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Abstract

This thesis is to study the free-streaming electrons moving in a uniform background plasma
in numerical simulation. Free-streaming electrons can be generated in our parallel plate
capacitor bank (PPCB) system under construction. Uniform plasma can be generated by
glow discharge. The simulation code of free-streaming electrons is implemented via Vlasov
solver. Vlasov solver is usually used to simulate plasma phenomena in kinetic regime. Two-
stream instability is used to benchmark the code. The energy conservation is checked and
energy growth rate of two-stream instability calculated from simulation results and theory
are compared. The free-streaming electrons is simulated with thermal velocity vin= 1, beam
velocity vy =2, 3, 4, 5, respectively. Ratios between the number density of the free streaming
electrons and the background electron density y = 0.5, 1, 2, respectively. Therefore, there are
12 different initial conditions were simulated. Instabilities occur when beam velocity vy = 3
and vp = 4. No instability occurs for vp =2 and v, = 5. In vy = 2, instability vy is diffused by
electron of thermal motions. In vy, = 5, the relative velocity between electrons and the
background plasma is too large so that they don’t interact with each other. The growth rate
is the highest when y = 1. Nevertheless, the growth rate in different y doesn’t change over

10% between different y we simulated.

Keywords: Free-streaming electrons, Vlasov solver, Kinetic regime, Two-stream

instability
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Chapter 1 Introduction

This thesis is to study free-streaming electrons in a uniform background plasma in
simulations. The distribution function of electrons is very different from Maxwellian.
Therefore, the phenomenon happens in kinetic regime. Vlasov equation will be solved
numerically. In experiment, to generate free-streaming electron beams, a pulsed-power
system is used. A pulsed-power system called parallel plate capacitor bank (PPCB) is being
built in our group. It can generate a current up to ~800kA with a rise time of ~700ns. It can
potentially generate a free-streaming electron beam with kinetic energy up to 80kV. In order
to study the free-streaming electrons in a uniform plasma, a DC glow discharge will be used.
The potential experimental setup is shown in Figure 1-1. Therefore, we are simulating the

experiments of such electron beams in a background plasmas that will be conducted in the

future.
80kV 10kv
| |
| b |
anode
7
&
\\\:i
cathode
anode

Direct current (DC) glow discharge

Figure 1-1 Schematic of experiment setup of generating free-streaming electrons.



1.1 Parallel plate capacitor bank

A pulsed-power system is a device that stores energy first and releases it in a short period of
time to provide high power output. The system is built in a parallel plate capacitor bank
(PPCB). The side view and top view of PPCB system are shown in Figure 1-2 and Figure
1-3 respectively, and Figure 1-4 shows the 3D configuration of PPCB system. The
configuration of PPCB is introduced below. It consists of 20 capacitors. Each capacitor has
1uF capacitance. Two capacitors connected in series is called one stage. Ten stages are
connected in parallel. Therefore, one stage has 0.5uF capacitance and ten stages connected
in parallel have totally SuF capacitance. Figure 1-5 is the circuit diagram of PPCB system.
When PPCB system is charged to 80kV, it stores 16kJ energy. On the other hand, when it is
discharged, it provides a current with ~800kA. Parameters of PPCB system are shown in

Table 1-1.
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Figure 1-2 (a) Side view of the concept of PPCB. (b) Side view of the schematic of
PPCB.



(a)

One stage Capacitor  Rail gap switch

[ HM Chamber | [(hH | T
[ HI[I]] {H_]
L H[]] [1H 1| 1.75m
L H[I]] LH ]
LMY LA
| 3m |

(b)

826
s(@)e
..’

Figure 1-3 (a) Top view of the concept of PPCB. (b) Top view of the schematic of
PPCB.



Figure 1-4 Schematic of PPCB.
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Figure 1-5 Circuit diagram of PPCB system.
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Table 1-1 Parameters of PPCB system.

Capacitance 1 uF /each
# of capacitor 20

Total capacitance 5 uF
Voltage 80 kV



Total energy 16 kJ

Peak current ~800 kA
Rise time ~700 ns
Power 16 GW

1.2 Free-streaming electrons

Free-streaming electrons is studied in a uniform background plasma in this thesis. Free-
streaming electrons can be generated by a strong electric field. A pulse electric field for
accelerating electrons can be generated by the PPCB system in building by us. The pulsed-
power system in our lab can provide a pulsed voltage up to 80kV, i.e., electrons can be
accelerated to 80keV. Figure 1-1 is shown the potential experimental setup. The cathode is a
disk while the anode is a ring electrode. When the system is discharged electrode, most
electrons move from the cathode to the anode. Few electrons pass through the ring anode
and become the same of the free-streaming electrons. Because of heavier weight of ions than
electrons, electrons propagates much faster than ions when they have the same kinetic energy.
Therefore, ions are treated as stationary. The distribution function of the experiment is shown
in Figure 1-6. A Gaussian at v=0 represents the electrons of the background plasma. The
Gaussian away from the center represents the free-streaming electrons. The plasma is in

kinetic regime and is simulated by solving Vlasov equation.



f(v)

-5 5 10 15 v

Figure 1-6 Distribution of free-streaming electrons.

1.3 Vlasov-Piosson system

Vlaosv equation describes how distribution functions evolve in kinetic regime without

collisions. The main equations are called Vlasov-Poisson equations. They are given as

following:
.~ eE_ .
O ftvV, f+ = V. =0, Vlasov equation, (1-1)
€
-~ B . c
V2p=-V,E=- - (n;-n.), Poisson’s equation. (1-2)
0

These two equations are called Vlasov-Poisson system. Vlasov equation is a partial
differential equation describing time evolution of the distribution function of plasma
consisting of charged particles interaction. Poisson’s equation describes how the electric
potential charges in the plasma. Numerical simulation methods and their benchmark of
Vlasov solver are discussed in Chapter 2. Theory of two-stream instability is used to
benchmark Vlasov solver. The simulation results are benchmark by compared with theory
of two-stream instability. The simulation results of free-streaming electrons are discussed in

Chapter 3. The conclusion and future work are shown in Chapter 4.



Chapter 2 Vlasov solver

Vlasov solver is used to solve Vlasov equation numerically to study plasma phenomena
without collisions in kinetic regime. When simulating plasma in kinetic regime, there are
two kinds of methods to simulate: Particle-in-Cell (PIC) method and Vlasov solver.
Compared to PIC, Vlasov solver is harder for massively parallel computation, but has no
noise problem in kinetic regime. One-dimensional (1-D) Vlasov-Poisson system is used in
this thesis. Therefore, only one-dimensional electrostatic problems are simulated. To verify
our Vlasov solver, two-stream instability is simulated. The instability occurs when two
counter-streaming plasma beams interact with each others. In this chapter, all subroutines of
Vlasov solver are introduced. In section 2.1, the basic equations in Vlasov solver are
introduced first. These equations are called Vlasov-Poisson’s system. In section 2.2, Vlasov-
Poisson system is normalized. In section 2.3, the simulation sequence and subroutines are
introduced. In section 2.4, the numerical grids and range of simulation are introduced.
Furthermore in section 2.5, details of numerical methods in Vlasov solver to solve the
equations in Vlasov-Poisson system are discussed. All subroutines are benchmarked. Finally

in section 2.6, The two-stream instability is used to benchmark the whole Vlasov solver.

2.1 Basic equations

The basic equations of Vlasov solver in one dimension is shown in Eq.(2-1) to Eq.(2-5).
Eq.(2-1) is Vlasov equation in one dimension, f(X,v,t) is the distribution function of
electrons in plasma, x and v are position and velocity of electrons respectively, and t is time.
a(x) is acceleration of electrons due to electric field, and the relation is shown in Eq.(2-5).
Eq.(2-2) is the integration of distribution function f(x,v,t) by velocity v, and n(x) is the

number density of electrons. Eq.(2-3) is a Poisson’s equation, where @(x) is electric



potential, e is electric charge, €, is electric permittivity of free space. Eq.(2-3) can be solved
with number density n. Because the electrons are much lighter than ions, electrons move
much faster than ions with the same energy. Therefore, ions are set as a static background
and only motions of electrons are considered. As a result, the number density of ions n; is
set as a constant ny in our equations. On the other hand, the number density of electrons
n, is set as n(x). Eq.(2-4) uses divergence relation between electric potential ¢(x) and
electric field E(x) to calculate the electric field. In Eq.(2-5), e is the same as Eq.(2-3), and

m, is matter of electrons.

of(x,v,t)  of(x,v,t) of(x,v,t)
+v +a(x) =0

ot ox o D
no=n(x)= f F(xv.0dv, (2-2)
L= £ (n)=-E a1, 3)
BGo=- 20 (2-4)

a(x)=- eEHEX) . (2-5)

2.2 Normalization

The Vlasov-Poisson system equations have some complex constants. To simplify, these
equations are normalized to dimensionless equations using some characteristic quantities.
All variables in the Vlasov-Poisson equations are normalized in the following units where
the variables with subscript “char” is their own characteristic quantities (characteristic time
tepar> length X .., velocity vy, acceleration ag,., number density n.,., distribution
function fg,, , electric potential ¢, , and electric field Egp, ). There are seven

characteristic quantities to be set as Eq.(2-6) to Eq.(2-13).



tehar=0, ' Where ©,= ppp— (2-6)
gokpTe
Xchar=Ap Where Ap= (;10Bez , (2-7)
kT,
Vehar=Vih Where vy=Apo,= an_' (2-3)
€
Achar=Ap O =Vih Oy, (2-9)
N¢har=No, (2' 1 0)
No
£ =2 2-11
" Vih ( )
2
_ enphp _ mthhzl (2-12)
char €9 e
A 2
char= i 5 2 L] (2-13)

g9 ehp

The two main characteristic quantities are in time and in length. Time is normalized by one
over plasma frequency mp'l. Length is normalized by Debye length of the plasma Ap.
Velocity is normalized by thermal velocity vy,. Number density is normalized by number
density of ions. In Eq.(2-7) and Eq.(2-8), kg is Boltzmann constant and T, is electron
temperature. Derivation of these normalized variables are shown in Eq.(2-14) to Eq.(2-25),
respectively, where variables with hats represents normalized variables (normalized time {,
position X, velocity V, acceleration 2, number density f, distribution function f., electric
potential @, and electric field E). Eq.(2-14) and Eq.(2-15) are shown the definition of

normalized time and position. Eq.(2-16) and Eq.(2-17) are shown the derivation of velocity

. : d & . : .
and acceleration by using V=d—: and a=ﬁ respectively. Normalized number density and

distribution function are derived in Eq.(2-18) and Eq.(2-20) by using Eq.(2-2). Eq.(2-21) to

Eq.(2-23) are the steps using Eq.(2-3) to normalize electric potential, and Eq.(2-24) and

10



Eq.(2-25) is the steps using Eq.(2-4) to normalize electric potential. Eq.(2-26) and Eq.(2-27)

are normalized Eq.(2-5).

~

.t
t=t opyqr t=—, (2-14)
®©p
 XchardX \ dx dx (2-15)
VVehar Y dt PP ]
X:XChari:;\‘Dﬁ' (2- 1 6)
 Xepard’R &% d’s 017
a:achara:—A: pD® T:V h® Y -
o 2d S (R o
N=N 1o A= A=F o Vehar f £d9 =f o0 Vi f fd9, (2-18)
:n=n0=fcharvth, (2—19)
Ny
:f:fchar: - (2_20)
Vih
(0] dz'(ﬁ e
ch;r —=—nyf), (2-21)
}\'D dx €
4% 2%4 2-22)
ﬁ@char@:n();\@ %Il. ( -

2
engAp m eny Vi’ - engVy,” EoMe B M, Ve,

= = = = = 2-23
Pehar £ £’ g npe2 e (2-23)
3 A enghp” d engh
E=E,, Be-tchur P _ 0D € g400 SO g0 (2-24)
Xehar A Apgy dX €0

2 2 2 2
B - enphp”  engVy~  eNgVy” €M MV, (2.25)
M pEr  Eohp®y2  €ohp Nge*  eAp
DEQ 0AD®Op oAp Mo D

e ~
Achard=- Ee EcharE (2-26)
2 2
€ MgV Vin
—1 = — = —= X 2 2—27
Therefore, basic equations of Vlasov-Poisson system in Eq.(2-1) to Eq.(2-5) can be
normalized as Eq.(2-28) to Eq.(2-32).
ofRoD of(®01 of(R,0.
GED  AGID o AGID 228)

— 4V — a(x ,
ot 15)'¢ ov

11



(%)= f f(®,9,04a9, (2-29)

2~ra
d ‘pfzx) —[1-6(R)], (2-30)
dx
E®)=- d(P(AX), (2-31)
dx
a(R)=-ER). (2-32)

To simply the notation, variables without hats in the rest of this thesis represents normalized

quantities.

2.3 Simulation structure

The process of Vlasov simulation follows the equations in Vlasov-Poisson system. The
Figure 2-1 is shown the flow chart of Vlasov simulation. A distribution function is given as
an initial condition first. In each time step At, simulation does the following steps: (1)
Calculate the number density of electrons n(x) by integrating the distribution function f(x,v,t)
as Eq.(2-28) . (2) Calculate Poisson’s equation to get electric potential ¢(x) as Eq.(2-30). (3)
Calculate Gauss’s Law in electric field to get electric field E(x) and its acceleration a(x) as
Eq.(2-31) and Eq.(2-32). (4) Calculate Vlasov equation to get new distribution function
f(x,v,t) as Eq.(2-28). Data are output at specific time steps. Finally, this simulation is stopped

when time reaches the total simulation time.

12



1)

<

Figure 2-1 Flow chart of Vlasov solver.

Detail structure of the program is shown in Figure 2-2. The function of each subprogram is
discussed below.

e  Main — main program.

e  Module — set numerical variables.

e Initial — set initial distribution function.

e Boundary — set boundary conditions of f(x,v).

e  Vboundary — set boundary conditions of n(x), E(x), ¢(x), a(x).

e  Density — calculate number density.

e  Poisson — calculate Poisson’s equation.

e  Electric — calculate electric field by using electric potential relation.
e  Splitx — calculate divided advection equation in x.

e  Splitv - calculate divided advection equation in v.

Main program

Main

13



— Module

— Initial

— Boundary

— Density

— Poisson

— Vboundary

— Electric

— Vboundary

— for time loop
— Splitv
— Boundary
— Splitx
— Boundary
— Density
— Poisson
— Vboundary
— Electric

— Vboundary

Figure 2-2 Subprograms of the Vlasov solver.

2.4 Simulation grids

To calculate equations of Vlasov-Poisson system in simulation, numerical grids need to
be defined so that they can be solved by using computers. In Vlasov solver. Vlasov solver
sees a discrete phase space graph (x-v graph) in simulation. Therefore, the real space x is
discretized as spatial grids “ix” in each position and velocity v is discretized as velocity space
grids “iv” in each velocity space. Figure 2-3 shows the numerical grids of discrete phase
space. In Figure 2-3, the simulation range in x from 0O to length L is discretized from 0 to nx
and the simulation range in v from vo to vpy is discretized from O to nv. The “0” and “nv” in
subscript are the minimum and maximum values respectively in real space x and velocity

space v. Therefore, length of one grid in spatial and velocity space are defined as Eq.(2-33)

14



and Eq.(2-34).

x -x. L-0
Ax=—2"L=—— (2-33)
nx nx
A A
Av=—= (2-34)
nv

Each grid is set as xijx=1x*Ax in spatial grids and viy=iv*Av in velocity space grids, where Xix
and viy are the real values at ix and iv grids. The real time in simulation is discretized from 0
to nt steps in “it” temporal grids. The total time is defined as t=nt*At and time at each time
step is ti=it* At where At is the length of one time step that is defined by using CFL condition
in section 2.5.6. Because all physical quantities in Vlasov-Poisson system are normalized by
one over plasma frequency cope‘l and Debye length Ap, all values in simulation are in
normalized unit. If dealing with real physics, every physical quantities should be changed in

real unit. The discretized parameters are shown in Table 2-1.

Table 2-1 Parameters for running Vlasov simulation.

Parameters Definition
X Real space
v Real velocity space
X Number of grid in space
iv Number of grid in velocity
nx Total number of grid in space
nv Total number of grid in velocity
L Total length in space
t Real time
it Number of time step
tit Time at time step it
nt Total number of time step

15



At Size of each time step

Xix Position at grid ix

X0 Maximum position in space
Xnx Minimum position in space
Ax Grid size in space

Viv Velocity of grid iv

Vo Maximum velocity

Vav Minimum velocity

Av Grid size in velocity

ot NIRRT N P T

5'-'mr. ' i : i | .v-w

.....................................................................................

Figure 2-3 Grids in phase space in Vlasov solver.
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2.5 Numerical methods and verification

Details of each subroutine and its benchmark is shown in this section. Following
equations are solved in sequence: (1) initial condition, (2) boundary conditions, (3)
integration of distribution function to obtain density of electrons, (4) Poisson’s equation to

obtain electric potential, (5) electric field and acceleration, (6) Vlasov equation.

2.5.1 Initial condition

This subroutine generate the initial condition for simulations. Comparison between the
simulation result and the analytical equation is given in Figure 2-4. The green line represents

the function given in Eq.(2-35) while the red dots are the simulation result from the code.

(v-2m)’
f(v,i=0)=e" 2 . (2-35)
They are overlapped to each other. This shows that the subroutine for calculating initial

condition is benchmarked.

17



Figure 2-4 Initial condition given in Eq.(2-35).

2.5.2 Boundary conditions

Each variable in Vlasov-Poisson system has its own boundary condition. They are
defined as below in sequence (distribution function f(x,v,t), number density n(x), electric

potential ¢(x), electric field E(x), acceleration a(x)).

2.5.2.1 Set of boundary conditions

1. Distribution function f(x,v,t)

Distribution function f(x,v,t) have two boundary conditions in x and v respectively.
They are defined as below.
(1) Periodic boundary condition is used in spatial grids x:

In periodic boundary condition, particles leaving the simulation region from one
boundary automatically coming back with the same velocity from the other boundary. This
behavior ensure the particles are conserved in our simulation range. It can be defined as

Eq.(2-36). In other words, two boundaries are connected with each other.

18



f(X0,v) = f(Xnx,V)- (2-36)
In numerical simulation, the periodic boundary condition is defined as Eq.(2-37).
f-lzfnx-la f-2:fnx-2’ f-3:fnx-3a
(2-37)
fnx+1 =fl > fnx+2 =f2 > fnx+3 =f3 .
Points beyond boundaries are called virtual numerical grids or ghost cells. Numbers of

virtual grids are used depends on the simulation algorithm. Figure 2-5 shows the settings of

Eq.(2-37).

; | |

| l | | | l | | |
:_--}.--r-- | I | I I
fz 2 £y fp £ £ 6

|
M IS [——
r== |

fnx—3fnx—2 fnx—l fnx fnx+1fnx+2 fnx+3
F

L]

Figure 2-5 Periodic boundary condition in x for distribution function is used.

(2) Dirichlet boundary condition is used in velocity space grids v:

Dirichlet boundary condition is used and distribution function on the boundary in
velocity is set as zero because the Gaussian distribution function goes zero with large number.
It can be defined as Eq.(2-38).

f(x,vy) =0, f(x,v,,)=0. (2-38)

As a result, in numerical simulation, Dirichlet boundary condition can be set as Eq.(2-39).

Figure 2-6 shows the settings in Eq.(2-39).
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f-lzoa f-ZZO’ f-3:O’
(2-39)
fnv+1 =Oa fnv+2 =0, fnv+3 =0.

0 0 0 0 0 0
==t ===~ -+
f-3 1:-2 f-l f0 fnv fnv+1 fnv+2 fnv+3

Figure 2-6 Dirichlet boundary condition in v for distribution function is used.

2. Number density n(x), electric potential @(x), electric field E(x), acceleration

a(x)
These four variables all depends on space x so their boundary conditions are also
periodic. They are defined as Eq.(2-40).
n(Xg) = n(Xnx), ¢(X0) = 0(Xnx), E(X0) = Expy), a(x0) = a(Xx)- (2-40)

In numerical simulation, they are set as the same as the form in Eq.(2-37) and shown in

|

|__||||||=|||__t
I‘||||||1||l

P41 P P Pnx-1 Pnx Pnx+1

Figure 2-7.

Figure 2-7 Periodic boundary condition in x for n(x), ¢(x), E(x), a(x) is used.

2.5.2.2 Benchmark of boundary conditions

To benchmark the subroutine calculates boundary condition. The boundary condition
f(x,vo)=f(x,v,,)=1 is used. A given distribution function set as Eq.(2-41) and shown in

Figure 2-8 is used.
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S

A%

f(x,v,t=0)=% (1+5v?) [1+0.01(@+eos0.5x)]e'7. (2-41)

f(v)

\0.25 }
0.20
0.5}
0.0}/
f .II- '-‘;I
/ 0.05}
-4 -2 0 2 4 v

Figure 2-8 Distribution function given in Eq.(2-41).

The distribution function initially goes to zero at vo and vayv. However, after applying
boundary condition, points on the boundary become 1 showing in Figure 2-9. This shows

that the subroutine for calculation boundary condition is benchmarked.

21



f(v)

1.0}
0.8
0.6}
0.4f

0.2}

-4 -2 0 2 4
Figure 2-9 Distribution function after applying boundary conditions.

After the subroutine of the boundary condition is benchmarked, the boundary condition is

changed back to what were described in 2.5.2.1.
2.5.3 Density of electrons

The density of electrons is calculated by integrating distribution function f in Eq.(2-29).

It is rewritten in Eq.(2-42).
Vnv

n(x)= f f(x,v,t)dv. (2-42)

Note that the integration region is changed from O to infinity (o) to vo to vay since the

distribution function is almost zero for v < vo and v > vay.
2.5.3.1 Using trapezoidal method to solve numerical integration

To do the integration numerically, trapezoidal method[2] is used. Figure 2-10 shows the
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concept of trapezoidal method. Trapezoidal method approximates the area under the curve
of the function as lots of trapezoids and calculates their area. The integral is approximated
by a summation given in Eq.(2-43). This equation shows that it is the summation of many

trapezoids, where Av is the height and f(viv) is sides of trapezoids.

nz% [f(V0)+f(V1 )]+ % [f(VI )+f(V2)]+' * '+§ [f(Viv— 1 )+f(ViV)]

P L) H ) T 2 [V ) (V)

(2-43)
= % [f(V0)+2f(V1 )+' : '+2f(Viv)+' : '+2f(VnV— 1 )+f(an)]
where Av= "r;_vv"
The Eq.(2-43) can be rewritten in Eq.(2-44).
Vv nv-1
n= j B [Z Fv2,) + o [F(v)+ (V)] (2-44)
- iv b 0 nv/1(*
Vo iv=
f(v)
f(v)
f(Viv+1)
f(viy)
f(Viv-l)

Viy Viv+1

iv-1

Figure 2-10 Trapezoidal method is used for integration.
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2.5.3.2 Benchmark of number density

To benchmark numerical integration using trapezoidal method, a distribution function
f(v) =v* is used. To test the integration subroutine, this distribution function is integrated

from v =-5t0 v =5 as shown in Eq.(2-45).

5 5
5
n(x) = f vidv = Vg = 1250. (2-45)
3 -5

The numerical calculation is 1250.034 with an error of 2.72x103%. It shows the subroutine

that calculates the integration is benchmarked.

2.5.4 Poisson’s equation

The Poisson’s equation from Eq.(2-30) is given again in Eq.(2-46).

2
difj‘) —n (-1, (2-46)

The density(x) on the right hand side of Eq.(2-46) has already been calculated in section

2.5.3.

2.5.4.1 Numerical methods of solving Poisson’s equation

To solve the Poisson’s equation, finite difference method (FDM) is used. As a result,
using finite difference method, the left hand side of Eq.(2-46) can be changed to a discrete

form as Eq.(2-47).

2
d“p(x) ~ (pix-l_z(pix +(Pix+1_ (2-47)
dx? Ax?
Inserting Eq.(2-47) back to Eq.(2-46) so that Eq. (2-46) becomes Eq.(2-48) and Eq.(2-49).

P20, O,

o =n;, -1. (2-48)
X

1X

24



Pinc1 203, ¥ 0y = (mi-)AK. (2-49)
There are nx equations and nx unknowns of @ix where ix = 0 to nx. Periodic boundary

condition with the definition ¢ =@ and ¢ are used. The series of equations are

nx-1 nx+1 :(pl

shown in Eq.(2-50).

( (an-l_z(pO +(P1 =(Il0 _1)AXZ
?, —2(p1 +0, :(nl —1)Ax2

A

0120, 40, =(ni-1)AX (2-50)

(PHX—2_2(an-1+(pnx=(nnx_1 - 1)AX2
\ (pnx—l '2(an+([)1 =(nnx'1)AX2

To simplify, (nix—l)sz =g, isused. The series of equations is shown in Eq.(2-51).

(20, +9, +1o =g,
Py 29, +0, =g

1 i 17205 +0; 1= &y - (2-51)

(pnx-2_2(an-1 +(an: gnx-l
\ (pl +(an—1_2(pnx= gnx

Eq.(2-51) also can be written in matrix form as Eq.(2-53) for calculation.

2 1 0 - 0 1 07
1 -2 1 T ?y ] g
o 1 =~ - : : :
: : =| i (2-52)
. 1 0 : :
I 2 1 {LPyd L8y
0O 1 O 0o 1 -2

To solve Eq.(2-51), these linear equations can be written in the matrix form as Eq.(2-53),
where ¢, =¢., and g_=b; and, a;; represents elements in the matrix.

[ 20090+20,190 +++0 11 Py T0.x Py =Do

{ a10Qpta; ¢+ +ay k10, a1 @, =b1 ] (2-53)
kanx,O QpFanx, 1P+ +anx nx-1 (an_l"'anx,nxq)n,(:bnx

Generally, there are two kinds of methods to solve the system of equations in the matrix form.
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One is iteration method including Jacobi’s method[2], Gauss-Seidel’s method[2]. The other
one is direct method including Gauss elimination[2] and LU decomposition method[2]. They
are both introduced in the below
1. Iteration methods

Iteration methods solve each linear equation for ¢, sequentially from an initial guess.
Equations are solved by iteration until the solution converges. Two methods of iteration
methods, Jacobi’s method and Gauss-Seidel’s method are introduced.
(1) Jacobi’s method

The equation is rewritten in the following form in Eq.(2-20).

k k k k
(Pk+ 1 bO'aO, 197730295 -0 n-1Q 1,1 730,0xP ¢
0 ap i

k k... k k
Kbl bl'al,O(Po'al,Z(Pz =1 n-1Pe 1~ ,0x Py
1 ap ’ (2-54)

k .. k
okl = Dk -k 09 Anx, 197"+ -Anxnx- 1Py | _
nx

anx,nx
It is written into a summation form.
i-1 nx
o= (b;- Z ai,j(p]!‘ L Z ai,j(p}‘ )/ai,i where i=0,---,nx and k=0,--+,nx. (2-55)
=0 =i+l

The superscript k is the number of iteration temporary steps. A new (p}“rl are calculated
based on the previous iteration (pi‘. The iteration is stopped until (pf in the equations are
converged The convergent criteria will be given later in the part (3) in this section.
(2) Gauss-Seidel’s method

Gauss-Seidel’s method is an improved method from Jacobi’s method. Eq.(2-54) is

rewritten as following.
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k k k k k
(Pk+1:bO'aO,l(Pl'aO,Z(Pz""aO,n-l(PnX_l'aO,nx(an
0 ap g ’

k k+1 k... k k
(pk+l=b1_a1’0(p0 “12P5 =1 010, 1781 0x Py

i ™ ’ (2-56)
(Pk+l _ bnx‘anx,O(p(l;+l 'anx,l(l)]rrl ***=8px,nx-1 (P]r(,;_ll .
n anx,nx
Eq.(2-56) can also be rewritten in a summation form as Eq.(2-57).
i-1 nx
o= (b;- Z ai,j(pjlf” - Z ai,j(p}‘ )/ai,i ,i=0,--,nx and k=0,+-,nx. (2-57)
=0 j=itl

k+1

Comparing with Jacobi’s method, the computation in Gauss-Seidel’s method of @, uses

the elements of (p}“rl where j <1i that have already been computed. Therefore, Gauss-Seidel’s

method converges faster than Jacobi’s method.
(3) Convergent condition
To define the convergence of Jacobi’s method and Gauss-Seidel’s method,

approximated errors need to be calculated. The approximated errors € is defined as Eq.(2-58).
o;*'-of
k14107

leli= : (2-58)

The number 10 in the denominator is to ensure that the denominator isn’t zero even when
(p%“”1 is very small. The iteration is stopped when the absolute value of approximated error
being less than a pre-specified tolerance when the condition is met (10® in our simulation).
2. Direct solvers

Direct solvers solve linear equations directly to get the exact solutions. Two kinds of
direct solvers are introduced in this part: Gauss elimination method and LU decomposition

method. To solve linear equations of Poisson’s equation directly,

The system of linear equations in the matrix form is rewritten again in the following.
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a()nx ?y bO
)
A0 7 Qnxonxd Ly nx

To help us keep track on the steps of this process, we will denote the initial system with the

superscript as Eq.(2-60).

0) V)
aO 0 e ao x (0)
. (2-60)
(O 0) 0
nx)() e a’l(’lx nx b( )

(1) Gauss elimination

First, elements in the first row aéol) and b is divided by the leading elements of the

row aéog These steps are shown in Eq.(2-61) and Eq.(2-62).
(0)
== where j=0,-.nx, (2-61)
80,0
(0)
b,
by )= -~ (2-62)
a
0,0

After this step, Eq.(2-60) can be shown as Eq.(2-63)

(1 QO] ) @ A
(200 o1 Bgner Bon 01 b
N N () . 2©® . g
1,0 1,1 ’ : 1,nx : :

1,]

[ 1[ ]
a® - : I(Pi |=|bi(0)|' (2-63)
o) Lo

o ® O ©)

a aIlX,l anx,nx-l Anx nx

L“nx,0
Elements beside the leading element in the first column can be eliminated using the

following equations. Then subtract the result from row i, this yields new matrix elements of

a;j as Eq.(2-32) and Eq.(2-33).

(0)
ai(j) al(?) (0) a(()?)—af?)—al(%) a(()? where i=1,---,;nx and j=0,---,nx, (2-64)
0,0
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2©

b{V=b;"- (8) b{”=b{"-b{"af}) where i=1,+-,nx. (2-65)
0 0

Note that elements in the first column are eliminated as following.

©©
a
aflo) af%) (0) (()03 =0 where i=1,---,nx. (2-66)
40
Therefore, Eq.(2-63) becomes
(1) ()
[1 a’01 aOnx‘l )
¢ b
0 (1) () 0
al 1T i [] | = i (2-67)
: : 0. b(l)
(1) () nx
0 anx 1" Apxnx

Similarly, the second column and sequentially of each column are eliminated as following.

(k-1)
al((lfj) l((kj 5 where j=k,---,nx and k=1,---,nx. (2-68)
A k
(k 1
ai(? aflj 1) (k ) al((lj D where i=k+1,---,nx, j=k,---,nx, and k=1,--,nx, (2-69)
Ak
b(k D
b(k D_ i(k 5 where j=k,---,nx and k=1,---,nx and k=0,---,nx, (2-70)
A x
(k 1)
b=b\ n_ 2 (k 5 —b" where i=k+1,+-,nx and k=0, nx. 2-71)
Uk

The superscript k equals 1 to nx represents the steps of elimination. After applying the

elimination, Eq.(2-59) becomes

i (D (1
1 a071 e cee ao nx
0 1l e o) [
. 0 . - , (2-72)
.. (nx-1) b(nx)
: : anx-l,nx nx
L() 0 ves 0 1

Eq.(2-72) can be represented by using al i —a; j and bi(k)zb'i in the following.
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1 ao71 ao,l’lX

0 1 a, o ap (p-o bo

C 0 . - : El=l ) (2-73)
: : anx_l’nx nx bnx

0 0 - 0 1

These steps are called forward elimination. Apparently, (pnxzb;lx. After substituting (pm(:bynx

to the last second row of the matrix, and ¢ ., can be obtained. This is called back

substitution. It can be represented as Eq.(2-74).

nx

;= (b;- Z a;‘j(pj ) / a; where i=nx-1,--,0. (2-74)

=
As aresult, all ¢; can be solved exactly.
(2) LU decomposition
To solve the matrix by using LU decomposition, Eq.(2-59) is written in Eq.(2-75) and

Eq.(2-76). LU decomposition separates A into two separated triangular matrix. it is shown

in Eq.(2-77).
AD=B. (2-75)
40,0 0 Aonx ?y by
A=| . t | o= | B2 ] (2-76)
dnx,0 " Anxonx (pnx an
1 0 cee 0 0 u0,0 uO,l voe cee uO,nx
1170 1 ‘. . El[ 0 ul,l e eos ul,nx]
A=|lLy by - 0 ] 0o -~ -~ ! (2-77)
S| OJ [ S S J
1nx,O 1nx,l e 1nx,nx—l 1 0 0 0 Unx nx

These two matrixes are called the upper matrix U and the lower matrix L shown in

Eq.(2-78).
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Ugo Uoq = ° Ugnx 1 0 - 0 0
(2-78)

U= I 0 I and L= 12’0 12’1 0 ]
: : . . : : . . 1 OJ
0 0 0 Unx,nx 1nx,O 1nx,l e 1nx,nx—l 1

The lower matrix L and the upper matrix U are obtained by using Gauss elimination shown
in part (1). Upper matrix U is obtained using the same way given in Eq.(2-69) and it is

rewritten in Eq.(2-79).

( u; -—aé ) where j=0,-+-,nx,

l a(k 1)

{ u;=a flj) flj b_ D al((kJ D where i=k+1,+-.nx, j=k+1,---,nx, and k=1,---,nx, (2-79)
| a

Ik
u; ;=0 where i>].

Finally, the matrix form of upper matrix U is shown as Eq.(2-80).

0) 0) 0)
ao o Q1 T Aoy Upo Upg *° °° Ugnx
) (1 ol Lu N B .
0 al 1 R'% s al s - 1,1 : . l:nx
O N 1 IR R (2-80)
| — ¥ 0 0 - 0 uy
| O o - 0 b X

Lower matrix L is obtained from origin matrix A as following.

®
a;
(l = where1 1,---,nx and j=0,---,i-1, 1>],
1 au (2-81)

1;;=1 where i=j,
k 1;;=0 where i<].

After doing these steps, the matrix form of lower matrix L is shown in Eq.(2-82).

1 o - 0 0
{ 11’0 1 iR -I
L: 1270 1271 0 . (2-82)
:: w10
lnx,O lnx,l e 1nx,nx-l 1

To ensure Eq.(2-82) is correct, LU=A should be verified. Let a matrix be
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[ 1
| 1o

MO=[ -1

'lnx,O

— O

- O

0

O =

0

1
|
‘
1

The origin matrix is defined as A=A and multiply the matrix MOAO,

[lio 1

=|-Lo O 0
: : 1

Lnx,o 0 0

The relationship can be found in Eq.(2-84) which is shown in the following.

©
AD_y© %0
L) L)

© _
(0) dj =
0,0

A(l):M(O)A(O)

9
©0)
: | aoo
(0)
nx 0
1

(0) =]z a(O)

(0)

Onx

(0)
a'l’lX nx

where i=1,-

0)
[ao 0
=| 0

Lo

(0) (O]
01 a0 nx]
(1 (D
al 1 al nx |.
(1) (1) J
nxl a'l’lX nx

--,nx and j=1,-+-,nx

Therefore, in next step, A? is calculated as Eq.(2-86).

AOMOAD_MOMOAO® where M=

Generally, after k steps, the matrix A becomes

1

0

A(k) :M(k)M(k-l)A(k-l):M(k) .

M® is defined as Eq.(2-88).

(1
0

M®=

[0

0

0

'lk+1,k

'ln,k

0

0

0 01
1
-1y g
-12’2 0
dya O = 0O 1]
MOAO
0_
. 0
0 1]

From Eq.(2-85), at k step, A® can be calculated by Eq.(2-89).
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(k-1)
a.
®_ k& “ik  (k-1)_ (k-1 (k-1) . .
i = ——a(k_l) Ky = —li7kak’j where i=k,---,nx and j=k,---,nx. (2-89)
k.k

a

Apparently, A® has the form in following.
@ O 0

00 Q0,1 Q) nx
M ,M
®)_ x (1) 0 aj, a4y nx _
AR=pA_| " |=u (2-90)
: : S
[0 0 - 0 apgngd

From above, the upper matrix U have and origin matrix A have the relation as following
equations.

U=A(HX)=M(HX-1),, ,M(l)M(O)A(O)

(2-91)
A:A(O):[M(o)]'l [M(l)]'l___[M(nx-l)]'lU
Because [M"™]! has a relationship can be found as Eq.(2-92).
- Y SR R w—
et :
1 0 :
M®7] = TR : =L® (2-92)
: 0 :
: : : : g -~ 0
0 - 0 I O - 0 1

These show that M® and L® are inverse matrix as M® L®=I, where 1 is identity matrix. L
is the product of L® as Eq.(2-93).
L=LOLD-.L D= MO] MO ®y (2-93)
As aresult, A=LU has been proofed.
A=[MO] [MO] - [MOD] =L OLOLEDy=Ly (2-94)
After decomposition of lower matrix L and upper matrix U, Eq.(2-75) can be represented as

Eq.(2-95).
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A®=(LU)®=L(UD)=B. (2-95)
The solution to the original matrix is founded by two steps of triangular solve process:
Ud=Y, LY=B. (2-96)
They are solved in sequence to get matrix ®@. The matrix form of LY=B is shown in

Eq.(2-97).

1 0o -
[11,0 1 - } Yol [be
Ly Ly - [ ] [ ] (2-97)
: : E Ynx bix
1nx,O 1nx,l o nx nx-1

This matrix is solved by Eq.(2-98) as following.

y,=b;- Z lijyj where i=1,---,nX. (2-98)

The matrix form of U®=Y is shown in Eq.(2-99).

Upo Ug = = Ug, nx
0 ul,l oo oo ul Bx (po yO
O 0 uIlX nx

The matrix in Eq.(2-99) can also be solved in the same way as Eq.(2-100).

.=y, Z ;i ;) / u;; where i=1 (2-100)

j=i+l

2.5.4.2 Benchmark of Poisson’s equation

To benchmark the simulation for calculating Poisson’s equation, there is a given

function g(x)=sin( i—z) is used. The equation becomes the following.

2
49 _in (3_") . 2-101)
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The boundary conditions are set as ¢(0)=0 and ¢(41)=0. The exact solution of Eq.(2-101)
is

(p(x)=g nxsin(3)-4n’sin (i—z)] . (2-102)

The exact solution is compared with the numerical one solved by the iterative and direct
methods respectively They are shown in Figure 2-11 and Figure 2-12. Figure 2-11 is solved
by using Gauss-Seidel’s method, and Figure 2-12 is solved by using LU decomposition. In
these two graphs, the black dashed points are simulation results, and the green solid lines are
analytical results. As a result, the subroutine calculate the Poisson’s equation is benchmarked.

Gauss-Seidel method is used in our code since it solves the Poisson’s equation faster.

P x)

-

Figure 2-11 Result of calculating electric potential for Poisson’s equation using Gauss-
Seidel’s method. The black dashed points are simulation results, and the green solid

lines are analytical results.
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T
""-n-...—r-"

Figure 2-12 Result of calculating electric potential for Poisson’s equation using LU
decomposition. The black dashed points are simulation results, and the green solid lines

are analytical results.

2.5.5 Electric field and acceleration

The subroutine of electric field and acceleration are discussed in the section.
Acceleration a(x) is obtained by electric field E(x) using Eq.(2-32). Electric field E(x) are
calculated from electric potential ¢(x) using Eq.(2-31). Electric potential ¢(x) is obtained

from the result of Poisson’s equation.

2.5.5.1 Method of numerical differentiation

To solve the differentiation in Eq.(2-31), it needs to be discretized using finite difference

method (FDM)[2]. From Taylor’s series, @(x) can be represented as Eq.(2-103).

P(x+AX)=p(x)+ (X)Ax+(P2—(,X)Ax2+---
"(x) : (2-103)
(x-Ax)=0(x)-¢ (X) Ax+ (PT AXZ-ee

Adding two equations:

O (X+AX)+p(x-Ax)
B 2AX

¢ (x) (2-104)

Therefore, the electric field is
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Eixz_%_ (2-105)
X

The acceleration is

aix=-EiX . (2- 1 06)
2.5.5.2 Benchmark of the subroutine calculating electric field and acceleration

To benchmark the subroutine, the result in Eq.(2-102) from section 2.5.4 is used. The

analytical solution of the electric field is

=§ rcos (j—i) -%nsme)] (2-107)

The analytical solution of acceleration is

4 3x\ 1
T = — - 1 2'108
a 3 COoS (4n> 37'58111(3)] ( )

The simulation result of Eq.(2-105) is shown in Figure 2-13 and compared with the exact
solution in Eq.(2-107). The black dashed points are the simulation result and the green solid

line is the analytical result.
E(x)

L ———
-
-~

-~
\~~-

Figure 2-13 Comparison of the analytical solution in green solid line and the
simulated result in black dashed line.

The simulation result of Eq.(2-106) is shown in Figure 2-14 and compared with the exact
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solution in Eq.(2-108). The black dashed points are the simulation result and the green
solid line is the analytical result. Therefore, the subroutine calculate the differentiation and

acceleration is benchmarked.

-
—”'

Figure 2-14 Comparison of the analytical solution in green solid line and the
simulated result in black dashed line.

2.5.6 Advection equations and Vlasov equation

To calculate Vlasov equation or advection equation, there are many ways to discretized
Vlasov equation. Finite volume method (FVM)[1][2][8] is used in this thesis. For a
discretized equation, operator splitting scheme[3][6] can be used to separate a single
equation to several equations. Therefore, Vlasov equation can be split into two advection
equations in space and velocity space, respectively. This method makes our solver easier to
solve Vlasov equation numerically. The two advection equations are solved by either
piecewise linear method (PLM)[1][8][10] or by piecewise parabolic method
(PPM)[1][4][5][9]. These two methods can be combined together. Piecewise linear method
and piecewise parabolic method are both based on Godunov’s scheme, which is also a
method using finite volume method. Both piecewise linear method and Piecewise parabolic
method are benchmarked. The advection equation solvers are benchmarked in space x and

velocity v separately.
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2.5.6.1 Finite volume method

Consider a one-dimensional advection equation as Eq.(2-109).

of of
av o 2-109
5 +Vv x 0. ( )

1

To discretize Eq.(2-109), this advection equation is integrated over a zone from x.1 to X
2 2

and averaged by the zone length Ax=x. i-X. 1. Then Eq.(2-109) becomes Eq.(2-110).
2 2

1 XH% of \'% XH% of
T e (2-110)

— =
Ax ), | ot Ax ), | oOx

i=5 i=5
Let Ej represent the average of distribution function f(x,t) over the interval Ax and f} is

defined as f(x;,t")=f]. f{ is the distribution function f(x,t) value on position i and time n. E’

is defined as Eq.(2-111).

X 1 gl
fx,? f(x)dx fx,l? fi'dx
flo—2 . (2-111)
= X 1-X 1 AX
1+§ 1-7

8 kS \'% Xi+1 af? v
—T 2 dXZ-A—(fT1 l‘ﬂl)o (2-112)

Similarly, Eq. (2-112) can be integrated over the interval At=t""'-t" and becomes

Eq.(2-113).
tn+l = tn+1
6f? +1 = \'%
—dt=(f; - )=-— - 2-113
ftn ~dt &) - jt (fi% fi_%)dt. ( )
So Eq.(2-113) can be rewritten to Eq.(2-114).
v tn+1
T f (f 1-f p)dt. (2-114)
A o 1+§ I_E

Eq.(2-114) also can be written as Eq.(2-115) , and this is the general form of finite volume
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equation.

n+1
—n+1 v t
. =f - — - 2-115
£ =t — ft n (fi% fi_%)dt. ( )
Dividing Eq.(2-115) with At, it becomes
fp+1 fn v o+l
— = f 1-f 1)dt. (2-116)
At~ At AxAt ft T2 i—%)

If there is an average value fi .1 1s defined as a average value between temporal time n and
2

n+1 as Eq.(2-117).

tn+1
. fodt
- lzft ity 2-117)
i A
Bring Eq.(2-117) back to Eq.(2-116).
_ o VAt -
B=f-— 1) (2-118)
AX 1+§ I_E

This is also the general form of finite volume equation.
Courant-Friedrichs—Lewy condition (CFL condition)[2] is a necessary condition for

convergence while solving advection partial differential equations. It is defined as Eq.(2-119)

VAt

L et 2-119

AX ( )
A

At<— . (2-120)
Vv

2.5.6.2 Operator splitting scheme

Consider the advection equation above from Eq.(2-28). Take the integration of time

from t" to t"*!, Eq.(2-121) is given.

tn+l tn+1 tn+l
of of f
f —dt+j V—dt+f 2 2L dt=0. (2-121)
o at o 8X M 8V
tn+l tn+1
of of
f"+1-fn+f V—dt+j 2 2L di=o. (2-122)
M aX o aV

Take the integration in x and v from x._ 1 to x._1 and v._ 1 to v. 1. Eq.is given.
IX_E 1X+5 IV_E 1V+E
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X 1 V. 1
f "2 f 2 dxdy +
X A\

N
(2-123)
L Xix+1 Viv+1 af ! X1x+l Viv+— af
] f 2] 2V—dtdxdv+j f 2] 2 a—dtdxdv =0.
o X, Vo Ox o X Vo ov
1X-5 IV-E 1X-5 IV-E
xix+l Viv+l
f 2 f 2 (" Ydxdv +
X 1 Jv
IXE IV—E
(2-124)
tn+1 v tn+1 X
f j MIy(E f dtdv+ j f "2a(f £ 1)dtdx =0.
o v 1X+§ IX-Z o X 1V+§ 1v-§
1X>7

N =

iv-

In operator splitting method, adding a temporary time step f* between f"*! and f", and

Eq.(2-125) is given.

Xix+1 Viv+l 1
f Zf 2(f™ £ Ydxdv +
Tk TVied

2

X 1 V. 1
f e f "2 " )dxdy +

V.1

iv—j
(2-125)

] —

1X-

o+ 1

\& l
j 2y(E -f ddv + j
v 1X+§ IX-Z o '

o+ 1
_]t-n

Therefore, Eq.(2-125) can be separated into two equations.

X' l
j M2a(f £ 1)dtdx =0.
X 1V+§ 1v-§

N =
N =

iv-

Nk [Vl — oA
f o f 2(f -7 )dxdv + f f Za(f -f 1)dtdx =0. (2-126)
x 1 Jv " Jx iy Iv3

ix-5 iv-3 ix-5

xix+l Viv+1 1 & e Viv+l
f 2f 2(f"-f )dXdV+f f 2v(f  j-f p)dtdv=0. (2-127)
x 1 Jv " v X453 X3

1v—§

For Eq.(2-126) and Eq.(2-127) and chose arbitrary integral region of x and v respectively.

They becomes
v +l . o+l

[ v [ a1t paceo, (2-128)

v tn 1v E lv—z

iv—j
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o+ 1

X 1
ix+3 +1 * _
-L 1 ("™ -f )dx + J;n V(fix+%_fix-%)dt =0. (2-129)

ix»7
These two equations can also be written in the form as Eq.(2-115).

o+ 1

R a

P _ 2-130

f.,=f, ~ ft n (fm% fiv_%)dt. ( )
v tn+l

o+l =*

g _ 2-131

fie =T ft . (G (2-131)

After using operator splitting method, Vlasov equation can be separated to two advection
equations Eq.(2-130) and Eq.(2-131). These two equations are solved in the section below.
After applying the CFL condition in Eq.(2-119), our simulation CFL condition is defined by

using the following equation.

AX Av
AtSmin(T,?). (2-132)

2.5.6.3 Piecewise linear method

The distribution function f(x,t) are shown in Eq.(2-133) and Eq.(2-134) with different
direction of velocity. In time-space graph of advection equation, we can plot the
characteristic curves for the advection equation. It is shown in Figure 2-15 and Figure 2-16.
The integration in time from t" to t"!can be transferred to the integration into I cell using

the characteristic curves.

. +vAt,tn> for v <0,
(2-133)

[
/N
b
+
—_
-
N——
Il
[
/
>
N —

f <Xi+1,t> =y (2-134)
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[xi-1] [x;] [Xi41]

A A A

'l Y R
tn'l'l i
g NNV M &t\ AN w&tl
X 3 X 1 X1 X3
T Xi-1 -3 Xj 3 Xiex 2

Figure 2-15 Space-time plane from t"~ t™! to X.,1+ VAt ~ x._ 1 for v<O.
-2 -2

. [ 1] [x;] [xi4+1]
A A
4 A Y Y h
tn+1 ]
] /‘
t ¥t/ /A /4, /A
Xi_g I X 1 ! X. . 3
2 Xj b | Xi+1 z

Figure 2-16 Space-time plane from t"~ t™*! to X.,1 ~ X, 1 — VAt for v>0.
-2 -2

As aresult, Eq.(2-118) can be rewritten in Eq.(2-135) and Eq.(2-136).
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ftn fi_%dt 1 X, 1+VAt 1 X 1
f=—2 — [ "7 f(x )dx=—] 7 f(x)d (2-135)
i At VAt ,]; 1 (X1 )dx VAL) A (xi)dx
| 1+§ 1+§
tn+
ftn fi_%dt 1 X, 1+VAt 1 X 1
f = = " f(x)dx=— | 7 f(x..)d (2-136)
5 At VAt f“ Cidx =R « vt (xi-1)dx
1+§ l+§

The right hand side of Eq.(2-135) and Eq.(2-136) are redefined in the following.

1 X [+VAt
=] - 1+§ )
ﬁ:l—vm . (X )dx (2-137)
i+§
fn 1 fxi' 1 +VAt 1 Xi+ 1
= 2 f(xp)dx=—| * f(x;)dx 3
i), i) (2-138)
l_i 1+§
fn 1 Xi_l
. T e— 2 .
i-1 VAt jx 1 VAL f(Xl-l)dX (2_139)

There is an interface between two conjunctive grids. Value on the interface can be calculate
from the value in the grid on either side of the interface. The choice of which grid to use
depends on the advection equation propagates direction. One is using the left of interface of
1 (which have + subscript as E;), and the other one is using the right of the interface of i

(which have - subscript as ff)

- |

_1-VAt

—] = l+§
[ 1 X, 1+VAt 5

2 i3
E1+1,-= f(Xiy1)dx,v <0

VAt J,
.l
1+7

(2-140)

Before understanding piecewise linear method (PLM), we first look at the piecewise constant

method (PCoM)[7][8] and Godunov’s method[7][8]. To solve Eq.(2-118), Godunov’s
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method is a finite volume method which treats the solution as piecewise function. The
piecewise constant method is the basic Godunov’s method, it uses piecewise constant

function to approximate the mean cell averages

f(x)=F; . (2-141)
By using Eq.(2-141), we know that ?f = _i’+ = fl so Eq.(2-140) becomes
e Filav 2 0
1 f.v<0’
2 i+1,V (2_142)
fn 1,V=Z >0
£ = 1=
flv<0’

This is shown in Figure 2-17. In Figure 2-17, tn + term represents ﬁl term when v > 0, and

the, and E‘ term represents f, term when v < 0. These are consistent with Eq.(2-142).

fx) ; =n

X, 5 X, 3 X 1 X 1 X 3 X 5
i—= -3 i-5 1+2 1+2 1+

N

Figure 2-17 Approximation line of piecewise constant method (PCoM).

As aresult, Eq.(2-118) also can be written as following in using piecewise constant method

(PCoM).

At
f=g- VA—X( fi-f.,) for v>0,

(2-143)
VAt
ﬁlﬂ =f-— Ax —( i+1'E1) for v<0.
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Piecewise linear method (PLM) is also a Godunov’s type finite volume method, this method
uses function f(x;) reconstructed by a linear function in each cell. The f(x;) can be written
in Eq.(2-144).

f(x)=cg+cq(X-X;). (2-144)

The left and right boundary of grids are shown in Eq.(2-145) and Eq.(2-146) respectively.
Ax
f<X. 1) =Cotcy (X- 1‘Xi> =co —¢; 5 =fi, (2-145)
) 15 2 g

Ax
f(Xi%) =cy+c¢; (Xi+%_xi> =cy + ¢ 7 = fi,+- (2—146)
The integration of Eq.(2-144) is

XL il . —
= fx 1zf(xi)dx_ fx | 12[c0+cl(x—xl)]dx =cy. (2-147)

i-

(8]

2

Therefore, co and ¢ are shown in the following.

co_:f?, (2-148)

f, .. Af
=_ Al 2-149
% AX AX ( )

By brining Eq.(2-148) and Eq.(2-149) back to Eq.(2-144), f(x;) becomes
e —_—,
f(x)=f; +(x-x;)AT; where Af; = e (2-150)
Figure 2-18 is shown that the piecewise linear function is used to approximate function f(x).

The fer term represents E’ term when v > 0, and the, and the f? term represents Ej term

when v < 0.
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f(x) _

n
i+2

n
fi+1

. . 3 X, 1 X1 X 3 X 5
e e i+ i+ i+5

Figure 2-18 Approximation line of piecewise linear method (PLM).

Eq.(2-150) can be integrated by using Eq.(2-140) and shown in Eq.(2-151).

1/ At
E‘+5(1-v5) AT v>0,

o 1 Aty
? ﬁl“_E(HVE) Af1,v <0,
(2-151)

Finally, 1_’”1 and 1_’1_1 terms can be substituted into the finite volume form as Eq.(2-152).
2 2

0 [ s ety (v v 2o,

1 @)L o aT) (19 ) <o @15

There are lots of different definitions of slope Aﬁl. If AE‘=O, Eq.(2-152) is back to piecewise
constant method (PCoM) as Eq.(2-143). However, choice of slope is very important in
piecewise linear method for its accuracy. To reduce the numerical oscillation of numerical

simulation, AE’ should be set carefully. Therefore, Aﬁl is also called slope-
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limiter[ 1][8][10]. The vanLeer slope-limiter is used and is given in the following. This slope-
limiter uses the harmonic mean of two slopes in each averaged cells to limit the

reconstruction range in piecewise linear equation. This slope is shown in Eq.(2-153).

fi-fiy fila-ff )

Ax ~ Ax

2ab (2-153)
vanLeer(a,b)= {ﬁ ab>0

0,ab<0

Aﬂ=vanLeer(a,b)=vanLeer (

2.5.6.4 Piecewise parabolic method

Piecewise parabolic method (PPM) is also a Godunov’s type finite volume method but
with higher-order approximation to solve Eq. (2-118). The E;_ term represents El term

when v > 0, and the, and the f? term represents ?: term when v < 0.

f(x)

X, g5 X. 3 X.
]—7 1_2

Figure 2-19 Approximation line of piecewise parabolic method (PPM).

X X
i+ TERE

-1
2 2 2 1+§

PPM is assumed that the function f" can be approximated by a parabola inside every grid

cell, and it is shown in Eq.(2-154). Figure 2-19 is shown how the piecewise parabolic method
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works on reconstructing the function f(x).

f(x)=co+c; (x-x;)+¢, (x-x;) 2.

This equation can be solved as following.

2
f(xi 1) =Cy+¢ <xi 1—xi> +c, <xi 1— xi> =f;_,
2 2 2
2
f(XH%) :C0+C1 (Xi+%-xi) +C2 (xl,+% - xi> :fi,+'

These two equations are rewritten in the following.
¢ < ) Ax 4 Ax? ¢
X. 1|=¢cp-¢c; =—+c,— =fj,
i_% 0 1 2 2 4 1,

Ax Ax?

f (Xi+%) =Cp+c¢y 7 +cy T :fi,+-

These two equations result in Eq.(2-159) and Eq.(2-160).

AX?
fi,++fi,— = ZCO + 027 5
fi’+-fi’_=C1AX.

These two equations can help to do the integration of f(x) between Ax.

4 L
ﬂj:f 2f(x)dx:f 2[cote; (x-x;)+¢5 (x-x;)?]dx =¢, +EAX2.
X

'T‘
Bl —

.1
i3
As aresult, ¢y, cq, ¢, can be given in the following.

C
CO=E1- é AXZ

1
Ci=— (fi,+'fi,—) .
Ax

C2=3 (fi,++fi’_)-6E15C2,i .

Therefore, Eq.(2-154) can be rewritten in Eq.(2-165), and Af; = f;, —fj _.

f(x)= fn AX +Af1(x -X; )+ (x x;)? where Afj— A

Eq.(2-140) can be calculated by using the integration of f(x) in Eq.(2-165).
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(2-154)

(2-155)

(2-156)

(2-157)

(2-158)

(2-159)

(2-160)

(2-161)

(2-162)

(2-163)

(2-164)

(2-165)



VAt -Afn (1 2vAt) ] -0
- X_ i_ _3AX C2,1 ’V— b

i+5 VAL T 2vAt
l+1 +2AX AFlhl"'l-i_ <1_ 3AX)C271+1:| 7v < 0‘
' (2-166)
VAt 2vAt
_ El-l,+ L5 AL Al??-r (1' 3AX> 02,1_1] v =0,
fi-% - o VAt [Afn <1 2vAt) ] <
A [T 3Ax ) Y S
Bring Eq.(2-166) into Eq.(2-118).
sl -n At VAt 2vAt
fJiH :f{)'v_{(fiffi-l +) [(Afn Afnl) ( IAX ) (coi— C2,i—1)]} V=0,
WAL (2-167)

By {(fm s [(AF’+1 AR+ (1- 5 ot — e[ <0

3Ax

Let us focus on the process of obtaining f;, and f;_. f;, and f;_ can be obtained by

specifying these values with cubic accuracy. Thus it defines a cubic polynomial equation

f(x)=ay+a,; (x—xi+1 )+a2(x—xi+1 )2+a3 (x—xi+1 )3 , and do the integration in Eq.(2-168).
=2 2 =2

1
_ 1 (2
f?_ﬁg f(x)dx, fn— j f(x)dx, T, N f f(x)dx,
1— i-5 1+—
X .
) 1. B
f =i f(x)dx, =" f(x)dx. (2-168)
i Ax i+%

l\)lU‘l

.7

1 v 1 2
A f F(x)dx, Pz f FGOdx .

AX 7 AX ]

2 2

f; terms can become Eq.(2-169) to Eq.(2-172). The calculation are shown in Appendix A.

=t = [ (BT ) (o) 2-169)
f=fio, = 15 (To#Ti)- 35 ()] @170)
o=ty = [ )5 (BT @17
T K Gy e G 2-172)
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Eq.(2-169) to Eq.(2-172) are used in Eq.(2-167).
2.5.6.5 Benchmark of solving advection equation by using Godunov’s scheme

Piecewise linear method and piecewise parabolic method are both used in split
advection equations in velocity and space from Vlasov equation. In fact in each advection
equation, both PLM and PPM are used at the same time. It is because using PPM gives a
more accurate solution than using PLM but with numerical oscillation. PLM is less accurate
than PPM but is more diffusive. Therefore, combing PPM and PLLM can be beneficial since
PPM gives an accurate solution and PLM can smear out the numerical solution. Thus, the
split equations Eq.(2-128) and Eq.(2-129) are split again.

v, 1 *k o 3k Viv+l *
f 2 Ydv + f 2(f -f")dv
V. VR
3 (2-173)

B —

tn+1 tn+1

+Blf a(f_ .-f 1)dt+(1-ﬁl)f af 1.-f 1)dt=0,
o Vt5 V-5 " vty iv-5

X l oKk Xix+l kksk o kok
f 2 dx + f 2(£77f Hdx
X X

8] —

2 = (2-174)
tn+1 tn+1
+B2f v(f 1)dt+(1—[32)f v(f - 1)dt=0.
0 1X+7 IX—E o 1X+7 IX—E
These two equations can be separated to the following four equations.
v +l . i+l
f 2(f - )dv +f, a(f 1--f 1)dt=0.
v _l o 1V+7 1V—§
i 1 (2-175)
Y 1 *k o 3k o
[P avea) | ad, ot paceo,
v o o 1V+7 1V—§
iv-5
X +l er tn+1
f 2(f -f )dx+B2f v(f +1_—f_ 1)dt=0. (2-176)
X tn 1X 7 IX—Z

N —

ix-
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o+ 1

f ix+%(f“+l—f***)dx+(l—[32) j

tn

v(f -f 1)dt=0,
ixt x5

1 2
1X>7

They become

o+ 1

o £ -f d
i=fi-7-B, —[tn (£ 1 iv_%) t.

2
. el (2-177)
Bf-g ) [ @

tn+l
sksk ek

\
f =f —d—XBZJ- (f 1-—f.X_%)dt.

t 2 (2-178)

o+ 1

ol ***_dlx(l_[gz) jtn (fix%-fix_%)dt,

In the method of combing PLM and PPM, the first equations in both Eq.(2-177) and
Eq.(2-178) are solved by PPM. The second equation is solved by PLM. B; and B> are
parameters smaller than 1 that can adjust the percentage of using PLM and PPM. The
benchmark of piecewise linear method with van Leer slope-limiter and piecewise parabolic
method in solving advection equation is shown in this section, the result is compared with
an exact solution one.

First, the advection in velocity as Eq.(2-130) is benchmarked. The initial distribution

(v-5)% (v-5-at)?

function is set as f(x,v,t=0)=e” 2 . The analytical solution is f(x,v,t)=e™ 2 wherea=0
to 4m. The analytical solution is used to benchmark the numerical solution. The boundary
condition is a periodic boundary condition in velocity space grids during the benchmark.
The range of v is set from v = 0 v, to v = 10 v Total time t is set as 1 cop‘l, and At is set as
0.00125, total time steps are set as 800. Figure 2-20 shows the Eq.(2-130) solved by using
PLM with vanLeer slope-limiter. Figure 2-21 shows the Eq.(2-130) solved by using PPM.

Obviously that PPM has higher accuracy than PLM. PLM is diffusive after some time.
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Figure 2-20 Advection equation in x by PLM with vanLeer slope-limiter. The red

dashed points are simulation results, and the blue solid lines are analytical results.

Figure 2-21 Advection equation in x by PPM. The red dashed points are simulation
results, and the blue solid lines are analytical results.

Then, the advection in space as Eq.(2-131) is benchmarked. The initial distribution function

(x-2m) . o (x2nv0)?
issetas f(x,v,t=0)=¢~ 2 . The analytical solution is f(x,v,t)=¢~ 2  where v=-5to 5.

The analytical solution is used to benchmark the numerical solution. The boundary condition
is a periodic boundary condition the same as section 2.5.2. The range of x is set as L=4x Ap.

The quantities of t, At, and it are set the same for solving Eq.(2-130). Figure 2-22 shows the
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Eq.(2-131) solved by using PLM with vanLeer slope-limiter. Figure 2-23 shows the
Eq.(2-131) solved by using PPM. Figure 2-24 shows the Eq.(2-131) solved by using the
combination of PPM and PLM with vanLeer slope-limiter with 3>=0.5. The combination of
two methods shows that a less diffusive than only using PLM.

f(v)

1.0

Figure 2-22 Advection equation in v by PLM with slope-limiter. The red dashed points

are simulation results, and the blue solid lines are analytical results.

Figure 2-23 Advection equation in v by PPM. The red dashed points are simulation
results, and the blue solid lines are analytical results.
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Figure 2-24 Advection equation in x by combination of PLM with vanLeer slope-limiter
and PPM with p=0.5. The red dashed points are simulation results, and the blue solid

lines are analytical results.

2.6 Benchmark by simulating two-stream instability

Two-stream instability is a kind of plasma phenomena It occurs when two counter-
streaming plasma flow against each other. It is a suitable phenomenon to verify Vlasov code.
The linearization of Vlasov-Poisson system and theory analysis of two-stream instability are
derived from Vlasov-Poisson system in kinetic regime. The two-stream instability in code

plasma are used to compare with the simulation results using Vlasov code.

2.6.1 Theory of two-stream instability

Vlasov-Poisson system are used to solve two-stream instability. Since two-stream
instability is an electrostatic phenomena, only Vlasov equation and Poisson’s equation are
used to calculate. The Vlasov-Poisson system can be linearized by substituting f=fy+f;,
9=0,+0¢,, and E=E(+E, into normalized Vlasov equation and Poisson’s equation Eq.(2-28)

to Eq.(2-32), they are shown in Eq.(2-179) to Eq.(2-181) respectively. Variables with
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subscript O represents a steady, zeroth order solution while those with subscript 1 represent

the first order perturbation.

o(fo+f;)  O(fp+f)) o(fo+t)
+Vv

) - 2-179
o p (Eo+E)) = 0, ( )
o0 .+
Ep + E|=- —((ngq)l), (2-180)
(9, +0,)
#:ne—noz f (£,+f))dv -ny. (2-181)

Eq.(2-179) and Eq.(2-181) can be separated to zeroth order and first order equations as
Eq.(2-182) to Eq. (2-183) and Eq.(2-184) to Eq.(2-185), respectively.

ofy, o 0900

ot ox  ox ov (-182)
T T (2-183)
%: fodv -ng=ny-ny=0, (2-184)
%: j £,dv. (2-185)

Because of ¢ =0 and E(=0, the zeroth order solution is shown in Eq.(2-186) as initial state.

ofy ofy

2v—= 2-186

o 0 ( )
Because %% term is a second order term, it is neglected in Eq.(2-183) in the linearized

equaiton and it is shown in Eq.(2-187).

afl afl a(Pl afo
v — 2-187
oV ax Tox oy (187
Therefore, after doing linearization, only leading order terms are kept. Then this equation

can be simplified in the following equations.

afl afl a(Pl afo -0

of _ 2188
o Vox ox ov (2-188)
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o0 _ f £,dv. (2-189)

These two equations can be solved by Fourier transform. The Fourier transform of
distribution function f and electric potential ¢ in time and space are shown in Eq.(2-190) and

Eq.(2-191).
f(x,v,t)= f f £l (k,v,)e & dkdwm, (2-190)
¢,(x)= f f ¢, (e Vdkdo. (2-191)

After substituting Eq.(2-190) and Eq.(2-191) into Eq.(2-188), the Vlasov equation becomes

Eq.(2-192).
. oo~ 8fO i(k
j f [1(kv—0))f1+1k(pl = 10D ke =0. (2-192)
Apparently, there is a relation shown as below.
: ~ ... Of
i(kv-o)f;+ik@, k. =0. (2-193)

Fourier transform of distribution function f is shown in Eq.(2-194).

kG, of,
(o-kv) ov

(2-194)

1=

Inserting f; into Fourier-transformed Poisson’s equation, and Poisson equation becomes

e k of,
-k ([)l=([)l ((o—kv) a_V dV, (2-195)
(Plk (1+E ((o—kv) a_V dV) =0. (2-196)

The equation inside bracket of Eq.(2-196) is called dispersion relation D. for a non-zero

solution of @, D(,k)=0. Therefore, the dispersion relation is shown in Eq.(2-197).

L o400 (2-197)
(o-kv) ov V= )

1
D(ok)=1+ f
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For two stream instability of cold plasma, there are two counter-streaming beams as initial

condition fy(v) in the following.
1
fO(V)=§ [8(v-vy)+d(v-v()]. (2-198)

Substituting Eq.(2-198) into dispersion relation in Eq.(2-197) and solving the integration,

the dispersion relation becomes

1 1 1
D(w,k)=1-= =0. 2-199
(k) 2 [((o—kvo)2 " (m+kv0)2] ( )
After moving the terms and sorting it out, it can be written in Eq.(2-200).
o*-(142k*vo2) 0 +(k*vo*-k7v(?)=0. (2-200)

The 1+2k>v,2is apparently positive, but the sign of k*vy*-k’v,> depends on whether
k2v02>1 or k2v02<1 respectively. The polynomial equation in Eq.(2-200) has two roots for

©” and it is shown in the following.

1 1 2
w§:§(1+2k2v02)i \/Z(1+2k2v02) -k votr-k*vg?), (2-201)

1 2-202
= w2=k’vy2+ = <1i ’ 1+8k2V02>. ( )

When k*vy2>1, ie., k*vo*-k?v2>0, 02 are both positive and real values. Thus, there

is no temporal growth or decay of the wave amplitude. On the other hand, for k2V02< 1,

2

k4v04—k2v02<0, ®2 is positive so that o, are real values but ®? is negative.
Therefore, . has two imaginary values with one positive and one negative. The
positive and imaginary value of ®. means the unstable situation, and it can be

redefined as ®_=iw ;. The solution of ®. can be written as Eq.(2-203). This is where

the growth rate of two-stream instability.
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1 ,
(D()i:\/-kZVOZ-E (1- 1+8k2V02> s (2'203)

The unstable condition occurs under the situation shown in Eq.(2-204).

1
0<k<— (2-204)
Vo

. . . do? .
The maximum growth rate is calculated by setting %:O and w(z_)i:—w_z. To get their

extreme values, the derivation of ®? is defined in Eq.(2-205).

d
— 0?=2kv,?

1 2 \ =0
dk ) e
148Kk’ v,>

) 1
and the maximum of (D_2=g. The

(2-205)

L. V3
The minimum value of ®? occurs when kzﬁ
Vo

maximum growth rate of ) is

1

—3 2-206
5 ( )

0=

V3

3 . ..
Sk Al k=0.5 and it is the condition to benchmark

From above, vo can be defined as vy=

our simulation.
2.6.2 Benchmark of Vlasov solver using two-stream instability

To benchmark Vlasov simulation using two-stream instability, the Dirac delta function is

used. It can be defined as Eq.(2-207).

3(v-vp)= lim e n (2-207)

vin—0 Vi VT

Eq.(2-198) can be rewritten as Eq.(2-208).
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(v-vo)?  (v+v)?

(e vlhz +e vlhz ) (2-208)

1 1
fo (V)=§ [8(v-vp)+3(v+vy)]= =

Therefore, the initial distribution function is set as Eq.(2-209) with a small quantity of
vip=0.3, vo= \E, and k=0.5. The initial condition is shown in Eq.(2-209) and Figure 2-25.

The distribution of f(x,v) in v and x are also shown in Figure 2-25. It is shown that the spatial

distribution is a cosine function, and there are two Gaussian function in velocity space v.

f(x,v,0)=

(v-vp)®  (v+vp)?
- 2 - 2
e Vo' +e Vn 1+0.01 cos(kx) ]. (2-209)
e \/E( )[ (kx) ]

This initial condition can be considered as a uniform plasma in which the ions are stationary
and the electrons have a velocity vo relative to origin plasma. The dual Gaussian peaks
centered at +v0 in velocity space as the initial distribution function is used to study two-

stream instability. The simulation range in X is set as L=4w Ap, and v is set between -5 v, to
5 vi. Each time steps is defined as éAt where At is defined in Eq.(2-120). There are 128

grids in both x and v direction. The boundary condition is periodic in x and set as zero
(Dirichlet boundary condition) in v. the simulation was first done only using PPM. The result
iss shown in Figure 2-26. In Figure 2-26, it shows that there are a lot of numerical oscillations
after running 30 w,!. That is because the stability of PPM isn’t enough. After solving the
advection equation, there are some values becoming negative. Figure 2-27 shows the
simulation result by using PLM in both x and v direction. This graph shows a stable solution
with oscillation but diffuse quickly compared to the combination method shown in Figure
2-28. As aresult, the two advection equations split from Vlasov equation are solved by using
combining PPM and PLM in velocity space grids v and only by using PLM in spatial grids

x. The result of this combination method till 100 w,! is shown in Figure 2-28. For vy,=1,

and vo= \E as the initial state using only PPM shown in Figure 2-29. The same problem was
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simulated by using PLM and the combination of PPM and PLM. The result is shown in
Figure 2-30 and Figure 2-31. The two figures shows that there are no much difference in
using these two methods when vg,=1. Figure 2-32 shows the result of only using PPM in
both split Vlasov equations. Few numerical oscillation occurs again. PPM have better details
in simulation. The result combination of using PPM and PLM is more diffusive in the center
of instabilities but with reasonable details. Therefore, PPM can only be used to do larger vin

problems, The numerical oscillation grows up as v, decreases.

f(x)

1.010

1.000 -

0.995+

f(x,v)
09

0.8
0.7
0.6
0.5

f(v)

04

03
0.2
0.1

(-3
-

o
-
o
-
N

Figure 2-25 Initial state with vin = 0.3 and vo = \E
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Figure 2-27 Simulation result after t = 100 @, using PLM in both x and v direction.
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Figure 2-28 Simulation result after t = 100 @p! using PLM + PPM in x direction and
PLM in v direction.
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Figure 2-29 Initial state with vith = 1 and vo = \E
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Figure 2-30 Simulation result after t = 100 @, using PLM in both x and v direction.
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Figure 2-31 Simulation result after t = 100 @y using PLM + PPM in x direction and
PLM in v direction.
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Figure 2-32 Simulation result after t = 100 @, using PPM in both x and v direction.

The energy conservation should be checked in simulation. The total energy En; in Vlasov
solver are summation of electric energy Ene and Kinetic energy Enk of electrons, and they

are shown in Eq.(2-210) to Eq.(2-212).

En=En,+En,, (2-210)
1
En,= j j Emevzf(x,v)dxdv, (2-211)
1 2
En.= J 5soE(x) dx. (2-212)

There are some constants in these equations, they can be normalized as shown in section 2.2.

The normalized energy are shown in Eq.(2-213) and Eq.(2-214).
1 N YOI
Enk=Enk,charEnk= 5 MeVehar fcharXchar Vofdxdy, (2-213)

—

1 o
En.=En, ;o ENe= = £0Ecpar X char j B d&. (2-214)
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Then the normalization constants should have the relation as Eq.(2-215).

3 2
m.v foharXohar = SoE X char-
e Vchar ‘char®char , 0~char “char (2_215)

The steps to verify of equality in Eq.(2-215) is shown in Eq.(2-216) to Eq.(2-219).

e?ny2Ap’
m Vi, *NyAp=¢y 2_2 E D (2-216)
0
enghp”
= m, vy = — (2-217)
€0
Vg2 nge’
o2 (2-218)
}LD €oIMe
2
= 0,222 (2-219)
€M
So the normalized energy equations is shown in the following.
En,=En,+En,, (2-220)
— 1.
En,= f f EOzfdidO, (2-221)
o— 1 o
En.= j EE dx. (2-222)

To calculate Eq.(2-220) to Eq.(2-222), the trapezoidal method of numerical integration in

section 2.5.3 is used. The kinetic energy equation in Eq.(2-221) can be written in Eq.(2-223).
1 [Xox [Vov )
Eng== f f fv-dxdv. (2-223)
2 X0 Vo

First, do the integration of v, Eq.(2-223) becomes

nv-1

| [ 1
En,= 3 j Av{z [f(x,viy)VZ] +3 [f(x,vo)vE+f(x vy )VE ] dx, (2-224)
X0

iv=1

Eny= J- nxn(x)dx. (2-225)

X0
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nv-1
1 1
where n(x)= 3 Av {Z [f(x,viv)va] + 5 [f(x,vo)v(2)+f(x,vnv) VIZIV]}

iv=1
Second, do the integration of x, and the kinetic energy is given.
1 nx-1 1
En=5 Ax {Z [n(xix)]+5[n(xO)+n(xnx)]}. (2-226)
ix=1
In the same way, Eq.(2-222) can be integrated by using Eq.(2-227).
1 nx-1 1
En,= 3 AX {Z [En?(x,)]+ 3 [En? (x0)+En2(xnx)]}. (2-227)
ix=1

The total energy of simulation of two-stream instability are shown in Figure 2-33. The total

energy variation is less than 0.3% meaning the system energy is conserved in simulation.

12 ]
= 10 ]
f, 8 1 — Kinetic energy
> 6 ]
O — Electric energy
o 4 ]
uCJ 2 — Total energy

0 A A 1 A " A 1 " " " 1 " A A 1 "

20 40 60 80 100
time

Figure 2-33 Checking of energy conservation of two-stream instability.

From Eq.(2-204), the limitation of two-stream instability to happen is vy < é = 2. Therefore,

if for vy > % =2, the two-stream instability should not occurred. Figure 2-34 and Figure

2-35 are the initial conditions of vo = 1.9 and vo = 2.1 respectively. The total simulation time

is t = 100 o, for all cases. Figure 2-36 shows that there is an apparently two-stream
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instability while vo < 2.0. Figure 2-37 shows that the perturbation doesn’t grow with time

proving that two-stream instability can’t occur for vo > 2.0.

f(x)

1.010
1.005
1.000

0.995

0.990 PR 1 1 1 P 1 1 x
> 0 2 - 6 8 10 12
4
1<
4t
f(x,v)
09
0.8
1" - 0.7
0.6
—
0.5
> . . S B
S «© ©w < ~
S =) =) o o 04
0.3
e~ -2 0.2
1
q 0.1
1 0
= -4
1
1 1 1 1 I 1 1
0 2 4 6 8

10 12

Figure 2-34 Initial state of vo =1.9.
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Figure 2-35 Initial state of vo = 2.1.
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Figure 2-36 The simulation result after t = 1000y with vin = 1 and vo = 1.9. Instability

occurs.
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Figure 2-37 The simulation result after t = 1000, with ven = 1 and vo = 2.1. No

instability occurs.

Simulation results show that the initial double-peak Gaussian velocity distribution will

gradually merge due to the instability. Figure 2-38 shows the growth rate for v, = \E

En(t)
4
2t o
4
4
R PR R . TR TR O t
N 4 7 . .
B o 20 " X TN oo Simulation growth rate
-2F l/
y

‘ y e Theory growth rate
il / |

n. 4 Electric energy
B /i

’I
-8r /s
7/
4
’

-10F |/

Figure 2-38 Growth rate of two-stream instability at v, = \E

The growth rate from simulation is 0.701 is shown as the blue dashed line in Figure 2-38. To
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compare, the analytical growth rate from Eq.(2-206) is 2%/3 ~(.35. The logarithm of electric

energy is logEn = logE? = 2logE, so the analytical growth rate should be 2%0.35 = 0.7. In
Figure 2-38, the black dashed line in the same figure is theory growth rate. Theory growth
rate is 0.3% smaller than the simulation one. They are slightly different since our simulation

is warm plasma and the theory is cold plasma theory.
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Chapter 3 Free-streaming electrons

Free-streaming electrons is a beam-plasma phenomena. The instability arises when a single
electron beam with number density n, and plasma frequency o, flows with speed vy
through a stationary plasma. Vlasov solver uses combination method of PPM and PLM with
vanLeer slope-limiter to solve advection equation in x direction and PLM with vanLeer
slope-limiter to solve advection equation in v direction and Poisson’s equation uses Gauss-

Seidel method to solve.
3.1 Initial condition of free-streaming electrons

To study this phenomena, the initial distribution function f(x,v,0) is used. It is shown in
Eq.(3-1).

v2 (v-vp)?

f(x,v,0)= e_Vth2+ye vin? )[1+0.01 cos(kx) 1. (3-1)

1
(I+y)v, Vn (

The first exponential term represents the stationary plasma distribution and the second
exponential term represents the electron beam. vy, is the thermal velocity, and vy is the
beam velocity between the background plasma and electron distributions. y is a parameter
so that the number density of the electron beam can be adjusted by us to simulate different
beam intensities compared with the stationary plasma. The 1 + y term in the denominator is
to ensure the total electron number density is 1 as normalization in section 2.2. The initial
number density and initial velocity distribution of electrons with v set as 0.5, 1, 2 are shown
in Figure 3-1, Figure 3-2, and Figure 3-3 respectively, their average number density are all
1 as normalized. The cos(kx) term is a perturbation term in x with k=0.5 and their distribution
are also shown in Eq.(3-1) to Eq.(3-3) with y =0.5, y = 1, y = 2 respectively. The simulation

range in real space x is between 0 to L, L = 4x Ap, and from -5 v to 10 v in velocity space
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v. The final time is set as t = 100 w,™'. The boundary condition is periodic in spatial grids x

and set as zero (Dirichlet boundary condition) in velocity space grids v. The size of each time
step is defined as 6—14At where At is defined in Eq.(2-120). The number of grids are 128 in

both x and v direction. To calculate free-streaming electrons, the simulation methods are
combined with half-PPM and half-PLM with vanLeer slope-limiter in solving advection
equation in x direction, and PLM with vanLeer slope-limiter in solving advection equation

in v direction.
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Figure 3-1 Initial number density with different vy.
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Figure 3-2 Initial distribution in v with different y when (a) v»=2. (b) v»=3. (c) vb=4. (d)
vb=5.
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Figure 3-3 Initial distribution in v with different beam velocity vo when (a) y=0.5. (b)
v=1. (¢) y=2.
The initial state of Eq.(3-1) is set with v, = 1 and using different vy and vy to see the different

effects of free streaming electron beams in different beam velocity and intensity.

3.2 Simulation results of free-streaming electrons

The simulation results at t = 0 w,™! (initial condition), t = 20 w, (linear growth region), and

t=100 o, (nonlinear growth region) are shown in this section.
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32.1 y=0.5

The initial condition are

1
f(x,v,0)=
(x,v.0) 1.5vVn
F(x.v.0)= — 056
X,v,1)= e1+00¢e 1
1.5vn
1
f(x,v,0)=
(x,v.0) 1.5
£(x.v.0)= — ( 0.5
Xx,v,0)= e1+00¢e 1
1.5vn

v (v-2)?
e 1+0.5¢" 1 | (1+0.01 cos(0.5x)).

) (1+0.01 cos(0.5x))

v -4?
e 1+0.5¢" 1 | (1+0.01 cos(0.5x)).
NE:

) (1+0.01 cos(0.5x))

(3-2)

(3-3)

(3-4)

(3-5)

The initial conditions and the simulation results are shown in Figure 3-4 to Figure 3-7.
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Figure 3-4 Free streaming electrons of Eq.(3-2). (a) Velocity distribution in t = 0 pl.
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(b) Phase space diagram in t = 0 ®p’l. (¢) Velocity distribution in t = 20 @y (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 ®p. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-5 Free streaming electrons of Eq.(3-3). (a) Velocity distribution in t = 0 pl.
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(b) Phase space diagram in t = 0 ®p’l. (¢) Velocity distribution in t = 20 @y (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 ®p. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-6 Free streaming electrons of Eq.(3-4). (a) Velocity distribution in t = 0 ®pl.
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(b) Phase space diagram in t = 0 ®p’l. (¢) Velocity distribution in t = 20 @y (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 ®p. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.

84



fix,v)
] 0.40
0,35

0.30
0.25
0.20
0.15

0.10

f(v)

0.05

(d)

filx,v)
I_ 0.40
0.35

(c)

0.30
0.25
0.20
0.15

0.10

f(v)

0.05

fil=,v)
— 0.40
0.35
0.30
0.25
0.20
0.13

0.10

f(v)

0.05

(g) f(v) f(x) (h)

1.010
—t=0
! —t=20

1.000

—t=100
! 0.995
. . 0.990

2 r 6 8 0V

Figure 3-7 Free streaming electrons of Eq.(3-5). (a) Velocity distribution in t = 0 pl.

85



(b) Phase space diagram in t = 0 ®p’l. (¢) Velocity distribution in t = 20 @y (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 ®p. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.

322 y=1

The initial condition are

f(x,v,O)_7< < '(V12)>(1+0.01cos(0.5x)). (3-6)
f(x,v,O)_7< S (140.01 cos(0.5x)) (3-7)

(v- 4)2

f(x,v,O)_ (e T+e ) (1+0.01 cos(0.5x)). (3-8)

(v 0)=o—= 7 (e ) ) (140.01 cos(0.5x)) (3-9)

The initial conditions and the simulation results are shown in Figure 3-8 to Figure 3-11.
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Figure 3-8 Free streaming electrons of Eq.(3-6). (a) Velocity distribution in t = 0 ®pl.
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(b) Phase space diagram in t = 0 ®p’l. (¢) Velocity distribution in t = 20 @y (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 ®p. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-9 Free streaming electrons of Eq.(3-7). (a) Velocity distribution in t = 0 ®pl.
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(b) Phase space diagram in t = 0 ®p’l. (¢) Velocity distribution in t = 20 @y (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 ®p. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-10 Free streaming electrons of Eq.(3-8). (a) Velocity distribution in t = 0 wpl.
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(b) Phase space diagram in t = 0 ®p’l. (¢) Velocity distribution in t = 20 @y (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 ®p. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-11 Free streaming electrons of Eq.(3-9). (a) Velocity distribution in t = 0 wpl.

93



(b) Phase space diagram in t = 0 @y

diagram in t = 100 op!

in different time t.

323 y=2

The initial condition are

v2 (v 2)2
f(x,v,O)_—< T4+ ) (1+0.01 cos(0.5x)).
\/—
v (V-3)2
f(x,v,O)_ e1+2e” 1 | (1+0.01cos(0.5x))

(v- 4)2

f(x,v,O)— (e 142¢”

(v-5)%
f(x,v,0)= o o 1+0.01 cos(0.5x
(x,v,0)= 3\/E< )( (0.5x))

) (1+0.01 cos(0.5x)).

1 (¢) Velocity distribution in t = 20 ®p!. (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 wp!. (f) Phase space
Y g y Y

. (g) Velocity distribution in different time t. (h) Number density

(3-10)

(3-11)

(3-12)

(3-13)

The initial conditions and the simulation results are shown in Figure 3-12 to Figure 3-15.
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Figure 3-12 Free streaming electrons of Eq.(3-10). (a) Velocity distribution in t = 0 ®p
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1 (b) Phase space diagram in t = 0 wp’l. (¢) Velocity distribution in t = 20 ®p. (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 wp. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-13 Free streaming electrons of Eq.(3-11). (a) Velocity distribution in t = 0 ®p
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1 (b) Phase space diagram in t = 0 wp’l. (¢) Velocity distribution in t = 20 ®p. (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 wp. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-14 Free streaming electrons of Eq.(3-12). (a) Velocity distribution in t = 0 ®p
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1 (b) Phase space diagram in t = 0 wp’l. (¢) Velocity distribution in t = 20 ®p. (d) Phase
space diagram in t = 20 op’l. (e) Velocity distribution in t = 100 wp. (f) Phase space
diagram in t = 100 ®p. (g) Velocity distribution in different time t. (h) Number density

in different time t.
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Figure 3-15 Free streaming electrons of Eq.(3-13). (a) Velocity distribution in t = 0 ®p
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1 (b) Phase space diagram in t = 0 wpl. (¢) Velocity distribution in t =20 @p. (d) Phase
space diagram in t = 20 op’l. (¢) Velocity distribution in t = 100 wp'. (f) Phase space
diagram in t = 100 o,. () Velocity distribution in different time t. (h) Number density

in different time t.

3.3 Discussion of results

The energy conservation should be checked in simulating free streaming electron beams.
The calculation methods of total energy, kinetic energy, and electrical energy are shown in
section 2.6.2. The simulating free-streaming electrons with initial condition in Eq.(3-11) is
used to verify the energy conservation. The energy of simulating free-streaming electrons
are shown in Figure 3-16. The total energy variation is less than 1.012% after 100 w,™!. The

energy conservation test on our simulations show that the results are convincing.
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Figure 3-16 Checking of energy conservation of free-stream electrons simulation.

Figure 3-4, Figure 3-8, and Figure 3-12, are the simulation results for vp = 2 and v, = 1 but
with different y. The three figures show that no instability appeared. Due to the thermal
velocity vin for both groups of electrons, the instability is diffused and doesn’t grow. In Figure

3-7, Figure 3-11, and Figure 3-15, vy = 5. The three figures show that the electron beams are

102



too fast, i.e., the centers of their distribution function are far away to have any effect. As a
result, only when v, = 3 and v, = 4 the instability occurred. The growth rate of electric energy
is shown in Figure 3-17 for vy = 3 and Figure 3-18 for v, = 4. The growth rate of electric field
with different vy and y are shown in Appendix B. Table 3-1 shows the simulation growth rate

in different initial conditions.

En(t)

— V,=3y=05
— Vb=3 Y=1

— V=3 y=2

Figure 3-17 Growth rate of electric energy in vp = 3.

En(t)

Figure 3-18 Growth rate of electric energy in vp = 4.

There are no instability occurred for v =2 and v, =5, so their electric energy doesn’t change.
For vy = 3 and vor= 4, the electric energy grows. Both for vy = 3 and vy = 4, the maximum

growth rate happened when y = 1. For vy, = 3, growth rate of y = 1 is 6.5% and 7.3% higher
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than y = 0.5 and y = 2, respectively. For v, = 4, growth rate of y =1 is 8% and 7.7% higher
than y = 0.5 and y = 2, respectively. The growth rate in different y doesn’t change over 10%,

and the largest growth rate appeared when y = 1.

Table 3-1 growth rates in different initial conditions.

Initial condition Growth rate(wp)
vwh=3,y=0.5 0.258
vb=3,7y=1 0.275
vb=3,y=2 0.255
vb=4,7=0.5 0.297
vo=4,y=1 0.323
vb=4,y=2 0.298
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Chapter 4 Conclusion and summary

In this thesis, free-streaming electrons was simulated by using Vlasov solver in kinetic
regime. The plasma simulation program was developed and benchmarked. The simulation
code is developed to study the potential experiment on our pulsed-power system where free-
streaming electrons can be generated by the strong electric field. Vlasov solver was
benchmarked by simulating the two-stream instability and studying the growth rate. The
total energy was calculated and ensured being conserved in our simulation. After the code is
benchmarked, we used it to simulate the instability of free-streaming electrons in a
background plasma. Free-streaming electrons with thermal velocity v, different beam
velocity vy, and different ration between the number density of the free-streaming electrons
to the background electrons y were simulated. The energy conservation was ensured in
simulation. The growth of instability occurs between vy, < 2 in two-stream instability. In free-
streaming electrons, growth of instability occurs when beam velocity vy = 3 and v, = 4. No
instability occurs for v, = 2 and vy = 5. For v, = 3, the growth rate is 0.258, 0.275, and 0.255
fory=0.5,y=1, and y =2, respectively. For v, = 4, growth rate was 0.297, 0.323, and 0.298
fory=0.5,y=1, and y =2, respectively. The highest growth rate of v, =3 and vy =4 occurred
when y = 1. For v, = 3, growth rate of y = 1 was 6.5% and 7.3% higher than y = 0.5 and y =
2, respectively. For vy = 4, growth rate of y = 1 was 8% and 7.7% higher than y = 0.5 and vy
= 2, respectively. Nevertheless, the growth rate in different y doesn’t change over 10%.
Notice that if the total number density of electrons ne including free-streaming electrons
and the background electrons are not the same as number density of ions n;, total charge isn’t
zero. In that case, Poisson’s equation may not be solved with periodic boundary condition.
To solve this kind of problems, we can set a huge simulation length L in real space x and

apply other kinds of boundary conditions to solve this problem, such as Neumann boundary
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condition setting differential of any quantities being zero on the boundary. An electron source
or sink on the boundary is an alternative solution.

Vlasov solver can be used in simulation plasma phenomena widespread in both
laboratory and space plasmas so it can be used in simulating and compared with experiment
results or observation data. In the near future, the boundary condition can be changed as
described previously to simulate free-streaming electrons with nonzero total charge density
in plasma. Furthermore, Vlasov solver will be expanded to a two-dimensional program.
Adding magnetic field in it so that it can be used to solve a problem in electromagnetic field.
Depending on what experiments are constructed in our lab, different extensions of the code

will be developed in the future.
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Appendix A Calculation of integration in PPM

To determine this third-degree polynomial, f(x;) is considered in the range between i-2 to
i+1 for f;_.

f(x)=ay+a, (x—xi_ 1 )+a2(x—xi_l )’ +as (X—Xi_ 1 ). (A-1)
2 bl 2

Eq.(A-1) can be solved in the following integration.

=
w

~ 1 2

fnz—E . f(X)dX,

E’_1=— f(x)dx
X

(A-2)

1
1 ™2
P j 1090

3
| )
= ne fz f(x)dx.

The indefinite integral of Eq.(A-1) is
a a a
f F(x)dx =agX+ = (XX, 1)+ = (XX, 1)+ = (x-x. 1)". (A-3)
2w I NA LB
Therefore, the integration in Eq.(A-2) become
- a a a
( ﬁ“_zAx:aOAx-—1(3Ax)2+—2(7Ax)3-Z3(15Ax)4
a
fn Ax=- aOAX+ 2 L Ax- AX3+—3AX4

) 3 4 . (A-4)

a
f'nAX aOAX+ > L Ax2+ 32 AX3+Z3AX4

fl. 1 Ax= aOAx+—(3Ax)+ (7AX)+ 3 (15A%)"

\
These four equation in Eq.(A-4) can be calculated using s1mple algebra.

fi. [ (f1+8)-53 (ﬁ’mf“ 2)] (A-5)

To determine this third-degree polynomlal, f(x;) is considered in the range between i-1 to
i+2 for fj,.
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f(x)=ap+a,; (X_Xi+ % )+a, (x—xi% )2+a3 (x—xi % )3 . (A-6)

Eq.(A-6) can be solved in the following integration.

| —

1 (b
EFELSWM&

2

| (i
f?:&fl% f(x)dx,

(A-7)

.3

1 (*2
Eﬁ—ffww,

Ax i+%

i+5

5
1 ("2
E‘+2=E’[ 3 f(x;)dx.
2
The indefinite integral of Eq.(A-6) is
T P S DU U
ff(x)dx =apX+ 5 (X—Xi_%) + 3 (x—xi%) + 1 (X—Xi_%) . (A-8)
Therefore, the integration in Eq.(A-7) become
- a a a
( ﬁ‘_le=aOAx-31(3Ax)2+?2(7Ax)3-Z3(15Ax)4
a a a
f?AX:—aOAX+ 31 A2 A+ 2 AXY

3 4

a a a
E]+1Ax:a0Ax+ 31 Ax*+ ?2 AX+ 23 Ax*

- a a a
ﬂ1+2Ax:a0Ax+31(3Ax)2+?2 (7Ax)3+z3 (15A%)*

(A-9)

\

These four equation in Eq.(A-9) can be calculated using simple algebra.
7T n - 1 -
fom |5 ()5 (Bl (A-10)

To determine this third-degree polynomial, f(x;) is considered in the range between i-3 to
ifor fi .

FGO=ag+ar (x-x, 3)0+as(x-x 3) +az(x-x. 3)". (A-11)
2 2 2
Eq.(A-1) can be solved in the following integration.
i-

_ 1
ﬂ‘.3=5 g f(x;)dx, (A-12)

[\,
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le

f =i f(x)dx

-
| —

1
f{‘.lzg E f(x)dx,

I )
ﬂjzg'[% f(x)dx.

The indefinite integral of Eq.(A-1) is
a a a
f f(x)dx =agx+ 31 (X—Xi_% Y+ ?2 (X—Xi_% Y+ 23 (X—Xi_% .

Therefore, the integration in Eq (A-2) become

(fn Ax= aOAX——(3AX) + (7AX) 43(15A x)*
ff’_ Ax:—aOAx+3Ax —?Ax + :Ax
fn Ax= aOAx+ > L Ax> + 3 2 Ax +43Ax4
anx aOAx+—(3AX) + (7AX) + (ISAX)

These four equation in Eq.(A-4) can be calculated using simple algebra.

fot.= o5 (Tl )35 (0412)].

2 3
f(x)=ag+a; (X-X_ 3)+a,(X-x_ 3)"+az(x-x_3)".
l+§ 1+§ l+§

Eq.(A-6) can be solved in the following integration.

1 [(*2
f=r f 100

1 (i3
= f F(0dx,
Ax i+%

1 i+5

Ef s f(x;)dx,

l+2

t_-Ii1+2=

XVi

(A-13)

(A-14)

(A-15)

To determine this third-degree polynomial, f(xi) 1s considered in the range between i-1 to
i+2 for fj,.

(A-16)

(A-17)



.7
1 ("2
fiia=—— f f(xi)dx.
Ax i+E
2
The indefinite integral of Eq.(A-6) is
N DR - DU S
] f(x)dx =agx+ 3 (X—Xi_%) + 3 (X—Xi+%) + 2 (X—Xi+%) . (A-18)
Therefore, the integration in Eq.(A-7) become
a a a
( E‘Ax:aoAx-31(3Ax)2+§2(7Ax)3-Z3(15Ax)4

a a a
i+ 1AX=-20Ax+— AX"- = Ax"+—Ax
£\ Ax=-apA 21A232A3 43A4
. a4, (A-19)
i+2Ax=agAX+— AX"+ = Ax"+— Ax
fi ,Ax=a,A S A+ A A

_ a a a
f?+3Ax:aOAx+El(3Ax)2+?2(7Ax)3+23(15Ax)4

\

These four equation in Eq.(A-9) can be calculated using simple algebra.

7 4 |
fi+1,+= [E (ﬂ+1+§+2)' E (fF+3+f?)] > (A-20)
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Appendix B Figures of the electrical energy of free-streaming

electrons

Figure B-1 Growth rate of free-streaming electrons with vb =3,y = 0.5

En(t)
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Figure B-2 Growth rate of free-streaming electrons with vp=3,y=1

En(t)

Figure B-3 Growth rate of free-streaming electrons with v =3,y =2
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Figure B-4 Growth rate of free-streaming electrons with vp =4,y =0.5
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Figure B-5 Growth rate of free-streaming electrons with vp=4,y=1
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Figure B-6 Growth rate of free-streaming electrons with vb =4,y =2
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Appendix C List of data films of Vlasov solver

The simulation data films are listed in this section, and the naming method are explained.
Naming method of folders:

In “two_stream_instability” folder,

2 9 29 9 29 99 bR )

vth value” "vb value

“methods
Ex:

grids in both x and v”’_"perturbation value”

If using PLM first and PPM second with =0.5, vin=0.3, v,,= \E, grids=128,

perturbation=0.01*function, the folder name is “plmppm_vth0.3_vbrt1.5_128”

P.S. The folders using PPM first and PLM second with $=0.5 won’t show the methods in

folder names, and the folders using perturb=0.01*function won’t show as well.

In “free_streaming_electrons” folder,
”vth value”_"y””’vb value”

Ex:

If using vin=1, vp=3, y=0.5, the folder name is “vth1_0.5vb3”

P.S. All folders are used PPM first and PLM second with f=0.5, and grids=128.

Folder position:

Vlasovdata

two_stream_instability

plmppm_vth0.3_vbrtl.5_128
plm_vth0.3_vbrtl.5_128
plm_vth1l_vbrtl.5_128
ppmplm_vthl_vbrtl.5_64
ppmplm_vthl_vbrtl.5_128
ppm_vth0.1_vbrtl.5_256
ppm_vth0.5_vbrtl.5_256
ppm_vthl_vbrtl.5_128
ppm_vthl_vbrtl.5_256
vth0.3_vb1.9
vth0.3_vb2.1
vth0.3_vbrtl.5 64
vth0.3_vbrtl.5 128
vth0.3_vbrtl.5 256
vth0.5_vb1.9_256

XX



vth0.5_vb2.1_256

vthl_vbrtl.5_0.1

vthl_vbrtl.5_64_0.1

vthl_vbrtl.5_128 0.1

vthl_vbrtl.5_256_0.1

vthl_vbrtl.5_512 0.1

free_streaming_electrons

vth1l_0.5vb2

vth1l_0.5vb3

vth1l_0.5vb4

vth1l_0.5vb5

vthl_1vb2

vthl_1vb3

vthl_1vb4

vthl_1vb5

vthl_2vb2

vthl_2vb3

vthl_2vb4

vthl_2vb5
The naming methods of films in each folder are shown in the following.
“data#.txt” phase space plot at t=#
“rhodata#.txt” number density at t=#
“phidata#.txt” electric potential at t=#
“efxdata#.txt” electric field at t=#
“acldata#.txt” acceleration at t=#
“eedata.txt” electric energy
“kedata.txt” kinetic energy

“tedata.txt” total energy

XX1



