t=2E-11    | -0.0024388 |
| qy (mm) @ t=5E-12   | 0.0012377  | qy (mm) @ t=2E-11    | 0.0041353  |
| qz (mm) @ t=5E-12   | 3.7991700  | qz (mm) @ t=2E-11    | 3.7966801  |
| qx (mm) @ t=6E-12   | -0.0002383 | qx (mm) @ t=2.1E-11  | -0.0026626 |
| qy (mm) @ t=6E-12   | 0.0014783  | qy (mm) @ t=2.1E-11  | 0.0042517  |
| qz (mm) @ t=6E-12   | 3.7990040  | qz (mm) @ t=2.1E-11  | 3.7965141  |
| qx (mm) @ t=7E-12   | -0.0003236 | qx (mm) @ t=2.2E-11  | -0.0028923 |
| qy (mm) @ t=7E-12   | 0.0017152  | qy (mm) @ t=2.2E-11  | 0.0043560  |
| qz (mm) @ t=7E-12   | 3.7988380  | qz (mm) @ t=2.2E-11  | 3.7963481  |
| qx (mm) @ t=8E-12   | -0.0004214 | qx (mm) @ t=2.3E-11  | -0.0031272 |
| qy (mm) @ t=8E-12   | 0.0019474  | qy (mm) @ t=2.3E-11  | 0.0044479  |
| qz (mm) @ t=8E-12   | 3.7986720  | qz (mm) @ t=2.3E-11  | 3.7961822  |
| qx (mm) @ t=9E-12   | -0.0005316 | qx (mm) @ t=2.4E-11  | -0.0033667 |
| qy (mm) @ t=9E-12   | 0.0021744  | qy (mm) @ t=2.4E-11  | 0.0045272  |
| qz (mm) @ t=9E-12   | 3.7985060  | qz (mm) @ t=2.4E-11  | 3.7960162  |
| qx (mm) @ t=1E-11   | -0.0006536 | qx (mm) @ t=2.5E-11  | -0.0036100 |
| qy (mm) @ t=1E-11   | 0.0023951  | qy (mm) @ t=2.5E-11  | 0.0045937  |
| qz (mm) @ t=1E-11   | 3.7983400  | qz (mm) @ t=2.5E-11  | 3.7958502  |
| qx (mm) @ t=1.1E-11 | -0.0007873 | qx (mm) @ t=2.6E-11  | -0.0038566 |
| qy (mm) @ t=1.1E-11 | 0.0026090  | qy (mm) @ t=2.6E-11  | 0.0046470  |
| qz (mm) @ t=1.1E-11 | 3.7981740  | qz (mm) @ t=2.6E-11  | 3.7956843  |
| qx (mm) @ t=1.2E-11 | -0.0009321 | qx (mm) @ t=2.7E-11  | -0.0041056 |
| qy (mm) @ t=1.2E-11 | 0.0028155  | qy (mm) @ t=2.7E-11  | 0.0046872  |
| qz (mm) @ t=1.2E-11 | 3.7980080  | qz (mm) @ t=2.7E-11  | 3.7955183  |
| qx (mm) @ t=1.3E-11 | -0.0010878 | qx (mm) @ t=2.8E-11  | -0.0043565 |
| qy (mm) @ t=1.3E-11 | 0.0030140  | qy (mm) @ t=2.8E-11  | 0.0047140  |
| qz (mm) @ t=1.3E-11 | 3.7978420  | qz (mm) @ t=2.8E-11  | 3.7953523  |
| qx (mm) @ t=1.4E-11 | -0.0012538 | qx (mm) @ t=2.9E-11  | -0.0046084 |
| qy (mm) @ t=1.4E-11 | 0.0032040  | qy (mm) @ t=2.9E-11  | 0.0047275  |
| qz (mm) @ t=1.4E-11 | 3.7976760  | qz (mm) @ t=2.9E-11  | 3.7951864  |

Table 21: Raw data of electron trajectories with the magnetic field.

| the second se |            |                     |            |
|-----------------------------------------------------------------------------------------------------------------|------------|---------------------|------------|
| qx (mm) @ t=3E-11                                                                                               | -0.0048606 | qx (mm) @ t=4.5E-11 | -0.0082156 |
| qy (mm) @ t=3E-11                                                                                               | 0.0047275  | qy (mm) @ t=4.5E-11 | 0.0032033  |
| qz (mm) @ t=3E-11                                                                                               | 3.7950204  | qz (mm) @ t=4.5E-11 | 3,7925319  |
| qx (mm) @ t=3.1E-11                                                                                             | -0.0051126 | qx (mm) @ t=4.6E-11 | -0.0083816 |
| qy (mm) @ t=3.1E-11                                                                                             | 0.0047140  | qy (mm) @ t=4.6E-11 | 0.0030132  |
| qz (mm) @ t=3.1E-11                                                                                             | 3.7948545  | qz (mm) @ t=4.6E-11 | 3.7923660  |
| qx (mm) @ t=3.2E-11                                                                                             | -0.0053634 | qx (mm) @ t=4.7E-11 | -0.0085372 |
| qy (mm) @ t=3.2E-11                                                                                             | 0.0046872  | qy (mm) @ t=4.7E-11 | 0.0028146  |
| qz (mm) @ t=3.2E-11                                                                                             | 3.7946886  | qz (mm) @ t=4.7E-11 | 3.7922002  |
| qx (mm) @ t=3.3E-11                                                                                             | -0.0056125 | qx (mm) @ t=4.8E-11 | -0.0086820 |
| qy (mm) @ t=3.3E-11                                                                                             | 0.0046470  | qy (mm) @ t=4.8E-11 | 0.0026079  |
| qz (mm) @ t=3.3E-11                                                                                             | 3.7945226  | qz (mm) @ t=4.8E-11 | 3.7920343  |
| qx (mm) @ t=3.4E-11                                                                                             | -0.0058590 | qx (mm) @ t=4.9E-11 | -0.0088157 |
| qy (mm) @ t=3.4E-11                                                                                             | 0.0045936  | qy (mm) @ t=4.9E-11 | 0.0023938  |
| qz (mm) @ t=3.4E-11                                                                                             | 3.7943567  | qz (mm) @ t=4.9E-11 | 3.7918685  |
| qx (mm) @ t=3.5E-11                                                                                             | -0.0061024 | qx (mm) @ t=5E-11   | -0.0089377 |
| qy (mm) @ t=3.5E-11                                                                                             | 0.0045272  | qy (mm) @ t=5E-11   | 0.0021729  |
| qz (mm) @ t=3.5E-11                                                                                             | 3.7941908  | qz (mm) @ t=5E-11   | 3.7917027  |
| qx (mm) @ t=3.6E-11                                                                                             | -0.0063419 | qx (mm) @ t=5.1E-11 | -0.0090477 |
| qy (mm) @ t=3.6E-11                                                                                             | 0.0044479  | qy (mm) @ t=5.1E-11 | 0.0019459  |
| qz (mm) @ t=3.6E-11                                                                                             | 3.7940248  | qz (mm) @ t=5.1E-11 | 3.7915369  |
| qx (mm) @ t=3.7E-11                                                                                             | -0.0065769 | qx (mm) @ t=5.2E-11 | -0.0091456 |
| qy (mm) @ t=3.7E-11                                                                                             | 0.0043559  | qy (mm) @ t=5.2E-11 | 0.0017132  |
| qz (mm) @ t=3.7E-11                                                                                             | 3.7938589  | qz (mm) @ t=5.2E-11 | 3.7913711  |
| qx (mm) @ t=3.8E-11                                                                                             | -0.0068066 | qx (mm) @ t=5.3E-11 | -0.0092308 |
| qy (mm) @ t=3.8E-11                                                                                             | 0.0042515  | qy (mm) @ t=5.3E-11 | 0.0014757  |
| qz (mm) @ t=3.8E-11                                                                                             | 3.7936930  | qz (mm) @ t=5.3E-11 | 3.7912053  |
| qx (mm) @ t=3.9E-11                                                                                             | -0.0070304 | qx (mm) @ t=5.4E-11 | -0.0093034 |
| qy (mm) @ t=3.9E-11                                                                                             | 0.0041351  | qy (mm) @ t=5.4E-11 | 0.0012340  |
| qz (mm) @ t=3.9E-11                                                                                             | 3.7935271  | qz (mm) @ t=5.4E-11 | 3.7910395  |
| qx (mm) @ t=4E-11                                                                                               | -0.0072477 | qx (mm) @ t=5.5E-11 | -0.0093629 |
| qy (mm) @ t=4E-11                                                                                               | 0.0040069  | qy (mm) @ t=5.5E-11 | 0.0009887  |
| qz (mm) @ t=4E-11                                                                                               | 3.7933612  | qz (mm) @ t=5.5E-11 | 3.7908737  |
| qx (mm) @ t=4.1E-11                                                                                             | -0.0074579 | qx (mm) @ t=5.6E-11 | -0.0094092 |
| qy (mm) @ t=4.1E-11                                                                                             | 0.0038673  | qy (mm) @ t=5.6E-11 | 0.0007406  |
| qz (mm) @ t=4.1E-11                                                                                             | 3.7931953  | qz (mm) @ t=5.6E-11 | 3.7907080  |
| qx (mm) @ t=4.2E-11                                                                                             | -0.0076603 | qx (mm) @ t=5.7E-11 | -0.0094423 |
| qy (mm) @ t=4.2E-11                                                                                             | 0.0037167  | qy (mm) @ t=5.7E-11 | 0.0004904  |
| qz (mm) @ t=4.2E-11                                                                                             | 3.7930295  | qz (mm) @ t=5.7E-11 | 3.7905422  |
| qx (mm) @ t=4.3E-11                                                                                             | -0.0078544 | qx (mm) @ t=5.8E-11 | -0.0094620 |
| qy (mm) @ t=4.3E-11                                                                                             | 0.0035555  | qy (mm) @ t=5.8E-11 | 0.0002388  |
| qz (mm) @ t=4.3E-11                                                                                             | 3.7928636  | qz (mm) @ t=5.8E-11 | 3.7903765  |
| qx (mm) @ t=4.4E-11                                                                                             | -0.0080397 | qx (mm) @ t=5.9E-11 | -0.0094683 |
| qy (mm) @ t=4.4E-11                                                                                             | 0.0033842  | qy (mm) @ t=5.9E-11 | -0.0000136 |
| gz (mm) @ t=4.4E-11                                                                                             | 3.7926977  | qz (mm) @ t=5,9E-11 | 3.7902107  |

| qx (mm) @ t=6E-11   | -0.0094611 | qx (mm) @ t=7.5E-11 | -0.0078403 |
|---------------------|------------|---------------------|------------|
| qy (mm) @ t=6E-11   | -0.0002659 | qy (mm) @ t=7.5E-11 | -0.0035776 |
| qz (mm) @ t=6E-11   | 3.7900450  | qz (mm) @ t=7.5E-11 | 3.7875600  |
| qx (mm) @ t=6.1E-11 | -0.0094404 | qx (mm) @ t=7.6E-11 | -0.0076454 |
| qy (mm) @ t=6.1E-11 | -0.0005174 | qy (mm) @ t=7.6E-11 | -0.0037382 |
| qz (mm) @ t=6.1E-11 | 3.7898792  | qz (mm) @ t=7.6E-11 | 3.7873944  |
| qx (mm) @ t=6.2E-11 | -0.0094064 | qx (mm) @ t=7.7E-11 | -0.0074422 |
| qy (mm) @ t=6.2E-11 | -0.0007676 | qy (mm) @ t=7.7E-11 | -0.0038881 |
| qz (mm) @ t=6.2E-11 | 3.7897135  | qz (mm) @ t=7.7E-11 | 3.7872288  |
| qx (mm) @ t=6.3E-11 | -0.0093591 | qx (mm) @ t=7.8E-11 | -0.0072313 |
| qy (mm) @ t=6.3E-11 | -0.0010155 | qy (mm) @ t=7.8E-11 | -0.0040269 |
| qz (mm) @ t=6.3E-11 | 3.7895478  | qz (mm) @ t=7.8E-11 | 3.7870632  |
| qx (mm) @ t=6.4E-11 | -0.0092987 | qx (mm) @ t=7.9E-11 | -0.0070133 |
| qy (mm) @ t=6.4E-11 | -0.0012606 | qy (mm) @ t=7.9E-11 | -0.0041544 |
| qz (mm) @ t=6.4E-11 | 3.7893821  | qz (mm) @ t=7.9E-11 | 3.7868976  |
| qx (mm) @ t=6.5E-11 | -0.0092253 | qx (mm) @ t=8E-11   | -0.0067889 |
| qy (mm) @ t=6.5E-11 | -0.0015021 | qy (mm) @ t=8E-11   | -0.0042700 |
| qz (mm) @ t=6.5E-11 | 3.7892164  | gz (mm) @ t=8E-11   | 3.7867320  |
| qx (mm) @ t=6.6E-11 | -0.0091391 | qx (mm) @ t=8.1E-11 | -0.0065585 |
| qy (mm) @ t=6.6E-11 | -0.0017394 | qy (mm) @ t=8.1E-11 | -0.0043735 |
| qz (mm) @ t=6.6E-11 | 3.7890508  | qz (mm) @ t=8.1E-11 | 3.7865664  |
| qx (mm) @ t=6.7E-11 | -0.0090403 | qx (mm) @ t=8.2E-11 | -0.0063230 |
| qy (mm) @ t=6.7E-11 | -0.0019718 | qy (mm) @ t=8.2E-11 | -0.0044646 |
| qz (mm) @ t=6.7E-11 | 3.7888851  | qz (mm) @ t=8.2E-11 | 3.7864009  |
| qx (mm) @ t=6.8E-11 | -0.0089294 | qx (mm) @ t=8.3E-11 | -0.0060830 |
| qy (mm) @ t=6.8E-11 | -0.0021985 | qy (mm) @ t=8.3E-11 | -0.0045430 |
| qz (mm) @ t=6.8E-11 | 3.7887194  | qz (mm) @ t=8.3E-11 | 3.7862353  |
| qx (mm) @ t=6.9E-11 | -0.0088065 | qx (mm) @ t=8.4E-11 | -0.0058391 |
| qy (mm) @ t=6.9E-11 | -0.0024190 | qy (mm) @ t=8.4E-11 | -0.0046085 |
| qz (mm) @ t=6.9E-11 | 3.7885538  | qz (mm) @ t=8.4E-11 | 3.7860697  |
| qx (mm) @ t=7E-11   | -0.0086720 | qx (mm) @ t=8.5E-11 | -0.0055920 |
| qy (mm) @ t=7E-11   | -0.0026327 | qy (mm) @ t=8.5E-11 | -0.0046609 |
| qz (mm) @ t=7E-11   | 3.7883881  | qz (mm) @ t=8.5E-11 | 3.7859042  |
| qx (mm) @ t=7.1E-11 | -0.0085263 | qx (mm) @ t=8.6E-11 | -0.0053426 |
| qy (mm) @ t=7.1E-11 | -0.0028389 | qy (mm) @ t=8.6E-11 | -0.0047001 |
| qz (mm) @ t=7.1E-11 | 3.7882225  | qz (mm) @ t=8.6E-11 | 3.7857387  |
| qx (mm) @ t=7.2E-11 | -0.0083698 | qx (mm) @ t=8.7E-11 | -0.0050913 |
| qy (mm) @ t=7.2E-11 | -0.0030370 | qy (mm) @ t=8.7E-11 | -0.0047259 |
| qz (mm) @ t=7.2E-11 | 3.7880568  | qz (mm) @ t=8.7E-11 | 3.7855731  |
| qx (mm) @ t=7.3E-11 | -0.0082030 | qx (mm) @ t=8.8E-11 | -0.0048391 |
| qy (mm) @ t=7.3E-11 | -0.0032266 | qy (mm) @ t=8.8E-11 | -0.0047382 |
| qz (mm) @ t=7.3E-11 | 3.7878912  | qz (mm) @ t=8.8E-11 | 3.7854076  |
| qx (mm) @ t=7.4E-11 | -0.0080263 | qx (mm) @ t=8.9E-11 | -0.0045866 |
| qy (mm) @ t=7.4E-11 | -0.0034069 | qy (mm) @ t=8.9E-11 | -0.0047371 |
| qz (mm) @ t=7.4E-11 | 3.7877256  | qz (mm) @ t=8.9E-11 | 3.7852420  |
| 1 ( /               |            | 1 (                 |            |

| ax (mm) @ t=9E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0043344 | $\alpha x (mm) @ t=1.05E-10$            | -0.0010705 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|------------|
| gy (mm) @ t=9E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0047226 | qv (mm) @ t=1.05E-10                    | -0.0030044 |
| az (mm) @ t=9E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7850765  | az (mm) @ t=1.05E-10                    | 3,7825939  |
| ax (mm) @ t=9.1E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0040834 | ax (mm) @ t=1.06E-10                    | -0.0009157 |
| av (mm) @ t=9.1E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0046946 | av (mm) @ t=1.06E-10                    | -0.0028048 |
| $q_{z} (mm) @ t=9.1E-11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.7849110  | gz (mm) @ t=1.06E-10                    | 3,7824285  |
| ax (mm) @ t=9.2E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0038343 | ax (mm) @ t=1.07E-10                    | -0.0007719 |
| $q_{1}$ (mm) @ t=9.2E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0046532 | av (mm) @ t=1.07E-10                    | -0.0025972 |
| az (mm) @ t=9.2E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7847455  | az (mm) @ t=1.07E-10                    | 3 7822630  |
| ax (mm) @ t=9.3E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0035877 | $q_{z} (mm) @ t=1.07E-10$               | -0.0006393 |
| av (mm) @ t=9.3E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0045987 | qx (mm) @ t=1.08E-10                    | -0.0023822 |
| (1) $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ | 3 7845800  | (mm) @ t=1.00E-10                       | 3 7820075  |
| $q_{z}$ (mm) @ t=9.5E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0033444 | $q_{z} (mm) \otimes t = 1.08E \cdot 10$ | -0.0005184 |
| qx (mm) @ t=9.4E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0035111 | qx (mm) @ t=1.09E-10                    | -0.0000104 |
| $q_{y}$ (mm) @ t=9.4E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 7844144  | qy (mm) @ t=1.09E-10                    | 3 7810320  |
| $q_{z}$ (mm) @ t=0.4E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0031050 | $q_{z}$ (mm) @ t=1.05L-10               | -0.0004095 |
| qx (mm) @ t=9.5E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0031030 | qx (mm) @ t=1.1E-10                     | -0.0004095 |
| qy (mm) @ t=0.5E 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 7849480  | $qy (mm) \oplus t=1.1E(10)$             | 3.7817665  |
| $d_{z}$ (mm) @ t=9.5E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0028702  | qz (mm) @ t=1.115-10                    | 0.0003120  |
| qx (mm) @ t=9.0E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0028102 | qx (mm) @ t=1.11E-10                    | -0.0003129 |
| dy (mm) @ t=9.0E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 7840824  | $qy (mm) \oplus t=1.11E-10$             | -0.0010992 |
| dz (mm) @ t=9.0E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0006408  | dz (mm) = t = 1.11E-10                  | 0.0000000  |
| qx (mm) @ t=9.7E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0020408 | qx (mm) @ t=1.12E-10                    | -0.0002289 |
| qy (mm) @ t=9.7E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0042518 | qy (mm) @ t=1.12E-10                    | -0.0014010 |
| dz (mm) @ t=9.7E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0004172  | qz (mm) @ t=1.12E-10                    | 0.0001527  |
| qx (mm) @ t=9.8E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0024173 | qx (mm) @ t=1.13E-10                    | -0.0001377 |
| dy (mm) @ t=9.8E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0041342 | qy (mm) @ t=1.13E-10                    | -0.0012187 |
| dz (mm) @ t=9.8E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7837324  | qz (mm) @ t=1.13E-10                    | 3.7812700  |
| qx (mm) @ t=9.9E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0022004 | qx (mm) @ t=1.14E-10                    | -0.0000995 |
| qy (mm) @ t=9.9E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0040048 | qy (mm) @ t=1.14E-10                    | -0.0009729 |
| qz (mm) @ t=9.9E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7835869  | qz (mm) @ t=1.14E-10                    | 3.7811046  |
| $qx (mm) \oplus t=1E-10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0019907 | qx (mm) @ t=1.15E-10                    | -0.0000546 |
| qy (mm) @ t=1E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0038640 | qy (mm) @ t=1.15E-10                    | -0.0007244 |
| qz (mm) @ t=1E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7834214  | qz (mm) @ t=1.15E-10                    | 3.7809391  |
| qx (mm) @ t=1.01E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0017888 | qx (mm) @ t=1.16E-10                    | -0.0000229 |
| qy (mm) @ t=1.01E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0037122 | qy (mm) @ t=1.16E-10                    | -0.0004738 |
| qz (mm) @ t=1.01E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7832559  | qz (mm) @ t=1.16E-10                    | 3.7807736  |
| qx (mm) @ t=1.02E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0015953 | qx (mm) @ t=1.17E-10                    | -0.0000047 |
| qy (mm) @ t=1.02E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0035499 | qy (mm) @ t=1.17E-10                    | -0.0002219 |
| qz (mm) @ t=1.02E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7830904  | qz (mm) @ t=1.17E-10                    | 3.7806081  |
| qx (mm) @ t=1.03E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0014107 | qx (mm) @ t=1.18E-10                    | 0.0000000  |
| qy (mm) @ t=1.03E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0033775 | qy (mm) @ t=1.18E-10                    | 0.0000306  |
| qz (mm) @ t=1.03E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7829249  | qz (mm) @ t=1.18E-10                    | 3.7804426  |
| qx (mm) @ t=1.04E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0012356 | qx (mm) @ t=1.19E-10                    | -0.000087  |
| qy (mm) @ t=1.04E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.0031955 | qy (mm) @ t=1.19E-10                    | 0.0002831  |
| qz (mm) @ t=1.04E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7827594  | qz (mm) @ t=1.19E-10                    | 3.7802771  |

| [ av (mm) @ +-1.2E 10    | 0.0000200  | ov (mm) @ t-1 25E 10        | 0.0019494  |
|--------------------------|------------|-----------------------------|------------|
| qx (mm) @ t=1.2E-10      | -0.0000509 | qx (mm) @ t=1.35E-10        | -0.0010404 |
| qy (mm) @ t=1.2E-10      | 2.7801116  | $qy (mm) \oplus t=1.35E-10$ | 9.7776904  |
| $d_{z}$ (mm) @ t=1.2E-10 | 0.0000665  | qz (mm) @ t=1.35E-10        | 0.0020529  |
| dx (mm) @ t=1.21E-10     | -0.0000005 | qx (mm) @ t=1.36E-10        | -0.0020528 |
| dy (mm) @ t=1.21E-10     | 0.0007847  | dy (mm) @ t=1.36E-10        | 0.0038927  |
| dz (mm) @ t=1.21E-10     | 5.7799402  | dz (mm) @ t=1.36E-10        | 0.0000640  |
| qx (mm) @ t=1.22E-10     | -0.0001154 | qx (mm) @ t=1.3/E-10        | -0.0022648 |
| qy (mm) @ t=1.22E-10     | 0.0010325  | qy (mm) @ t=1.3/E-10        | 0.0040300  |
| qz (mm) @ t=1.22E-10     | 3.7797807  | qz (mm) @ t=1.37E-10        | 3.7772985  |
| qx (mm) @ t=1.23E-10     | -0.0001774 | qx (mm) @ t=1.38E-10        | -0.0024838 |
| qy (mm) @ t=1.23E-10     | 0.0012773  | qy (mm) @ t=1.38E-10        | 0.0041558  |
| qz (mm) @ t=1.23E-10     | 3.7796152  | qz (mm) @ t=1.38E-10        | 3.7771330  |
| qx (mm) @ t=1.24E-10     | -0.0002525 | qx (mm) @ t=1.39E-10        | -0.0027092 |
| qy (mm) @ t=1.24E-10     | 0.0015185  | qy (mm) @ t=1.39E-10        | 0.0042698  |
| qz (mm) @ t=1.24E-10     | 3.7794497  | qz (mm) @ t=1.39E-10        | 3.7769675  |
| qx (mm) @ t=1.25E-10     | -0.0003403 | qx (mm) @ t=1.4E-10         | -0.0029404 |
| qy (mm) @ t=1.25E-10     | 0.0017553  | qy (mm) @ t=1.4E-10         | 0.0043715  |
| qz (mm) @ t=1.25E-10     | 3.7792842  | qz (mm) @ t=1.4E-10         | 3.7768021  |
| qx (mm) @ t=1.26E-10     | -0.0004406 | qx (mm) @ t=1.41E-10        | -0.0031767 |
| qy (mm) @ t=1.26E-10     | 0.0019871  | qy (mm) @ t=1.41E-10        | 0.0044607  |
| qz (mm) @ t=1.26E-10     | 3.7791187  | qz (mm) @ t=1.41E-10        | 3.7766366  |
| qx (mm) @ t=1.27E-10     | -0.0005531 | qx (mm) @ t=1.42E-10        | -0.0034174 |
| qy (mm) @ t=1.27E-10     | 0.0022132  | qy (mm) @ t=1.42E-10        | 0.0045372  |
| qz (mm) @ t=1.27E-10     | 3.7789533  | qz (mm) @ t=1.42E-10        | 3.7764712  |
| qx (mm) @ t=1.28E-10     | -0.0006776 | qx (mm) @ t=1.43E-10        | -0.0036619 |
| qy (mm) @ t=1.28E-10     | 0.0024330  | qy (mm) @ t=1.43E-10        | 0.0046008  |
| qz (mm) @ t=1.28E-10     | 3.7787878  | qz (mm) @ t=1.43E-10        | 3.7763057  |
| qx (mm) @ t=1.29E-10     | -0.0008136 | qx (mm) @ t=1.44E-10        | -0.0039094 |
| qy (mm) @ t=1.29E-10     | 0.0026458  | qy (mm) @ t=1.44E-10        | 0.0046511  |
| qz (mm) @ t=1.29E-10     | 3.7786223  | qz (mm) @ t=1.44E-10        | 3.7761403  |
| qx (mm) @ t=1.3E-10      | -0.0009607 | qx (mm) @ t=1.45E-10        | -0.0041593 |
| qy (mm) @ t=1.3E-10      | 0.0028511  | qy (mm) @ t=1.45E-10        | 0.0046882  |
| qz (mm) @ t=1.3E-10      | 3.7784568  | qz (mm) @ t=1.45E-10        | 3.7759748  |
| qx (mm) @ t=1.31E-10     | -0.0011187 | qx (mm) @ t=1.46E-10        | -0.0044108 |
| qy (mm) @ t=1.31E-10     | 0.0030482  | qy (mm) @ t=1.46E-10        | 0.0047119  |
| qz (mm) @ t=1.31E-10     | 3.7782913  | qz (mm) @ t=1.46E-10        | 3.7758094  |
| qx (mm) @ t=1.32E-10     | -0.0012869 | qx (mm) @ t=1.47E-10        | -0.0046632 |
| qy (mm) @ t=1.32E-10     | 0.0032366  | qy (mm) @ t=1.47E-10        | 0.0047221  |
| qz (mm) @ t=1.32E-10     | 3.7781259  | qz (mm) @ t=1.47E-10        | 3.7756439  |
| qx (mm) @ t=1.33E-10     | -0.0014649 | qx (mm) @ t=1.48E-10        | -0.0049158 |
| qy (mm) @ t=1.33E-10     | 0.0034158  | qy (mm) @ t=1.48E-10        | 0.0047189  |
| qz (mm) @ t=1.33E-10     | 3.7779604  | qz (mm) @ t=1.48E-10        | 3.7754785  |
| qx (mm) @ t=1.34E-10     | -0.0016523 | qx (mm) @ t=1.49E-10        | -0.0051678 |
| qy (mm) @ t=1.34E-10     | 0.0035851  | qy (mm) @ t=1.49E-10        | 0.0047021  |
| qz (mm) @ t=1.34E-10     | 3.7777949  | qz (mm) @ t=1.49E-10        | 3.7753131  |

| and the second s |            |                      |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|------------|
| qx (mm) @ t=1.5E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0054186 | qx (mm) @ t=1.65E-10 | -0.0085689 |
| qy (mm) @ t=1.5E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0046719  | qy (mm) @ t=1.65E-10 | 0.0027516  |
| qz (mm) @ t=1.5E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7751476  | qz (mm) @ t=1.65E-10 | 3.7726670  |
| qx (mm) @ t=1.51E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0056674 | qx (mm) @ t=1.66E-10 | -0.0087107 |
| qy (mm) @ t=1.51E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0046283  | qy (mm) @ t=1.66E-10 | 0.0025425  |
| qz (mm) @ t=1.51E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7749822  | qz (mm) @ t=1.66E-10 | 3.7725017  |
| qx (mm) @ t=1.52E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0059136 | qx (mm) @ t=1.67E-10 | -0.0088411 |
| qy (mm) @ t=1.52E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0045716  | qy (mm) @ t=1.67E-10 | 0.0023261  |
| qz (mm) @ t=1.52E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7748168  | qz (mm) @ t=1.67E-10 | 3.7723364  |
| qx (mm) @ t=1.53E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0061564 | qx (mm) @ t=1.68E-10 | -0.0089597 |
| qy (mm) @ t=1.53E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0045017  | qy (mm) @ t=1.68E-10 | 0.0021030  |
| qz (mm) @ t=1.53E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7746514  | qz (mm) @ t=1.68E-10 | 3.7721711  |
| qx (mm) @ t=1.54E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0063951 | qx (mm) @ t=1.69E-10 | -0.0090663 |
| qy (mm) @ t=1.54E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0044190  | qy (mm) @ t=1.69E-10 | 0.0018738  |
| qz (mm) @ t=1.54E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7744860  | qz (mm) @ t=1.69E-10 | 3.7720058  |
| qx (mm) @ t=1.55E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0066290 | qx (mm) @ t=1.7E-10  | -0.0091605 |
| qy (mm) @ t=1.55E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0043236  | qy (mm) @ t=1.7E-10  | 0.0016394  |
| qz (mm) @ t=1.55E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7743206  | qz (mm) @ t=1.7E-10  | 3.7718405  |
| qx (mm) @ t=1.56E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0068575 | qx (mm) @ t=1.71E-10 | -0.0092420 |
| qy (mm) @ t=1.56E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0042159  | qy (mm) @ t=1.71E-10 | 0.0014002  |
| qz (mm) @ t=1.56E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7741552  | qz (mm) @ t=1.71E-10 | 3.7716752  |
| qx (mm) @ t=1.57E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0070800 | qx (mm) @ t=1.72E-10 | -0.0093107 |
| qy (mm) @ t=1.57E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0040961  | qy (mm) @ t=1.72E-10 | 0.0011570  |
| qz (mm) @ t=1.57E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7739898  | qz (mm) @ t=1.72E-10 | 3.7715099  |
| qx (mm) @ t=1.58E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0072957 | qx (mm) @ t=1.73E-10 | -0.0093662 |
| qy (mm) @ t=1.58E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0039646  | qy (mm) @ t=1.73E-10 | 0.0009104  |
| qz (mm) @ t=1.58E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7738245  | qz (mm) @ t=1.73E-10 | 3.7713447  |
| qx (mm) @ t=1.59E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0075041 | qx (mm) @ t=1.74E-10 | -0.0094085 |
| qy (mm) @ t=1.59E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0038218  | qy (mm) @ t=1.74E-10 | 0.0006613  |
| qz (mm) @ t=1.59E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7736591  | qz (mm) @ t=1.74E-10 | 3.7711794  |
| qx (mm) @ t=1.6E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0077045 | qx (mm) @ t=1.75E-10 | -0.0094374 |
| qy (mm) @ t=1.6E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0036681  | qy (mm) @ t=1.75E-10 | 0.0004102  |
| qz (mm) @ t=1.6E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7734937  | qz (mm) @ t=1.75E-10 | 3.7710142  |
| qx (mm) @ t=1.61E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0078965 | qx (mm) @ t=1.76E-10 | -0.0094529 |
| qy (mm) @ t=1.61E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0035038  | qy (mm) @ t=1.76E-10 | 0.0001579  |
| qz (mm) @ t=1.61E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7733284  | qz (mm) @ t=1.76E-10 | 3.7708490  |
| qx (mm) @ t=1.62E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0080794 | qx (mm) @ t=1.77E-10 | -0.0094548 |
| qy (mm) @ t=1.62E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0033295  | qy (mm) @ t=1.77E-10 | -0.0000948 |
| qz (mm) @ t=1.62E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7731630  | qz (mm) @ t=1.77E-10 | 3.7706837  |
| qx (mm) @ t=1.63E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0082528 | qx (mm) @ t=1.78E-10 | -0.0094433 |
| qy (mm) @ t=1.63E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0031457  | qy (mm) @ t=1.78E-10 | -0.0003473 |
| qz (mm) @ t=1.63E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7729977  | qz (mm) @ t=1.78E-10 | 3.7705185  |
| qx (mm) @ t=1.64E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0084161 | qx (mm) @ t=1.79E-10 | -0.0094182 |
| qy (mm) @ t=1.64E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0029529  | qy (mm) @ t=1.79E-10 | -0.0005988 |
| qz (mm) @ t=1.64E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7728323  | qz (mm) @ t=1.79E-10 | 3.7703533  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |            |

| qy (mn) @ t=1.8E-10       -0.0008486 $qy$ (mn) @ t=1.95E-10       -0.0039355 $qx$ (mn) @ t=1.8E-10       3.7701881 $qx$ (mn) @ t=1.95E-10       3.7677111 $qx$ (mn) @ t=1.81E-10       -0.00393281 $qx$ (mn) @ t=1.96E-10       -0.0040704 $qx$ (mn) @ t=1.81E-10       -0.0029632 $qx$ (mn) @ t=1.96E-10       -0.0040704 $qx$ (mn) @ t=1.82E-10       -0.0029632 $qx$ (mn) @ t=1.97E-10       -0.0069208 $qy$ (mn) @ t=1.82E-10       -0.0013403 $qy$ (mn) @ t=1.97E-10       -0.0041936 $qx$ (mn) @ t=1.82E-10       -0.0015808 $qy$ (mn) @ t=1.98E-10       -0.00403049 $qx$ (mn) @ t=1.83E-10       -0.0015808 $qy$ (mn) @ t=1.98E-10       -0.00403049 $qx$ (mn) @ t=1.84E-10       -0.0090948 $qx$ (mn) @ t=1.98E-10       -0.0046611 $qy$ (mn) @ t=1.84E-10       -0.002476 $qy$ (mn) @ t=1.99E-10       -0.0062234 $qy$ (mn) @ t=1.85E-10       -0.002477 $qx$ (mn) @ t=1.99E-10       -0.0044038 $qx$ (mn) @ t=1.85E-10       -0.002472 $qx$ (mn) @ t=2.10       3.7667508 $qx$ (mn) @ t=1.85E-10       -0.002725       -0.004403       -0.002725       -0.002403       -0.002724       -0.002724       -0.002724       -0.002724       -0.002724                                                                                                                   | gx (mm) @ t=1.8E-10  | -0.0093798 | ox (mm) @ t=1.95E-10 | -0.0073554                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | qy (mm) @ t=1.8E-10  | -0.0008486 | qy (mm) @ t=1.95E-10 | -0.0039355                            |
| qx (mm) @ t=1.81E-10       -0.0093281 $qx$ (mm) @ t=1.96E-10       -0.0071416 $qy$ (mm) @ t=1.81E-10       -0.001960 $qy$ (mm) @ t=1.96E-10       -0.0040704 $qx$ (mm) @ t=1.81E-10       -0.0092632 $qx$ (mm) @ t=1.96E-10       -0.0069208 $qy$ (mm) @ t=1.82E-10       -0.0091303 $qy$ (mm) @ t=1.97E-10       -0.0069303 $qx$ (mm) @ t=1.82E-10       -0.0013403 $qy$ (mm) @ t=1.97E-10       -0.006937 $qx$ (mm) @ t=1.83E-10       -0.001808 $qy$ (mm) @ t=1.98E-10       -0.0060937 $qx$ (mm) @ t=1.83E-10       -0.001808 $qy$ (mm) @ t=1.98E-10       -0.0064014 $qx$ (mm) @ t=1.83E-10       -0.0018167 $qy$ (mm) @ t=1.99E-10       -0.0064011 $qy$ (mm) @ t=1.84E-10       -0.0029476 $qy$ (mm) @ t=1.99E-10       -0.0044038 $qx$ (mm) @ t=1.85E-10       -0.0024776 $qy$ (mm) @ t=2E-10       -0.002234 $qy$ (mm) @ t=1.86E-10       -0.0024776 $qy$ (mm) @ t=2E-10       -0.0044023 $qx$ (mm) @ t=1.86E-10       -0.002725       -0.004402       -0.004402 $qx$ (mm) @ t=1.86E-10       -0.002725       -0.002476       -0.002476       -0.004402 $qx$ (mm) @ t=1.87E-10       -0.0087493       -0.004402       -0.004402       -0.00                                                                                                                          | gz (mm) @ t=1.8E-10  | 3.7701881  | oz (mm) @ t=1.95E-10 | 3.7677111                             |
| qy (mm) @ t=1.81E-10       -0.0010960 $qy$ (mm) @ t=1.96E-10       -0.0040704 $qx$ (mm) @ t=1.81E-10       3.7700229 $qx$ (mm) @ t=1.96E-10       3.7675460 $qx$ (mm) @ t=1.82E-10       -0.0023632 $qx$ (mm) @ t=1.97E-10       -0.006208 $qy$ (mm) @ t=1.82E-10       -0.0013403 $qy$ (mm) @ t=1.97E-10       -0.0041936 $qx$ (mm) @ t=1.82E-10       3.76958577 $qx$ (mm) @ t=1.98E-10       -3.7673809 $qx$ (mm) @ t=1.83E-10       3.7695925 $qx$ (mm) @ t=1.98E-10       -0.006937 $qx$ (mm) @ t=1.83E-10       3.7695925 $qx$ (mm) @ t=1.98E-10       -0.0064014 $qy$ (mm) @ t=1.84E-10       3.7695274 $qx$ (mm) @ t=1.99E-10       -0.0064214 $qx$ (mm) @ t=1.84E-10       3.7695274 $qx$ (mm) @ t=1.99E-10       -0.0064234 $qx$ (mm) @ t=1.84E-10       3.7695274 $qx$ (mm) @ t=1.99E-10       -0.0064234 $qy$ (mm) @ t=1.85E-10       -0.002476 $qy$ (mm) @ t=2E-10       -0.0044032 $qx$ (mm) @ t=1.85E-10       -0.002476 $qy$ (mm) @ t=2E-10       -0.0044902 $qx$ (mm) @ t=1.85E-10       -0.002725       -0.002       -0.002 $qx$ (mm) @ t=1.86E-10       -0.0087493       -0.002       -0.002 $qy$ (mm) @ t=                                                                                                                                                | qx (mm) @ t=1.81E-10 | -0.0093281 | gx (mm) @ t=1.96E-10 | -0.0071416                            |
| $ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gy (mm) @ t=1.81E-10 | -0.0010960 | av (mm) @ t=1.96E-10 | -0.0040704                            |
| qx (mm) @ t=1.82E-10       -0.0092632 $qx$ (mm) @ t=1.97E-10       -0.0069208 $qy$ (mm) @ t=1.82E-10       3.7698577 $qx$ (mm) @ t=1.97E-10       3.7673809 $qx$ (mm) @ t=1.83E-10       -0.0018808 $qy$ (mm) @ t=1.98E-10       -0.006937 $qy$ (mm) @ t=1.83E-10       -0.0018808 $qy$ (mm) @ t=1.98E-10       -0.0066937 $qx$ (mm) @ t=1.83E-10       -0.001808 $qy$ (mm) @ t=1.98E-10       -0.0040409 $qx$ (mm) @ t=1.84E-10       3.7696925 $qx$ (mm) @ t=1.98E-10       -0.0044018 $qx$ (mm) @ t=1.84E-10       3.7695274 $qx$ (mm) @ t=1.99E-10       -0.0044038 $qx$ (mm) @ t=1.84E-10       3.7695274 $qx$ (mm) @ t=2.99E-10       -0.0044038 $qx$ (mm) @ t=1.85E-10       -0.0020476 $qy$ (mm) @ t=2.80E-10       -0.0044038 $qx$ (mm) @ t=1.85E-10       -0.002176 $qx$ (mm) @ t=2.80E-10       -0.0044038 $qx$ (mm) @ t=1.86E-10       3.7690319       -       -       - $qx$ (mm) @ t=1.87E-10       -0.0084107       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>gz (mm) @ t=1.81E-10</td><td>3.7700229</td><td>gz (mm) @ t=1.96E-10</td><td>3.7675460</td></t<>                                                            | gz (mm) @ t=1.81E-10 | 3.7700229  | gz (mm) @ t=1.96E-10 | 3.7675460                             |
| qy (mm) @ t=1.82E-10       -0.0013403 $qy$ (mm) @ t=1.97E-10       -0.0041936 $qz$ (mm) @ t=1.82E-10       3.7698577 $qz$ (mm) @ t=1.97E-10       3.7673809 $qx$ (mm) @ t=1.83E-10       -0.0091853 $qx$ (mm) @ t=1.98E-10       -0.0066937 $qy$ (mm) @ t=1.83E-10       -0.0015808 $qy$ (mm) @ t=1.98E-10       -0.0066937 $qx$ (mm) @ t=1.83E-10       -0.0019485 $qx$ (mm) @ t=1.98E-10       -0.0064611 $qy$ (mm) @ t=1.84E-10       3.7695274 $qz$ (mm) @ t=1.99E-10       3.7670508 $qx$ (mm) @ t=1.84E-10       3.7693622 $qz$ (mm) @ t=2E-10       -0.0062234 $qy$ (mm) @ t=1.85E-10       -0.002476 $qy$ (mm) @ t=2E-10       -0.0064002 $qz$ (mm) @ t=1.85E-10       -0.002476 $qy$ (mm) @ t=2E-10       -0.0064012 $qx$ (mm) @ t=1.85E-10       -0.0024725 $qz$ (mm) @ t=1.86E-10       3.7693621 $qz$ (mm) @ t=2E-10       -0.004402 $qx$ (mm) @ t=1.87E-10       -0.0024705 $qz$ (mm) @ t=1.87E-10       -0.0024705 $qz$ (mm) @ t=1.87E-10       -0.0024702 $qz$ (mm) @ t=1.87E-10       -0.0024702 $qz$ (mm) @ t=1.87E-10       -0.008107 $qy$ (mm) @ t=1.88E-10       -0.008107 $qy$ (mm) @ t=1.88E-10       -0.0086107 $qq$ (mm) @ t=1.98E-10 <t< td=""><td>gx (mm) @ t=1.82E-10</td><td>-0.0092632</td><td>ax (mm) @ t=1.97E-10</td><td>-0.0069208</td></t<> | gx (mm) @ t=1.82E-10 | -0.0092632 | ax (mm) @ t=1.97E-10 | -0.0069208                            |
| $ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gy (mm) @ t=1.82E-10 | -0.0013403 | qv (mm) @ t=1.97E-10 | -0.0041936                            |
| x (mm) @ t=1.83E-10-0.0091853 $x$ (mm) @ t=1.98E-10-0.0066937 $qy$ (mm) @ t=1.83E-10-0.0015808 $qy$ (mm) @ t=1.98E-10-0.0043049 $qz$ (mm) @ t=1.83E-103.7696925 $qz$ (mm) @ t=1.98E-103.7672159 $qx$ (mm) @ t=1.84E-10-0.0009048 $qx$ (mm) @ t=1.99E-10-0.0064611 $qy$ (mm) @ t=1.84E-10-0.0018167 $qy$ (mm) @ t=1.99E-10-0.0044038 $qz$ (mm) @ t=1.84E-10-0.0089917 $qx$ (mm) @ t=1.99E-10-0.0062234 $qy$ (mm) @ t=1.85E-10-0.0020476 $qy$ (mm) @ t=2E-10-0.0024234 $qy$ (mm) @ t=1.85E-10-0.0024767 $qx$ (mm) @ t=2E-10-0.0044092 $qz$ (mm) @ t=1.85E-10-0.0024764 $qy$ (mm) @ t=2E-10-0.0044092 $qz$ (mm) @ t=1.85E-10-0.0028745 $qz$ (mm) @ t=2E-10-0.0044092 $qx$ (mm) @ t=1.85E-10-0.0024725 $qz$ (mm) @ t=2E-10-0.0044092 $qx$ (mm) @ t=1.87E-10-0.0024703 $qz$ (mm) @ t=1.87E-10-0.0024703 $qy$ (mm) @ t=1.87E-10-0.0024704 $qz$ (mm) @ t=1.88E-10-0.0024704 $qz$ (mm) @ t=1.88E-10-0.0024704 $qz$ (mm) @ t=1.88E-10-0.0027024 $qz$ (mm) @ t=1.88E-10-0.0084609 $qq$ (mm) @ t=1.88E-10-0.0084609 $qy$ (mm) @ t=1.98E-10-0.0083005 $qq$ (mm) @ t=1.98E-10-0.0083005 $qx$ (mm) @ t=1.98E-10-0.0031015 $qz$ (mm) @ t=1.98E-10-0.0031015 $qx$ (mm) @ t=1.91E-10-0.0032881 $qq$ (mm) @ t=1.91E-10-0.0032881 $qx$ (mm) @ t=1.92E-10-0.0073603 $qq$ (mm) @ t=1.92E-10-0.00   | gz (mm) @ t=1.82E-10 | 3.7698577  | oz (mm) @ t=1.97E-10 | 3.7673809                             |
| $\dot{q}y$ (mm) @ t=1.83E-10-0.0015808 $\dot{q}y$ (mm) @ t=1.98E-10-0.0043049 $qz$ (mm) @ t=1.83E-103.7696925 $qz$ (mm) @ t=1.98E-103.7672159 $qx$ (mm) @ t=1.84E-10-0.0009048 $qx$ (mm) @ t=1.99E-10-0.0064611 $qy$ (mm) @ t=1.84E-100.0018167 $qy$ (mm) @ t=1.99E-10-0.0044038 $qz$ (mm) @ t=1.84E-103.7695274 $qz$ (mm) @ t=1.99E-10-0.0062344 $qy$ (mm) @ t=1.85E-10-0.0020476 $qy$ (mm) @ t=2E-10-0.0062344 $qy$ (mm) @ t=1.85E-100.0020476 $qy$ (mm) @ t=2E-103.7668857 $qx$ (mm) @ t=1.85E-100.0028764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gx (mm) @ t=1.83E-10 | -0.0091853 | qx (mm) @ t=1.98E-10 | -0.0066937                            |
| $p_{2}$ (mm) @ t=1.83E-10 $3.7696925$ $q_{2}$ (mm) @ t=1.98E-10 $3.7672159$ $qx$ (mm) @ t=1.84E-10 $-0.009048$ $qx$ (mm) @ t=1.99E-10 $-0.0064611$ $qy$ (mm) @ t=1.84E-10 $3.7695274$ $qz$ (mm) @ t=1.99E-10 $-0.0044038$ $qx$ (mm) @ t=1.85E-10 $-0.0089917$ $qx$ (mm) @ t=2E-10 $-0.0040234$ $qy$ (mm) @ t=1.85E-10 $-0.0020476$ $qy$ (mm) @ t=2E-10 $-0.0044902$ $qx$ (mm) @ t=1.85E-10 $-0.0020476$ $qy$ (mm) @ t=2E-10 $-0.0044902$ $qx$ (mm) @ t=1.85E-10 $-0.002476$ $qy$ (mm) @ t=2E-10 $-0.0044902$ $qx$ (mm) @ t=1.85E-10 $0.0022725$ $qz$ (mm) @ t=2E-10 $3.7668857$ $qx$ (mm) @ t=1.86E-10 $-0.0024910$ $qz$ (mm) @ t=1.87E-10 $3.7690319$ $qx$ (mm) @ t=1.87E-10 $0.0027024$ $qz$ (mm) @ t=1.88E-10 $0.0027024$ $qx$ (mm) @ t=1.88E-10 $0.0027024$ $qz$ (mm) @ t=1.88E-10 $0.0027024$ $qx$ (mm) @ t=1.88E-10 $0.0029061$ $qq$ (mm) @ t=1.89E-10 $0.0023005$ $qx$ (mm) @ t=1.98E-10 $0.0083005$ $qq$ (mm) @ t=1.91E-10 $0.0083005$ $qq$ (mm) @ t=1.91E-10 $0.0032881$ $qq$ (mm) @ t=1.91E-10                                                                                                                                                                                                                                                                      | gy (mm) @ t=1.83E-10 | -0.0015808 | gv (mm) @ t=1.98E-10 | -0.0043049                            |
| qx (mm) @ t=1.84E-10       -0.0090948 $qx$ (mm) @ t=1.99E-10       -0.0064611 $qy$ (mm) @ t=1.84E-10       -0.0018167 $qy$ (mm) @ t=1.99E-10       -0.0044038 $qx$ (mm) @ t=1.84E-10       3.7695274 $qx$ (mm) @ t=1.99E-10       3.7670508 $qx$ (mm) @ t=1.85E-10       -0.0089917 $qx$ (mm) @ t=2E-10       -0.0062234 $qy$ (mm) @ t=1.85E-10       -0.0020766 $qy$ (mm) @ t=2E-10       -0.0062234 $qy$ (mm) @ t=1.85E-10       3.7693622 $qx$ (mm) @ t=2E-10       -0.0044902 $qx$ (mm) @ t=1.85E-10       -0.0022725 $qx$ (mm) @ t=2E-10       3.7668857 $qx$ (mm) @ t=1.86E-10       -0.0024910 $qx$ (mm) @ t=1.87E-10       -0.0024910 $qx$ (mm) @ t=1.87E-10       -0.0027024 $qx$ (mm) @ t=1.88E-10       -0.0027024 $qx$ (mm) @ t=1.88E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.99E-10       3.7685365 $qx$ (mm) @ t=1.9E-10 $qx$ (mm) @ t=1.9E-10 $qx$ (mm) @ t=1.9E-10 $qx$ (mm) @ t=1.9E-10       3.7683717 $qx$ (mm) @ t=1.9E-10 $qx$ (mm)                                                                                                                        | gz (mm) @ t=1.83E-10 | 3.7696925  | oz (mm) @ t=1.98E-10 | 3.7672159                             |
| qy (mn) @ t=1.84E-10       -0.0018167 $qy$ (mn) @ t=1.99E-10       -0.0044038 $qz$ (mn) @ t=1.84E-10       3.7695274 $qz$ (mn) @ t=1.99E-10       3.7670508 $qx$ (mn) @ t=1.85E-10       -0.0089917 $qx$ (mn) @ t=2E-10       -0.0062234 $qy$ (mn) @ t=1.85E-10       -0.0020476 $qy$ (mn) @ t=2E-10       -0.0062234 $qy$ (mn) @ t=1.85E-10       3.7693622 $qz$ (mn) @ t=2E-10       -0.0044092 $qx$ (mn) @ t=1.85E-10       -0.0022725       -       - $qx$ (mn) @ t=1.86E-10       -0.0024763       -       - $qy$ (mn) @ t=1.87E-10       -0.0024910       -       -       - $qx$ (mn) @ t=1.87E-10       -0.0027024       -       -       -       - $qx$ (mn) @ t=1.88E-10       -0.0029061       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                             | ax (mm) @ t=1.84E-10 | -0.0090948 | gx (mm) @ t=1.99E-10 | -0.0064611                            |
| $p_{z}$ (mm) @ t=1.84E-10 $3.7695274$ $q_{z}$ (mm) @ t=1.99E-10 $3.7670508$ $qx$ (mm) @ t=1.85E-10 $-0.0089917$ $qx$ (mm) @ t=2E-10 $-0.0062234$ $qy$ (mm) @ t=1.85E-10 $-0.0020476$ $qy$ (mm) @ t=2E-10 $-0.0062234$ $qy$ (mm) @ t=1.85E-10 $3.7693622$ $qz$ (mm) @ t=2E-10 $-0.0044902$ $qx$ (mm) @ t=1.85E-10 $-0.0088764$ $qz$ (mm) @ t=2E-10 $3.7668857$ $qx$ (mm) @ t=1.86E-10 $-0.0022725$ $qz$ (mm) @ t=1.87E-10 $-0.0024910$ $qx$ (mm) @ t=1.87E-10 $-0.0024910$ $qz$ (mm) @ t=1.87E-10 $-0.0024910$ $qx$ (mm) @ t=1.87E-10 $-0.0027024$ $qz$ (mm) @ t=1.88E-10 $-0.0086107$ $qy$ (mm) @ t=1.88E-10 $-0.0029061$ $qz$ (mm) @ t=1.89E-10 $-0.0029061$ $qx$ (mm) @ t=1.89E-10 $-0.003105$ $qz$ (mm) @ t=1.9E-10 $-0.003105$ $qx$ (mm) @ t=1.9E-10 $-0.003105$ $qx$ (mm) @ t=1.9E-10 $-0.0032881$ $qx$ (mm) @ t=1.91E-10 $-0.0032881$ $qz$ (mm) @ t=1.92E-10 $-0.0034652$ $qx$ (mm) @ t=1.92E-10 $-0.0034652$ $qz$ (mm) @ t=1.92E-10 $qx68203$ $qx$ (mm) @ t=1.92E-10 $qy$ (mm) @ t=1.93E-10                                                                                                                                                                                                                                                                            | gy (mm) @ t=1.84E-10 | -0.0018167 | gy (mm) @ t=1.99E-10 | -0.0044038                            |
| qx (mm) @ t=1.85E-10 $-0.0089917$ $qx (mm) @ t=2E-10$ $-0.0062234$ $qy (mm) @ t=1.85E-10$ $-0.002476$ $qy (mm) @ t=2E-10$ $-0.0044902$ $qz (mm) @ t=1.85E-10$ $3.7693622$ $qz (mm) @ t=2E-10$ $3.7668857$ $qx (mm) @ t=1.86E-10$ $-0.0022725$ $qz (mm) @ t=2E-10$ $3.7668857$ $qx (mm) @ t=1.86E-10$ $3.7691971$ $qz (mm) @ t=2E-10$ $3.7668857$ $qx (mm) @ t=1.87E-10$ $-0.002725$ $qz (mm) @ t=1.87E-10$ $0.0027493$ $qy (mm) @ t=1.87E-10$ $0.0024910$ $qz (mm) @ t=1.88E-10$ $0.0027024$ $qx (mm) @ t=1.88E-10$ $0.0027024$ $qz (mm) @ t=1.88E-10$ $0.0027024$ $qx (mm) @ t=1.88E-10$ $0.0027024$ $qz (mm) @ t=1.89E-10$ $0.0027024$ $qx (mm) @ t=1.89E-10$ $0.0027024$ $qz (mm) @ t=1.89E-10$ $0.0027024$ $qx (mm) @ t=1.9E-10$ $0.0027024$ $qx (mm) @ t=1.89E-10$ $0.0027024$ $qx (mm) @ t=1.9E-10$ $0.0027024$ $qx (mm) @ t=1.9E-10$ <td>qz (mm) @ t=1.84E-10</td> <td>3.7695274</td> <td>qz (mm) @ t=1.99E-10</td> <td>3.7670508</td>                                                                                                                                                                                     | qz (mm) @ t=1.84E-10 | 3.7695274  | qz (mm) @ t=1.99E-10 | 3.7670508                             |
| qy (mm) @ t=1.85E-10       -0.0020476 $qy$ (mm) @ t=2E-10       -0.0044902 $qz$ (mm) @ t=1.85E-10       3.7693622 $qz$ (mm) @ t=2E-10       3.7668857 $qx$ (mm) @ t=1.86E-10       -0.0022725 $qz$ (mm) @ t=2E-10       3.7668857 $qx$ (mm) @ t=1.86E-10       3.7691971 $qz$ (mm) @ t=2E-10       3.7668857 $qx$ (mm) @ t=1.86E-10       3.7691971 $qz$ (mm) @ t=1.87E-10       -0.0024910 $qx$ (mm) @ t=1.87E-10       -0.0024910 $qz$ (mm) @ t=1.87E-10       3.7690319 $qx$ (mm) @ t=1.88E-10       -0.0027024 $qz$ (mm) @ t=1.88E-10       -0.0027024 $qx$ (mm) @ t=1.88E-10       -0.0029061 $qz$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.98E-10       -0.0083005 $qq$ (mm) @ t=1.9E-10       -0.0083005 $qy$ (mm) @ t=1.9E-10       -0.0081299 $qz$ (mm) @ t=1.91E-10       -0.0032881 $qx$ (mm) @ t=1.91E-10       -0.0032881 $qz$ (mm) @ t=1.92E-10 $qx$ (m                                                                                                           | gx (mm) @ t=1.85E-10 | -0.0089917 | gx (mm) @ t=2E-10    | -0.0062234                            |
| $z_2$ (mm) @ t=1.85E-10 $3.7693622$ $qz$ (mm) @ t=2E-10 $3.7668857$ $qx$ (mm) @ t=1.86E-10 $-0.0088764$ $qz$ (mm) @ t=1.86E-10 $3.7691971$ $qx$ (mm) @ t=1.86E-10 $3.7691971$ $qz$ (mm) @ t=1.87E-10 $-0.0022725$ $qz$ (mm) @ t=1.87E-10 $-0.0024910$ $qz$ (mm) @ t=1.87E-10 $3.7690319$ $qx$ (mm) @ t=1.87E-10 $3.7690319$ $qz$ (mm) @ t=1.88E-10 $-0.0027024$ $qx$ (mm) @ t=1.88E-10 $-0.0027024$ $qz$ (mm) @ t=1.88E-10 $-0.0029061$ $qx$ (mm) @ t=1.88E-10 $-0.0029061$ $qz$ (mm) @ t=1.89E-10 $-0.0031015$ $qx$ (mm) @ t=1.9E-10 $-0.0031015$ $qz$ (mm) @ t=1.9E-10 $-0.0032881$ $qx$ (mm) @ t=1.9E-10 $-0.0032881$ $qz$ (mm) @ t=1.91E-10 $-0.0032881$ $qx$ (mm) @ t=1.92E-10 $-0.0079496$ $qx$ (mm) @ t=1.92E-10 $-0.0079496$ $qy$ (mm) @ t=1.92E-10 $-0.0079496$ $qx$ (mm) @ t=1.92E-10 $-0.0034652$ $qx$ (mm) @ t=1.92E-10 $-0.007600$ $qx$ (mm) @ t=1.92E-10 $-0.0077600$ $qx$ (mm) @ t=1.93E-10 $-0.0077600$ $qx$ (mm) @ t=1.94E-10 $-0.0077601$ $qx$ (mm) @ t=1.94E-10 $-0.0077601$ $qx$ (mm) @ t=1.94E-10       <                                                                                                                                                                                                                                                | qv (mm) @ t=1.85E-10 | -0.0020476 | qy (mm) @ t=2E-10    | -0.0044902                            |
| qx (mm) @ t=1.86E-10       -0.0088764 $qy$ (mm) @ t=1.86E-10       -0.0022725 $qz$ (mm) @ t=1.86E-10       3.7691971 $qx$ (mm) @ t=1.87E-10       -0.0087493 $qy$ (mm) @ t=1.87E-10       -0.0024910 $qz$ (mm) @ t=1.87E-10       -0.0024910 $qz$ (mm) @ t=1.88E-10       -0.0027024 $qx$ (mm) @ t=1.88E-10       -0.0027024 $qx$ (mm) @ t=1.88E-10       -0.0027024 $qx$ (mm) @ t=1.88E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.9E-10       -0.0083005 $qy$ (mm) @ t=1.9E-10       -0.0083005 $qx$ (mm) @ t=1.9E-10       -0.0081299 $qx$ (mm) @ t=1.91E-10       -0.0022881 $qz$ (mm) @ t=1.91E-10       -0.0032881 $qz$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0036325 $qz$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.93E-10       -0.0036325 $qx$ (mm) @ t=1.94E-10       -0.0037894 $qx$ (mm) @ t=1.94E-10       -0.0037894                                                                                                                                                                                                                                                                                     | gz (mm) @ t=1.85E-10 | 3.7693622  | gz (mm) @ t=2E-10    | 3.7668857                             |
| qy (mm) @ t=1.86E-10       -0.0022725 $qz$ (mm) @ t=1.86E-10       3.7691971 $qx$ (mm) @ t=1.87E-10       -0.0087493 $qy$ (mm) @ t=1.87E-10       3.7690319 $qz$ (mm) @ t=1.88E-10       -0.0086107 $qy$ (mm) @ t=1.88E-10       -0.0027024 $qz$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.88E-10       -0.0027024 $qz$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.9E-10       -0.0031015 $qx$ (mm) @ t=1.9E-10       -0.0031015 $qx$ (mm) @ t=1.9E-10       -0.0031015 $qx$ (mm) @ t=1.9E-10       -0.0032881 $qx$ (mm) @ t=1.91E-10       -0.0032881 $qx$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0034652 $qx$ (mm) @ t=1.92E-10       -0.0034652 $qx$ (mm) @ t=1.92E-10       -0.0033625 $qx$ (mm) @ t=1.93E-10       -0.007600 $qy$ (mm) @ t=1.93E-10       -0.007600 $qy$ (mm) @ t=1.94E-10       -0.0075618 $qy$ (mm) @ t=1.94E-10       -0.0075618 $qy$ (mm) @ t=1.94E-10                                                                                                                                                                                                                                                                    | qx (mm) @ t=1.86E-10 | -0.0088764 | 1 (                  |                                       |
| qz (mm) @ t=1.86E-10       3.7691971 $qx$ (mm) @ t=1.87E-10       -0.0087493 $qy$ (mm) @ t=1.87E-10       3.7690319 $qz$ (mm) @ t=1.88E-10       -0.0086107 $qy$ (mm) @ t=1.88E-10       -0.0027024 $qz$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0024010 $qz$ (mm) @ t=1.89E-10       -0.0027024 $qz$ (mm) @ t=1.89E-10       -0.0029061 $qz$ (mm) @ t=1.89E-10       -0.0029061 $qz$ (mm) @ t=1.9E-10       -0.003005 $qy$ (mm) @ t=1.9E-10       -0.0031015 $qz$ (mm) @ t=1.9E-10       -0.0081299 $qy$ (mm) @ t=1.91E-10       -0.0032881 $qz$ (mm) @ t=1.91E-10       -0.0032881 $qz$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0034652 $qz$ (mm) @ t=1.92E-10       -0.0034652 $qz$ (mm) @ t=1.93E-10       -0.0034652 $qz$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.94E-10       -0.0075618 $qy$ (mm) @ t=1.94E-10       -0.0037894 $qz$ (mm) @ t=1.94E-10       -0.0037894                                                                                                                                                                                                                                                                                        | qv (mm) @ t=1.86E-10 | -0.0022725 |                      |                                       |
| qx (mm) @ t=1.87E-10       -0.0087493 $qy$ (mm) @ t=1.87E-10       3.7690319 $qx$ (mm) @ t=1.88E-10       -0.0086107 $qy$ (mm) @ t=1.88E-10       -0.0027024 $qy$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.88E-10       -0.0027024 $qz$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qz$ (mm) @ t=1.9E-10       -0.003005 $qy$ (mm) @ t=1.9E-10       -0.0031015 $qx$ (mm) @ t=1.9E-10       -0.0081299 $qy$ (mm) @ t=1.91E-10       -0.0028811 $qz$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0034652 $qz$ (mm) @ t=1.92E-10       -0.0034652 $qz$ (mm) @ t=1.93E-10       -0.0077600 $qy$ (mm) @ t=1.93E-10       -0.007600 $qy$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.94E-10       -0.0075618 $qy$ (mm) @ t=1.94E-10       -0.0037894 $qy$ (mm) @ t=1.94E-10       -0.0037894                                                                                                                                                                                                                                                                                                                                 | qz (mm) @ t=1.86E-10 | 3.7691971  |                      |                                       |
| qy (mm) @ t=1.87E-10       -0.0024910 $qz$ (mm) @ t=1.88E-10       -0.0086107 $qx$ (mm) @ t=1.88E-10       -0.0027024 $qz$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       3.7687017 $qx$ (mm) @ t=1.9E-10       -0.003005 $qy$ (mm) @ t=1.9E-10       -0.0031015 $qx$ (mm) @ t=1.9E-10       -0.0081299 $qy$ (mm) @ t=1.91E-10       3.7685365 $qx$ (mm) @ t=1.91E-10       3.7683714 $qx$ (mm) @ t=1.92E-10       -0.0032881 $qx$ (mm) @ t=1.92E-10       -0.0034652 $qx$ (mm) @ t=1.92E-10       -0.0034652 $qx$ (mm) @ t=1.93E-10       -0.0077600 $qy$ (mm) @ t=1.93E-10       -0.0036325 $qx$ (mm) @ t=1.93E-10       3.7680412 $qx$ (mm) @ t=1.93E-10       -0.0077600 $qy$ (mm) @ t=1.94E-10       -0.0077608 $qy$ (mm) @ t=1.94E-10       -0.0077608 $qy$ (mm) @ t=1.94E-10       -0.0077618 $qy$ (mm) @ t=1.94E-10       -0.0077618 $qy$ (mm) @ t=1.94E-10       -0.0037894 $qx$ (mm) @ t=1.94E-10                                                                                                                                                                                                                                                                   | gx (mm) @ t=1.87E-10 | -0.0087493 |                      |                                       |
| qz (mm) @ t=1.87E-10       3.7690319 $qx$ (mm) @ t=1.88E-10       -0.0086107 $qy$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       3.7687017 $qx$ (mm) @ t=1.9E-10       -0.0033005 $qy$ (mm) @ t=1.9E-10       -0.0031015 $qx$ (mm) @ t=1.9E-10       -0.0081299 $qx$ (mm) @ t=1.91E-10       -0.0032881 $qx$ (mm) @ t=1.91E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0034652 $qx$ (mm) @ t=1.92E-10       -0.0077600 $qy$ (mm) @ t=1.93E-10       -0.0077600 $qy$ (mm) @ t=1.93E-10       -0.0077600 $qy$ (mm) @ t=1.93E-10       -0.007601 $qy$ (mm) @ t=1.93E-10       -0.007601 $qy$ (mm) @ t=1.93E-10       -0.007601 $qy$ (mm) @ t=1.93E-10       -0.007603 $qx$ (mm) @ t=1.93E-10       -0.007603 $qx$ (mm) @ t=1.93E-10       -0.007603 $qx$ (mm) @ t=1.94E-10       -0.0075618 $qy$ (mm) @ t=1.94E-10       <                                                                                                                                                                                                                                                               | qy (mm) @ t=1.87E-10 | -0.0024910 |                      |                                       |
| qx (mm) @ t=1.88E-10       -0.0086107 $qy$ (mm) @ t=1.88E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0027024 $qx$ (mm) @ t=1.89E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0029061 $qx$ (mm) @ t=1.89E-10       3.7687017 $qx$ (mm) @ t=1.9E-10       -0.0083005 $qy$ (mm) @ t=1.9E-10       -0.0083005 $qy$ (mm) @ t=1.9E-10       -0.0031015 $qz$ (mm) @ t=1.9E-10       -0.0081299 $qy$ (mm) @ t=1.91E-10       -0.0032881 $qx$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0034652 $qz$ (mm) @ t=1.93E-10       -0.0036325 $qx$ (mm) @ t=1.93E-10       -0.0077600 $qy$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.93E-10       -0.0037894 $qy$ (mm) @ t=1.94E-10       -0.0077618 $qy$ (mm) @ t=1.94E-10       -0.0037894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | qz (mm) @ t=1.87E-10 | 3.7690319  |                      |                                       |
| qy (mm) @ t=1.88E-10       -0.0027024 $qz$ (mm) @ t=1.89E-10       3.7688668 $qx$ (mm) @ t=1.89E-10       -0.0084609 $qy$ (mm) @ t=1.89E-10       -0.0029061 $qz$ (mm) @ t=1.89E-10       3.7687017 $qx$ (mm) @ t=1.9E-10       -0.0083005 $qy$ (mm) @ t=1.9E-10       -0.0031015 $qz$ (mm) @ t=1.9E-10       3.7685365 $qx$ (mm) @ t=1.91E-10       -0.0032881 $qz$ (mm) @ t=1.91E-10       3.7683714 $qx$ (mm) @ t=1.92E-10       -0.0079496 $qy$ (mm) @ t=1.92E-10       -0.0034652 $qz$ (mm) @ t=1.92E-10       -0.0077600 $qy$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.93E-10       -0.0036325 $qz$ (mm) @ t=1.94E-10       -0.0037894 $qy$ (mm) @ t=1.94E-10       -0.0037894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | qx (mm) @ t=1.88E-10 | -0.0086107 |                      |                                       |
| qz (nm) @ t=1.88E-10       3.7688668 $qx$ (nm) @ t=1.89E-10       -0.0084609 $qy$ (nm) @ t=1.89E-10       3.7687017 $qz$ (nm) @ t=1.9E-10       3.7687017 $qx$ (nm) @ t=1.9E-10       -0.0083005 $qy$ (nm) @ t=1.9E-10       -0.0031015 $qz$ (nm) @ t=1.9E-10       3.7685365 $qx$ (nm) @ t=1.91E-10       -0.0081299 $qy$ (nm) @ t=1.91E-10       -0.0032881 $qz$ (nm) @ t=1.91E-10       3.7683714 $qx$ (nm) @ t=1.92E-10       -0.0079496 $qy$ (nm) @ t=1.92E-10       -0.0034652 $qz$ (nm) @ t=1.92E-10       3.7682063 $qx$ (nm) @ t=1.93E-10       -0.0036325 $qz$ (nm) @ t=1.93E-10       -0.0077600 $qy$ (nm) @ t=1.93E-10       -0.0075618 $qy$ (nm) @ t=1.94E-10       -0.0075618 $qy$ (nm) @ t=1.94E-10       -0.0037894 $qz$ (nm) @ t=1.94E-10       -0.0037894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | qy (mm) @ t=1.88E-10 | -0.0027024 |                      |                                       |
| qx (mm) @ t=1.89E-10       -0.0084609 $qy (mm) @ t=1.89E-10$ 3.7687017 $qx (mm) @ t=1.9E-10$ -0.0083005 $qy (mm) @ t=1.9E-10$ -0.0031015 $qz (mm) @ t=1.9E-10$ -0.0031015 $qz (mm) @ t=1.9E-10$ 3.7685365 $qx (mm) @ t=1.91E-10$ -0.0081299 $qy (mm) @ t=1.91E-10$ -0.0032881 $qz (mm) @ t=1.91E-10$ 3.76853714 $qx (mm) @ t=1.92E-10$ -0.0079496 $qy (mm) @ t=1.92E-10$ -0.0034652 $qz (mm) @ t=1.92E-10$ 3.7682063 $qx (mm) @ t=1.93E-10$ -0.0077600 $qy (mm) @ t=1.93E-10$ -0.0077600 $qy (mm) @ t=1.93E-10$ 3.7680412 $qx (mm) @ t=1.94E-10$ -0.0075618 $qy (mm) @ t=1.94E-10$ -0.0037894 $qz (mm) @ t=1.94E-10$ -0.0037894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | qz (mm) @ t=1.88E-10 | 3.7688668  |                      |                                       |
| qy (mm) @ t=1.89E-10-0.0029061 $qz (mm) @ t=1.89E-10$ $3.7687017$ $qx (mm) @ t=1.9E-10$ -0.0083005 $qy (mm) @ t=1.9E-10$ $-0.0031015$ $qz (mm) @ t=1.9E-10$ $3.7685365$ $qx (mm) @ t=1.91E-10$ $-0.0081299$ $qy (mm) @ t=1.91E-10$ $-0.0032881$ $qz (mm) @ t=1.91E-10$ $3.7683714$ $qx (mm) @ t=1.92E-10$ $-0.0079496$ $qy (mm) @ t=1.92E-10$ $-0.0034652$ $qz (mm) @ t=1.92E-10$ $3.7682063$ $qx (mm) @ t=1.93E-10$ $-0.0077600$ $qy (mm) @ t=1.93E-10$ $3.7680412$ $qx (mm) @ t=1.94E-10$ $3.7680412$ $qx (mm) @ t=1.94E-10$ $-0.0075618$ $qy (mm) @ t=1.94E-10$ $-0.0037894$ $qz (mm) @ t=1.94E-10$ $3.7678761$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | qx (mm) @ t=1.89E-10 | -0.0084609 |                      |                                       |
| qz (mm) @ t=1.89E-10 $3.7687017$ $qx (mm) @ t=1.9E-10$ $-0.0083005$ $qy (mm) @ t=1.9E-10$ $-0.0031015$ $qz (mm) @ t=1.9E-10$ $3.7685365$ $qx (mm) @ t=1.91E-10$ $-0.0081299$ $qy (mm) @ t=1.91E-10$ $-0.0032881$ $qz (mm) @ t=1.91E-10$ $3.7683714$ $qx (mm) @ t=1.92E-10$ $-0.0079496$ $qy (mm) @ t=1.92E-10$ $-0.0034652$ $qz (mm) @ t=1.92E-10$ $3.7682063$ $qx (mm) @ t=1.93E-10$ $-0.0077600$ $qy (mm) @ t=1.93E-10$ $-0.0077600$ $qy (mm) @ t=1.93E-10$ $3.7680412$ $qx (mm) @ t=1.94E-10$ $3.7678761$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | qy (mm) @ t=1.89E-10 | -0.0029061 |                      |                                       |
| qx (mm) @ t=1.9E-10 $-0.0083005$ qy (mm) @ t=1.9E-10 $-0.0031015$ qz (mm) @ t=1.9E-10 $3.7685365$ qx (mm) @ t=1.91E-10 $-0.0081299$ qy (mm) @ t=1.91E-10 $-0.0032881$ qz (mm) @ t=1.91E-10 $3.7683714$ qx (mm) @ t=1.92E-10 $-0.0079496$ qy (mm) @ t=1.92E-10 $-0.0034652$ qz (mm) @ t=1.92E-10 $3.7682063$ qx (mm) @ t=1.93E-10 $-0.0077600$ qy (mm) @ t=1.93E-10 $-0.0036325$ qz (mm) @ t=1.94E-10 $3.7680412$ qx (mm) @ t=1.94E-10 $-0.0037894$ qy (mm) @ t=1.94E-10 $-0.0037894$ qz (mm) @ t=1.94E-10 $3.7678761$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qz (mm) @ t=1.89E-10 | 3.7687017  |                      |                                       |
| qy (mm) @ t=1.9E-10 $-0.0031015$ qz (mm) @ t=1.9E-10 $3.7685365$ qx (mm) @ t=1.91E-10 $-0.0081299$ qy (mm) @ t=1.91E-10 $-0.0032881$ qz (mm) @ t=1.91E-10 $3.7683714$ qx (mm) @ t=1.92E-10 $-0.0079496$ qy (mm) @ t=1.92E-10 $-0.0034652$ qz (mm) @ t=1.92E-10 $3.7682063$ qx (mm) @ t=1.93E-10 $-0.0077600$ qy (mm) @ t=1.93E-10 $-0.0036325$ qz (mm) @ t=1.93E-10 $3.7680412$ qx (mm) @ t=1.94E-10 $3.7680412$ qx (mm) @ t=1.94E-10 $-0.0075618$ qy (mm) @ t=1.94E-10 $-0.0037894$ qz (mm) @ t=1.94E-10 $3.7678761$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qx (mm) @ t=1.9E-10  | -0.0083005 |                      |                                       |
| qz (mm) @ t=1.9E-10 $3.7685365$ qx (mm) @ t=1.91E-10 $-0.0081299$ qy (mm) @ t=1.91E-10 $-0.0032881$ qz (mm) @ t=1.91E-10 $3.7683714$ qx (mm) @ t=1.92E-10 $-0.0079496$ qy (mm) @ t=1.92E-10 $-0.0034652$ qz (mm) @ t=1.92E-10 $3.7682063$ qx (mm) @ t=1.93E-10 $-0.0077600$ qy (mm) @ t=1.93E-10 $-0.0036325$ qz (mm) @ t=1.93E-10 $3.7680412$ qx (mm) @ t=1.94E-10 $-0.0075618$ qy (mm) @ t=1.94E-10 $-0.0037894$ qz (mm) @ t=1.94E-10 $3.7678761$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | qy (mm) @ t=1.9E-10  | -0.0031015 |                      |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qz (mm) @ t=1.9E-10  | 3.7685365  |                      |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qx (mm) @ t=1.91E-10 | -0.0081299 |                      |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qy (mm) @ t=1.91E-10 | -0.0032881 |                      |                                       |
| $\begin{array}{c} qx \ (mm) @ t=1.92E-10 & -0.0079496 \\ qy \ (mm) @ t=1.92E-10 & -0.0034652 \\ qz \ (mm) @ t=1.92E-10 & 3.7682063 \\ qx \ (mm) @ t=1.93E-10 & -0.0077600 \\ qy \ (mm) @ t=1.93E-10 & -0.0036325 \\ qz \ (mm) @ t=1.93E-10 & 3.7680412 \\ qx \ (mm) @ t=1.94E-10 & -0.0075618 \\ qy \ (mm) @ t=1.94E-10 & -0.0037894 \\ qz \ (mm) @ t=1.94E-10 & 3.7678761 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | qz (mm) @ t=1.91E-10 | 3.7683714  |                      |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qx (mm) @ t=1.92E-10 | -0.0079496 |                      |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | qy (mm) @ t=1.92E-10 | -0.0034652 |                      |                                       |
| qx (mm) @ t=1.93E-10       -0.0077600         qy (mm) @ t=1.93E-10       -0.0036325         qz (mm) @ t=1.93E-10       3.7680412         qx (mm) @ t=1.94E-10       -0.0075618         qy (mm) @ t=1.94E-10       -0.0037894         qz (mm) @ t=1.94E-10       3.7678761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | qz (mm) @ t=1.92E-10 | 3.7682063  |                      |                                       |
| qy (mm) @ t=1.93E-10       -0.0036325         qz (mm) @ t=1.93E-10       3.7680412         qx (mm) @ t=1.94E-10       -0.0075618         qy (mm) @ t=1.94E-10       -0.0037894         qz (mm) @ t=1.94E-10       3.7678761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | qx (mm) @ t=1.93E-10 | -0.0077600 |                      |                                       |
| qz (mm) @ t=1.93E-10       3.7680412         qx (mm) @ t=1.94E-10       -0.0075618         qy (mm) @ t=1.94E-10       -0.0037894         qz (mm) @ t=1.94E-10       3.7678761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | qy (mm) @ t=1.93E-10 | -0.0036325 |                      |                                       |
| qx (mm) @ t=1.94E-10       -0.0075618         qy (mm) @ t=1.94E-10       -0.0037894         qz (mm) @ t=1.94E-10       3.7678761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | qz (mm) @ t=1.93E-10 | 3.7680412  |                      |                                       |
| qy (mm) @ t=1.94E-10 -0.0037894<br>qz (mm) @ t=1.94E-10 3.7678761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | qx (mm) @ t=1.94E-10 | -0.0075618 |                      |                                       |
| qz (mm) @ t=1.94E-10 3.7678761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | qy (mm) @ t=1.94E-10 | -0.0037894 |                      |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | qz (mm) @ t=1.94E-10 | 3.7678761  |                      | · · · · · · · · · · · · · · · · · · · |

## D The venders of all components

| rable 22. The vehicles of an components. |                       |                         |  |  |
|------------------------------------------|-----------------------|-------------------------|--|--|
| Vender                                   | Item                  | Note                    |  |  |
| 振之越五金机電銷售中心                              | 真空電極                  | https://reurl.cc/2g2dQ9 |  |  |
| 東莞市圣澤金屬材料有限公司                            | 鎢絲                    | https://reurl.cc/Y62Ako |  |  |
| 陽光真空                                     | 真空計                   | https://reurl.cc/Gr93gp |  |  |
| 真空元器件                                    | 手高真空插板                | https://reurl.cc/Mdal9W |  |  |
| 温州暢宏管件                                   | 卡箍、oring、真空管件         | https://reurl.cc/N6k7L6 |  |  |
| 温州奇科流体設備有限公司                             | 卡箍、oring、真空管件         | https://reurl.cc/Xkd0oa |  |  |
| 勁順購物                                     | 溫控器 1500W AC110/220V  | https://reurl.cc/Y62Aba |  |  |
| 科學博士                                     | 鋅片                    | https://reurl.cc/e8eN2K |  |  |
| 雪鰻的家PLUS                                 | Y-500 矽質高效能散熱膏        | https://reurl.cc/OqlyWX |  |  |
| coolpolos的賣場                             | DC 5V-12V 無刷馬達 靜音水泵   | https://reurl.cc/x0yrrL |  |  |
| 台灣秋葉原電子企業社                               | 240直寶塔水排 + 風扇         | https://reurl.cc/2g2dnX |  |  |
| 南一電子有限公司                                 | Electronic components |                         |  |  |
| 東昕實業有限公司                                 | Vacuum product        |                         |  |  |
| 三美玻璃儀器行                                  | Quartz processing     |                         |  |  |
| 科研市集                                     | 實驗耗材、設備儀器代購           | https://www.sciket.com/ |  |  |
| 嘉展銅鐵                                     | 不銹鋼                   |                         |  |  |

Table 22: The venders of all components

