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摘摘摘要要要

我們正在研究由太陽風與未磁化行星相互作用產生的火星弓形震波 (Martian bow

shock)。透過理論研究太陽風的參數，例如太陽風動態壓力和太陽極紫外線通量，如何

影響弓形震波的位置，這個課題目前尚未被完全了解。這項理論研究將用於設計我們的

實驗室太空科學的實驗，透過國立成功大學太空與電漿科學研究所的6000焦耳的脈衝功

率系統來驅動錐形線陣列產生馬赫數高達20的超音速電漿噴流流過障礙物來實現。雖然

震波的形成機制在太空和實驗室上有所不同，不過我們透過歐拉相似性的分析證明了在

我們未來的實驗中研究火星弓形震波位置是可行的。

我們提出了一個適用於太陽風和非磁化行星之間的相互作用的公式來表達弓形震波

鼻子(ionopause nose)的位置，這個公式將用於設計我們未來的實驗。我們用氣體動力學

方法計算了弓形震波位置，也就是電離層邊界位置和間隙距離的總和。其中電離層邊界

的位置是由壓力平衡公式計算而得的。而弓形震波的間隔距離是由半經驗模型所計算到

得到的，其正比於電離層邊界鼻子的曲率半徑。我們最後算出了弓形震波鼻子位置的公

式，它取決於電離層的高度尺度，太陽風的動態壓力和電離層的峰值壓力。此外，我們

推導出電離層邊界鼻子附近的輪廓方程 (profile equation)。最後我們將我們的理論與氣

體動力學模擬和太空儀器量測結果做初步比較，我們的理論結果與模擬和太空儀器量測

結果是一致的。

關鍵詞：未磁化行星的弓形震波，對峙距離，氣體動力學理論，電離層，實驗室太

空科學，脈衝功率系統
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Abstract

Martian bow shock, the solar wind interacting with the unmagnetized planet, will

be studied. We theoretically investigated how the solar parameters, such as solar

wind dynamic pressure and solar EUV flux, influences the bow shock location, which

is still currently not well understood. This theoretical study will be used to design

the laboratory space science experiments. The experiment will be implemented

by producing a supersonic plasma jet with Mach number up to 20, which will be

generated using a conical wire array, flowing through an obstacle. The conical wire

array will be driven by a 6 kJ pulsed-power system in the Institute of Space and

Plasma Sciences, National Cheng Kung University, Taiwan. Although the shock

formation mechanism is different in space and laboratory condition, we have shown

that, through the analysis of the Euler similarity, studying the Martian bow shock

location in our potential experiment is feasible.

We present the formula for the location of the bow shock nose for the interaction

between the solar wind and unmagnetized planet. This formula will be used to design

future experiments. We calculate the bow shock location, the sum of the ionopause

location and standoff distance, in the gasdynamics approach. We determine the

ionopause nose location using pressure balance formula. The standoff distance of

the bow shock is determined by a semiempirical model proportional to the radius of

curvature at the ionopause nose. We derived the formula of the shock nose position,

which depends upon the scale height in ionosphere, dynamic pressure of the solar

wind, and the peak pressure of the ionosphere. Furthermore, we derived the equation

of the ionopause profile around the nose. The preliminary comparison of our theory

with the results of the gasdynamics simulation and the spacecraft measurement

will be presented. Our derived formula is consistent with the simulation and the

spacecraft measurement results.

Keywords: bow shock of the unmagnetized planet, standoff distance, ionosphere,

gasdynamics theory, laboratory space sciences, pulsed-power system

ii



doi:10.6844/NCKU201901460

致致致謝謝謝

首先我要謝謝博宇老師3年來的指導。老師除了學識淵博外，老師待人處事的態度也

很值得學習，每次看到老師都會面帶笑容地回答學生的問題，而且幾乎不會發脾氣。從

一開始做模擬到後來做理論，雖然換過很多題目，不過老師總是在一旁給我許多寶貴的

建議，也教導了我很多做研究的態度及寫文章的方法，真的很幸運可以遇到老師，非常

感謝老師。

再來我要感謝談老師Sunny，還記得我大三來上老師開的太空物理的時侯，我十分陶

醉於老師的課堂中，老師的理論推導非常嚴謹且清楚，真的讓人感到賞心悅目，每次上

課結束後內心總有滿滿的喜悅，也啟發我許多對太空物理的興趣。另外謝謝談老師的高

等太空物理中教導我們shock的基本理論，有了老師教導的這些基礎後，我才有辦法進

行這份論文研究。

接下來要感謝向老師，你上的課我真的覺得非常享受也感到十分心曠神怡，謝謝你

教導許多全世界只有你會教的東西，還有分享很多如何做理論的方法，感到受益良多。

除此之外，也因為老師的課，我感受到了理論的強大，進而對電漿理論有更深的興趣。

此外謝謝教導過我的Yas老師，Kawa老師，你們讓我對電漿物理有更深入的了解。

還有要感謝所辦的安成及Dabby，謝謝你們引領我進入電漿的世界。

還要感謝實驗室的同學國益, 名城, 知叡, 宛儀及柏維，謝謝你們的陪伴，還有你們

常常透過實驗的觀點帶給我許多不一樣的啟發。特別感謝知叡在許多程式上的協助。

最後要謝謝我的家人的支持，有了你們的支持我才能專心完成這份研究。

iii



doi:10.6844/NCKU201901460

Contents

1 Introduction 1

1.1 The interaction between solar wind and unmagnetized planet . . . . . . . . 1

1.1.1 Martian Bow Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Previous research on the Martian bow shock location . . . . . . . . 3

1.1.3 Hydrodynamics boundary condition . . . . . . . . . . . . . . . . . . 5

1.2 The goal of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Laboratory Space Sciences 10

2.1 Scaling relation and similarity criteria . . . . . . . . . . . . . . . . . . . . . 10

2.2 Introduction to our experiment system . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Pulsed-power system . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Conical-wire arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Our potential experiment and scaling relation . . . . . . . . . . . . . . . . 16

3 Determination of the location of the bow shock nose 19

3.1 Overview of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Ionopause (obstacle boundary) . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Thermal pressure at the ionopause . . . . . . . . . . . . . . . . . . 23

3.2.2 Nose position of the ionopause ro . . . . . . . . . . . . . . . . . . . 24

3.2.3 Radius of curvature at ionopause nose Ro . . . . . . . . . . . . . . . 25

3.3 Bow shock standoff distance ∆ . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 The formula of the bow shock nose location . . . . . . . . . . . . . . . . . 34

3.5 Comparison with the numerical simulation and spacecraft measurement re-

sults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Verification of the analytical form of the radius of curvature by sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



doi:10.6844/NCKU201901460

3.5.2 Comparison with hydrodynamics simulation . . . . . . . . . . . . . 38

3.5.3 Comparison with spacecraft measurements . . . . . . . . . . . . . . 39

4 Experiment designs 42

5 Future works 44

6 Conclusion 46

References 47

A Hydrostatic equilibrium 51

B Rayleigh pitot tube formula 52

C 1D electrostatic particle-in-cell simulation 57

C.1 Fundamental of particle-in-cell simulations . . . . . . . . . . . . . . . . . . 57

C.2 My 1D electrostatic particle-in-cell program - two-stream instability . . . . 58

C.2.1 Dimensionless equations . . . . . . . . . . . . . . . . . . . . . . . . 58

C.2.2 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.2.3 Program overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.2.4 Leapfrog method for solving equations of motion . . . . . . . . . . . 62

C.2.5 Gauss-Seidel method for solving Poisson equation . . . . . . . . . . 63

C.2.6 Linear weighting method for connecting particles and grids . . . . . 64

C.3 Two-stream instability: selected results and analysis . . . . . . . . . . . . . 66

C.4 Comparison withe the linear theory . . . . . . . . . . . . . . . . . . . . . . 71

D Setup of the code “PIConGPU” on our cluster 73

v



doi:10.6844/NCKU201901460

List of Tables

1 Summaries of the expected parameters of our pulsed-power system. The

values in the left sides are the estimated value we can achieve in July 2019

and the values in the right sides are the value of the ultimate goal which

can be achieved in the near future. . . . . . . . . . . . . . . . . . . . . . . 15

2 Characteristic parameters in space environment and the laboratory condition. 17

3 Input data for running the simulation. . . . . . . . . . . . . . . . . . . . . 61

4 Input data for dealing with the real physics. . . . . . . . . . . . . . . . . . 61

5 The simulation results after 1 time step. . . . . . . . . . . . . . . . . . . . 63

vi



doi:10.6844/NCKU201901460

List of Figures

1 Schematic of solar wind past the (a) Earth (b) Moon (c) Mars and Venus.

Courtesy of Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Schematic of the solar wind interaction with an unmagnetized planet with

an atmosphere. Courtesy of Ref.[2]. . . . . . . . . . . . . . . . . . . . . . 3

3 The response of the location of the Martian bow shock with the solar pa-

rameters. (a) Bow shock location against solar EUV radiance. (b) Bow

shock location against solar wind dynamic pressure. Courtesy of [3]. . . . . 4

4 Schematic and photo of our pulsed-power system using a parallel plate

capacitor bank (PPCB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Conical-wire array will b used to generate a plasma jet. The right one is

the Schlieren image of the plasma jet generated by the group in Imperial

College London[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Definition of each variable used in the report . . . . . . . . . . . . . . . . 20

7 Thermal pressure along the stagnation streamline. . . . . . . . . . . . . . 21

8 The schematic of the pressure balance between the solar wind pressure and

ionosphere pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Element of the ionopause and the coordinate. Modified figure from Ref. [1]. 27

10 Schematic of the detached shock. Courtesy of [5] . . . . . . . . . . . . . . 33

11 Ionopause profile calculated from analytical theory (Eq.61) and numerical

simulation. The left and the right panel have the plot range [0, ro] and [0,

2 ro], respectively. The analytical results is calculated under the approxi-

mation that θ → 0 in polar coordinate or y → 0 in cartesian coordinate. . 36

vii



doi:10.6844/NCKU201901460

12 Radius of curvature at the ionopause nose from analytical theory (Eq.62)

and numerical simulation. In the left panel, the thick line is the analyt-

ical theory (Eq.62) and the red dots are simulation results. In the right

panel, it shows the percentage error, which is defined as (analytical re-

sult - numerical result)/numerical result×100. The cases with H/ro =

0.01, 0.1, 0.3, 0.5, 0.7, 0.8, 1.0 are considered. . . . . . . . . . . . . . . . . 37

13 Gasdynamics simulation results for the locations of the bow shock and

ionopause with different H/ro for M∞ = 8 and γ = 5/3. Courtesy of

Spreiter et al., (1970) [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14 Comparison of the derived standoff distance formula (Eq. 66) with the

gasdynamics simulation results from Spreiter et al., 1970[1]. The red dots

are the simulation results; the black line is Eq. 66. The cases with H/ro =

0.01, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0 are considered. . . . . . . . . . . . . . . . 39

15 A schematic of our potential experiment. . . . . . . . . . . . . . . . . . . 42

16 Schematic of the symbols for the subscripts of the physical quantities. “O”,

“S”, “∞” stand for the location just outside the obstacle, after shock, before

shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

17 Basic flow loop of PIC simulations. . . . . . . . . . . . . . . . . . . . . . . 58

18 Flow chart of my 1D electrostatic PIC program. . . . . . . . . . . . . . . 62

19 Schematic of the velocity and location flow of Leapfrog method. . . . . . . 63

20 The simulation results when one proton is at the middle of the system using

periodic boundary condition. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

21 Benchmark of Density subprogram. Locations of electrons are input and

densities are output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

22 Benchmark of Acceleration. Locations of electrons and Electric field at

grids are input; acceleration at electrons is output. . . . . . . . . . . . . . . 66

viii



doi:10.6844/NCKU201901460

23 The phase space plots of the two-stream instability with 20000 movable

electrons and 20000 fixed background ions at different time. . . . . . . . . 67

24 Plots of Electric fields at different time. . . . . . . . . . . . . . . . . . . . . 68

25 Phase space trajectories of particles with different initial velocities. Parti-

cles with different initial velocity either are trapped or unbounded. . . . . 69

26 Velocity distribution at different time. . . . . . . . . . . . . . . . . . . . . 70

27 Total energy and electrostatic energy as a function of time. . . . . . . . . 71

28 The electric energy against the time: the comparison of the simulation

results with the linear theory. Here k vo = 0.5. . . . . . . . . . . . . . . . . 72

ix



doi:10.6844/NCKU201901460

List of Abbreviations and Symbols

cs Sound speed after shock

co Sound speed before obstacle (ionopause)

∆ Standoff distance (the distance between shock nose and the obstacle nose)

ε =(γ − 1)/(γ + 1)

g Gravity

γ Specific heat ratio (=CP/CV )

H Ionospheric scale height

kB Boltzmann coefficient

k Reduced coefficient for solar wind dynamic pressure. c.f. Eq. 23

leuv EUV flux

M∞ Mach number of the solar wind

Ms Mach number after shock

P Thermal pressure

Pdyn Dynamic pressure of the solar wind

PM,i Ionospheric maximal (peak) thermal pressure

Po Thermal pressure before obstacle (ionopause)

P∞ Thermal pressure of the solar wind

Pi Ionospheric thermal pressure

Ps Thermal pressure after shock

ψ Angle between solar wind flow direction and the normal to ionopause

Ro Radius of curvature of the obstacle (ionopause) nose

rM,i Location of the ionospheric peak pressure

ro Location of the obstacle (ionopause) nose

rs Location of the shock nose

ρ∞ Mass density of the solar wind

x



doi:10.6844/NCKU201901460

ρs Mass density after shock

vs Velocity after shock

v∞ Velocity of the solar wind

EUV Extreme Ultraviolet

UV Ultraviolet

GPU Graphics Processing Unit

xi



doi:10.6844/NCKU201901460

1 Introduction

In the nowadays space physics research, more research focuses on the solar wind inter-

acting with the magnetized planet than the unmagnetized planet or weakly-magnetized

planet. However, the study of Martian bow shock is recently a hot topic due to the grow-

ing interests in the exploration of Mars, a weakly-magnetized planet. Furthermore, more

and more data from the spacecraft measurement are available. In order to more detailedly

understand the interaction between the solar wind and unmagnetized planet, we plan to

simulate this phenomenon in the laboratory experiment driven by a pulsed-power system.

A preliminary theoretical model of the bow shock nose position has been derived and will

be used for experiment designs.

In section 1.1, we give a brief introduction to the solar wind interacting with the

unmagnetized planet. The formation of the Martian bow shock is introduced in section

1.1.1. In section 1.1.2, the previous research on the Martian bow shock location is reviewed.

The hydrodynamics boundary condition, which will be used in section 3, will be listed in

section 1.1.3. In section 1.2, the goal of this project will be given.

1.1 The interaction between solar wind and unmagnetized planet

There are three types of interaction between the solar wind and an obstacle in space: (1)

solar wind interacting with the magnetized obstacle like Earth. (2) solar wind interacting

with the unmagnetized obstacle with an atmosphere like Mars and Venus. (3) solar wind

interacting with the unmagnetized obstacle without atmosphere like moon. Figure 1 is a

schematic of these three types of interaction.

1
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Figure 1: Schematic of solar wind past the (a) Earth (b) Moon (c) Mars and Venus.
Courtesy of Ref. [1].

The detached bow shock is formed because of the supersonic solar wind and the de-

flection of the incident solar wind flow by the magnetosphere or ionosphere. Since the

moon has neither ionosphere nor magnetosphere, no bow shock is formed in the solar

wind interacting with the moon.

1.1.1 Martian Bow Shock

Formation of the bow shock in plasma interaction with Mars, unmagnetized planets

with an atmosphere (Fig. 2), is as follows. First, the ionization by solar EUV radiation

in the atmosphere forms an ionospheric obstacle, acting as a conductor. The boundary

of the ionosphere is called ionopause. Then the solar-wind plasma with its frozen-in field

flows at a supersonic velocity toward the conducting obstacle, resulting in the appearance

of the bow shock.

2
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Figure 2: Schematic of the solar wind interaction with an unmagnetized planet with an
atmosphere. Courtesy of Ref.[2].

1.1.2 Previous research on the Martian bow shock location

Martian bow shock has been detailedly studied by spacecraft measurement and numer-

ical simulation. Martian bow shock is formed by the interaction between the solar wind

and the Martian ionosphere. Recently, the first measurement study[6] of the ionopause

from the mission Mars Atmosphere and Volatile EvolutioN (MAVEN, 2014-present) was

released in 2015. This mission will provide us a deeper understanding of the Martian bow

shock. The shape of the bow shock is often modeled using the least-squares fitting of

an axisymmetric or non-axisymmetric conic section[7, 8] with the data from spacecraft

measurement. On the other hand, the theoretical model of the planetary bow shock lo-

cation and shape can be seen in the review paper by Spreiter[9, 1, 10], Slavin[11, 12] and

Verigin[13]. An efficient computational model for determining the global properties of the

solar wind past a planet based on axisymmetric magnetohydrodynamics was proposed by

Spreiter[14]. The specific study of the magnetohydrodynamics simulation for the solar

wind interaction with Mars can be seen in Ref.[15] and Ref.[16].

However, it is not well understood how the factors influence the location of the Martian

bow shock. The main factors impacting the bow shock position are the solar wind dynamic

3
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pressure Pdyn = ρ∞v
2
∞ and solar EUV flux leuv. According to the fitting results (Fig. 3)

from the data of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-

3)[3], it is shown that the bow shock location (rs) reduces in altitude with increasing solar

wind dynamic pressure in the relation rs ∝ P−0.02dyn and increases in altitude with increasing

solar EUV flux in the relation rs ∝ 0.11 lEUV . It means that the bow shock position is

more sensitive to the solar EUV flux than the solar wind dynamic pressure.

Figure 3: The response of the location of the Martian bow shock with the solar parameters.
(a) Bow shock location against solar EUV radiance. (b) Bow shock location against solar
wind dynamic pressure. Courtesy of [3].

Other parameters controlling the Martian bow shock location are the intense localized

Martian crustal magnetic fields[17], the magnetosonic Mach number[18], the interplanetary

magnetic fields and the convective electric field[19]. In this thesis, we will mainly focus on

the dependence of the solar wind dynamics pressure and the ionospheric pressure, which

is dependent on the solar EUV radiation.

4
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1.1.3 Hydrodynamics boundary condition

Hydrodynamics formulation is used throughout this thesis. Ideal magnetohydrody-

namics equations are

∂ρ

∂t
+∇ · ρ~v = 0,

ρ(
∂~v

∂t
+ ~v · ∇v) = −∇P +

1

µ0

(∇× ~B)× ~B,

∂ ~B

∂t
= ∇× ~v × ~B,

∂P

∂t
+ ~v · ∇P = −γ P ∇ · ~v, (1)

where p is the pressure, ρ is the mass density, ~v is the velocity and ~B is the magnetic field.

The first one is the continuity equation, the second is the momentum equation, the third

is Faraday’s law and the last is the entropy conservation equation, or adiabatic equation.

Here we assume the gas follows the polytropic condition and adiabatic process.

magnetohydrodynamics equations can be reduced to hydrodynamics equations under

the condition that the magnetic pressure term is much smaller than the thermal pressure

term in the right-hand side of the momentum equation (second equation in Eq. 1)

|
1
µ0

(∇× ~B)× ~B

∇P
| ≈ B2/2µ0

P
= 1/β, (2)

where plasma beta β is defined as thermal pressure divided by magnetic pressure. For

the condition of solar wind past the unmagnetized planet, β is much larger than 1 in

both space and laboratory, so we can neglect the force term containing the magnetic field

in the momentum equation, reducing the magnetohydrodynamics formulation to pure

5
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hydrodynamics formulation

∂ρ

∂t
+∇ · ρ~v = 0,

ρ(
∂~v

∂t
+ ~v · ∇v) = −∇p,

∂P

∂t
+ ~v · ∇P = −γ P ∇ · ~v. (3)

Throughout the thesis, we will use hydrodynamics formulation instead of magnetohydro-

dynamics due to the high beta condition. The first one is the mass conservation equation,

the second is the momentum equation for ideal fluid, or Euler equation and the third is

the adiabatic equation.

The boundary condition for steady-state ideal hydrodynamics[5] is

[ρvn] = 0[
P + ρv2n

]
= 0

[ρvn~vt] = 0[
vn(

ρv2

2
+

γ P

γ − 1
)

]
= 0, (4)

where the subscript n and t are the normal direction and tangential direction, respectively.

The brackets mean the difference of the quantity between both sides of the boundary. The

Eq. 4 indicates the continuity of the mass flux, momentum flux and energy flux. Note that

the discontinuity surfaces of the ionopause and the bow shock are zero thickness under

the description of the dissipationless ideal (magneto)hydrodynamics[5, 20].

In our study, we are interested in two types of boundary:

6
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• Tangential discontinuity[5, 9, 1] at the ionopause

[ρ] 6=0

[~vt] 6=0

vn =0

[P ] =0. (5)

The normal velocity is zero in the tangential discontinuity. We will utilize the conti-

nuity of the thermal pressure to determine the location and the radius of curvature

at the ionopause nose. Furthermore, we can observe that there is a density jump

across the ionopause according to tangential discontinuity.

• Shock waves[5, 9, 1] at the bow shock front

[ρvn] =0

[~vt] =0[
P + ρv2n

]
=0[

v2n
2

+
γ P/ρ

γ − 1

]
=0. (6)

For our purpose of the study of the global phenomenon like bow shock position, the

ideal fluid description is enough. We are not going to study microphysics such as

the shock formation mechanism, so the dissipation process of the shock will not be

discussed throughout the thesis. In general, the shock in the laboratory is formed in

a collisional environment without magnetic field; the shock in the space is formed in

a collisionless magnetized environment and the shock dissipation mechanism is the

wave-particle interaction.

7
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1.2 The goal of the project

Martian bow shock, the solar wind interaction with the unmagnetized planet, will be

studied in laboratory conditions using a 6 kJ pulsed-power system in Institute of Space

and Plasma Sciences, National Cheng Kung University, Taiwan. The experiment will be

implemented by generating a supersonic plasma flow with Mach number up to 20 using

a conical wire array flowing through an obstacle. Since it is not well understood how

the location of the Martian bow shock is influenced by the solar parameters such as solar

wind dynamic pressure and EUV flux, we plan to investigate it in both theory and the

laboratory experiment.

In this thesis work, we study the location of the bow shock generated from the inter-

action between the solar wind and unmagnetized planet in the theoretical aspect. The

formula for the shock nose location as a function of the solar wind dynamic pressure and

EUV flux will be presented and compared with the spacecraft measurement. This theo-

retical results will be used for our future experiment designs. Past studies by others are

all related to observation, but this study is related to both laboratory experiment and

observation. On the other hand, we are not going to study fine structure in the transition

region of a shock and the shock microphysics, even though it is more theoretically fasci-

nating. The dissipation mechanism for the shock will not influence the location of the bow

shock, so we use the ideal hydrodynamics formulation throughout this work. Note that the

thickness of the discontinuity surface is zero under the ideal hydrodynamics description.

Some numerical works will also be presented in this theses. In our initial phase of

studying the Martian bow shock, we planned to investigate it through numerical simula-

tion. A 1D particle-in-cell simulation for two-stream instability has been done for learning

numerical skills, which is shown in Appendix C. We set up a GPU-accelerated particle-in-

cell simulation in the cluster in our laboratory (Appendix D) as well. However, we after

that switched to the theoretical study since we realized that, for experiment design, the

8
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theoretical formula is more useful than the numerical simulation. The analytical theory is

essential for machine designing because the relationship between each physical quantities

can be known in the formula. However, in simulation, to know the results from differ-

ent conditions requires different runs, which is very numerically intensive especially for

multi-scale and multi-physics simulation.

In this thesis, we will focus on theoretically determining the location of the nose of

the bow shock for the solar wind past the unmagnetized planet. The formula for shock

nose location is developed and compared to the results from the spacecraft measurement.

Laboratory space science is the other topic in this thesis. The theoretical results will be

used for the optimization of the experimental designs. In Chapter 2, we will introduce the

concept of the laboratory space sciences and our experiment system. In Chapter 3, we

will give a detailed derivation of the formula for the shock nose position. The comparison

of our formula and the spacecraft measurement results will be shown in the last section

of Chapter 3. In Chapter 4, we will show the application of our formula to experiment

designs for our system. In Chapter 5, we will discuss future works. In Chapter 6, the

conclusion of the thesis will be given.

9
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2 Laboratory Space Sciences

Laboratory experiments provide a complement understanding of space physics without

the limitations from the spacecraft measurement.[21] Experiments overcome the restriction

that the spacecraft measurements are made only at one point in space. Furthermore,

laboratory experiments have the advantage of greater control of plasma condition, enabling

the reproducible experiments, less expensive than the spacecraft launching. The principle

of the laboratory space sciences is based on the similarity of (magneto)hydrodynamics.[22,

23]

In section 2.1, we introduce the concept of the scaling relation and Euler similarity. In

section 2.2, the introduction of the plasma jet produced using conical-wire array driven by

our pulsed power system will be given. In section 2.3, we discuss the space and laboratory

condition for the similarity analysis.

2.1 Scaling relation and similarity criteria

We discuss the conditions under which the two systems will have identical behav-

ior, with the assumption that they are both ideal fluid (with zero viscosity and heat

conductivity)[22]. The governing equations for the ideal fluid are mass continuity equa-

tion, Euler equation, and adiabatic equation, as shown in the following equations

∂ρ

∂t
+∇ · ρ~v = 0,

ρ(
∂~v

∂t
+ ~v · ∇v) = −∇P,

∂P

∂t
+ ~v · ∇P = −γ P ∇ · ~v. (7)

10
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All governing equations of the ideal fluid remain unchanged under the transformation that

~r1 = a~r2, ρ1 = bρ2, P1 = cP2, t = a

√
b

c
t2, ~v1 =

√
c

b
~v2, (8)

where a, b, c are arbitrary positive constants and the subscripts 1 and 2 mean the physical

quantities of system 1 and system 2.

Consider the initial-value problem in an ideal hydrodynamics system 1 with the fol-

lowing initial conditions

ρ1(t = 0) = ρ̃1 f(~r1/L1), P1(t = 0) = P̃1 g(~r1/L1), ~v1(t = 0) = ṽ1~h(~r1/L1), (9)

where the L1, ρ̃1, p̃1, ṽ1 are the characteristic length, mass density, pressure, velocity,

respectively, of the system 1 and f, g, ~h are dimensionless function. And the initial

condition for the system 2 is

ρ2(t = 0) = ρ̃2 f(~r2/L2), P2(t = 0) = P̃2 g(~r2/L2), ~v2(t = 0) = ṽ2~h(~r2/L2), (10)

where the L2, ρ̃2, p̃2, ṽ2 are the characteristic length, mass density, pressure, velocity,

respectively, of the system 2. According to the last equation in Eq. 8, we can get

~v1 =

√
P1/P2

ρ1/ρ2
~v2. (11)

By expressing p, ρ and ~v in terms of the characteristic quantities in Eq. 9 and Eq. 10,

then Eq. 11 can be written as

ṽ1

√
ρ̃1
p̃1

= ṽ2

√
ρ̃2
p̃2
. (12)

We can conclude that the transformation in Eq. 8 holds if two systems both have the

same value of Euler number, that is, Eu = ṽ(ρ̃/P̃ )1/2. This similarity is called the Euler

11
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similarity[22] since it is derived from the Euler equation. If the system is described by the

ideal magnetohydrodynamics equations, then Euler similarity can be modified to Euler-

Alfven similarity[23], which includes one more condition B/
√
p to follow besides the Euler

number.

Thus, in the condition of the ideal hydrodynamics fluid, two systems behave identically

if the initial conditions are geometrically similar and the Euler number (Eu = ṽ(ρ̃/P̃ )1/2)

in both systems are the same. The second system will evolve identically on a time scale

τ̃2 = τ̃1
L̃2

L̃1

√
(P̃1/ρ̃1)/(P̃2/ρ̃2) according to Eq. 8.

Since the hydrodynamics similarity is based on the ideal fluid equation, the underlying

assumptions of the ideal fluid must be followed when using the Euler similarity:

1. The dissipative process is negligible (though the shock is allowed to be present):

(a) The system is required to be collisional. The localization has to occur on the

length scale that is much smaller than the characteristic length of the problem

L. It is required rLi � L or lc � L, where rLi is the ion Larmor radius and lc

is the collision mean free path. The condition is either

rLi
L
' 10−4

v(cm/s)

B(G)L(cm)
� 1 (13)

or

lc
L
' 3× 1013 T 2(eV )

ΛL(cm)ni(1/cm3)
� 1, (14)

where Λ is the Coulomb logarithm and the expression of the mean free path is

from Braginskii[24].

(b) Viscous dissipation should be insignificant. It requires that viscous force is

much smaller than the inertial force, that is, Reynolds number much larger

12
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than 1. The condition is

Re =
L v

ν
� 1, (15)

where ν is the kinematic viscosity. The detailed evaluation of the Reynolds

number for Euler similarity can be seen in Ref.[22].

(c) Energy flow by particle heat conduction should be negligible. It means that the

heat advection is much more important than the heat conduction, i.e., Peclet

number much larger than 1. The detailed evaluation of the Peclet number for

Euler similarity can be seen in Ref.[22].

(d) Energy flow by radiation flux should be negligible. That is, the hydrodynamics

energy fluxes must be much larger than the radiation energy flux, i.e., radiative

Peclet number is much larger than 1. The detailed evaluation of radiative Peclet

number can be seen in Ref.[22].

2. Gas in both systems should be polytropic, that is, the internal energy is proportional

to the pressure, and have the same adiabatic constant γ.

3. Magnetic field effect on the motions of the gas is neglected. In other words, the

magnetic pressure is assumed to be much less than the gas pressure. If the magnetic

field effect is important, we can use Euler-Alfven similarity[23].

Euler similarity breaks down at spatial scales much less than the global scale when dis-

sipative processes become important. The existence of the transport coefficient such as

viscosity and thermal diffusivity will break the similarity transformation.

2.2 Introduction to our experiment system

We plan to simulate the solar wind interacting with an unmagnetized planet in the

laboratory. The solar wind is simulated by the plasma jet generated by the conical-wire

13
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array. The experiment is driven by the home-made pulsed power system.

2.2.1 Pulsed-power system

We use a parallel plate capacitor bank (PPCB) for our pulsed-power system (Fig.

4). The system is being built from scratch and will start being operated by July 2019.

The pulsed-power system can generate a very high current in an extremely short period.

The PPCB contains twenty 1 µF capacitors, two rail-gap switches, one coaxial transmis-

sion line, two parallel plate transmission lines and a cylindrical vacuum chamber oriented

vertically.

Figure 4: Schematic and photo of our pulsed-power system using a parallel plate capacitor
bank (PPCB).

The estimated parameters of our pulsed-power system are shown in Table 1. In July

2019, we plan to start to operate our pulsed power system, which can be charged to

∼ 20 kV. delivering a current of ∼ 120 kA. In the near future, we target to make the

system fully functional at 50 kV, providing a peak current of ∼ 300 kA and power of 4

GW.

14
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Capacitance 5 µF

Vchange 20 / 50 kV

Energy 1 / 6.25 kJ

Ipeak ∼ 120/ ∼ 300kA

Rise time ∼ 1.3µs

Power ∼ 0.8/ ∼ 4 GW

Table 1: Summaries of the expected parameters of our pulsed-power system. The values
in the left sides are the estimated value we can achieve in July 2019 and the values in the
right sides are the value of the ultimate goal which can be achieved in the near future.

2.2.2 Conical-wire arrays

Conical-wire arrays (Fig. 5) will be used to generate a supersonic plasma jet for

simulating solar wind. When a high current, which is generated via our pulsed-power

system, passes through a conical array, wires are heated and ionized because of the ohmic

heating. The current also generates a global azimuthal magnetic field ~BA at the same

time. Thus, the plasma at the wires is pinched by the J × B force. The pinch effect

happens faster near the cathode than the anode since the radius of the wire array at the

cathode is smaller than that near the anode. Thus, a supersonic plasma jet propagating

from the cathode toward anode is generated. This plasma jet is generally unmagnetized,

but it can be magnetized by embedding a pair of magnets in the system. As for simulating

the planetary ionosphere in the laboratory, we can use the UV light to illuminate the gas

around obstacle forming a simulated ionosphere.
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Figure 5: Conical-wire array will b used to generate a plasma jet. The right one is the
Schlieren image of the plasma jet generated by the group in Imperial College London[4].

Though we have not started operating the system, we estimate that the plasma jet

generated by conical arrays driven by the pulsed-power system will produce the jet with

the sonic Mach number up to 30 referred to the previous experiments done by the group

in Imperial College London[4]. According to the Euler similarity we introduced in the

previous section, two different systems will behave identically if they have the same Euler

number (Eu = ṽ(ρ̃/p̃)1/2), which can be approximated by Mach number. Therefore, we

justify that we can simulate the solar wind interacting with the unmagnetized planet in

our laboratory experiment because the Mach number of our system and the solar wind

are approximately same. The detailed comparison of the parameters in our system and

space environment can be seen in section 2.3.

2.3 Our potential experiment and scaling relation

In this section, we detailedly analyze the parameters in the space and the laboratory

experiment. Since our pulsed power system is still being built, the estimated value of the

characteristic parameters for our lab experiment is referred to the experiment done by the

group in Imperial College London[4], which also utilizes the conical-wire array driven by

the pulsed power system. The value of the characteristic parameters for the solar wind
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interacting with Mars can be seen in the paper by Slavin[11].

The characteristic parameters for space and the laboratory condition is shown in Table

2. For the parameters in space in the table, “Length scale” is the Mars diameter, “Drive

velocity” is the solar wind speed, “Mass density” is the mass density in the solar wind

near the Mars, “Temperature” is the proton temperature in the solar wind near the Mars,

“Magnetic field” is the interplanetary magnetic field near the Mars. Note that the space

environment is collisionless so that the temperature equilibration is not effective. The

electron temperature of the solar wind near the Mars is 13 eV. For the laboratory condition,

the electron and the ion temperature is the almost same since the plasma is in the collisional

environment.

Item Symbol Value in space Estimated value in lab

Length scale (cm) L 7× 108 10−2

Drive velocity (km/s) v 430 200
Timescale (s) L/v 16.1 5× 10−10

Mass density (g/cm3) ρ 5× 10−24 10−3

Pressure (dyn/cm2) P 2.5× 10−11 8× 108

Temperature (eV) T 6.1 50
Magnetic field (nT) B 3.3 N/A

Euler number v
√
ρ/P 19 22

Magnetic localization rL,i/L 0.2 N/A
Collisional localization lc/L 1.4× 103 10−4

Table 2: Characteristic parameters in space environment and the laboratory condition.

According to the Table 2, the Euler number in the space and laboratory environment

is at the same order. The Reynolds number and the Peclet number of the plasma jet in

the laboratory experiment are much larger than 1 (Re> 104, Pe > 10) [4], the dissipative

process can be neglected. The length scale is very large in space, so the Peclet number

and Reynolds number can be regarded as much larger than 1, i.e., the dissipative process

is negligible. As for the localization, the particles in space and laboratory is localized by

the magnetic field and collision, respectively. Thus, we can conclude that the two systems
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will behave identically based on the Euler similarity, which we described in section 2.1.
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3 Determination of the location of the bow shock

nose

We theoretically investigate the bow shock location as a function of the solar wind

and the ionospheric conditions, such as solar wind dynamic pressure ρ∞v
2
∞, ionospheric

scale length H, ionospheric peak pressure PM,i and the location of the ionospheric peak

pressure rM,i. The equation of bow shock location is derived and will be used to design

the future experiments. We only focus on the nose location of the bow shock but not the

whole shape profile of the bow shock. The shape of the bow shock and the ionopause is

assumed to be symmetric around the x-axis.

The schematic of the bow shock and the obstacle boundary (ionopause) is shown in

the Fig. 6. We use the following symbols to represent the geophysical quantities in the

report: ro is nose positions of the obstacle, rs is nose positions of the bow shock, rM,i is

the location inside ionosphere where maximal thermal pressure occurs, ∆ is the bow shock

standoff distance, i.e., the distance between ionopause nose position and bow shock nose

position.
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Figure 6: Definition of each variable used in the report

The goal is to determine the shock nose location rs:

rs = ro + ∆. (16)

Ionopause nose location ro is calculated using the continuity of the thermal pressure by

tangential discontinuity[9, 1, 13]; bow shock standoff distance is calculated by the empirical

formula[7, 13].

The derivation of the ionopause nose location and the radius of curvature at ionopause

nose are in subsection 3.2. The standoff distance formula is introduced in subsection 3.3.

Finally, the formula of the bow shock nose location is shown in section 3.4. The comparison

of the theory and the observation results will be given in section 3.5.

3.1 Overview of the theory

In this section, we have an overview of all the theories which are used for calculating the

location of the bow shock nose in terms of the solar wind and the ionospheric conditions.
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Fig. 7 shows the variation of the thermal pressure along the stagnation streamline.

Figure 7: Thermal pressure along the stagnation streamline.

• (a) Solar wind

– In the region of the solar wind, the thermal pressure can be expressed as a

function of the dynamic pressure and the sonic Mach number, i.e., P∞ =

ρ∞v
2
∞/(M

2
∞ γ).

• (a) – (b) Bow shock

– At the bow shock, momentum flux conservation in the normal shock relation is

used

21



doi:10.6844/NCKU201901460

P∞ + ρ∞v
2
∞ = Ps + ρsv

2
s . (17)

Note that the entropy increases across the shock.

• (b) Magnetosheath

– Within the magnetosheath, the plasma follows the process of the isentropic

compression, i.e., the combination of the energy conservation of the compress-

ible flow (Bernoulli equation)

2γ

γ − 1
P + ρ v2 = constant, (18)

and the adiabatic relation

P V γ = constant, (19)

where V is the volume. We can observe that the sum of the thermal pressure

and the dynamic pressure is conserved before and after shock, but not conserved

along the stagnation streamline within the magnetosheath. Therefore, the value

of P + ρv2 before shock is not the same as that at stagnation point.

• (b)-(c) Ionopause

– At the ionopause, the thermal pressure is continuous according to tangential

discontinuity.

• (c) Upper ionosphere

– Within the upper ionosphere, the hydrostatic equilibrium (the balance between

the gravity force and the pressure gradient) is assumed.
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3.2 Ionopause (obstacle boundary)

Ionopause, the boundary of the ionosphere, is the location of the thermal pressure

balance according to tangential discontinuity.[1, 13]. We first investigate the pressure

variation on the center line, then the ionopause nose location ro and the radii of curvature

at the ionopause nose Ro.

3.2.1 Thermal pressure at the ionopause

Ionopause profile is determined by the thermal pressure continuity at both sides of the

ionopause according to tangential discontinuity. Here we discuss the thermal pressure at

both sides of the ionopause respectively.

• Thermal pressure at the inner side of the ionopause

The thermal pressure in the ionosphere is assumed to be spherical symmetric and at

hydrostatic equilibrium[1] in equivalence to the balance between pressure gradient

and gravity force. The detailed derivation of the hydrostatic equilibrium can be seen

in Appendix A. So the thermal pressure inside the ionosphere can be expressed as

Pi(r) = PM,i exp(
rM,i − r
H

), (20)

where Pi(r) is the pressure inside the ionosphere, rM,i is the location inside ionosphere

where peak thermal pressure PM,i occurs and H = kBT/mg is the scale height in

which m = 1.67×10−24g is the mass for a singly ionized hydrogen, kB is Boltzmann’s

constant and T is the absolute temperature for plasma and assumed to be constant

inside the ionosphere.

• Thermal pressure at the outer side of the ionopause

We use Rayleigh pitot tube formula[5, 9, 15] to obtain the thermal pressure just
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outside the ionosphere as a function of the solar wind dynamic pressure. Rayleigh

pitot tube formula is used for the stagnation pressure at the blunt body nose with

a detached bow shock. It is derived in two steps: (1) applying the hydrodynamic

normal shock jump condition to get the downstream thermal pressure; (2) applying

the isentropic compression to determine the thermal pressure at the stagnation point

with Bernoulli’s law on the stagnation streamline within the magnetosheath. The

rigorous derivation is shown in Appendix B. The Rayleigh pitot tube formula is given

as

Po = P∞M
2
∞(
γ + 1

2
)(γ+1)/(γ−1) 1

[γ − (γ − 1)/(2M2
∞)]1/(γ−1)

, (21)

where Po is the thermal pressure at the ionopause nose, P∞ is the thermal pressure of

the solar wind, M∞ is the sonic Mach number of the solar wind and γ is the specific

heat ratio. Then, we plug M∞ = v∞√
γp∞/ρ∞

into the Rayleigh pitot tube formula,

the relationship between thermal pressure at the ionopause Po as a function of solar

wind dynamic pressure ρ∞v
2
∞ can be expressed as

Po = kρ∞v
2
∞, (22)

where

k = (
γ + 1

2
)(γ+1)/(γ−1) 1

γ [γ − (γ − 1)/(2M2
∞)]1/(γ−1)

. (23)

For γ = 5/3 and M∞ � 1, this relation can be simplified to k = 0.88.

3.2.2 Nose position of the ionopause ro

The formula of the ionopause nose position ro is determined by the thermal pressure

continuity at the ionopause according to tangential discontinuity:

Po = Pi(ro). (24)
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Fig. 8 is the schematic of the pressure balance between ionosphere pressure and solar wind

pressure.

Figure 8: The schematic of the pressure balance between the solar wind pressure and
ionosphere pressure

By solving Eq. 24 with the expression of the thermal pressure at the both side of the

ionopause (Eq. 20 and Eq. 22), the formula of the nose position of the bow shock ro can

be derived as

ro = rM,i +H ln(
PM,i

kρ∞v2∞
). (25)

The derived equation of the nose position (Eq. 25) of the ionopause is reasonable: the

shorter the scale height H or the larger the dynamic pressure of the solar wind ρ∞v
2
∞,

then ionopause closer to planet surface.

3.2.3 Radius of curvature at ionopause nose Ro

In this section, we analytically calculate the radius of curvature at ionopause nose Ro

by solving the ionopause profile equation near the ionopause nose. Since the ionopause

25



doi:10.6844/NCKU201901460

is symmetric at x-axis, the ionopause profile can be expressed as x = x(y) . We do the

Taylor expansion at y = 0 of the ionopause profile x = x(y), then we can get the equation

of the ionopause profile at the vicinity of the ionopause nose

x(y) = x(0) + (y − 0)x′(0) +
1

2
(y − 0)2x”(0) + ... (26)

Note that on the ionopause profile, x(0) = ro and x′(0) = 0. Furthermore, by the definition

of the radius of curvature R(y) = | (1+x
′(y))3/2

x”(y)
|, the radius of curvature at ionopause nose

(y = 0) can be written as Ro = −1/x”(0). Thus, the equation of the ionopause profile

near the ionopause nose can be reduced to a quadratic equation

x = ro −
1

2Ro

y2. (27)

Here we neglect the third and higher order term of the Taylor expansion.

The whole ionopause profile can be determined by the thermal pressure continuity at

the ionopause according to tangential discontinuity, that is, the thermal pressure is equal

at the outer side and the inner side of the ionopause.

kρ∞v
2
∞ cos2ψ = Pi(r), (28)

where ψ is the angle between v∞ and the normal to ionopause, which is shown in Fig. 9.
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Figure 9: Element of the ionopause and the coordinate. Modified figure from Ref. [1].

The left hand side of the equation is the thermal pressure approximated at the outer

side of the ionopause deviated from the nose position and the right hand side is the iono-

spheric pressure we introduced in section 3.2.1. Since kρ∞v
2
∞ is the ionospheric pressure

at the ionopause nose Pi(ro), the equation of the ionopause profile (Eq.28) can be reduced

to

Pi(ro) cos2ψ = Pi(r). (29)

By the geometric relation, cos2ψ can be expressed as

cos2ψ =

(
dy

ds

)2

=
(r dθ cosθ + dr sinθ)2

dr2 + (r dθ)2
. (30)

We substitute the cosine relation in Eq.30 into the pressure continuity equation at the

ionopause (Eq.29), we get

Pi(ro)

(
cosθ + ( dr

r dθ
) sinθ

)2(
dr
r dθ

)2
+ 1

= Pi(r). (31)
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Then we solve for dr/r dθ to obtain

dr

r dθ
=
−Pi(ro) sin2θ + 2

√
Pi(r)Pi(ro)− P 2

i (r)

2(Pi(ro)sin2θ − Pi(r))
. (32)

This is the differential equation for the ionopause profile, which can be solved numerically[1]

with the initial condition r (θ = 0) = ro. Note that the ionopause is symmetric about the

x = 0 axis (θ = 0), so the first-order derivative at the ionopause nose is zero, that is,

1

r(0)

dr

dθ
(0) =

1

ro

dr

dθ
(0) = 0. (33)

In the second term of the numerator in the ionospause profile differential equation (Eq.32),

it contains a square root. The value of the quantity inside the square root must be equal

or larger than zero, or the square root term will become imiginary, which is physically

unallowable. So, we can get

Pi(r)Pi(ro)− P 2
i (r) ≥ 0, (34)

where Pi(r) is the ionospheric pressure exponentially decaying outward because of hy-

drostatic equilibrium. Then we can obtain that the ionopause profile must follow the

condition

r ≥ ro. (35)

The equalitity occurs at the ionopause nose.

For our purpose of deriving the radius of curvature at the ionopause nose, we only

have to focus on the vicinity of the ionopause nose, i.e., the region θ → 0 and r →

ro. Furthermore, at the ionospause nose, dr/rdθ can be approximated by dx/dy. The

differential equation for the ionopause profile (Eq. 32) at the vicinity of the ionopause

nose can be simplified to
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dx

dy
= −

√
Pi(ro)

Pi(r)
− 1

= −

√
Pi(ro)

Pi(r)

√
1− Pi(r)

Pi(ro)

' −

√
1− Pi(r)

Pi(ro)
. (36)

Now we express Pi(r) in Taylor series at r = ro, then the right hand side of the Eq. 36

can be rewritten as

−

√
1− Pi(r)

Pi(ro)
= −

√
−(r − ro)

P ′i (ro)

Pi(ro)
− 1

2
(r − ro)2

Pi”(ro)

Pi(ro)
− ...

= −

√
−(r − ro)

P ′i (ro)

Pi(ro)

√
1 +

1

2
(r − ro)

Pi”(ro)

P ′i (ro)
+ ...

' −

√
−(r − ro)

P ′i (ro)

Pi(ro)

(
1 +

1

4
(r − ro)

Pi”(ro)

P ′i (ro)
+ ...

)
. (37)

Thus, now the differential equation for the ionopause profile near the ionopause nose is

dx

dy
= −

√
−(r − ro)

P ′i (ro)

Pi(ro)

(
1 +

1

4
(r − ro)

Pi”(ro)

P ′i (ro)
+ ...

)
(38)

Also, by x → roand y → 0 at the vicinity of the ionopause nose, r − ro can be

approximated by
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r − ro =
√
x2 + y2 − ro

=

√
[ro + (x− ro)]2 + y2 − ro

=
√
r2o + 2 ro(x− ro) + (x− ro)2 + y2 − ro (39)

= ro

√
1 + 2

x− ro
ro

+
(x− ro)2

r2o
+
y2

r2o
− ro

' ro(1 +
x− ro
ro

+
(x− ro)2

2 r2o
+

y2

2 r2o
)− ro (40)

= x− ro +
(x− ro)2

2 ro
+

y2

2 ro
. (41)

By substituting the equation of the ionopause profile near the ionopause nose (Eq.27) in

to Eq.41, we get

r − ro = − 1

2Ro

y2 +

(
− 1

2Ro
y2
)2

2 ro
+

y2

2 ro
(42)

' y

2

2
(

1

ro
− 1

Ro

)
(43)

In Eq.42, the second term at the right hand side is negligible as y → 0 since it is of the

order y4 and the other two terms are of the order y2.

We plug the r − ro relation (Eq. 43) into the differential equation of the ionopause

profile (Eq. 38), then integrate the differential equation

∫ x

ro

dx = −
∫ y

0

dy

√
−1

2

P ′i (ro)

Pi(ro)

(
1

ro
− 1

Ro

)(
y +

1

8

(
1

ro
− 1

Ro

)
P ′′i (ro)

P ′i (ro)
y3 + ...

)
. (44)

Therefore we obtain the formula of the ionopause profile at the vicinity of the ionopause:

x = ro −

√
− P ′i (ro)

2Pi(ro)

(
1

ro
− 1

Ro

)(
y2

2
+

1

32

(
1

ro
− 1

Ro

)
P ′′i (ro)

P ′i (ro)
y4 + ...

)
. (45)
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By comparing Eq. 45 and Eq. 27, finally, we get the equation of the radius of curvature

at the ionopause nose

Ro =

√
−2Pi(ro)

P ′i (ro)

Roro
Ro − ro

. (46)

Eq.46 can be rearranged as a quadratic equation

R2
o − roRo −

√
−2Pi(ro)

P ′i (ro)
ro = 0. (47)

Then we solve it and get

Ro =

ro ±
√
r2o + 4

√
−2Pi(ro)

P ′
i (ro)

ro

2
. (48)

We take the plus sign in the nominator since Ro will be negative if we take the minus

sign, which is not physically allowable. Thus, we obtain the expression of the radius of

curvature at the ionopause nose

Ro =

ro +

√
r2o + 4

√
−2Pi(ro)

P ′
i (ro)

ro

2
. (49)

With the ionospheric pressure Pi(r) of the form in Eq. 20, the radius of curvature at

the ionopause nose can be expressed as

Ro =
ro +

√
r2o + 8H ro
2

, (50)

where H is the scale height of the ionosphere. The expression of the radius of curvature at

the ionopause nose from our calculation is the same as that from the Table A1 in Verigin

et al. (2003) [13]. Thus, by plugging Eq.50 into Eq.27, we can get the ionopause profile
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near the ionopause nose

x = ro −
1

ro +
√
r2o + 8H ro

y2. (51)

In the derivation of the radius of curvature at the ionopause nose and the ionopause

profile near the ionopause nose, we made many assumptions to get it. We have shown

that the assumption we made above is all valid by verifying our analytical results with the

simulation results, which will be given in Section 3.5.1.

This equation of the radius of the curvature at the ionopause (Eq.50) tells that

Ro ≥ ro. (52)

The equality occurs as the ionospheric scale height H is close to zero. By the equation

of the ionopause nose location (Eq.25), we get that ro is equal to rM,i when H is zero.

Combining the above relation, we found that

Ro → rM,i as H→ 0. (53)

This relation means that if the ionospheric pressure decreases very sharply outward, the

radius of the ionopause nose is about the distance between the location of the ionospheric

peak pressure and the planet center. Furthermore, we can observe that Ro is smaller as

the dynamic pressure of the solar wind is larger since ro is smaller. These results are

physically reasonable.

3.3 Bow shock standoff distance ∆

The standoff distance of the bow shock ∆ is determined by the empirical model [9, 7,

13, 25]. This empirical model is supported by gasdynamics experiment and observations
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of the flow past the planets[12]. The standoff distance is expressed by the empirical model

∆

Ro

= 0.87
ρ∞
ρs
, (54)

where ρ∞and ρs are the mass density before and after shock, respectively and 0.87 is the

empirical coefficient. The bow shock nose is farther from the obstacle as the radius of

curvature of the obstacle nose is larger (Fig. 10). Bow shock can touch the obstacle only

when the leading end of the obstacle is pointed.

Figure 10: Schematic of the detached shock. Courtesy of [5]

The density ratio across the shock is related to solar wind Mach number and the specific

heat ratio

ρ∞
ρs

=
(γ − 1)M2

∞ + 2

(γ + 1)M2
∞

. (55)

Thus, in the condition of the solar wind Mach number much larger than 1, the standoff

distance can be expressed as

∆ = 0.87 Roε, M∞ � 1, (56)
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where ε = γ−1
γ+1

. By substituting the Eq. 50 into Eq. 56, we get

∆ = 0.87ε
ro +

√
r2o + 8H ro
2

, M∞ � 1, (57)

= ro 0.435 ε
(

1 +
√

1 + 8H/ro

)
, M∞ � 1.

According to this relation, we can obtain the value of the standoff distance if we have the

ratio of H (scale height of the ionosphere) to ro (the distance between ionopause and the

center of the planet).

3.4 The formula of the bow shock nose location

Thus, combining the results above, the shock nose location can be written as

rs = ro + ∆, (58)

= ro + 0.435 ε
(
ro +

√
r2o + 8H ro

)
, M∞ � 1,

where

ro = rM,i +H ln(
PM,i

kρ∞v2∞
), (59)

, scale height H = kBT/(mg) and ε = γ−1
γ+1

.

Note that this equation is only valid for the sonic Mach number of the solar wind much

larger than 1. As we can see in the shock nose equation (Eq. 58): the shorter the scale

height H or the larger the dynamic pressure of the solar wind ρ∞v
2
∞, bow shock nose is

closer to the planet. This result is reasonable and intuitive.
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3.5 Comparison with the numerical simulation and spacecraft

measurement results

The comparison of our formula of the bow shock location with the numerical simulation

and the spacecraft measurement results is given in this section.

3.5.1 Verification of the analytical form of the radius of curvature by simu-

lation

In this section, we verify the analytical results of the radius of curvature from the

Section 3.2.3 by the numerical simulation. In our calculation, we analytically solve the

differential equation of the ionopause profile

dr

r dθ
=
−Pi(ro) sin2θ + 2

√
Pi(r)Pi(ro)− P 2

i (r)

2(Pi(ro)sin2θ − Pi(r))
(60)

near the ionopause nose (θ → 0) with the initial condition r (θ = 0) = ro to the get the

equation of the ionopause profile near the ionopause nose

x = ro −
1

ro +
√
r2o + 8H ro

y2. (61)

The radius of curvature at the ionopause nose can be obtained as

Ro =
ro +

√
r2o + 8H ro
2

. (62)

In the derivation of the equation of the ionopause profile near the ionopause nose and the

radius of curvature at the ionopause nose, we made many assumptions, so we will verify

that the assumptions are valid by numerical simulation.

We use the function NDSolve in the software Mathematica to solve the differential

equation of the ionopause profile (Eq.60) to get the ionopause profile r = r(θ). We
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first compare the numerical result with our analytical result of the ionopause profile near

the ionopause nose (Eq.61). Fig.11 shows the comparison of the ionopause profile from

analytical theory and numerical simulation. We can observe that, from both the simulation

and analytical results, the ionopause follows the rule that

r ≥ ro, (63)

which we show in the section 3.2.3. Also, we can see that the ionopause profile from

analytical theory and numerical simulation match well near the nose position (y → 0),

which is reasonable since the analytical result is calculated under the approximation that

θ → 0 in polar coordinate or y → 0 in cartesian cooridinate.

Figure 11: Ionopause profile calculated from analytical theory (Eq.61) and numerical
simulation. The left and the right panel have the plot range [0, ro] and [0, 2 ro], respectively.
The analytical results is calculated under the approximation that θ → 0 in polar coordinate
or y → 0 in cartesian coordinate.

We then compare the numerical results with our analytical result of the radius of

curvature at the ionopause nose (Eq.62). In the numerical simulation, we numerically
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solve the differential equation of the ionopause profile (Eq.60) to get the ionopause profile

r = r(θ) using the function NDSolve in Mathematica and then calculate the radius of

curvature at θ = 0 in polar coordinate using the formula

R(θ) =
(r2(θ) + r′2(θ))

3/2

|r2(θ) + 2 r′2(θ)− r(θ)r′′(θ)|
. (64)

The comparison results are shown in Fig.12. The percentage error of our analytical re-

sults compared to the numerical results is defined as (analytical result - numerical re-

sult)/numerical result×100. We can see that the percentage error of our analytical results

is smaller than 1 percent. Thus, our analytical form of the radius of curvature at the

ionopause nose (Eq.62) is verified. And we can say that the assumptions we made in the

derivation are valid.

Figure 12: Radius of curvature at the ionopause nose from analytical theory (Eq.62) and
numerical simulation. In the left panel, the thick line is the analytical theory (Eq.62) and
the red dots are simulation results. In the right panel, it shows the percentage error, which
is defined as (analytical result - numerical result)/numerical result×100. The cases with
H/ro = 0.01, 0.1, 0.3, 0.5, 0.7, 0.8, 1.0 are considered.
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3.5.2 Comparison with hydrodynamics simulation

We now want to compare our formula of the bow shock nose with the simulation and

spacecraft measurement results. Our derived formula of the bow shock location is

rs = ro + ro 0.435
γ − 1

γ + 1

(
1 +

√
1 + 8H/ro

)
, M∞ � 1, (65)

and the standoff distance is

∆ = ro 0.435
γ − 1

γ + 1

(
1 +

√
1 + 8H/ro

)
, M∞ � 1. (66)

The nonlinear gasdynamics simulation result for the bow shock profile is referred to the

paper by Spreiter et al., 1970[1], which is shown in Fig. 13.

Figure 13: Gasdynamics simulation results for the locations of the bow shock and
ionopause with different H/ro for M∞ = 8 and γ = 5/3. Courtesy of Spreiter et al.,
(1970) [1].

In Fig. 14, we compare our formula of the standoff distance with the simulation results
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from Fig. 13.

Figure 14: Comparison of the derived standoff distance formula (Eq. 66) with the gasdy-
namics simulation results from Spreiter et al., 1970[1]. The red dots are the simulation
results; the black line is Eq. 66. The cases with H/ro = 0.01, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0
are considered.

As we can observe in the comparison, our derived formula (Eq. 66) and the simulation

results match well and both show that the standoff distance becomes larger with the

increasing scale heights of the ionosphere. We can conclude that the theory is validated

by the simulation results. Note that this formula of the bow shock standoff distance is

only applied for the solar wind interacting with the unmangetized planet and the Mach

number of the solar wind solar wind must be much larger than 1. The other assumption in

this theory is that the ionosphere of the unmagnetized planet is in hydrostatic condition,

resulting in the thermal pressure exponentially decaying outward.

3.5.3 Comparison with spacecraft measurements

We investigate the influence of the shock location from solar parameters, which control

the Pdyn (dynamic pressure of the solar wind), PM,i (peak pressure of the ionosphere),
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H = kBT/mg (scale height of the ionosphere). Our derived formula of the shock nose

location is

rs. = ro + ro 0.435
γ − 1

γ + 1

(
1 +

√
1 + 8H/ro

)
, M∞ � 1, (67)

where

ro = rM,i +H ln(
PM,i

kρ∞v2∞
). (68)

We are interested in how the variation of the solar parameters influence the shock nose

location. The third term can be neglected in the variation study since it contains the

square root. So we can obtain that

rs ∝ H ln

(
PM,i

k Pdyn

)
. (69)

According to the spacecraft measurement[6], which we introduce in section 1.1.2, the

measurement data shows that the bow shock location increases linearly with the increasing

EUV flux, but it reduces through a power law relationship with solar wind dynamic

pressure,

rs ∝ p−0.02dyn and rs ∝ 0.11 lEUV . (70)

The increasing solar EUV flux will cause the PM,i (peak pressure of the ionosphere)

increase via increasing the ionization rate. Furthermore, the increasing solar EUV flux

will let the temperature increase, i.e., a larger scale height H. The detailed relation how

the variation of the EUV flux influence the peak pressure of the ionosphere PM,i and

ionospheric scale height H will be investigated in the future.

We can observe that our relation in Eq. 69 and the spacecraft measurement results in

Eq. 70 both shows that the increasing solar EUV flux and decreasing solar wind dynamic

pressure will increase the bow shock location. Since the dynamics pressure Pdyn term is in

the logarithm in our relation in Eq. 69, we suggest that the variation of dynamics pressure

40



doi:10.6844/NCKU201901460

has less impact on the shock location than the EUV flux, which controls the scale height

H and ionospheric peak pressure PM,i. Thus, we can conclude that our derived formula

is qualitatively consistent with the spacecraft measurement results that the shock nose

location is more sensitive to the solar EUV flux than solar wind dynamics pressure.
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4 Experiment designs

We will simulate the Martian bow shock phenomenon in our laboratory experiment.

However, In the laboratory experiment, the condition of hydrostatic equilibrium from

gravity can not be produced due to the lack of enough gravity. To simulate the ionosphere

in the laboratory, a high power UV LED or a spark driven by a small pulsed-power

generator will be used to produce UV light. We will use the UV light to illuminate the

obstacle to let the gas around the obstacle be ionized, forming a simulated ionosphere. An

artificial ionosphere with plasma pressure exponentially decaying outward is expected to

be generated. The supersonic plasma jet is produced using the conical-wire array device,

as introduced in section 2.2. The schematic of our potential laboratory experiment for

studying the solar wind interacting with the unmagnetized planet is shown in Fig. 15.

Figure 15: A schematic of our potential experiment.

The formula of the shock nose equation is

rs = ro + ro 0.435
γ − 1

γ + 1

(
1 +

√
1 + 8H/ro

)
, M∞ � 1, (71)
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where

ro = rM,i +H ln(
PM,i

kρ∞v2∞
), (72)

scale height H = kBT/(mg) and ε = γ−1
γ+1

. It will be used to design our future experiments.

The variables in the experiment for this formula are:

• Plasma jet: ρ∞ and v∞

• Ionosphere: rM,i, H and PM,i

In our potential experiment, the scale height can be obtained by fitting the experiment

data; other variables can be directly measured in the experiment. We will expect there will

be two density jump in the experiment: one is the bow shock front according to the shock

discontinuity and the other is the ionopause according to the tangential discontinuity.
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5 Future works

1. Investigate how the solar EUV radiance influences the ionospheric density

and temperature:

In order to have a more thorough comparison of our theory with the measurement

results, we have to study how the solar EUV flux controls the ionospheric pressure.

The textbook edited by Kivelson & Russell (1995)[2] provides some detailed contexts

about photoionization from EUV radiation.

2. Investigate the influence of the interplanetary magnetic field on the loca-

tion of the bow shock:

Throughout the thesis, we neglect the effect of the magnetic field for simplicity. In

fact, Mars has some local magnetic field, which can influence the bow shock nose

location. The magnetic field also influences the formation mechanisms of the bow

shock and the ionopause. In the realistic condition, the interaction between the

interplanetary magnetic field and the ionosphere will generate the “induced mag-

netosphere” and “magnetic pile-up boundary”. Furthermore, the magnetic draping

effect will occur. The more illustration of these concepts from the magnetic field can

be seen in the textbook by Russell et al. (2016)[26]. We would like to further study

the effect of the magnetic field.

3. Investigate the impact of the different constituents of the ionosphere on

the scale height:

In the Martian atmosphere, there are many different constituents like ionized hydro-

gen, helium, oxygen and carbon dioxide. The scale height (kBT/mg) is controlled

by the constituents of the ionosphere. Thus, the different constituents will make a

difference on the bow shock location.

4. Investigate the assumption that the temperature is constant in the iono-
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sphere:

In the derivation of the ionospheric pressure formula, we assume the temperature is

constant with altitude. However, in the real condition, the temperature varies with

the altitude. So, the validity of this assumption requires further investigation.
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6 Conclusion

It is not well understood how the solar parameters influence the location of the Martian

bow shock. The location of the bow shock produced from the solar wind interacting with

the unmagnetized planet has been theoretically investigated since we want to investigate

the interaction between the solar wind and the unmagnetized planet through laboratory

experiment in the future. The device of the conical-wire array driven by a pulsed power

system is used to generate the plasma jet for simulating the solar wind. To see whether we

can simulate this phenomenon in the laboratory experiment, we compare the parameters

of the condition in laboratory and space. The comparison results show that the study of

the Martian bow shock location is doable since the Euler number (v
√
ρ/p) of both system

is very close.

The formula for the location of the bow shock produced from the solar wind inter-

acting with the unmagnetized planet is presented. The bow shock location is the sum

of the ionopause location and standoff distance. The whole calculation is based on the

gasdynamics formulation since the magnetic effect can be neglected in both space and

laboratory condition. We determine the ionopause nose location using pressure balance

formula. The standoff distance of the bow shock produced by the supersonic plasma jet

around an obstacle is determined by an empirical model. The formula of the shock nose

position was derived and showed that the shock nose location increases with the increas-

ing scale height of ionosphere, the decreasing dynamic pressure of the solar wind and the

increasing peak pressure of the ionosphere. Our derived formula is qualitatively consistent

with the results from spacecraft measurement and the gasdynamics simulations. A more

thorough comparison of our theory with the simulation and the spacecraft measurement

will be made in the future. This theoretical result will be useful for designing future

experiments for studying the location of the Martian bow shock.
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A Hydrostatic equilibrium

The ionospheric pressure formula Eq. 20 is derived based on hydrostatic equilibrium[1].

The assumption of hydrostatic support is equivalent to assuming that all motion in the

ionosphere is static and the equilibrium exists between the gravity and the pressure gra-

dient, i.e.,

dPi
dr

= −ρg, (73)

where p is the thermal pressure inside the ionosphere, g is the gravity, ρ is the mass density

and r is the radial distance from the center of the planet. Note that the gravity g is assumed

to be constant because of the little variation of the value in the whole ionosphere. The

pressure can be approximated by the perfect gas law

Pi =
ρ

m
kBT, (74)

where m = 1.67 × 10−24g is the mass for a singly ionized hydrogen, kB is Boltzmann’s

constant and T is the absolute temperature for plasma. Here the temperature T is assumed

to be constant. The mass density in Eq. 73 can be eliminated from the introduction of

Eq. 74, then the differential equation can be integrated to yield

Pi(r) = PM,i ln

(
−r − rM,i

H

)
, (75)

where rM,i is the location where peak ionospheric pressure occurs, PM,i is the peak iono-

spheric pressure, i.e., the thermal pressure at rM,i, and H is the scale height of the iono-

sphere defined as

H =
kB T

mg
. (76)
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B Rayleigh pitot tube formula

Rayleigh pitot tube formula is used to determine the relation between the thermal

pressure before shock and the thermal pressure at the stagnation point in front of the

obstacle in section 3.2.1. The rigorous derivation of this formula can be seen in Ref.[5].

We use this formula to get the thermal pressure just outside the ionosphere as a function of

the solar wind dynamic pressure. The symbols for the subscripts of the physical quantities

used in this section is shown in Fig. 16.

Figure 16: Schematic of the symbols for the subscripts of the physical quantities. “O”,
“S”, “∞” stand for the location just outside the obstacle, after shock, before shock.

Rayleigh pitot tube formula can be derived in the following two steps:

1. using the normal shock relation to get the pressure jump relation across shock

Ps =
P∞
γ + 1

[
2γM2

∞ − (γ − 1)
]
, (77)

where Ps is the thermal pressure after shock, P∞ is the thermal pressure before
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shock, i.e., the solar wind thermal pressure, M∞ is the sonic Mach number of the

solar wind and γ is the specific heat ratio, and the thermal pressure after shock to

the stagnation point;

2. using Bernoulli’s law and adiabatic compression on the stagnation streamline within

the magnetosheath to obtain the thermal pressure just outside the ionopause nose

Po = Ps

[
1 +

γ − 1

2
M2

s

]γ/(γ−1)
, (78)

where Po is the thermal pressure just outside the obstacle and Ms is the sonic Mach

number after shock.

With the combination of the above two equations and the relation connecting Ms and

M∞, i.e.,

M2
s =

(γ − 1)M2
∞ + 2

2γM2
∞ − (γ − 1)

, (79)

we can obtain the Rayleigh pitot tube formula

Po = P∞M
2
∞(
γ + 1

2
)(γ+1)/(γ−1) 1

[γ − (γ − 1)/(2M2
∞)]1/(γ−1)

. (80)

The detailed derivations of Eq. 77, Eq. 78 and Eq. 79 are in the following paragraphs.

Pressure jump condition across shock There is a discontinuity[5] across the shock

front. We consider an element of the shock surface and use a coordinate system fixed

to this element with the x-axis representing the normal. The normal shock relation is

followed by

[ρvx] = 0, (81)

[vy] = [vz] = 0, (82)
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[
P + ρv2x

]
= 0, (83)[

1

2
v2x +

γ

γ − 1

P

ρ

]
= 0. (84)

Here the brackets mean the difference of the quantity between both sides of the shock

discontinuity. Eq. 81 is the continuity of the mass flux, Eq. 82 and Eq. 83 are the

continuity of the momentum flux and Eq. 84 is the continuity of the energy flux. To

simplify the equation, we set

η =
ρd
ρu

=
vux
vdx

, and ξ =
pd
pu
, (85)

where the subscript “u” and “d” stand for physical quantities at the upstream and down-

stream, respectively. Note that the subscript “u” and “d” here is equivalent to the the

subscript “∞” and “s” in Eq. 77. Then we rearrange the Eq. 83, we can get

(1− ξ) + γM2
u(1− 1

η
) = 0, (86)

where Mu = vux/
√
γpu/ρu is the upstream sonic Mach number. Eq. 84 can also be

rearranged as

1

2
M2

u(1− 1

η2
) +

1

γ − 1
(1− ξ

η
) = 0. (87)

By solving η and ξ from Eq. 86 and Eq. 87, we obtain

η =
ρd
ρu

=
vux
vdx

=
(γ + 1)M2

u

(γ − 1)M2
u + 2

, (88)

and

ξ =
pd
pu

=
2γM2

u − (γ − 1)

γ + 1
. (89)

Now we get the Eq. 77.
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The relation connecting Md and Muis

M2
d

M2
u

=
ρd
ρu

(
vdx
vux

)2
Pu
Pd

(90)

=
vdx
vux

Pu
Pd

(91)

=
(γ − 1)M2

u + 2

(γ + 1)M2
u

× γ + 1

2γM2
u − (γ − 1)

. (92)

Finally, by simplifying the Eq. 92, we get the Eq. 79.

Pressure variation on the stagnation streamline within magnetosheath Bernoulli

equation and adiabatic condition are used to derive the pressure variation after shock.

Bernoulli equation for compressible fluid[5] is expressed as

γ

γ − 1

P

ρ
+

1

2
v2 = constant along each streamline, (93)

where P is the thermal pressure, ρ is the mass density and γ is the specific heat ratio. By

the definition of the sound speed c = γp/ρ, Eq. 93 can be written as

c2

γ − 1
+

1

2
v2 = constant along each streamline. (94)

According to Bernoulli equation, we can get

c2s
γ − 1

+
1

2
v2s =

c2o
γ − 1

, (95)

where subscript “s” and “o” stand for the location after shock and at the obstacle, which

is shown in Fig. 16. Also, by c2s
c2o

= Ts
To

in which T is the temperature, Eq. 95 can be

rewritten as (
Ts
To

)
1

γ − 1
+

1

2

(
vs
co

)2

=
1

γ − 1
. (96)
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Then, we can obtain the relation between Ts and To

Ts = To

(
1− γ − 1

2

(
vs
co

)2
)

(97)

Now for the purpose of express co in terms of cs, we rearrange the Eq. 95 to obtain

c2o = c2s +
1

2
(γ − 1)v2s (98)

and substitute Eq. 98 into Eq. 97, then we can get the relation between Ts and To in

terms of the sonic Mach number after shock Ms

To = Ts

(
1 +

γ − 1

2
M2

s

)
. (99)

By substituting the adiabatic relation

Po
Ps

=

(
To
Ts

)γ/(γ−1)
(100)

into Eq. 99, we get the Eq. 78.
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C 1D electrostatic particle-in-cell simulation

Particle-in-cell simulations are powerful tools to understand the kinetic behavior behind

a complex phenomenon. An 1D PIC code was developed from scratch. It was used to

simulate the two-stream instabilities. The details will be explained in this chapter.

C.1 Fundamental of particle-in-cell simulations

Particle-in-cell (PIC) model is a first-principle model providing a kinetic description of

a plasma without any physics approximations. It calculates the trajectories of a collection

of particles interacting with self-consistent electromagnetic fields. Each computational

particle represents a certain number of real particles. The computational cycle of PIC is

shown in figure 17[27]. The simulations follow the following steps: (1) Maxwell equations

are numerically solved on grids using the particle sources on the discrete grids calculated

from the continuous particle locations; (2) the particles are advanced one time step to new

momentum and positions by numerically solving the equations of motion. Electromagnetic

fields are interpolated from the discrete grid to continuous particle locations; (3) losses or

gains of particles at the boundaries are considered; (4) if the model is collisional, Monte

Carlo collisions of motion must be considered; (5) the computational loop repeats over

step (1) ∼(4).
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Figure 17: Basic flow loop of PIC simulations.

C.2 My 1D electrostatic particle-in-cell program - two-stream

instability

Since a Particle-in-cell program uses many different numerical methods to solve the

different equations, e.g. equations of motion and Poisson equation, it must be divided

into many subprograms to make the program look clear and easy to be debugged. My

main references are “Plasma physics via computer simulation”[28] and “Computational

physics”[29].

C.2.1 Dimensionless equations

Given an uniform, unmagnetized and 1D plasma with N electrons and N unit-charge

ions, ions are regarded as static and uniform background since ions are much heavier than

electrons. We only consider the motions of electrons. Let r(i) be the position of the ith

electron. The equations of motion of the ith electrons is shown as below:

d r(i)

d t
= v(i), (101)

d v(i)

d t
= a(i) = −eE(i)

me

. (102)
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where v(i), a(i), E(i), me are the velocity of the ith electron, the acceleration of the ith

electron, the electric field at the position of the ithelectron and the mass of a electron,

respectively.

The electric potentials φ(x) can be obtained from Poisson equation and the electric

fields can be expressed in terms of electric potentials:

d2 φ(x)

d x2
= − e

ε0
{n0 − n(x)}, (103)

E(x) = −d φ(x)

d x
, (104)

where ε0 is the permittivity of the free space, n0 is the number density of ions and n(x) is

the number density of electrons.

The dominant equations can be simplified via normalization. All the physical quantities

is then in the same scale. Variables in the dominant equations are normalized in the

following unit (characteristic time, length, potential and field):

tchar = ω−1p =

√
ε0me

n0 e2
, (105)

lchar = λd =
vth
ωp
, (106)

φchar =
Te
e

=
me v

2
th

e
, (107)

Echar =
φchar
eλd

=
me v

2
th

eλd
, (108)

where ωp is the plasma frequency, λd is the Debye length and vth=ωp λd is the thermal
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velocity. The normalized dominant equations becomes:

d r(i)

d t
= v(i), (109)

d v(i)

d t
= a(i) = −E(i), (110)

E(x) = −d φ(x)

d x
, (111)

d2 φ(x)

d x2
=
n(x)

n0

− 1. (112)

Periodic boundary condition is used in this program:

φ(0) = φ(L), E(0) = E(L), n(0) = n(L). (113)

For the two-stream instability, the initial electron distribution function consists of two

opposing-propagating Maxwellian beams of beam velocity vb and thermal spread velocity

vth:

f(x, v) =
n0

2

{
1√

2 π vth
e−(v−vb)

2/2 v2th +
1√

2 π vth
e−(v+vb)

2/2 v2th

}
. (114)

C.2.2 Input parameters

Before running the simulations, we should input parameters. All physical quantities

in the dominant equations are normalized by plasma frequency and Debye length. To

retrieve the real physics, every physical quantities need to be converted back to real units.

The input parameters are shown in the Table 3,4.
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Input parameters Description

L Length of simulation system: 0<=x<=L
N number of electrons

jmax number of grids
vb beam velocity
dt time step

tmax simulation from 0 to tmax
outputf output data per outputf

Table 3: Input data for running the simulation.

The size of each grid is defined as: dx = L/(jmax−1.), and density of ion dsty0 = N/L.

Input parameters Description

wp plasma frequency
qm charge/mass
epsi permittivity
vth thermal velocity

Table 4: Input data for dealing with the real physics.

Given these parameter values in Table 4, we can get charge q and electron mass

me in terms of these real values: q = wp ∗ wp ∗ epsi/dsty0/qm and me = wp ∗ wp ∗

epsi/dsty0/qm/qm.

C.2.3 Program overview

The flow chart of my program is shown in Fig. 18. Equations of motion are solved using

Leapfrog method. Poisson equation is solved using Gauss-Seidal method. The program

is initiated to satisfy Leapfrog method by pushing v(t = 0) back to v(t = −dt
2

). Initial

locations of the particles are randomly distributed; Initial velocities of the particles satisfy

double-peak Gaussian distribution as Eq. 114. Then it can run the PIC loop until the

end of the simulation. The computer language I use is FORTRAN and post-processing

software is MATHEMATICA.
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Figure 18: Flow chart of my 1D electrostatic PIC program.

C.2.4 Leapfrog method for solving equations of motion

Leapfrog method, one of the methods to solve ODE using the second-order center

difference scheme is used. It requires only few operations and storage since the update

can be done in place immediately. Equations of motion are discretized as below:

vnew = vold + aold dt, (115)

rnew = rold + vnew dt. (116)

In Leapfrog method, velocity is in multiples of integers plus one half time step. How-

ever, location and acceleration (force) are in multiple of integer time step (shown in Fig.

19[28]). Something should be noticed here: first, the program should be initiated by push-

ing v(t = 0) back to v(t = −dt
2

) using the force at t=0; second, the energy calculated from

locations and velocities must be adjusted to the same time.
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Figure 19: Schematic of the velocity and location flow of Leapfrog method.

Benchmark To verify the program is correct, the numerical results are compared to the

calculation results for dt = 1, N = 5, r(i) = i+7, v(i) = 2, a(i) = 1, L = 10 with periodic

boundary condition. The results after 1 time step are shown in Table 5.

r(i) [vnew(i) + vold(i)]/2

1 2.5
2 2.5
3 2.5
4 2.5
5 2.5

Table 5: The simulation results after 1 time step.

C.2.5 Gauss-Seidel method for solving Poisson equation

To solve Poisson equation numerically, it is first discretized and then rearranged into

matrix form. Gauss-Seidel method, one of the iterative methods for solving matrix, is

used. The discretized electric field is defined as
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E(j) =
φ(j − 1)− φ(j + 1)

2 dx
. (117)

Benchmark To benchmark, the electric field and electric potential for one proton lo-

cated at x = 5 (length of system L = 10) and dx = 0.001 are calculated. Periodic

boundary condition is used. The simulation result is shown in Fig.20. The simulation

results are consistent with the analytic solution and satisfy periodic boundary condition.

Figure 20: The simulation results when one proton is at the middle of the system using
periodic boundary condition.

C.2.6 Linear weighting method for connecting particles and grids

1. Density

Density is evaluated by locations of particles using linear weighting method. For x(j) <
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r(i) < x(j + 1), we let

n(j)→ n(j) +

[
x(j + 1)− r(i)

dx

]
/dx, (118)

n(j + 1)→ n(j + 1) +

[
r(i)− x(j)

dx

]
/dx. (119)

Benchmark Our code of linear weighting method is benchmarked using the example as

shown in the Figure 21. When a particle is located at r = 0.5, the neighboring grids at

x = 0 and x = 1 are both incremented by 0.5. In the same manner, when a particle is

located at r = 4.8, the neighboring grids at x = 4 and x = 5 are incremented by 0.2 and

0.8, respectively.

Figure 21: Benchmark of Density subprogram. Locations of electrons are input and
densities are output.

2. Acceleration

Acceleration of each particles is evaluated by electric field at each grids using linear in-

terpolation and the normalized equations of motion (Eq. 110). Linear interpolation of

electric field is defined as

E(i) =

[
x(j + 1)− r(i)

dx

]
E(j) +

[
r(i)− x(j)

dx

]
E(j + 1). (120)

Benchmark Our code of evaluating acceleration is benchmarked using the example as

shown in the Figure 22. In this example, the values of the electric field are same as
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the values of the grid locations. When a particle is located at r = 1.5, electric field at

this particle location is 1.5 due to the linear interpolation. In the same manner, when a

particle is located at r = 4.8, electric field at this particle location is 4.8. Then, according

to the equation 110, electric fields at particle locations 1.5 and 4.8 are −1.5 and −4.8,

respectively.

Figure 22: Benchmark of Acceleration. Locations of electrons and Electric field at grids
are input; acceleration at electrons is output.

C.3 Two-stream instability: selected results and analysis

The input parameters are: N = 20000, jmax = 1001, L = 100., dt = 0.1, tmax =

50.1, outputf = 2.5, wp = 1, qm = 1, vth = 1, epsi = 1. The following results and

analysis are based on these input parameters.

Fig. 23 shows the phase space plots at different times. There are 20000 dots repre-

senting 20000 movable electrons in each figure. Initially, the locations of electrons are

randomly distributed but velocities follow the double-peak Maxwellian distribution (Eq.

114). As time goes on, the plasma becomes unstable and instability grows. When t=20

and 30, we observe some vortices. It means at that time some particles are oscillating or

trapped in the local area.
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Figure 23: The phase space plots of the two-stream instability with 20000 movable elec-
trons and 20000 fixed background ions at different time.

Fig. 24 shows the plots of electric fields at different time. Initially since the ions

electrons are uniformly distributed, the electric fields are almost zero everywhere. As time

goes on, the electric fields are no longer zero everywhere due to the instability. At t=20,

the particles are uniformly trapped in the four islands as shown in Fig. 23, so the electric

field versus location is like a sine function. The instability gradually grows so that the

electric field also increases as time goes on.

67



doi:10.6844/NCKU201901460

Figure 24: Plots of Electric fields at different time.

Fig. 25 shows the phase space trajectories with different initial velocities. To under-

stand the motion of each electrons, electrons with different initial velocities are traced in

phase space. For electrons with high initial velocity (∼5), they are unbounded. However,

for those with low initial velocity (∼0), they are trapped in islands and have the oscillating

motions.
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Figure 25: Phase space trajectories of particles with different initial velocities. Particles
with different initial velocity either are trapped or unbounded.

Fig. 26 shows the velocity distribution at different time. Initially, velocities follow the

double-peak Maxwellian distribution (Eq. 114). As the time goes on, the instability grows

so that double-peak Maxwellian distribution are destroyed. The distribution gradually

merge and the velocities spread broader.
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Figure 26: Velocity distribution at different time.

Fig. 27 shows the total energy and electrostatic energy varies with time. Total energy

and electrostatic energy are defined as

Etotal =
N∑
i=1

1

2
me v

2
i +

jmax∑
j=1

1

2
ε0E

2
j dx, (121)

Eelectric =

jmax∑
j=1

1

2
ε0E

2
j dx. (122)

The energy does not conserve because our simulation does not satisfy courant conditioin

that v dt ≤ dx. The timestep in my simulation should be smaller after t=10.
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Figure 27: Total energy and electrostatic energy as a function of time.

C.4 Comparison withe the linear theory

For two stream instability of cold plasma, the dispersion relation can be obtained from

both kinetic theory and fluid theory. The initial distribution function is

f0(v) =
1

2
no[δ(v − v0) + δ(v + v0))]. (123)

We can obtain the dispersion relation from inserting Eq. 123 into the linearized Vlasov

equation. The dispersion relation is

ω2 = k2 v20 +
1

2
ω2
pe

(
1±

√
1 +

8k2v20
ω2
pe

)
. (124)

So we can get the growth rate ωim as

ωim
ωpe

=

√√√√−[k2v20
ω2
pe

+
1

2

(
1−

√
1 +

8k2v20
ω2
pe

)]
. (125)
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The comparison of the simulation results with the linear theory is shown in Fig.28.

Figure 28: The electric energy against the time: the comparison of the simulation results
with the linear theory. Here k vo = 0.5.
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D Setup of the code “PIConGPU” on our cluster

The code PIConGPU[30], which is 3D electromagnetic particle-in-cell code will GPU

parallelization, has been installed on our cluster. We built the computer in Ubuntu op-

eration system and installed two graphic cards from scratch. The graphic card NVIDIA

GTX 1060 is used. We bought the graphic cards through 佳欣科技. picongpu.profile-dev

is the script I wrote for setting up the environment for running PIConGPU. The following

is the usage of executing the example of PIConGPU in our computer:

Use spack (a tool for setting the environment) to load all dependent libraries, then add

the directory of PIConGPU code to environment variables

1. . picongpu.profile-dev or source picongpu.profile-dev

2. pic-create $PIC EXAMPLES/LaserWakefield $HOME/picInputs-dev/myLWFA

3. cd ˜/picInputs/myLWFA

4. pic-build

5. tbg -s bash -c etc/picongpu/0001gpus.cfg -t etc/picongpu/bash/mpirun.tpl $HOME/runs-

dev/lwfa 002
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