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摘要 

本論文旨在透過數值模擬來探討均勻電漿中的自由電子流的不穩定性。自由電子

流可以被我們正在建造的平行板電容(Parallel-plate capacitor bank)脈衝系統

(Pulsed-power system)產生，而均勻電漿可以利用輝光放電產生。伏拉索夫解法器

通常是種用動力學理論來模擬電漿現象的方法，因此，我們使用伏拉索夫解法器來模

擬自由電子流。我們先透過模擬雙流不穩定性來驗證我們開發的伏拉索夫解法器是否

正確，雙流不穩定性的能量守恆會被確認，而模擬中的不穩定成長率也會被拿來和理

論比較。我們所模擬的自由電子流的熱速度為 vth = 1，電子束平均速度 vb 分別設為 vb 

= 2、3、4、5，自由電子流與背景電子數量密度的比值 γ 則分別設為 γ = 0.5、1、2。

因此，會有 12 種不同的初始條件。我們發現，不穩定性的成長會發生在 vb = 3 和 vb 

= 4 的時候，vb = 2 和 vb = 5 時則不會。在 vb = 2 時，分佈函數因受熱運動影響而擴散

開，在 vb = 5 時，背景電漿和電子流間的相對速度太大以至於無法互相影響。vb = 3

和 vb = 4 時的最高成長率發生在 γ = 1 時，但是成長率在不同的 γ 中都未超過 10%。 

關鍵詞：自由電子流，伏拉索夫解法器，動能理論，雙流不穩定性  
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Abstract 

This thesis is to study the free-streaming electrons moving in a uniform background plasma 

in numerical simulation. Free-streaming electrons can be generated in our parallel plate 

capacitor bank (PPCB) system under construction. Uniform plasma can be generated by 

glow discharge. The simulation code of free-streaming electrons is implemented via Vlasov 

solver. Vlasov solver is usually used to simulate plasma phenomena in kinetic regime. Two-

stream instability is used to benchmark the code. The energy conservation is checked and 

energy growth rate of two-stream instability calculated from simulation results and theory 

are compared. The free-streaming electrons is simulated with thermal velocity vth = 1, beam 

velocity vb = 2, 3, 4, 5, respectively. Ratios between the number density of the free streaming 

electrons and the background electron density γ = 0.5, 1, 2, respectively. Therefore, there are 

12 different initial conditions were simulated. Instabilities occur when beam velocity vb = 3 

and vb = 4. No instability occurs for vb = 2 and vb = 5. In vb = 2, instability vb is diffused by 

electron of thermal motions. In vb = 5, the relative velocity between electrons and the 

background plasma is too large so that they don’t interact with each other. The growth rate 

is the highest when γ = 1. Nevertheless, the growth rate in different γ doesn’t change over 

10% between different γ we simulated. 

Keywords: Free-streaming electrons, Vlasov solver, Kinetic regime, Two-stream 

instability 
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Chapter 1 Introduction 

This thesis is to study free-streaming electrons in a uniform background plasma in 

simulations. The distribution function of electrons is very different from Maxwellian. 

Therefore, the phenomenon happens in kinetic regime. Vlasov equation will be solved 

numerically. In experiment, to generate free-streaming electron beams, a pulsed-power 

system is used. A pulsed-power system called parallel plate capacitor bank (PPCB) is being 

built in our group. It can generate a current up to ~800kA with a rise time of ~700ns. It can 

potentially generate a free-streaming electron beam with kinetic energy up to 80kV. In order 

to study the free-streaming electrons in a uniform plasma, a DC glow discharge will be used. 

The potential experimental setup is shown in Figure 1-1. Therefore, we are simulating the 

experiments of such electron beams in a background plasmas that will be conducted in the 

future. 

 

 

Figure 1-1 Schematic of experiment setup of generating free-streaming electrons. 
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1.1 Parallel plate capacitor bank 

A pulsed-power system is a device that stores energy first and releases it in a short period of 

time to provide high power output. The system is built in a parallel plate capacitor bank 

(PPCB). The side view and top view of PPCB system are shown in Figure 1-2 and Figure 

1-3 respectively, and Figure 1-4 shows the 3D configuration of PPCB system. The 

configuration of PPCB is introduced below. It consists of 20 capacitors. Each capacitor has 

1µF capacitance. Two capacitors connected in series is called one stage. Ten stages are 

connected in parallel. Therefore, one stage has 0.5µF capacitance and ten stages connected 

in parallel have totally 5µF capacitance. Figure 1-5 is the circuit diagram of PPCB system. 

When PPCB system is charged to 80kV, it stores 16kJ energy. On the other hand, when it is 

discharged, it provides a current with ~800kA. Parameters of PPCB system are shown in 

Table 1-1. 
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Figure 1-2 (a) Side view of the concept of PPCB. (b) Side view of the schematic of 

PPCB. 
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Figure 1-3 (a) Top view of the concept of PPCB. (b) Top view of the schematic of 

PPCB. 
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Figure 1-4 Schematic of PPCB. 

 

 

Figure 1-5 Circuit diagram of PPCB system. 

 

Table 1-1 Parameters of PPCB system. 

Capacitance 1 µF /each 

# of capacitor 20 

Total capacitance 5 µF 

Voltage 80 kV 
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Total energy 16 kJ 

Peak current ~800 kA 

Rise time ~700 ns 

Power 16 GW 

 

1.2 Free-streaming electrons 

Free-streaming electrons is studied in a uniform background plasma in this thesis. Free-

streaming electrons can be generated by a strong electric field. A pulse electric field for 

accelerating electrons can be generated by the PPCB system in building by us. The pulsed-

power system in our lab can provide a pulsed voltage up to 80kV, i.e., electrons can be 

accelerated to 80keV. Figure 1-1 is shown the potential experimental setup. The cathode is a 

disk while the anode is a ring electrode. When the system is discharged electrode, most 

electrons move from the cathode to the anode. Few electrons pass through the ring anode 

and become the same of the free-streaming electrons. Because of heavier weight of ions than 

electrons, electrons propagates much faster than ions when they have the same kinetic energy. 

Therefore, ions are treated as stationary. The distribution function of the experiment is shown 

in Figure 1-6. A Gaussian at v=0 represents the electrons of the background plasma. The 

Gaussian away from the center represents the free-streaming electrons. The plasma is in 

kinetic regime and is simulated by solving Vlasov equation. 
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Figure 1-6 Distribution of free-streaming electrons. 

 

1.3 Vlasov-Piosson system 

Vlaosv equation describes how distribution functions evolve in kinetic regime without 

collisions. The main equations are called Vlasov-Poisson equations. They are given as 

following: 

∂tf+v�
���
xf+
eE��

me

���
vf=0, Vlasov equation, (1-1) 

���
x
2φ=-���
xE��
=-

e

ϵ0

(ni-ne), Poisson’s equation. (1-2) 

These two equations are called Vlasov-Poisson system. Vlasov equation is a partial 

differential equation describing time evolution of the distribution function of plasma 

consisting of charged particles interaction. Poisson’s equation describes how the electric 

potential charges in the plasma. Numerical simulation methods and their benchmark of 

Vlasov solver are discussed in Chapter 2. Theory of two-stream instability is used to 

benchmark Vlasov solver. The simulation results are benchmark by compared with theory 

of two-stream instability. The simulation results of free-streaming electrons are discussed in 

Chapter 3. The conclusion and future work are shown in Chapter 4. 
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Chapter 2 Vlasov solver 

Vlasov solver is used to solve Vlasov equation numerically to study plasma phenomena 

without collisions in kinetic regime. When simulating plasma in kinetic regime, there are 

two kinds of methods to simulate: Particle-in-Cell (PIC) method and Vlasov solver. 

Compared to PIC, Vlasov solver is harder for massively parallel computation, but has no 

noise problem in kinetic regime. One-dimensional (1-D) Vlasov-Poisson system is used in 

this thesis. Therefore, only one-dimensional electrostatic problems are simulated. To verify 

our Vlasov solver, two-stream instability is simulated. The instability occurs when two 

counter-streaming plasma beams interact with each others. In this chapter, all subroutines of 

Vlasov solver are introduced. In section 2.1, the basic equations in Vlasov solver are 

introduced first. These equations are called Vlasov-Poisson’s system. In section 2.2, Vlasov-

Poisson system is normalized. In section 2.3, the simulation sequence and subroutines are 

introduced. In section 2.4, the numerical grids and range of simulation are introduced. 

Furthermore in section 2.5, details of numerical methods in Vlasov solver to solve the 

equations in Vlasov-Poisson system are discussed. All subroutines are benchmarked. Finally 

in section 2.6, The two-stream instability is used to benchmark the whole Vlasov solver. 

2.1 Basic equations 

The basic equations of Vlasov solver in one dimension is shown in Eq.(2-1) to Eq.(2-5). 

Eq.(2-1) is Vlasov equation in one dimension, f(x, v, t)  is the distribution function of 

electrons in plasma, x and v are position and velocity of electrons respectively, and t is time. 

a(x) is acceleration of electrons due to electric field, and the relation is shown in Eq.(2-5). 

Eq.(2-2) is the integration of distribution function f(x, v, t) by velocity v, and n(x) is the 

number density of electrons. Eq.(2-3) is a Poisson’s equation, where φ(x)  is electric 
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potential, e is electric charge, ϵ� is electric permittivity of free space. Eq.(2-3) can be solved 

with number density n. Because the electrons are much lighter than ions, electrons move 

much faster than ions with the same energy. Therefore, ions are set as a static background 

and only motions of electrons are considered. As a result, the number density of ions n� is 

set as a constant n� in our equations. On the other hand, the number density of electrons 

n� is set as n(x). Eq.(2-4) uses divergence relation between electric potential φ(x) and 

electric field E(x) to calculate the electric field. In Eq.(2-5), e is the same as Eq.(2-3), and 

m� is matter of electrons. 

∂f(x,v,t)

∂t
+v

∂f(x,v,t)

∂x
+a(x)

∂f(x,v,t)
∂v

=0, (2-1) 

ne=n(x)= � f(x,v,t)dv, (2-2) 

d
2
φ(x)

dx2
=-

e

ϵ0

(ni-ne)=-
e

ϵ0

 n0-n(x)!, (2-3) 

E(x)=-
dφ(x)

dx
, (2-4) 

a(x)=-
eE(x)

me

. (2-5) 

 

2.2 Normalization 

The Vlasov-Poisson system equations have some complex constants. To simplify, these 

equations are normalized to dimensionless equations using some characteristic quantities. 

All variables in the Vlasov-Poisson equations are normalized in the following units where 

the variables with subscript “char” is their own characteristic quantities (characteristic time 

tchar , length xchar , velocity vchar , acceleration achar , number density nchar , distribution 

function fchar , electric potential φ
char

 , and electric field Echar ). There are seven 

characteristic quantities to be set as Eq.(2-6) to Eq.(2-13). 
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tchar=ωp
-1 where ωp="n0e2

ε0me

, (2-6) 

xchar=λD where λD="ε0kBTe

n0e2
, (2-7) 

vchar=vth where vth=λDωp="kBTe

me

, (2-8) 

achar=λDωp
2=vthωp, (2-9) 

nchar=n0, (2-10) 

fchar=
n0

vth

, (2-11) 

φ
char

=
en0λD

2

ε0

=
mevth

2

e
, (2-12) 

Echar=
en0λD

ε0

=
mevth

2

eλD

. (2-13) 

The two main characteristic quantities are in time and in length. Time is normalized by one 

over plasma frequency ωp
-1 . Length is normalized by Debye length of the plasma λD . 

Velocity is normalized by thermal velocity vth. Number density is normalized by number 

density of ions. In Eq.(2-7) and Eq.(2-8), kB  is Boltzmann constant and Te  is electron 

temperature. Derivation of these normalized variables are shown in Eq.(2-14) to Eq.(2-25), 

respectively, where variables with hats represents normalized variables (normalized time t ̂, 
position x%, velocity v%, acceleration a%, number density n%, distribution function f&., electric 

potential φ' , and electric field E( ). Eq.(2-14) and Eq.(2-15) are shown the definition of 

normalized time and position. Eq.(2-16) and Eq.(2-17) are shown the derivation of velocity 

and acceleration by using v=
dx

dt
 and a=

d
2
x

dt2
 respectively. Normalized number density and 

distribution function are derived in Eq.(2-18) and Eq.(2-20) by using Eq.(2-2). Eq.(2-21) to 

Eq.(2-23) are the steps using Eq.(2-3) to normalize electric potential, and Eq.(2-24) and 
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Eq.(2-25) is the steps using Eq.(2-4) to normalize electric potential. Eq.(2-26) and Eq.(2-27) 

are normalized Eq.(2-5). 

t=tchart ̂= t ̂
ωp

, (2-14) 

v=vcharv%=
xchardx%
tchardt ̂ =λDωp

dx%
dt ̂ =vth

dx%
dt ̂ , (2-15) 

x=xcharx%=λDx%. (2-16) 

a=achara%=
xchard

2
x%

tchar
2dt ̂2 =λDωp

2
d

2
x%

dt ̂2 =vthωp

d
2
x%

dt ̂2 , (2-17) 

n=ncharn%=n0n%=fcharvchar � f&dv% =fcharvth � f&dv%, (2-18) 

⟹n=n0=fcharvth, (2-19) 

⟹f=fchar=
n0

vth

, (2-20) 

φ
char

d
2
φ'

λD
2
dx%2

=
e

ϵ0

n0n%, (2-21) 

⟹φ
char

d
2
φ'

dx%2
=n0λD

2 e

ϵ0

n%. (2-22) 

⟹φ
char

=
en0λD

2

ε0

=
en0vth

2

ε0ωp
2

=
en0vth

2

ε0

ε0me

n0e2
=

mevth
2

e
. (2-23) 

E=EcharE(=- φ
char

xchar

dφ'
dx% =- en0λD

2

λDε0

d

dx% n%dx%2
=- en0λD

ε0

n%dx%. (2-24) 

⟹Echar=-
en0λD

2

λDε0

=-
en0vth

2

ε0λDωp
2

=-
en0vth

2

ε0λD

ε0me

n0e2
=-

mevth
2

eλD

. (2-25) 

achara%=-
e

me

EcharE( (2-26) 

⟹achar = ,
me

mevth
2

eλD

= vth
2

λD

= λDωp
2 (2-27) 

Therefore, basic equations of Vlasov-Poisson system in Eq.(2-1) to Eq.(2-5) can be 

normalized as Eq.(2-28) to Eq.(2-32). 

∂f&(x%,v%,t̂)
∂t ̂ +v% ∂f&(x%,v%,t ̂)

∂x% +a%(x%) ∂f&(x%,v%,t ̂)
∂v% =0, (2-28) 
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n%(x%)= � f&(x%,v%,t ̂)dv%∞

-∞

, (2-29) 

d
2
φ'(x%)
dx%2

=- 1-n%(x%)!, (2-30) 

E((x%)=-
dφ'(x%)

dx% , (2-31) 

a%(x%)=-E((x%). (2-32) 

To simply the notation, variables without hats in the rest of this thesis represents normalized 

quantities. 

2.3 Simulation structure 

The process of Vlasov simulation follows the equations in Vlasov-Poisson system. The 

Figure 2-1 is shown the flow chart of Vlasov simulation. A distribution function is given as 

an initial condition first. In each time step ∆t, simulation does the following steps: (1) 

Calculate the number density of electrons n(x) by integrating the distribution function f(x,v,t) 

as Eq.(2-28) . (2) Calculate Poisson’s equation to get electric potential φ(x) as Eq.(2-30). (3) 

Calculate Gauss’s Law in electric field to get electric field E(x) and its acceleration a(x) as 

Eq.(2-31) and Eq.(2-32). (4) Calculate Vlasov equation to get new distribution function 

f(x,v,t) as Eq.(2-28). Data are output at specific time steps. Finally, this simulation is stopped 

when time reaches the total simulation time. 
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Figure 2-1 Flow chart of Vlasov solver. 

 

Detail structure of the program is shown in Figure 2-2. The function of each subprogram is 

discussed below. 

� Main – main program. 

� Module – set numerical variables. 

� Initial – set initial distribution function. 

� Boundary – set boundary conditions of f(x,v). 

� Vboundary – set boundary conditions of n(x), E(x), φ(x), a(x). 

� Density – calculate number density. 

� Poisson – calculate Poisson’s equation. 

� Electric – calculate electric field by using electric potential relation. 

� Splitx – calculate divided advection equation in x. 

� Splitv - calculate divided advection equation in v. 

Main	program	

Main 
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– Module 

– Initial 

– Boundary 

– Density 

– Poisson 

– Vboundary 

– Electric 

– Vboundary 

– for time loop 

– Splitv 

– Boundary  

– Splitx 

– Boundary 

– Density 

– Poisson 

– Vboundary 

– Electric 

– Vboundary 

 

Figure 2-2 Subprograms of the Vlasov solver. 

2.4 Simulation grids 

To calculate equations of Vlasov-Poisson system in simulation, numerical grids need to 

be defined so that they can be solved by using computers. In Vlasov solver. Vlasov solver 

sees a discrete phase space graph (x-v graph) in simulation. Therefore, the real space x is 

discretized as spatial grids “ix” in each position and velocity v is discretized as velocity space 

grids “iv” in each velocity space. Figure 2-3 shows the numerical grids of discrete phase 

space. In Figure 2-3, the simulation range in x from 0 to length L is discretized from 0 to nx 

and the simulation range in v from v0 to vnv is discretized from 0 to nv. The “0” and “nv” in 

subscript are the minimum and maximum values respectively in real space x and velocity 

space v. Therefore, length of one grid in spatial and velocity space are defined as Eq.(2-33) 
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and Eq.(2-34). 

∆x=
 x

nx
-x

0

nx
=

L-0

nx
, (2-33) 

∆v=
 v

nx
-v

0

nv
. (2-34) 

Each grid is set as xix=ix*∆x in spatial grids and viv=iv*∆v in velocity space grids, where xix 

and viv are the real values at ix and iv grids. The real time in simulation is discretized from 0 

to nt steps in “it” temporal grids. The total time is defined as t=nt*∆t and time at each time 

step is tit=it*∆t where ∆t is the length of one time step that is defined by using CFL condition 

in section 2.5.6. Because all physical quantities in Vlasov-Poisson system are normalized by 

one over plasma frequency ωpe
-1  and Debye length λD , all values in simulation are in 

normalized unit. If dealing with real physics, every physical quantities should be changed in 

real unit. The discretized parameters are shown in Table 2-1. 

Table 2-1 Parameters for running Vlasov simulation. 

Parameters Definition 

x Real space 

v Real velocity space 

ix Number of grid in space 

iv Number of grid in velocity 

nx Total number of grid in space 

nv Total number of grid in velocity 

L Total length in space 

t Real time 

it Number of time step 

tit Time at time step it 

nt Total number of time step 
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∆t Size of each time step 

xix Position at grid ix 

x0 Maximum position in space 

xnx Minimum position in space 

∆x Grid size in space 

viv Velocity of grid iv 

v0 Maximum velocity 

vnv Minimum velocity 

∆v Grid size in velocity 

 

Figure 2-3 Grids in phase space in Vlasov solver. 
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2.5 Numerical methods and verification 

Details of each subroutine and its benchmark is shown in this section. Following 

equations are solved in sequence: (1) initial condition, (2) boundary conditions, (3) 

integration of distribution function to obtain density of electrons, (4) Poisson’s equation to 

obtain electric potential, (5) electric field and acceleration, (6) Vlasov equation. 

 

2.5.1 Initial condition 

This subroutine generate the initial condition for simulations. Comparison between the 

simulation result and the analytical equation is given in Figure 2-4. The green line represents 

the function given in Eq.(2-35) while the red dots are the simulation result from the code.  

f(v,t=0)=e
-
(v-2π)

2

2 . (2-35) 

They are overlapped to each other. This shows that the subroutine for calculating initial 

condition is benchmarked. 
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Figure 2-4 Initial condition given in Eq.(2-35). 

2.5.2 Boundary conditions 

Each variable in Vlasov-Poisson system has its own boundary condition. They are 

defined as below in sequence (distribution function f(x,v,t), number density n(x), electric 

potential φ(x), electric field E(x), acceleration a(x)). 

2.5.2.1 Set of boundary conditions 

1. Distribution function f(x,v,t) 

Distribution function f(x,v,t) have two boundary conditions in x and v respectively. 

They are defined as below. 

(1) Periodic boundary condition is used in spatial grids x: 

In periodic boundary condition, particles leaving the simulation region from one 

boundary automatically coming back with the same velocity from the other boundary. This 

behavior ensure the particles are conserved in our simulation range. It can be defined as 

Eq.(2-36). In other words, two boundaries are connected with each other. 
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f(x0,v)	=	f(xnx,v). (2-36) 

In numerical simulation, the periodic boundary condition is defined as Eq.(2-37). 

f-1=fnx-1, f-2=fnx-2, f-3=fnx-3, 

fnx+1=f1, fnx+2=f2, fnx+3=f3. 
(2-37) 

Points beyond boundaries are called virtual numerical grids or ghost cells. Numbers of 

virtual grids are used depends on the simulation algorithm. Figure 2-5 shows the settings of 

Eq.(2-37). 

 

Figure 2-5 Periodic boundary condition in x for distribution function is used. 

 

 

(2) Dirichlet boundary condition is used in velocity space grids v: 

Dirichlet boundary condition is used and distribution function on the boundary in 

velocity is set as zero because the Gaussian distribution function goes zero with large number.  

It can be defined as Eq.(2-38). 

f(x,v0)	=	0, f(x,vnv)	=	0. (2-38) 

As a result, in numerical simulation, Dirichlet boundary condition can be set as Eq.(2-39). 

Figure 2-6 shows the settings in Eq.(2-39). 



20 

 

f-1=0, f-2=0, f-3=0, 

fnv+1=0, fnv+2=0, fnv+3=0. 
(2-39) 

 

Figure 2-6 Dirichlet boundary condition in v for distribution function is used. 

2. Number density n(x), electric potential φ(x), electric field E(x), acceleration 

a(x) 

These four variables all depends on space x so their boundary conditions are also 

periodic. They are defined as Eq.(2-40). 

n(x0)	=	n(xnx), φ(x0)	=	φ(xnx), E(x0)	=	E(xnx), a(x0)	=	a(xnx). (2-40) 

In numerical simulation, they are set as the same as the form in Eq.(2-37) and shown in 

Figure 2-7. 

 

Figure 2-7 Periodic boundary condition in x for n(x), φ(x), E(x), a(x) is used. 

2.5.2.2 Benchmark of boundary conditions 

To benchmark the subroutine calculates boundary condition.	The boundary condition 

f(x,v0)=f(x,vnv)=1 is used. A	given	distribution	function	set	as	Eq.(2-41) and shown in 

Figure 2-8 is used. 



21 

 

f(x,v,t=0)=
2

7√2π
(1+5v2) [1+0.01(

cosx+cos1.5x

1.2
+cos0.5x)]e

-
v2

2 . (2-41) 

	

 

Figure 2-8 Distribution function given in Eq.(2-41). 

The distribution function initially goes to zero at v0 and vnv. However, after applying 

boundary condition, points on the boundary become 1 showing in Figure 2-9. This shows 

that the subroutine for calculation boundary condition is benchmarked. 
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Figure 2-9 Distribution function after applying boundary conditions. 

After the subroutine of the boundary condition is benchmarked, the boundary condition is 

changed back to what were described in 2.5.2.1. 

2.5.3 Density of electrons 

The density of electrons is calculated by integrating distribution function f in Eq.(2-29). 

It is rewritten in Eq.(2-42). 

n(x)= � f(x,v,t)dv

v./
v0

. (2-42) 

Note that the integration region is changed from 0 to infinity (∞) to v0 to vnv since the 

distribution function is almost zero for v < v0 and v > vnv. 

2.5.3.1 Using trapezoidal method to solve numerical integration 

To do the integration numerically, trapezoidal method[2] is used. Figure 2-10 shows the 
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concept of trapezoidal method. Trapezoidal method approximates the area under the curve 

of the function as lots of trapezoids and calculates their area. The integral is approximated 

by a summation given in Eq.(2-43). This equation shows that it is the summation of many 

trapezoids, where ∆v is the height and f(viv) is sides of trapezoids.  

n≈
∆v

2
[f(v0)+f(v1)]+

∆v

2
[f(v1)+f(v2)]+⋯+

∆v

2
[f(viv-1)+f(viv)]	

+
∆v

2
[f(viv)+f(viv+2)]+⋯+

∆v

2
[f(vnv-1)+f(vnv)]	

=
∆v

2
[f(v0)+2f(v1)+⋯+2f(viv)+⋯+2f(vnv-1)+f(vnv)] 

where ∆v=
V

nv
-V

0

nv
. 

(2-43) 

The Eq.(2-43) can be rewritten in Eq.(2-44). 

n= � fdv

vnv

v0

=∆v 12 f(viv)nv-1

iv=1

+
1

2
 f(v0)+f(vnv)!3. (2-44) 

 

Figure 2-10 Trapezoidal method is used for integration. 
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2.5.3.2 Benchmark of number density 

To benchmark numerical integration using trapezoidal method, a distribution function 

f(v)	=	v4 is used. To test the integration subroutine, this distribution function is integrated 

from v = -5 t0 v = 5 as shown in Eq.(2-45). 

n(x)	=	 � v4dv5

-5

	=	 v5

5
456
	 6 = 1250. (2-45) 

The numerical calculation is 1250.034 with an error of 2.72×10-3%. It shows the subroutine 

that calculates the integration is benchmarked. 

2.5.4 Poisson’s equation 

The Poisson’s equation from Eq.(2-30) is given again in Eq.(2-46). 

d
2
φ(x)
dx

2
	=	n(x)-1. (2-46) 

The density(x) on the right hand side of Eq.(2-46) has already been calculated in section 

2.5.3. 

2.5.4.1 Numerical methods of solving Poisson’s equation	

To solve the Poisson’s equation, finite difference method (FDM) is used. As a result, 

using finite difference method, the left hand side of Eq.(2-46) can be changed to a discrete 

form as Eq.(2-47). 

d
2
φ(x)
dx

2
	≈	 φix-1

-2φ
ix

+φ
ix+1

∆x
2

. (2-47) 

Inserting Eq.(2-47) back to Eq.(2-46) so that Eq. (2-46) becomes Eq.(2-48) and Eq.(2-49). 

φ
ix-1

-2φ
ix

+φ
ix+1

∆x
2

	=	nix -1. (2-48) 
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φ
ix-1

-2φ
ix

+φ
ix+1

	=	;nix -1<∆x
2
. (2-49) 

There are nx equations and nx unknowns of φix where ix = 0 to nx. Periodic boundary 

condition with the definition φ
-1

=φ
nx-1

 and φ
nx+1

=φ
1
 are used. The series of equations are 

shown in Eq.(2-50). 

=>>
>?
>>>
@ φ

nx-1
-2φ

0
+φ

1
=;n0 -1<∆x

2

φ
0

-2φ
1

+φ
2

=;n1 -1<∆x
2⋮

φ
ix-1

-2φ
ix

+φ
ix+1

=;nix -1<∆x
2⋮

φ
nx-2

-2φ
nx-1

+φ
nx

=;nnx-1-1<∆x
2

φ
nx-1

-2φ
nx

+φ
1

=;nnx-1<∆x
2

. (2-50) 

To simplify, ;nix -1<∆x
2	≡	g

ix
 is used. The series of equations is shown in Eq.(2-51). 

=>>
>?
>>>
@ -2φ

0
+φ

1
+1φ

nx-1
=	g

0

φ
0

-2φ
1

+φ
2

=	g
1⋮

φ
ix-1

-2φ
ix

+φ
ix+1

=	g
ix⋮

φ
nx-2

-2φ
nx-1

+φ
nx

=	g
nx-1

φ
1

+φ
nx-1

-2φ
nx

=	g
nx

. (2-51) 

Eq.(2-51) also can be written in matrix form as Eq.(2-53) for calculation. 

BCC
CCC
D-2 1 0 ⋯ 0 1 0

1 -2 1 ⋮
0 1 ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ 1 0⋮ 1 -2 1

0 1 0 ⋯ 0 1 -2FGG
GGG
H
BCC
CD φ

0⋮⋮⋮
φ

nxFGG
GH

=

BCC
CD g

0⋮⋮⋮
g

nxFGG
GH

. (2-52) 

To solve Eq.(2-51), these linear equations can be written in the matrix form as Eq.(2-53), 

where φ
ix

=φ
i
, and g

ix
=bi and, ai,j represents elements in the matrix. 

=?
@ a0,0φ

0
+a0,1φ

01
+⋯+a0,nx-1φ

nx-1
+a0,nxφ

nx
=b0

a1,0φ
0
+a1,1φ

1
+⋯+a1,nx-1φ

nx-1
+a1,nxφ

nx
=b1⋮

anx,0φ
0
+anx,1φ

1
+⋯+anx,nx-1φ

nx-1
+anx,nxφ

nx
=bnx

. (2-53) 

Generally, there are two kinds of methods to solve the system of equations in the matrix form. 
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One is iteration method including Jacobi’s method[2], Gauss-Seidel’s method[2]. The other 

one is direct method including Gauss elimination[2] and LU decomposition method[2]. They 

are both introduced in the below 

1. Iteration methods 

Iteration methods solve each linear equation for φ
i
 sequentially from an initial guess. 

Equations are solved by iteration until the solution converges. Two methods of iteration 

methods, Jacobi’s method and Gauss-Seidel’s method are introduced. 

(1) Jacobi’s method 

The equation is rewritten in the following form in Eq.(2-20). 

φ
0
k+1=

b0-a0,1φ
1
k-a0,2φ

2
k⋯-a0,n-1φ

nx-1
k -a0,nxφ

nx
k

a1,1
,

φ
1
k+1=

b1-a1,0φ
0
k-a1,2φ

2
k⋯-a1,n-1φ

nx-1
k -a1,nxφ

nx
k

a2,2
,⋮

φ
nx
k+1=

bnx-anx,0φ
0
k-anx,1φ

1
k⋯-anx,nx-1φ

nx-1
k

anx,nx
.

 
(2-54) 

It is written into a summation form. 

φ
i
k+1= (bi- 2 ai,jφj

k

i-1

j=0

- 2 ai,jφj
k

nx

j=i+1

) ai,iI  where i=0,⋯,nx and k=0,⋯,nx. (2-55) 

The superscript k is the number of iteration temporary steps. A new φ
i
k+1 are calculated 

based on the previous iteration φ
i
k. The iteration is stopped until φ

i
k in the equations are 

converged The convergent criteria will be given later in the part (3) in this section. 

(2) Gauss-Seidel’s method 

Gauss-Seidel’s method is an improved method from Jacobi’s method. Eq.(2-54) is 

rewritten as following. 
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φ
0
k+1=

b0
k
-a0,1φ

1
k-a0,2φ

2
k⋯-a0,n-1φ

nx-1
k -a0,nxφ

nx
k

a1,1
,

φ
1
k+1=

b1
k
-a1,0φ

0
k+1-a1,2φ

2
k⋯-a1,n-1φ

nx-1
k -a1,nxφ

nx
k

a2,2
,⋮

φ
n
k+1=

bnx-anx,0φ
0
k+1-anx,1φ

1
k+1⋯-anx,nx-1φ

nx-1
k+1

anx,nx
.

 
(2-56) 

Eq.(2-56) can also be rewritten in a summation form as Eq.(2-57). 

φ
i
k+1= (bi- 2 ai,jφj

k+1

i-1

j=0

- 2 ai,jφj
k

nx

j=i+1

) ai,iI , i=0,⋯,nx	and k=0,⋯,nx. (2-57) 

Comparing with Jacobi’s method, the computation in Gauss-Seidel’s method of φ
i
k+1 uses 

the elements of φ
j
k+1 where j < i that have already been computed. Therefore, Gauss-Seidel’s 

method converges faster than Jacobi’s method. 

(3) Convergent condition 

To define the convergence of Jacobi’s method and Gauss-Seidel’s method, 

approximated errors need to be calculated. The approximated errors ε is defined as Eq.(2-58). 

|ε|i= 4 φ
i
k+1-φ

i
k

φ
i
k+1+10

-6
4 . (2-58) 

The number 10-6 in the denominator is to ensure that the denominator isn’t zero even when 

φ
i
k+1 is very small. The iteration is stopped when the absolute value of approximated error 

being less than a pre-specified tolerance when the condition is met (10-6 in our simulation). 

2. Direct solvers 

Direct solvers solve linear equations directly to get the exact solutions. Two kinds of 

direct solvers are introduced in this part: Gauss elimination method and LU decomposition 

method. To solve linear equations of Poisson’s equation directly,  

The system of linear equations in the matrix form is rewritten again in the following. 
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K a0,0 ⋯ a0,nx⋮ ⋱ ⋮
anx,0 ⋯ anx,nx

L K φ
0⋮

φ
nx

L = K b0⋮
bnx

L . (2-59) 

To help us keep track on the steps of this process, we will denote the initial system with the 

superscript as Eq.(2-60). 

M a0,0(0) ⋯ a0,nx

(0)⋮ ⋱ ⋮
anx,0(0) ⋯ anx,nx

(0)

N K φ
0⋮

φ
nx

L = Ob0
(0)⋮

bnx
(0)P . (2-60) 

(1) Gauss elimination 

First, elements in the first row a0,j(0)
 and b0

(0)
 is divided by the leading elements of the 

row a0,0(0)
. These steps are shown in Eq.(2-61) and Eq.(2-62). 

a0,j(1)
=

a0,j(0)

a
0,0(0)

	where	 j=0,⋯,nx, (2-61) 

b0
(1)

=
b0

(0)
a

0,0(0) . (2-62) 

After this step, Eq.(2-60) can be shown as Eq.(2-63) 

BCC
CCC
D a0,0

(1)
a0,1

(1) ⋯ a0,nx-1

(1)
a0,nx

(1)

a1,0

(0) ⋱a1,1

(0) ⋱ ⋱ a1,nx

(0)

⋮ ⋱ ai,j

(0) ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮
anx,0

(0)
anx,1

(0) ⋯ anx,nx-1

(0)
anx,nx

(0) FGG
GGG
H
BCC
CD φ

0⋮
φ

i⋮
φ

nxFG
GGH =

BCC
CCD
b0

(1)⋮
bi

(0)⋮
bnx

(0)FGG
GGH . (2-63) 

Elements beside the leading element in the first column can be eliminated using the 

following equations. Then subtract the result from row i, this yields new matrix elements of 

ai,j as Eq.(2-32) and Eq.(2-33). 

ai,j(1)
=ai,j(0)

-
ai,0(0)
a

0,0(0) a0j

(0)
=ai,j(0)

-ai,0(0)
a0,j(�)	where i=1,⋯,nx and j=0,⋯,nx, (2-64) 
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bi
(1)

=bi
(0)

-
ai,0(0)
a

0,0(0) bi
(0)=bi

(0)
-bi

(0)
a0,j(�)	where i=1,⋯,nx. (2-65) 

Note that elements in the first column are eliminated as following. 

ai,0

(1)
=ai,0

(0)
-
ai,0

(0)
a

0,0

(0) a0,0

(0)
=0 where i=1,⋯,nx. (2-66) 

Therefore, Eq.(2-63) becomes 

BCC
CD1 a0,1(1) ⋯ a0,nx

(1)

0 a1,1(1) ⋯ a1,nx

(1)⋮ ⋮ ⋱ ⋮
0 anx,1(1) ⋯ anx,nx

(1) FGG
GH K φ

0⋮
φ

nx

L = Ob0
(1)⋮

bnx
(1)P . (2-67) 

Similarly, the second column and sequentially of each column are eliminated as following. 

ak,j(k)
=

ak,j(k-1)

a
k,k(k-1)

 where j=k,⋯,nx	and	k=1,⋯,nx. (2-68) 

ai,j(k)
=ai,j(k-1)

-
ai,k(k-1)
a

k,k(k-1) ak,j(k-1)
 where i=k+1,⋯,nx,	 j=k,⋯,nx,	and  k=1,⋯,nx, (2-69) 

bk
(k-1)

=
bk

(k-1)

a
k,k

(k-1)
 where j=k,⋯,nx and k=1,⋯,nx and k=0,⋯,nx, (2-70) 

bk
(k)

=bk
(k-1)

-
ai,k

(k-1)
a

k,k

(k-1) bk
(k-1)

 where i=k+1,⋯,nx and k=0,⋯,nx. (2-71) 

The superscript k equals 1 to nx represents the steps of elimination. After applying the 

elimination, Eq.(2-59) becomes 

BC
CCC
D1 a0,1

(1) ⋯ ⋯ a0,nx

(1)

0 1 a1,2

(2) ⋯ a1,nx

(2)⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ anx-1,nx

(nx-1)

0 0 ⋯ 0 1 FG
GGG
H
K φ

0⋮
φ

nx

L = O b0
(1)⋮

bnx
(nx)P . (2-72) 

Eq.(2-72) can be represented by using ai,j

(k)
=ai,j

'  and bi
(k)

=bi
'
 in the following. 
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BCC
CCD
1 a0,1

' ⋯ ⋯ a0,nx
'

0 1 a1,2
' ⋯ a1,nx

'⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ anx-1,nx
'

0 0 ⋯ 0 1 FGG
GGH K φ

0⋮
φ

nx

L = O b0
'⋮

bnx
'

P. (2-73) 

These steps are called forward elimination. Apparently, φ
nx

=bnx
'

. After substituting φ
nx

=bnx
'

 

to the last second row of the matrix, and φ
nx-1

  can be obtained. This is called back 

substitution. It can be represented as Eq.(2-74). 

φ
i
= (bi

'
- 2 ai,j' φ

j

nx

j=i+1

) aii
'I  where i=nx-1,⋯,0. (2-74) 

As a result, all φi can be solved exactly. 

(2) LU decomposition 

To solve the matrix by using LU decomposition, Eq.(2-59) is written in Eq.(2-75) and 

Eq.(2-76). LU decomposition separates A into two separated triangular matrix. it is shown 

in Eq.(2-77).  

AΦ=B. (2-75) 

A= K a0,0 ⋯ a0,nx⋮ ⋱ ⋮
anx,0 ⋯ anx,nx

L, Φ= K φ
0⋮

φ
nx

L, B= K b0⋮
bnx

L. (2-76) 

A=

BC
CC
D 1 0 ⋯ 0 0

l1,0 1 ⋱ ⋮ ⋮
l2,0 l2,1 ⋱ 0 ⋮⋮ ⋮ ⋱ 1 0

lnx,0 lnx,1 ⋯ lnx,nx-1 1FG
GG
H
BCC
CDu0,0 u0,1 ⋯ ⋯ u0,nx

0 u1,1 ⋯ ⋯ u1,nx⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 unx,nxFGG

GH. (2-77) 

These two matrixes are called the upper matrix U and the lower matrix L shown in 

Eq.(2-78). 
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U=

BCC
CDu0,0 u0,1 ⋯ ⋯ u0,nx

0 u1,1 ⋯ ⋯ u1,nx⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 unx,nxFGG

GH
 and  L=

BC
CC
D 1 0 ⋯ 0 0

l1,0 1 ⋱ ⋮ ⋮
l2,0 l2,1 ⋱ 0 ⋮⋮ ⋮ ⋱ 1 0

lnx,0 lnx,1 ⋯ lnx,nx-1 1FG
GG
H

 .

. (2-78) 

The lower matrix L and the upper matrix U are obtained by using Gauss elimination shown 

in part (1). Upper matrix U is obtained using the same way given in Eq.(2-69) and it is 

rewritten in Eq.(2-79). 

=>?
>@ ui,j=a0,j

(0)
 where  j=0,⋯,nx,

ui,j=ai,j

(k)
=ai,j

(k-1)
-

ai,k

(k-1)
a

k,k

(k-1) ak,j

(k-1)
 where i=k+1,⋯,nx, j=k+1,⋯,nx, and k=1,⋯,nx,

ui,j=0 where i>j.

 (2-79) 

Finally, the matrix form of upper matrix U is shown as Eq.(2-80). 

U=

BC
CCC
Da0,0

(0)
a0,1

(0) ⋯ ⋯ a0,nx

(0)

0 a1,1

(1) ⋯ ⋯ a1,nx

(1)⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 anx,nx

(nx) FG
GGG
H

=

BCC
CDu0,0 u0,1 ⋯ ⋯ u0,nx

0 u1,1 ⋯ ⋯ u1,nx⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 unx,nxFGG

GH
 (2-80) 

Lower matrix L is obtained from origin matrix A as following. 

=>?
>@li,j=

ai,j

(i)

a
j,j

(i)
 where i=1,⋯,nx and j=0,⋯,i-1, i>j,

li,j=1 where i=j,
li,j=0 where i<j.

 (2-81) 

After doing these steps, the matrix form of lower matrix L is shown in Eq.(2-82). 

L=

BC
CC
D 1 0 ⋯ 0 0

l1,0 1 ⋱ ⋮ ⋮
l2,0 l2,1 ⋱ 0 ⋮⋮ ⋮ ⋱ 1 0

lnx,0 lnx,1 ⋯ lnx,nx-1 1FG
GG
H

. (2-82) 

To ensure Eq.(2-82) is correct, LU=A should be verified. Let a matrix be 
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M(0)=

BC
CC
D 1 0 ⋯ 0 0

-l1,0 1 ⋱ ⋮ ⋮
-l2,0 0 ⋱ 0 ⋮⋮ ⋮ ⋱ 1 0

-lnx,0 0 ⋯ 0 1FG
GG
H

. (2-83) 

The origin matrix is defined as A=A
(0)

, and multiply the matrix M(0)A
(0)

. 

A
(1)

=M
(0)

A
(0)	

=

BC
CC
D 1 0 ⋯ 0 0

-l1,0 1 ⋱ ⋮ ⋮
-l2,0 0 ⋱ 0 ⋮⋮ ⋮ ⋱ 1 0

-lnx,0 0 ⋯ 0 1FG
GG
H M a0,0

(0) ⋯ a0,nx

(0)⋮ ⋱ ⋮
anx,0

(0) ⋯ anx,nx
(0)

N =

BC
CC
Da0,0

(0)
a0,1

(0) ⋯ a0,nx

(0)

0 a1,1

(1) ⋯ a1,nx

(1)⋮ ⋮ ⋱ ⋮
0 anx,1

(1) ⋯ anx,nx
(1) FG

GG
H. (2-84) 

The relationship can be found in Eq.(2-84) which is shown in the following. 

ai,j

(1)
=ai,j

(0)
-
ai,0

(0)
a

0,0

(0) a0,j

(0) = ai,j

(0)
-li,0a0,j

(0)
where i=1,⋯,nx and j=1,⋯,nx. (2-85) 

Therefore, in next step, A(2) is calculated as Eq.(2-86). 

A
(2)

=M(1)A
(1)

=M(1)M(0)A
(0)	 where	 M(1)=

BC
CC
CD1 0 ⋯ ⋯ ⋯ 00 1 ⋱ ⋮⋮ -l2,1 ⋱ ⋱ ⋮⋮ -l2,2 0 ⋱ ⋱ ⋮⋮ ⋮ ⋮ ⋱ ⋱ 00 -lnx,1 0 ⋯ 0 1FG

GG
GH. (2-86) 

Generally, after k steps, the matrix A becomes 

A
(k)

=M(k)M(k-1)A
(k-1)

=M(k)⋯M(0)A
(0)

 (2-87) 

M(k) is defined as Eq.(2-88). 

M(k)=

BC
CC
CC
CD1 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0

0 ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ -lk+1,k ⋱ ⋱ ⋮⋮ ⋮ ⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0

0 ⋯ 0 -ln,k 0 ⋯ 0 1FG
GG
GG
GH
 (2-88) 

From Eq.(2-85), at k step, A(k) can be calculated by Eq.(2-89). 
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ai,j

(k)
=ai,j

(k)
-
ai,k

(k-1)
a

k,k

(k-1) ak,j

(k-1)
=ai,j

(k-1)
-li,kak,j

(k-1)
 where i=k,⋯,nx and j=k,⋯,nx. (2-89) 

Apparently, A(k) has the form in following. 

A
(k)

=A
(nx)

=

BC
CCC
Da0,0

(0)
a0,1

(0) ⋯ ⋯ a0,nx

(0)

0 a1,1

(1) ⋯ ⋯ a1,nx

(1)⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 anx,nx

(nx) FG
GGG
H

=U (2-90) 

From above, the upper matrix U have and origin matrix A have the relation as following 

equations. 

U=A
(nx)

=M(nx-1)⋯M(1)M(0)A
(0)

, 

A=A
(0)

=XM(0)Y-1XM(1)Y-1⋯[M
(nx-1)

]
-1

U 

(2-91) 

Because [M(k)]-1 has a relationship can be found as Eq.(2-92). 

[M
(k)

]
-1

=

BC
CC
CC
CD1 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0

0 ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ lk+1,k ⋱ ⋱ ⋮⋮ ⋮ ⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0

0 ⋯ 0 ln,k 0 ⋯ 0 1FG
GG
GG
GH

=L(k) (2-92) 

These show that M(k) and L(k) are inverse matrix as M(k) L(k)=I, where I is identity matrix. L 

is the product of L(k) as Eq.(2-93). 

L=L(0)L(1)⋯L(nx-1)=XM(0)Y-1
[M

(1)
]
-1⋯[M

(k)
]
-1

 (2-93) 

As a result, A=LU has been proofed. 

A=XM(0)Y-1XM(1)Y-1⋯XM(nx-1)Y-1
U=L

(0)
L

(1)
L

(nx-1)
U=LU (2-94) 

After decomposition of lower matrix L and upper matrix U, Eq.(2-75) can be represented as 

Eq.(2-95). 
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AΦ=(LU)Φ=L(UΦ)=B. (2-95) 

The solution to the original matrix is founded by two steps of triangular solve process: 

UΦ=Y, LY=B. (2-96) 

They are solved in sequence to get matrix Φ. The matrix form of LY=B  is shown in 

Eq.(2-97). 

BC
CC
D 1 0 ⋯ 0 0

l1,0 1 ⋱ ⋮ ⋮
l2,0 l2,1 ⋱ 0 ⋮⋮ ⋮ ⋱ 1 0

lnx,0 lnx,1 ⋯ lnx,nx-1 1FG
GG
H K y

0⋮
y

nx

L = K b0⋮
bnx

L . (2-97) 

This matrix is solved by Eq.(2-98) as following. 

y
i
=bi- 2 lijyj

i-1

j=1

 where i=1,⋯,nx. (2-98) 

The matrix form of UΦ=Y is shown in Eq.(2-99). 

BCC
CDu0,0 u0,1 ⋯ ⋯ u0,nx

0 u1,1 ⋯ ⋯ u1,nx⋮ 0 ⋱ ⋱ ⋮⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 unx,nxFGG

GH K φ
0⋮

φ
nx

L = K y
0⋮

y
nx

L . (2-99) 

The matrix in Eq.(2-99) can also be solved in the same way as Eq.(2-100). 

φ
i
= (y

i
- 2 uijφj

nx

j=i+1

) uiiI where i=1,⋯,nx. (2-100) 

 

2.5.4.2 Benchmark of Poisson’s equation	

To benchmark the simulation for calculating Poisson’s equation, there is a given 

function g(x)=sin(
3x

4π
) is used. The equation becomes the following. 

d
2
φ

dx2
=sin Z3x

4π
[ . (2-101) 
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The boundary conditions are set as φ(0)=0 and φ(4π)=0. The exact solution of Eq.(2-101) 

is 

φ(x)=
4

9
\πxsin(3)-4π2sin Z3x

4π
[] . (2-102) 

The exact solution is compared with the numerical one solved by the iterative and direct 

methods respectively They are shown in Figure 2-11 and Figure 2-12. Figure 2-11 is solved 

by using Gauss-Seidel’s method, and Figure 2-12 is solved by using LU decomposition. In 

these two graphs, the black dashed points are simulation results, and the green solid lines are 

analytical results. As a result, the subroutine calculate the Poisson’s equation is benchmarked. 

Gauss-Seidel method is used in our code since it solves the Poisson’s equation faster. 

 

Figure 2-11 Result of calculating electric potential for Poisson’s equation using Gauss-

Seidel’s method. The black dashed points are simulation results, and the green solid 

lines are analytical results. 
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Figure 2-12 Result of calculating electric potential for Poisson’s equation using LU 

decomposition. The black dashed points are simulation results, and the green solid lines 

are analytical results. 

2.5.5 Electric field and acceleration 

The subroutine of electric field and acceleration are discussed in the section. 

Acceleration a(x) is obtained by electric field E(x) using Eq.(2-32). Electric field E(x) are 

calculated from electric potential φ(x) using Eq.(2-31). Electric potential φ(x) is obtained 

from the result of Poisson’s equation. 

2.5.5.1 Method of numerical differentiation	

To solve the differentiation in Eq.(2-31), it needs to be discretized using finite difference 

method (FDM)[2]. From Taylor’s series, φ(x) can be represented as Eq.(2-103). 

φ(x+∆x)=φ(x)+φ'(x)∆x+
φ"(x)

2!
∆x2+⋯

φ(x-∆x)=φ(x)-φ'(x)∆x+
φ"(x)

2!
∆x2-⋯ . (2-103) 

Adding two equations: 

φ'(x)=
φ(x+∆x)+φ(x-∆x)

2∆x
 (2-104) 

Therefore, the electric field is 
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Eix=-
φ

ix+1
-φ

ix-1

2∆x
. (2-105) 

The acceleration is 

aix=-Eix. (2-106) 

2.5.5.2 Benchmark of the subroutine calculating electric field and acceleration	

To benchmark the subroutine, the result in Eq.(2-102) from section 2.5.4 is used. The 

analytical solution of the electric field is 

E=
4

3
\πcos Z3x

4π
[ -

1

3
πSin(3)] (2-107) 

The analytical solution of acceleration is 

a=-
4

3
\πcos Z3x

4π
[ -

1

3
πSin(3)] (2-108) 

The simulation result of Eq.(2-105) is shown in Figure 2-13 and compared with the exact 

solution in Eq.(2-107). The black dashed points are the simulation result and the green solid 

line is the analytical result. 

 

Figure 2-13 Comparison of the analytical solution in green solid line and the 

simulated result in black dashed line. 

 

The simulation result of Eq.(2-106) is shown in Figure 2-14 and compared with the exact 
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solution in Eq.(2-108). The black dashed points are the simulation result and the green 

solid line is the analytical result. Therefore, the subroutine calculate the differentiation and 

acceleration is benchmarked. 

 

Figure 2-14 Comparison of the analytical solution in green solid line and the 

simulated result in black dashed line. 

2.5.6 Advection equations and Vlasov equation 

To calculate Vlasov equation or advection equation, there are many ways to discretized 

Vlasov equation. Finite volume method (FVM)[1][2][8] is used in this thesis. For a 

discretized equation, operator splitting scheme[3][6] can be used to separate a single 

equation to several equations. Therefore, Vlasov equation can be split into two advection 

equations in space and velocity space, respectively. This method makes our solver easier to 

solve Vlasov equation numerically. The two advection equations are solved by either 

piecewise linear method (PLM)[1][8][10] or by piecewise parabolic method 

(PPM)[1][4][5][9]. These two methods can be combined together. Piecewise linear method 

and piecewise parabolic method are both based on Godunov’s scheme, which is also a 

method using finite volume method. Both piecewise linear method and Piecewise parabolic 

method are benchmarked. The advection equation solvers are benchmarked in space x and 

velocity v separately. 
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2.5.6.1 Finite volume method 

Consider a one-dimensional advection equation as Eq.(2-109). 

∂f

∂t
+v

∂f

∂x
=0. (2-109) 

To discretize Eq.(2-109), this advection equation is integrated over a zone from x
i-

1

2

 to x
i+

1

2

 

and averaged by the zone length ∆x=x
i+

1

2

-x
i-

1

2

. Then Eq.(2-109) becomes Eq.(2-110). 

1

∆x
� ∂f

∂t
dx

x
i+

1
2

x
i=

1
2

=-
v

∆x
� ∂f

∂x
dx

x
i+

1
2

x
i=

1
2

. (2-110) 

Let f ̅in represent the average of distribution function f(x,t) over the interval ∆x and fi
n
 is 

defined as f(xi,t
n)=fi

n
. fi

n
 is the distribution function f(x,t) value on position i and time n. fi̅

n
 

is defined as Eq.(2-111). 

fi̅

n
 =

_ f(x)dx
x

i+
1
2

x
i-

1
2

x
i+

1
2

-x
i-

1
2

=

_ fi
n
dx

x
i+

1
2

x
i-

1
2

∆x
. (2-111) 

Substituting f ̅i in Eq. (2-111) to Eq.(2-110), and doing the integration, Eq.(2-112) is given. 

∂

∂t
f ̅in=-

v

∆x
� ∂fi

n

∂x
dx

x
i+

1
2

x
i=

1
2

=-
v

∆x
(f

i+
1
2

n
-f

i-
1
2

n
). (2-112) 

Similarly, Eq. (2-112) can be integrated over the interval ∆t=tn+1-tn  and becomes 

Eq.(2-113). 

� ∂fi̅

n
 

∂t
dt

tn+1

tn
=(fi̅

n+1
-f ̅in)=-

v

∆x
� (f

i+
1
2

-f
i-

1
2

)dt

tn+1

tn
. (2-113) 

So Eq.(2-113) can be rewritten to Eq.(2-114). 

f ̅in+1
-fi̅

n
=

v

∆x
� (f

i+
1
2

-f
i-

1
2

)dt

tn+1

tn
. (2-114) 

Eq.(2-114) also can be written as Eq.(2-115) , and this is the general form of finite volume 
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equation. 

f ̅in+1
=fi̅

n
-

v

∆x
� (f

i+
1
2

-f
i-

1
2

)dt.

tn+1

tn
 (2-115) 

Dividing Eq.(2-115) with ∆t, it becomes 

fi̅

n+1

∆t
=

fi̅

n

∆t
-

v

∆x∆t
� (f

i+
1
2

-f
i-

1
2

)dt.

tn+1

tn
 (2-116) 

If there is an average value f
i̅±

1

2

 is defined as a average value between temporal time n and 

n+1 as Eq.(2-117). 

f
i̅±

1
2

=

_ f
i±

1
2

dt
tn+1

tn

∆t
 

(2-117) 

Bring Eq.(2-117) back to Eq.(2-116). 

f ̅in+1
=fi̅

n
-

v∆t

∆x
(f

i̅+
1
2

-f
i̅-

1
2

) (2-118) 

This is also the general form of finite volume equation. 

Courant–Friedrichs–Lewy condition (CFL condition)[2] is a necessary condition for 

convergence while solving advection partial differential equations. It is defined as Eq.(2-119) 

v∆t

∆x
≤1. (2-119) 

∆t≤
∆x

v
. (2-120) 

2.5.6.2 Operator splitting scheme 

Consider the advection equation above from Eq.(2-28). Take the integration of time 

from tn to tn+1, Eq.(2-121) is given. 

� ∂f 

∂t
dt

tn+1

tn
+ � v

∂f

∂x
dt

tn+1

tn
+ � a

∂f

∂v
dt

tn+1

tn
=0. (2-121) 

f
n+1

-f
n

+ � v
∂f

∂x
dt

tn+1

tn
+ � a

∂f

∂v
dt

tn+1

tn
=0. (2-122) 

Take the integration in x and v from x
ix-

1

2

 to x
ix+

1

2

 and  v
iv-

1

2

 to v
iv+

1

2

. Eq. is given. 
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� � (f
n+1

-f
n

)dxdv

v
iv+

1
2

v
iv-

1
2

x
ix+

1
2

x
ix-

1
2

+ 

� � � v
∂f

∂x
dtdxdv

v
iv+

1
2

v
iv-

1
2

x
ix+

1
2

x
ix-

1
2

tn+1

tn
+ � � � a

∂f

∂v
dtdxdv

v
iv+

1
2

v
iv-

1
2

x
ix+

1
2

x
ix-

1
2

tn+1

tn
=0. 

(2-123) 

� � (f
n+1

-f
n

)dxdv

v
iv+
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(2-124) 

In operator splitting method, adding a temporary time step f
∗

 between fn+1 and fn , and 

Eq.(2-125) is given. 
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Therefore, Eq.(2-125) can be separated into two equations. 
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For Eq.(2-126) and Eq.(2-127) and chose arbitrary integral region of x and v respectively. 

They becomes 
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These two equations can also be written in the form as Eq.(2-115). 
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After using operator splitting method, Vlasov equation can be separated to two advection 

equations Eq.(2-130) and Eq.(2-131). These two equations are solved in the section below. 

After applying the CFL condition in Eq.(2-119), our simulation CFL condition is defined by 

using the following equation. 

∆t≤min( ∆x

v
, ∆v

a
). (2-132) 

 

2.5.6.3 Piecewise linear method 

The distribution function f(x,t) are shown in Eq.(2-133) and Eq.(2-134) with different 

direction of velocity. In time-space graph of advection equation, we can plot the 

characteristic curves for the advection equation. It is shown in Figure 2-15 and Figure 2-16. 

The integration in time from tn to tn+1can be transferred to the integration into I cell using 

the characteristic curves.  

f Zx
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2

,t[ = af Zx
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-v∆t,tn[  for v ≥ 0.  (2-133) 
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f Zx
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1
2

-v∆t,tn[  for v ≥ 0.  (2-134) 
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Figure 2-15 Space-time plane from tn~ tn+1 to ��±�� + ��	 ~ ��±�� for v < 0. 

 

Figure 2-16 Space-time plane from tn~ tn+1 to ��±�� ~ ��±�� − ��	 for v ≥ 0. 

As a result, Eq.(2-118) can be rewritten in Eq.(2-135) and Eq.(2-136). 
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The right hand side of Eq.(2-135) and Eq.(2-136) are redefined in the following. 
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There is an interface between two conjunctive grids. Value on the interface can be calculate 

from the value in the grid on either side of the interface. The choice of which grid to use 

depends on the advection equation propagates direction. One is using the left of interface of 

i (which have + subscript as fi̅,+

n
), and the other one is using the right of the interface of i 

(which have - subscript as fi̅,-

n
). 
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(2-140) 

Before understanding piecewise linear method (PLM), we first look at the piecewise constant 

method (PCoM)[7][8] and Godunov’s method[7][8]. To solve Eq.(2-118), Godunov’s 
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method is a finite volume method which treats the solution as piecewise function. The 

piecewise constant method is the basic Godunov’s method, it uses piecewise constant 

function to approximate the mean cell averages 

f(x)=fi̅

n. (2-141) 

By using Eq.(2-141), we know that fi̅

n = f ̅i,+ = f ̅i,- so Eq.(2-140) becomes 

f ̅
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2

b
 = c f ̅in,v	≥	0
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n
,v	<	0 , 

f ̅
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1
2

b
 = cf ̅i-1n

,v	≥	0
f ̅in,v	<	0 . 

(2-142) 

This is shown in Figure 2-17. In Figure 2-17, f ̅i,+n
 term represents fi̅

n
 term when v > 0, and 

the, and fi̅,-n
 term represents f ̅in term when v < 0. These are consistent with Eq.(2-142). 

 

Figure 2-17 Approximation line of piecewise constant method (PCoM). 

As a result, Eq.(2-118) also can be written as following in using piecewise constant method 

(PCoM). 

afi̅
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n
-fi̅

n< for v	<	0.

 (2-143) 
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Piecewise linear method (PLM) is also a Godunov’s type finite volume method, this method 

uses function f(x�) reconstructed by a linear function in each cell. The f(x�) can be written 

in Eq.(2-144). 

f(x)=c�+ce(x-xi). (2-144) 

The left and right boundary of grids are shown in Eq.(2-145) and Eq.(2-146) respectively. 
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∆x2 =fi,-, (2-145) 

f Zx
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2

[ =c0+c1 Zx
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∆x2 = fi,+. (2-146) 

The integration of Eq.(2-144) is 
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Therefore, c0 and c1 are shown in the following. 

c0.=fi̅

n, (2-148) 

c1=
fi,+-fi,-

∆x
=

∆fi

∆x
. (2-149) 

By brining Eq.(2-148) and Eq.(2-149) back to Eq.(2-144), f(xi) becomes 

f(x)=fi̅

n
+(x-xi)∆fi̅

n	where	∆fi̅

n
=

∆fi

∆x
. (2-150) 

Figure 2-18 is shown that the piecewise linear function is used to approximate function f(x). 

The f ̅i,+n
 term represents fi̅

n
 term when v > 0, and the, and the fi̅,-n

 term represents fi̅

n
 term 

when v < 0. 
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Figure 2-18 Approximation line of piecewise linear method (PLM). 

Eq.(2-150) can be integrated by using Eq.(2-140) and shown in Eq.(2-151). 
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(2-151) 

Finally, f�̅hij and f�̅5ij terms can be substituted into the finite volume form as Eq.(2-152). 
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∆t
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 (2-152) 

There are lots of different definitions of slope ∆fi̅

n
. If ∆fi̅

n
=0, Eq.(2-152) is back to piecewise 

constant method (PCoM) as Eq.(2-143). However, choice of slope is very important in 

piecewise linear method for its accuracy. To reduce the numerical oscillation of numerical 

simulation, ∆fi̅

n
  should be set carefully. Therefore, ∆fi̅

n
  is also called slope-
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limiter[1][8][10]. The vanLeer slope-limiter is used and is given in the following. This slope-

limiter uses the harmonic mean of two slopes in each averaged cells to limit the 

reconstruction range in piecewise linear equation. This slope is shown in Eq.(2-153). 

∆f ̅in=vanLeer(a,b)=vanLeer kfi
n
-fi-1

n

∆x
,
fi+1
n

-fi
n

∆x
l , 

vanLeer(a,b)= 12ab

a+b
,ab	>	0

0,ab	≤	0 . 

(2-153) 

 

2.5.6.4 Piecewise parabolic method 

Piecewise parabolic method (PPM) is also a Godunov’s type finite volume method but 

with higher-order approximation to solve Eq. (2-118). The fi̅,+n
  term represents fi̅

n
  term 

when v > 0, and the, and the fi̅,-n
 term represents fi̅

n
 term when v < 0. 

 

Figure 2-19 Approximation line of piecewise parabolic method (PPM). 

 

PPM is assumed that the function f�b can be approximated by a parabola inside every grid 

cell, and it is shown in Eq.(2-154). Figure 2-19 is shown how the piecewise parabolic method 
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works on reconstructing the function f(x). 

f(x)=c0+c1(x-xi)+c2(x-xi)2. (2-154) 

This equation can be solved as following. 
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These two equations are rewritten in the following. 
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These two equations result in Eq.(2-159) and Eq.(2-160). 

fi,++fi,- = 2c� + c2

∆x2 f
, (2-159) 

fi,+-fi,-=c1∆x. (2-160) 

These two equations can help to do the integration of f(x) between ∆x. 
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As a result, c0, c1, c2 can be given in the following. 
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c2=3;fi,++fi,-<-6fi̅

n
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Therefore, Eq.(2-154) can be rewritten in Eq.(2-165), and ∆f� ≡ f�,h − f�,5. 
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Eq.(2-140) can be calculated by using the integration of f(x) in Eq.(2-165).  
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(2-166) 

Bring Eq.(2-166) into Eq.(2-118). 
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Let us focus on the process of obtaining fi,+  and fi,- . fi,+  and fi,-  can be obtained by 

specifying these values with cubic accuracy. Thus it defines a cubic polynomial equation 
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(2-168) 

fi terms can become Eq.(2-169) to Eq.(2-172). The calculation are shown in Appendix A. 
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Eq.(2-169) to Eq.(2-172) are used in Eq.(2-167). 

2.5.6.5 Benchmark of solving advection equation by using Godunov’s scheme	

Piecewise linear method and piecewise parabolic method are both used in split 

advection equations in velocity and space from Vlasov equation. In fact in each advection 

equation, both PLM and PPM are used at the same time. It is because using PPM gives a 

more accurate solution than using PLM but with numerical oscillation. PLM is less accurate 

than PPM but is more diffusive. Therefore, combing PPM and PLM can be beneficial since 

PPM gives an accurate solution and PLM can smear out the numerical solution. Thus, the 

split equations Eq.(2-128) and Eq.(2-129) are split again. 
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These two equations can be separated to the following four equations. 
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(2-178) 

In the method of combing PLM and PPM, the first equations in both Eq.(2-177) and 

Eq.(2-178) are solved by PPM. The second equation is solved by PLM. β1 and β2 are 

parameters smaller than 1 that can adjust the percentage of using PLM and PPM. The 

benchmark of piecewise linear method with van Leer slope-limiter and piecewise parabolic 

method in solving advection equation is shown in this section, the result is compared with 

an exact solution one. 

First, the advection in velocity as Eq.(2-130) is benchmarked. The initial distribution 

function is set as f(x,v,t=0)=e
-
(v-5)

2

2 . The analytical solution is f(x,v,t)=e
-
(v-5-at)

2

2  where a = 0 

to 4π. The analytical solution is used to benchmark the numerical solution. The boundary 

condition is a periodic boundary condition in velocity space grids during the benchmark. 

The range of v is set from v = 0 vth to v = 10 vth. Total time t is set as 1 ωp
-1, and ∆t is set as 

0.00125, total time steps are set as 800. Figure 2-20 shows the Eq.(2-130) solved by using 

PLM with vanLeer slope-limiter. Figure 2-21 shows the Eq.(2-130) solved by using PPM. 

Obviously that PPM has higher accuracy than PLM. PLM is diffusive after some time. 
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Figure 2-20 Advection equation in x by PLM with vanLeer slope-limiter. The red 

dashed points are simulation results, and the blue solid lines are analytical results. 

 

 

Figure 2-21 Advection equation in x by PPM. The red dashed points are simulation 

results, and the blue solid lines are analytical results. 

 

Then, the advection in space as Eq.(2-131) is benchmarked. The initial distribution function 

is set as f(x,v,t=0)	=	e-
(x-2π)

2

2 . The analytical solution is f(x,v,t)	=	e-
(x-2π-vt)

2

2  where v = -5 to 5. 

The analytical solution is used to benchmark the numerical solution. The boundary condition 

is a periodic boundary condition the same as section 2.5.2. The range of x is set as L=4π λD. 

The quantities of t, ∆t, and it are set the same for solving Eq.(2-130). Figure 2-22 shows the 
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Eq.(2-131) solved by using PLM with vanLeer slope-limiter. Figure 2-23 shows the 

Eq.(2-131) solved by using PPM. Figure 2-24 shows the Eq.(2-131) solved by using the 

combination of PPM and PLM with vanLeer slope-limiter with β2=0.5. The combination of 

two methods shows that a less diffusive than only using PLM. 

 

Figure 2-22 Advection equation in v by PLM with slope-limiter. The red dashed points 

are simulation results, and the blue solid lines are analytical results. 

 

 

Figure 2-23 Advection equation in v by PPM. The red dashed points are simulation 

results, and the blue solid lines are analytical results. 
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Figure 2-24 Advection equation in x by combination of PLM with vanLeer slope-limiter 

and PPM with β=0.5. The red dashed points are simulation results, and the blue solid 

lines are analytical results. 

 

2.6 Benchmark by simulating two-stream instability 

Two-stream instability is a kind of plasma phenomena It occurs when two counter-

streaming plasma flow against each other. It is a suitable phenomenon to verify Vlasov code. 

The linearization of Vlasov-Poisson system and theory analysis of two-stream instability are 

derived from Vlasov-Poisson system in kinetic regime. The two-stream instability in code 

plasma are used to compare with the simulation results using Vlasov code. 

2.6.1 Theory of two-stream instability 

Vlasov-Poisson system are used to solve two-stream instability. Since two-stream 

instability is an electrostatic phenomena, only Vlasov equation and Poisson’s equation are 

used to calculate. The Vlasov-Poisson system can be linearized by substituting f=f0+f1 , 

φ=φ
0
+φ

1
, and E=E0+E1 into normalized Vlasov equation and Poisson’s equation Eq.(2-28) 

to Eq.(2-32), they are shown in Eq.(2-179) to Eq.(2-181) respectively. Variables with 
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subscript 0 represents a steady, zeroth order solution while those with subscript 1 represent 

the first order perturbation. 

∂(f0+f1)

∂t
+v

∂(f0+f1)

∂x
-(E0+E1)

∂(f0+f1)

∂v
=0, (2-179) 

E0 + E1=-
∂(φ

0
+φ

1
)

∂x
, (2-180) 

d
2
(φ

0
+φ

1
)vx2
=ne-n0= � (f

0
+f1)dv -n0. (2-181) 

Eq.(2-179) and Eq.(2-181) can be separated to zeroth order and first order equations as 

Eq.(2-182) to Eq. (2-183) and Eq.(2-184) to Eq.(2-185), respectively. 

∂f0

∂t
+v

∂f0

∂x
+

∂φ
0

∂x

∂f0

∂v
=0, (2-182) 

∂f1

∂t
+v

∂f1

∂x
+

∂φ
1

∂x

∂f0

∂v
+

∂φ
1

∂x

∂f1

∂v
=0, (2-183) 

d
2
φ

0

dx2
= � f0dv -n0=n0-n0=0, (2-184) 

d
2
φ

1

dx2
= � f1dv. (2-185) 

Because of φ
0
=0 and E0=0, the zeroth order solution is shown in Eq.(2-186) as initial state. 

∂f0

∂t
+v

∂f0

∂x
=0 (2-186) 

Because 
∂φ1

∂x

∂f1

∂v
 term is a second order term, it is neglected in Eq.(2-183) in the linearized 

equaiton and it is shown in Eq.(2-187). 

∂f1

∂t
+v

∂f1

∂x
+

∂φ
1

∂x

∂f0

∂v
=0 (2-187) 

Therefore, after doing linearization, only leading order terms are kept. Then this equation 

can be simplified in the following equations. 

∂f1

∂t
+v

∂f1

∂x
+

∂φ
1

∂x

∂f0

∂v
=0, (2-188) 
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∂
2
φ

1

∂x2
= � f1dv. (2-189) 

These two equations can be solved by Fourier transform. The Fourier transform of 

distribution function f and electric potential φ in time and space are shown in Eq.(2-190) and 

Eq.(2-191). 

f1(x,v,t)= w f1
x(k,v,ω)e-i(kx-ωt)dkdω, (2-190) 

φ
1
(x)= w φy

1
(k)e-i(kx-ωt)dkdω. (2-191) 

After substituting Eq.(2-190) and Eq.(2-191) into Eq.(2-188), the Vlasov equation becomes 

Eq.(2-192). 

w\i(kv-ω)f1
x+ikφy

1

∂f0

∂v
] e-i(kx-ωt)dkdω =0. (2-192) 

Apparently, there is a relation shown as below. 

i(kv-ω)f1
x+ikφy

1

∂f0

∂v
=0. (2-193) 

Fourier transform of distribution function f is shown in Eq.(2-194). 

f1
x=

kφy
1(ω-kv) ∂f0

∂v
=0. (2-194) 

Inserting f1
x  into Fourier-transformed Poisson’s equation, and Poisson equation becomes 

-k
2
φy

1
=φy

1
� k(ω-kv) ∂f0

∂v
dv, (2-195) 

φy
1
k

2 Z1+
1

k
� 1(ω-kv) ∂f0

∂v
dv[ =0. (2-196) 

The equation inside bracket of Eq.(2-196) is called dispersion relation D. for a non-zero 

solution of φy
1
, D(ω,k)=0. Therefore, the dispersion relation is shown in Eq.(2-197). 

D(ω,k)=1+
1

k
� 1(ω-kv) ∂f0

∂v
dv =0 (2-197) 
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For two stream instability of cold plasma, there are two counter-streaming beams as initial 

condition f0(v) in the following. 

f0(v)=
1

2
[δ(v-v0)+δ(v-v0)]. (2-198) 

Substituting Eq.(2-198) into dispersion relation in Eq.(2-197) and solving the integration, 

the dispersion relation becomes 

D(ω,k)=1-
1

2
\ 1(ω-kv0)2

+
1(ω+kv0)2

] =0. (2-199) 

After moving the terms and sorting it out, it can be written in Eq.(2-200). 

ω4-;1+2k
2
v0

2<ω2+;k
4
v0

4-k
2
v0

2<=0. (2-200) 

The 1+2k
2
v0

2 is apparently positive, but the sign of k
4
v0

4-k
2
v0

2  depends on whether 

k
2
v0

2>1 or k
2
v0

2<1 respectively. The polynomial equation in Eq.(2-200) has two roots for 

ω2 and it is shown in the following. 

ω±
2=

1

2
;1+2k

2
v0

2<±"1

4
(1+2k

2
v0

2)
2
-(k

4
v0

4-k
2
v0

2), (2-201) 

⟹ ω±
2=k

2
v0

2+
1

2
k1±z1+8k

2
v0

2l. (2-202) 

When k
2
v0

2>1, i.e., k
4
v0

4-k
2
v0

2>0, ω±
2  are both positive and real values. Thus, there 

is no temporal growth or decay of the wave amplitude. On the other hand, for k
2
v0

2<1, 

k
4
v0

4-k
2
v0

2<0 , ω+
2   is positive so that ω+  are real values but ω-

2  is negative. 

Therefore, ω-  has two imaginary values with one positive and one negative. The 

positive and imaginary value of ω-  means the unstable situation, and it can be 

redefined as ω-=iω(-)i. The solution of ω- can be written as Eq.(2-203). This is where 

the growth rate of two-stream instability. 
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ω(-)i="-k
2
v0

2-
1

2
k1-z1+8k

2
v0

2l , (2-203) 

The unstable condition occurs under the situation shown in Eq.(2-204). 

0<k<
1

v0

 (2-204) 

The maximum growth rate is calculated by setting 
dω2

dk
=0  and ω(-)i

2 =-ω-
2 . To get their 

extreme values, the derivation of ω-
2 is defined in Eq.(2-205). 

d

dk
ω-

2=2kv0
2

{
|1-

2z1+8k
2
v0

2}
~ =0. (2-205) 

The minimum value of ω-
2  occurs when k=

√3

2√2v0
  and the maximum of ω-

2=
1

8
 . The 

maximum growth rate of ω(-)i is 

ω(-)i=
1

2√2
 (2-206) 

From above, v0 can be defined as v0=
√3

2√2k
=z3

2
,	k=0.5 and it is the condition to benchmark 

our simulation. 

2.6.2 Benchmark of Vlasov solver using two-stream instability	

To benchmark Vlasov simulation using two-stream instability, the Dirac delta function is 

used. It can be defined as Eq.(2-207). 

δ(v-v0)= lim
vth→0

1

vth√π
e

-
(v-v0)

2

vth
2 . (2-207) 

Eq.(2-198) can be rewritten as Eq.(2-208). 
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f0(v)=
1

2
 δ(v-v0)+δ(v+v0)!= 1

2vth√π
(e

-
(v-v0)2

vth
2

+e
-
(v+v0)2

vth
2

). (2-208) 

Therefore, the initial distribution function is set as Eq.(2-209) with a small quantity of 

vth=0.3, v0=z3

2
, and k=0.5. The initial condition is shown in Eq.(2-209) and Figure 2-25. 

The distribution of f(x,v) in v and x are also shown in Figure 2-25. It is shown that the spatial 

distribution is a cosine function, and there are two Gaussian function in velocity space v. 

f(x,v,0)=
1

2vth√π
�e

-
(v-v0)2

vth
2

+e
-
(v+v0)2

vth
2 � [1+0.01 cos(kx) ]. (2-209) 

This initial condition can be considered as a uniform plasma in which the ions are stationary 

and the electrons have a velocity v0 relative to origin plasma. The dual Gaussian peaks 

centered at ±v0 in velocity space as the initial distribution function is used to study two-

stream instability. The simulation range in x is set as L=4π λD, and v is set between -5 vth to 

5 vth. Each time steps is defined as 
1

64
Δt where ∆t is defined in Eq.(2-120). There are 128 

grids in both x and v direction. The boundary condition is periodic in x and set as zero 

(Dirichlet boundary condition) in v. the simulation was first done only using PPM. The result 

iss shown in Figure 2-26. In Figure 2-26, it shows that there are a lot of numerical oscillations 

after running 30 ωp
-1. That is because the stability of PPM isn’t enough. After solving the 

advection equation, there are some values becoming negative. Figure 2-27 shows the 

simulation result by using PLM in both x and v direction. This graph shows a stable solution 

with oscillation but diffuse quickly compared to the combination method shown in Figure 

2-28. As a result, the two advection equations split from Vlasov equation are solved by using 

combining PPM and PLM in velocity space grids v and only by using PLM in spatial grids 

x. The result of this combination method till 100 ωp
-1 is shown in Figure 2-28. For vth=1, 

and v0=z3

2
 as the initial state using only PPM shown in Figure 2-29. The same problem was 
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simulated by using PLM and the combination of PPM and PLM. The result is shown in 

Figure 2-30 and Figure 2-31. The two figures shows that there are no much difference in 

using these two methods when vth=1. Figure 2-32 shows the result of only using PPM in 

both split Vlasov equations. Few numerical oscillation occurs again. PPM have better details 

in simulation. The result combination of using PPM and PLM is more diffusive in the center 

of instabilities but with reasonable details. Therefore, PPM can only be used to do larger vth 

problems, The numerical oscillation grows up as vth decreases. 

 

Figure 2-25 Initial state with vtth = 0.3 and v0 =z3

2
. 
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Figure 2-26 Simulation result after t = 30 ωp
-1 using PPM in both x and v direction. 

 

 

Figure 2-27 Simulation result after t = 100 ωp
-1 using PLM in both x and v direction. 
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Figure 2-28 Simulation result after t = 100 ωp
-1 using PLM + PPM in x direction and 

PLM in v direction. 
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Figure 2-29 Initial state with vtth = 1 and v0 =z3

2
. 
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Figure 2-30 Simulation result after t = 100 ωp
-1 using PLM in both x and v direction. 

 

 

Figure 2-31 Simulation result after t = 100 ωp
-1 using PLM + PPM in x direction and 

PLM in v direction. 
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Figure 2-32 Simulation result after t = 100 ωp
-1 using PPM in both x and v direction. 

 

The energy conservation should be checked in simulation. The total energy Ent in Vlasov 

solver are summation of electric energy Ene and kinetic energy Enk of electrons, and they 

are shown in Eq.(2-210) to Eq.(2-212). 

Ent=Enk+Ene, (2-210) 

Enk= w 1

2
mev

2f(x,v)dxdv, (2-211) 

Ene= � 1

2
ε0E(x)

2
dx. (2-212) 

There are some constants in these equations, they can be normalized as shown in section 2.2. 

The normalized energy are shown in Eq.(2-213) and Eq.(2-214). 

Enk=Enk,charEn� k=
1

2
mevchar

3fcharxchar w v%2
f&dx%dv%, (2-213) 

Ene=Ene,charEn� e=
1

2
ε0Echar

2xchar � E(2
dx%. (2-214) 
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Then the normalization constants should have the relation as Eq.(2-215). 

mevchar
3fcharxchar	=	ε0Echar

2xchar. 									? 
(2-215) 

The steps to verify of equality in Eq.(2-215) is shown in Eq.(2-216) to Eq.(2-219). 

mevth
2n0λD=ε0

e2n0
2λD

2

ε0
2

λD, (2-216) 

⟹ mevth
2=

e2n0λD
2

ε0

, (2-217) 

⟹ vth
2

λD
2

=
n0e2

ε0me

, (2-218) 

⟹ ωp
2=

n0e2

ε0me

. (2-219) 

So the normalized energy equations is shown in the following. 

En�
t=En�

k+En�
e, (2-220) 

En�
k= w 1

2
v%2

f&dx%dv% , (2-221) 

En�
e= � 1

2
E(2

dx% . (2-222) 

To calculate Eq.(2-220) to Eq.(2-222), the trapezoidal method of numerical integration in 

section 2.5.3 is used. The kinetic energy equation in Eq.(2-221) can be written in Eq.(2-223). 

Enk=
1

2
� � fv2dxdv

vnv

v0

xnx

x0

. (2-223) 

First, do the integration of v, Eq.(2-223) becomes 

Enk= 1

2
� Δv 12  f(x,viv)viv2 !nv-1

iv=1 +12 Xf(x,v0)v02+f(x,vnv)vnv2 Y3 dxxnx
x0 , (2-224) 

Enk= � η(x)dx

xnx

x0

. (2-225) 
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where η(x)=
1

2
∆v 12 [f;x,viv<viv

2 ]

nv-1

iv=1

+
1

2
Xf(x,v0)v0

2+f(x,vnv)vnv
2 Y3 

Second, do the integration of x, and the kinetic energy is given. 

Enk=
1

2
∆x 12 [η(xix)]

nx-1

ix=1

+
1

2
 η(x0)+η(xnx)!3 . (2-226) 

In the same way, Eq.(2-222) can be integrated by using Eq.(2-227). 

Ene=
1

2
∆x 12 [En2(xix)]

nx-1

ix=1

+
1

2
 En2(x0)+En2(xnx)!3. (2-227) 

The total energy of simulation of two-stream instability are shown in Figure 2-33. The total 

energy variation is less than 0.3% meaning the system energy is conserved in simulation. 

 

Figure 2-33 Checking of energy conservation of two-stream instability. 

 

From Eq.(2-204), the limitation of two-stream instability to happen is v0	<	 1

k
	=	2. Therefore, 

if for v0	>	 1

k
	=	2, the two-stream instability should not occurred. Figure 2-34 and Figure 

2-35 are the initial conditions of v0 = 1.9 and v0 = 2.1 respectively. The total simulation time 

is t = 100 ωp
-1 for all cases. Figure 2-36 shows that there is an apparently two-stream 
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instability while v0 < 2.0. Figure 2-37 shows that the perturbation doesn’t grow with time 

proving that two-stream instability can’t occur for v0 > 2.0. 

 

Figure 2-34 Initial state of v0 = 1.9. 
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Figure 2-35 Initial state of v0 = 2.1. 
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Figure 2-36 The simulation result after t = 100ωp
-1 with vtth = 1 and v0 = 1.9. Instability 

occurs. 
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Figure 2-37 The simulation result after t = 100ωp
-1 with vtth = 1 and v0 = 2.1. No 

instability occurs. 

Simulation results show that the initial double-peak Gaussian velocity distribution will 

gradually merge due to the instability. Figure 2-38 shows the growth rate for v0	=	z3

2
. 

 

Figure 2-38 Growth rate of two-stream instability at v0	=	z3

2
. 

The growth rate from simulation is 0.701 is shown as the blue dashed line in Figure 2-38. To 
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compare, the analytical growth rate from Eq.(2-206) is 
1

2√2
	≈	0.35. The logarithm of electric 

energy is logEn = logE2 = 2logE, so the analytical growth rate should be 2*0.35 = 0.7. In 

Figure 2-38, the black dashed line in the same figure is theory growth rate. Theory growth 

rate is 0.3% smaller than the simulation one. They are slightly different since our simulation 

is warm plasma and the theory is cold plasma theory. 
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Chapter 3 Free-streaming electrons 

Free-streaming electrons is a beam-plasma phenomena. The instability arises when a single 

electron beam with number density n�  and plasma frequency ωp  flows with speed v� 

through a stationary plasma. Vlasov solver uses combination method of PPM and PLM with 

vanLeer slope-limiter to solve advection equation in x direction and PLM with vanLeer 

slope-limiter to solve advection equation in v direction and Poisson’s equation uses Gauss-

Seidel method to solve. 

3.1 Initial condition of free-streaming electrons 

To study this phenomena, the initial distribution function f(x, v, 0) is used. It is shown in 

Eq.(3-1). 

f(x,v,0)=
1

(1+γ)v
th√π

�e
-

v2

vth
2
+γe

-
(v-v0)2

vth
2 � [1+0.01 cos(kx) ]. (3-1) 

The first exponential term represents the stationary plasma distribution and the second 

exponential term represents the electron beam. vth is the thermal velocity, and vb is the 

beam velocity between the background plasma and electron distributions. γ is a parameter 

so that the number density of the electron beam can be adjusted by us to simulate different 

beam intensities compared with the stationary plasma. The 1 + γ term in the denominator is 

to ensure the total electron number density is 1 as normalization in section 2.2. The initial 

number density and initial velocity distribution of electrons with γ set as 0.5, 1, 2 are shown 

in Figure 3-1, Figure 3-2, and Figure 3-3 respectively, their average number density are all 

1 as normalized. The cos(kx) term is a perturbation term in x with k=0.5 and their distribution 

are also shown in Eq.(3-1) to Eq.(3-3) with γ = 0.5, γ = 1, γ = 2 respectively. The simulation 

range in real space x is between 0 to L, L = 4π λD, and from -5 vth to 10 vth in velocity space 
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v. The final time is set as t = 100 ωp
-1. The boundary condition is periodic in spatial grids x 

and set as zero (Dirichlet boundary condition) in velocity space grids v. The size of each time 

step is defined as 
1

64
∆t where ∆t is defined in Eq.(2-120). The number of grids are 128 in 

both x and v direction. To calculate free-streaming electrons, the simulation methods are 

combined with half-PPM and half-PLM with vanLeer slope-limiter in solving advection 

equation in x direction, and PLM with vanLeer slope-limiter in solving advection equation 

in v direction. 

 

 

Figure 3-1 Initial number density with different γ. 
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Figure 3-2 Initial distribution in v with different γ when (a) vb=2. (b) vb=3. (c) vb=4. (d) 

vb=5. 
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Figure 3-3 Initial distribution in v with different beam velocity vb when (a) γ=0.5. (b) 

γ=1. (c) γ=2. 

The initial state of Eq.(3-1) is set with vth = 1 and using different vb and γ to see the different 

effects of free streaming electron beams in different beam velocity and intensity. 

3.2 Simulation results of free-streaming electrons	

The simulation results at t = 0 ωp
-1 (initial condition), t = 20 ωp

-1 (linear growth region), and 

t = 100 ωp
-1 (nonlinear growth region) are shown in this section. 
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3.2.1 γ = 0.5 

The initial condition are 

f(x,v,0)=
11.5√π

ke
-
v2e +0.5e

-
(v-2)2e l (1+0.01 cos(0.5x)). (3-2) 

f(x,v,0)=
11.5√π

ke
-
v2e +0.5e

-
(v-3)2e l (1+0.01 cos(0.5x)) (3-3) 

f(x,v,0)=
11.5√π

ke
-
v2e +0.5e

-
(v-4)2e l (1+0.01 cos(0.5x)). (3-4) 

f(x,v,0)=
11.5√π

ke
-
v2e +0.5e

-
(v-5)2e l (1+0.01 cos(0.5x)) (3-5) 

The initial conditions and the simulation results are shown in Figure 3-4 to Figure 3-7. 
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Figure 3-4 Free streaming electrons of Eq.(3-2). (a) Velocity distribution in t = 0 ωp
-1. 



80 

 

(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-5 Free streaming electrons of Eq.(3-3). (a) Velocity distribution in t = 0 ωp
-1. 
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(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-6 Free streaming electrons of Eq.(3-4). (a) Velocity distribution in t = 0 ωp
-1. 
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(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-7 Free streaming electrons of Eq.(3-5). (a) Velocity distribution in t = 0 ωp
-1. 
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(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 

 

3.2.2 γ = 1 

The initial condition are 

f(x,v,0)=
12√π

ke
-
v2e +e

-
(v-2)2e l (1+0.01 cos(0.5x)). (3-6) 

f(x,v,0)=
12√π

ke
-
v2e +e

-
(v-3)2e l (1+0.01 cos(0.5x)) (3-7) 

f(x,v,0)=
12√π

ke
-
v2e +e

-
(v-4)2e l (1+0.01 cos(0.5x)). (3-8) 

f(x,v,0)=
12√π

ke
-
v2e +e

-
(v-5)2e l (1+0.01 cos(0.5x)) (3-9) 

The initial conditions and the simulation results are shown in Figure 3-8 to Figure 3-11. 



87 

 

 

Figure 3-8 Free streaming electrons of Eq.(3-6). (a) Velocity distribution in t = 0 ωp
-1. 
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(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-9 Free streaming electrons of Eq.(3-7). (a) Velocity distribution in t = 0 ωp
-1. 
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(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-10 Free streaming electrons of Eq.(3-8). (a) Velocity distribution in t = 0 ωp
-1. 
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(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-11 Free streaming electrons of Eq.(3-9). (a) Velocity distribution in t = 0 ωp
-1. 
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(b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 

 

3.2.3 γ = 2 

The initial condition are 

f(x,v,0)=
13√π

ke
-
v2e +2e

-
(v-2)2e l (1+0.01 cos(0.5x)). (3-10) 

f(x,v,0)=
13√π

ke
-
v2e +2e

-
(v-3)2e l (1+0.01 cos(0.5x)) (3-11) 

f(x,v,0)=
13√π

ke
-
v2e +2e

-
(v-4)2e l (1+0.01 cos(0.5x)). (3-12) 

f(x,v,0)=
13√π

ke
-
v2e +2e

-
(v-5)2e l (1+0.01 cos(0.5x)) (3-13) 

The initial conditions and the simulation results are shown in Figure 3-12 to Figure 3-15. 
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Figure 3-12 Free streaming electrons of Eq.(3-10). (a) Velocity distribution in t = 0 ωp
-
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1. (b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-13 Free streaming electrons of Eq.(3-11). (a) Velocity distribution in t = 0 ωp
-
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1. (b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-14 Free streaming electrons of Eq.(3-12). (a) Velocity distribution in t = 0 ωp
-
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1. (b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 
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Figure 3-15 Free streaming electrons of Eq.(3-13). (a) Velocity distribution in t = 0 ωp
-
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1. (b) Phase space diagram in t = 0 ωp
-1. (c) Velocity distribution in t = 20 ωp

-1. (d) Phase 

space diagram in t = 20 ωp
-1. (e) Velocity distribution in t = 100 ωp

-1. (f) Phase space 

diagram in t = 100 ωp
-1. (g) Velocity distribution in different time t. (h) Number density 

in different time t. 

 

3.3 Discussion of results	

The energy conservation should be checked in simulating free streaming electron beams. 

The calculation methods of total energy, kinetic energy, and electrical energy are shown in 

section 2.6.2. The simulating free-streaming electrons with initial condition in Eq.(3-11) is 

used to verify the energy conservation. The energy of simulating free-streaming electrons 

are shown in Figure 3-16. The total energy variation is less than 1.012% after 100 ωp
-1. The 

energy conservation test on our simulations show that the results are convincing. 

 

Figure 3-16 Checking of energy conservation of free-stream electrons simulation. 

 

Figure 3-4, Figure 3-8, and Figure 3-12, are the simulation results for vb = 2 and vth = 1 but 

with different γ. The three figures show that no instability appeared. Due to the thermal 

velocity vth
 for both groups of electrons, the instability is diffused and doesn’t grow. In Figure 

3-7, Figure 3-11, and Figure 3-15, vb = 5. The three figures show that the electron beams are 
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too fast, i.e., the centers of their distribution function are far away to have any effect. As a 

result, only when vb = 3 and vb = 4 the instability occurred. The growth rate of electric energy 

is shown in Figure 3-17 for vb = 3 and Figure 3-18 for vb = 4. The growth rate of electric field 

with different vb and γ are shown in Appendix B. Table 3-1 shows the simulation growth rate 

in different initial conditions. 

 

 

Figure 3-17 Growth rate of electric energy in vb = 3. 

 

 

Figure 3-18 Growth rate of electric energy in vb = 4. 

There are no instability occurred for vb = 2 and vb = 5, so their electric energy doesn’t change. 

For vb = 3 and v0b= 4, the electric energy grows. Both for vb = 3 and vb = 4, the maximum 

growth rate happened when γ = 1. For vb = 3, growth rate of γ = 1 is 6.5% and 7.3% higher 
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than γ = 0.5 and γ = 2, respectively. For vb = 4, growth rate of γ = 1 is 8% and 7.7% higher 

than γ = 0.5 and γ = 2, respectively. The growth rate in different γ doesn’t change over 10%, 

and the largest growth rate appeared when γ = 1. 

 

Table 3-1 growth rates in different initial conditions. 

Initial condition Growth rate(ωp) 

vb = 3, γ = 0.5 0.258 

vb = 3, γ = 1 0.275 

vb = 3, γ = 2 0.255 

vb = 4, γ = 0.5 0.297 

vb = 4, γ = 1 0.323 

vb = 4, γ = 2 0.298 
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Chapter 4 Conclusion and summary 

In this thesis, free-streaming electrons was simulated by using Vlasov solver in kinetic 

regime. The plasma simulation program was developed and benchmarked. The simulation 

code is developed to study the potential experiment on our pulsed-power system where free-

streaming electrons can be generated by the strong electric field. Vlasov solver was 

benchmarked by simulating the two-stream instability and studying the growth rate. The 

total energy was calculated and ensured being conserved in our simulation. After the code is 

benchmarked, we used it to simulate the instability of free-streaming electrons in a 

background plasma. Free-streaming electrons with thermal velocity vth, different beam 

velocity vb, and different ration between the number density of the free-streaming electrons 

to the background electrons γ were simulated. The energy conservation was ensured in 

simulation. The growth of instability occurs between vb < 2 in two-stream instability. In free-

streaming electrons, growth of instability occurs when beam velocity vb = 3 and vb = 4. No 

instability occurs for vb = 2 and vb = 5. For vb = 3, the growth rate is 0.258, 0.275, and 0.255 

for γ = 0.5, γ = 1, and γ = 2, respectively. For vb = 4, growth rate was 0.297, 0.323, and 0.298 

for γ = 0.5, γ = 1, and γ = 2, respectively. The highest growth rate of vb = 3 and vb = 4 occurred 

when γ = 1. For vb = 3, growth rate of γ = 1 was 6.5% and 7.3% higher than γ = 0.5 and γ = 

2, respectively. For vb = 4, growth rate of γ = 1 was 8% and 7.7% higher than γ = 0.5 and γ 

= 2, respectively. Nevertheless, the growth rate in different γ doesn’t change over 10%. 

Notice that if the total number density of electrons ne including free-streaming electrons 

and the background electrons are not the same as number density of ions ni, total charge isn’t 

zero. In that case, Poisson’s equation may not be solved with periodic boundary condition. 

To solve this kind of problems, we can set a huge simulation length L in real space x and 

apply other kinds of boundary conditions to solve this problem, such as Neumann boundary 
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condition setting differential of any quantities being zero on the boundary. An electron source 

or sink on the boundary is an alternative solution. 

Vlasov solver can be used in simulation plasma phenomena widespread in both 

laboratory and space plasmas so it can be used in simulating and compared with experiment 

results or observation data. In the near future, the boundary condition can be changed as 

described previously to simulate free-streaming electrons with nonzero total charge density 

in plasma. Furthermore, Vlasov solver will be expanded to a two-dimensional program. 

Adding magnetic field in it so that it can be used to solve a problem in electromagnetic field. 

Depending on what experiments are constructed in our lab, different extensions of the code 

will be developed in the future. 
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Appendix A Calculation of integration in PPM 

To determine this third-degree polynomial, f(xi) is considered in the range between i-2 to 

i+1 for fi,-. 

f(x)=a0+a1(x-x
i-

1
2

)+a2(x-x
i-

1
2

)
2
+a3(x-x

i-
1
2
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3
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Eq.(A-1) can be solved in the following integration. 

 

fi̅-2

n
=

1

∆x
� f(x)dx

i-s
2

i-6
2

, 

fi̅-1

n
=

1

∆x
� f(x)dx

i-
1
2

i-
3
2

, 
fi̅

n
=

1

∆x
� f(x)dx

i+
1
2

i-
1
2

, 
fi̅+1

n
=

1

∆x
� f(x)dx

i+
3
2

i+
1
2

. 

(A-2) 

The indefinite integral of Eq.(A-1) is 
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Therefore, the integration in Eq.(A-2) become 
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These four equation in Eq.(A-4) can be calculated using simple algebra. 

fi,-= \ 7
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n
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To determine this third-degree polynomial, f(xi) is considered in the range between i-1 to 

i+2 for fi,+. 
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Eq.(A-6) can be solved in the following integration. 
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Therefore, the integration in Eq.(A-7) become 
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These four equation in Eq.(A-9) can be calculated using simple algebra. 
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To determine this third-degree polynomial, f(xi) is considered in the range between i-3 to 

i for fi-1,-. 
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Eq.(A-1) can be solved in the following integration. 
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Therefore, the integration in Eq.(A-2) become 
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These four equation in Eq.(A-4) can be calculated using simple algebra. 
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To determine this third-degree polynomial, f(xi) is considered in the range between i-1 to 

i+2 for fi,+. 
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Eq.(A-6) can be solved in the following integration. 
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Therefore, the integration in Eq.(A-7) become 
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These four equation in Eq.(A-9) can be calculated using simple algebra. 
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Appendix B Figures of the electrical energy of free-streaming 

electrons 

 

Figure B-1 Growth rate of free-streaming electrons with vb = 3, γ = 0.5 

 

Figure B-2 Growth rate of free-streaming electrons with vb = 3, γ = 1 

 

Figure B-3 Growth rate of free-streaming electrons with vb = 3, γ = 2 
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Figure B-4 Growth rate of free-streaming electrons with vb = 4, γ = 0.5

 

Figure B-5 Growth rate of free-streaming electrons with vb = 4, γ = 1 

 

Figure B-6 Growth rate of free-streaming electrons with vb = 4, γ = 2 
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Appendix C List of data films of Vlasov solver 

The simulation data films are listed in this section, and the naming method are explained. 

Naming method of folders: 

In “two_stream_instability” folder, 

“methods”_”vth value”_”vb value”_”grids in both x and v”_”perturbation value” 

Ex: 

If using PLM first and PPM second with β=0.5, vth=0.3, vb=z3

2
, grids=128, 

perturbation=0.01*function, the folder name is “plmppm_vth0.3_vbrt1.5_128” 

 

P.S. The folders using PPM first and PLM second with β=0.5 won’t show the methods in 

folder names, and the folders using perturb=0.01*function won’t show as well. 

 

In “free_streaming_electrons” folder, 

”vth value”_”γ””vb value” 

Ex: 

If using vth=1, vb=3, γ=0.5, the folder name is “vth1_0.5vb3” 

P.S. All folders are used PPM first and PLM second with β=0.5, and grids=128. 

Folder position: 

Vlasovdata 

two_stream_instability 

plmppm_vth0.3_vbrt1.5_128 

plm_vth0.3_vbrt1.5_128 

plm_vth1_vbrt1.5_128 

ppmplm_vth1_vbrt1.5_64 

ppmplm_vth1_vbrt1.5_128 

ppm_vth0.1_vbrt1.5_256 

ppm_vth0.5_vbrt1.5_256 

ppm_vth1_vbrt1.5_128 

ppm_vth1_vbrt1.5_256 

vth0.3_vb1.9 

vth0.3_vb2.1 

vth0.3_vbrt1.5_64 

vth0.3_vbrt1.5_128 

vth0.3_vbrt1.5_256 

vth0.5_vb1.9_256 



xxi 

 

vth0.5_vb2.1_256 

vth1_vbrt1.5_0.1 

vth1_vbrt1.5_64_0.1 

vth1_vbrt1.5_128_0.1 

vth1_vbrt1.5_256_0.1 

vth1_vbrt1.5_512_0.1 

free_streaming_electrons 

vth1_0.5vb2 

vth1_0.5vb3 

vth1_0.5vb4 

vth1_0.5vb5 

vth1_1vb2 

vth1_1vb3 

vth1_1vb4 

vth1_1vb5 

vth1_2vb2 

vth1_2vb3 

vth1_2vb4 

vth1_2vb5 

The naming methods of films in each folder are shown in the following. 

“data#.txt” phase space plot at t=# 

“rhodata#.txt” number density at t=# 

“phidata#.txt” electric potential at t=# 

“efxdata#.txt” electric field at t=# 

“acldata#.txt” acceleration at t=# 

“eedata.txt” electric energy 

“kedata.txt” kinetic energy 

“tedata.txt” total energy 


