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ABSTRACT

Atop-hat electrostatic analyzer (THEA), well-developed charged particle analyzers for
small satellites, will be adopted to cube satellites, which are made out of multiple 10x10x10
cm? cubic unit. Data from a single satellite can only be collected at single point at one time.
However, to understand any events in the space thoroughly, it is essential to collect data at
different locations in the space simultaneously to capture the whole picture. In other words,
measurements from multiple satellites are required. Because of the much lower cost of
building cube satellites, many cube satellites carrying THEAS can be launched and measure
distribution functions of charged particles in different locations in space at the same time. It
enables us to have a better understanding of distribution functions of charged particles in the
whole space. An zeroth-order approximated using an ideal THEA consisting of two
concentric spheres shows that a THEA for measuring electrons with energy up to 22.2 keV
can be fit in a cube satellite. Different voltages will be given to two shells so that the
trajectories of electrons entering the analyzer will be bent by the corresponding electric fields.
Only electrons with the radii of their circular motions that match the average curvature of
the shells reach the detector located at the bottom of the analyzer. In this thesis, the electric
fields in THEA are calculated by solving the Laplace’s equation using Gauss—Seidel method.
The Gauss-Seidel method is sped up using “Flag technique” where only points in THEA
are calculated. Trajectories of electrons with relativistic effect will be simulated using 4"
order Runge-Kutta method. Results of calculated electric fields and electron trajectories are
shown. Simulations show that electron with energy of 21.7 keV can pass through the THEA.
The key parameter g-factor which represents the selectivity of the THEA will also be
simulated. The g-factor of a THEA where the radius and the potential of the inner and outer
sphere are 44 mm, 45 mm, 1kV, and OV, respectively, equals to 2.64 * 10~*(cm?-sr-
keV/keV).

Key words: Cube satellite, Top-Hat Electrostatic Analyzers
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CHAPTER 1 INTRODUCTION AND MOTIVATION

Energetic particles from the sun entering the Earth's magnetosphere have great
influence on our lives in many ways. They are potentially hazards to space equipments such
as communication satellites and global positioning system in consequence of their high
energies. Besides, radiations from such charged particles also cause health hazards to aircraft
personnel and passengers. Moreover, interactions of energetic electrons with the Earth's
ionosphere lead to bright dancing lights in the sky, auroras. Aurora can be in many different
colors. Variations in colors are due to the type of gaseous particles that are collided. When
electrons strike atoms in Earth’s ionosphere, they excite atoms[1]. When atoms return to
their ground state, they release photons in the form of light. The color of light depends on
what kind of molecules and atoms are excited depending on the electron energy. For example,
when the gaseous particles are composed of nitrogen, they produce blue or red aurora. The
most common aurora color is green. It is produced by oxygen molecules. In the other hand,
the aurora tells us the global implication of magnetosphere activity and geospace response
to solar activity. The precipitating electron energy deposition varies with the electron energy
as shown in Fig. 1[2][3].

To understand how plasma waves are excited in the inner magnetosphere, it is important
to know the distribution functions of charged particles over the space. To date, there are only
few satellites observing events in the radiation belts, such as ERG mission[4] from Japan,
the Van Allen Probe and the Time History of Events and Macroscale Interactions during
Substorms (THEMIS) mission[5] from United states, etc., to study geomagnetic storms. In

several years ago, the prototype of Aurora Electron Spectrometer (AES) was built in Taiwan



to observe the aurora[2]. The AES was designed to detect electron and the energy resolution
was from the 10 eV to 20 keV. The AES had 40 ms time resolution for full energy scan with
32 energy steps, and ability to describe where electrons are coming from[2]. However, the
size of AES could not fit into the tiny satellite (10cm x 10cm x 10cm). But the AES gives us
an inspiration for developing an analyzer. In order to measure the distribution functions for
electrons and ions, we have to develop an analyzer for portable spacecraft/satellite. We are
designing a Top Hat Electrostatic Analyzer (THEA) that can be fit in a tiny satellite so that
more satellites that measure the distribution function at different locations simultaneously

can be launched due to their low cost.
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Figure. 1: The relation between of the precipitating and the electron energy[3].

Satellites are expensive to be built and launched. One of the main costs for a space

mission is for launching. It costs ~ 256,000 NTD/kg to deliver to geosynchronous transfer



orbit (GTO) using Falcon 9 rocket from SpaceX[6]. By reducing the weight of satellites, i.e.,
building smaller satellites, the launching expenses can be reduced. Typically, artificial

satellites are classified according to its mass as shown in Table. 1.

Large Medium- Mini- Mini- Nano-satellite
satellite sized satellite satellite or cube satellite
satellite
The mass (kg) > 1000 500-1000 100-500 10-100 1-10

Table. 1: The definition of different size of satellites.

Building satellites in a cheap way, i.e., an affordable way, is essential. In 1999, the
design of smaller satellite was proposed by a research team in California Polytechnic State
University. It was called Cube Satellite (Cubesat)[6][7]. Teams in California Polytechnic
State University and Stanford University developed the CubeSat standards to help
universities worldwide to study space science and exploration[8]. The concept of cube
satellite is the evolution of the traditional satellite.

Data from a single satellite can only be collected at single point at one time. However,
to understand physics better, it is essential to collect data at different locations in the space
simultaneously to capture the whole picture. To understand space events more thoroughly,
more satellites are necessary. The advantage of using cube satellite is that they can be
designed and built faster and cheaper. Multiple cube satellites can be launched in the same
mission due to its low cost. Therefore, cube satellites are very attractive platform for

exploring space science by university-scale researches.


http://www.spacex.com/about/capabilities

In this thesis, we will focus on measuring the distribution function of electrons. A
THEA that can be fit in a cube satellite will be developed. My work is to develop codes to
describe the electron motion in THEA. The codes include simulation of electric potentials,
electric fields and electron trajectories. In Chapter 2, we will talk about the cube satellite and
their subsystems. In Chapter 3, we will give a detailed introduction about THEA and
geometric factor. In Chapter 4, we will introduce how to develop and make a careful check
of the codes, including the simulation of electric potentials and electron trajectories. In
Chapter 5, the simulation of electric potentials and electron trajectories will be performed
for an actual THEA design. Geometric factor will be calculated using the simulation results.
When electrons pass through the analyzer, each electron will be collected for calculating the
geometric factor. In Chapter 6, we will give the conclusion for this thesis. In Chapter 7, we

will discuss about the future works.



CHAPTER 2 INTRODUCTION OF CUBESAT

Cube satellites (cubesats) are built in a variety of sizes. The standard size of a cubesat
isa 10 cmx 10 cm x 10 cm cube called one unit(1U). Each cube is less than 1.33 kg normally.
The size is extendable to larger sizes such as 1.5U, 2U, 3U, 6U, and even 12U. The cost for
launching becomes less than couple millions NTD for each satellite, which is less than 0.1
% of the budgets for FORMOSAT-1/2/3/5/7 which all costed more than billions of NTD.
Exploring space science using cubesats enables university-scale researches and is a very
attractive platform.

Cubesat is a tiny satellite that contains all the essential subsystems like other big
satellites. It includes six subsystems: structure system, power supply system, solar panel
system, attitude determination and control system, command and data handing system and
science payload[9]. The structure system of cubesat is to keep cubesat electronic components
together and prevent any potential hazard, also to fortify side panels which hold the solar
panels. In common, the structure of cubesat which it is made out of aluminum have to resist
the high vibration and temperature. On orbit the power supply system of cubesat will be
powered by solar panels that placed on the side of the cubesat. The power supply system
harvests, stores and distributes energy. The power supply system has to accommodate a
variety of power needs. For the success of the mission, energy collection must be as efficient
and as reliable as possible. The solar panels are used to collect energy from the sun. Solar
panels cover each side of cubesat and send energy through the main circuit board to be
delivered to various components on the satellite. The attitude determination and control

system includes sun sensors, magnetometers and gyroscopes in cubesat. The altitude of



cubesat in respect to Earth, Earth's magnetic field and the rotational speed of the cubesat can
be obtained. That informations can be used to control the cubesat using the magneto-torquers.
The command and data handing system is basically an on-board computer that controls the
operation of the cubesat during normal conditions. The data from all subsystems are stored
and prepared for transmission by using command and data handling system[10].

Solar panels in the power system providing ~ 2.5 W per cubesat unit [6] are the only
energy source. Any other subsystems use energy, occupy space in the satellite and contribute
to the total weight. Physical constrains of the science payload including the power
consumption, the size and the weight can be estimated. To estimate the availability of space,
mass and power consumption for the science payload in a cubesat, informations for each
subsystem are listed in Table. 2. The power consumption of the science payload needs to be
less than the number of subtracting the total power consumption of all subsystems besides
the science payload from the total power provided by solar panels. The volume and the
weight of the science payload also need to be less than the number of subtracting the total
volume and the total weight of all subsystems besides the science payload from the total size
and the acceptable weight of the whole cubesat, respectively. As shown in Table. 2, in order
to get feasible space, mass, we will use a 3U cubesat in which available power consumption,
the weight, and the size for science payload is ~4 W, ~ 1.5 kg, and ~ 103 cm3, respectively.
In other words, it occupies and weights a full cubesat unit and used half of the power from
the solar panels and all other systems occupy the rest of the volume (2U) and use the other
half of the power. Cubesat is a complex system and cooperations between many groups are

necessary even it can be built in the university-scale laboratories.



CubeSat Power Solar Attitude Communication | Command Science
structure | supply panel | Determination system & Data payload
and Control handing
system
1U
(Mass<1.33 kg)
Mass(g) 135.8 204.9 60 233 72.5 71.3 T777.5(g)
Power 68.3 2500 610 4200 337.5 -2715.8
(mW) (mW)
Volume(cm?) 103 1.46%102 3.80%102 1.29%102 9.67%10! 248.3
2U
(Mass<2.66 kg)
Mass(g) 279.3 204.9 60 233 72.5 71.3 920.7(g)
Power 68.3 4800 610 4200 337.5 -415.8
(mW) (mW)
Volume(cm?®) | 2+*10° 1.46*10? 3.80%10?% 1.29*%10? 9.67*10" 1.24%103
(cm?)
3U
(Mass<4.0 kg)
Mass(g) 408.3 204.9 60 233 72.5 71.3 1.04*10%(g)
Power 68.3 9200 610 4200 337.5 3.98*10%
(mW) (mW)
Volume(cm?) 3*#103 1.46*10? 3.80%102 1.29%10% 9.67#101 2.25%103
(cm®)

Table. 2: The limited conditions correspond to the 1U, 2U, 3U cubesat[11][12].




CHAPTER 3 INTRODUCTION OF TOP HAT ELECTROSTATIC ANALYZERS

(THEA)

A THEA consists of two shells and two parallel plates as the collimator on the top as
shown in Fig. 2[13]. The opening at the top of the shells allows charged particles to enter the
analyzer. Different voltages are given to two shells so that trajectories of charged particles
entering the analyzer are bent by the corresponding electric fields. Only particles with the
particular energies corresponding to the given voltages can go through the shells. Therefore,
the distribution functions of electrons can be measured by counting the number of charged

particles arriving the detector as a function of the supplied voltages.

upper collimator

lower collimator —

MCP assembly

inner electrode

MCP
Figure. 2: Cross section of a THEA. The red line represents the trajectory of an electrons

in the shells, while the blue and green regions represent the micro-channel plates (MCPs)
and the MCP assembly[13].



3.1 Zeroth order estimation

Our goal is to fit a THEA into a cubesat. In other words, the THEA needs to be smaller
than 103 cm3. To estimate the feasibility, we would like to use zeroth order estimation. An

ideal THEA consisting of two concentric metal spheres shown in Fig. 3 were used.

(____L____]

L Voltage is given in each shells V,, V;

———¢————

Figure. 3: Two concentric metallic spherical shells where R;, Ry, V;, V, are the radii and
electric potentials of the inner and the outer sphere of concentric metal spheres, respectively.

According to Gauss' law, the electric field between two concentric metal spheres in the ideal

spherical THEA is shown below.
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Therefore, the electric field is

E=—+¢ @)

4Ttenr2

where Q is the total charge in the spherical gauss surface and r is the distance to the center
of the sphere. The charge distribution is uniform on each conducting sphere in the ideal
THEA due to the symmetry. Therefore, the electric field and thus the electric potential only
depend on r. The potential is set to zero at r = co. Thus,

(1) For r > Ry, the electric potential

Vi) =—[TE-di=— [[32Rop. (pygr= [ 2_gr=22R ()

00 4Treyr? 4Ttenr2 4TtenT
(2) For Ry >r > R;, the electric potential
V(r) = —f}‘;OE- (—t)dr + V(R,)

_Qry>r>rg

r
1
—d V(R
4ie, JROFZ r+ V( 0)

=QR0>r>Ri(i_1)+Qr>R0

4-1'[€0 Ro r 41T€0 RO ) (4)

With the boundary conditions V(R,) =V, and V(R;) =V;, the potential between R, and

Ri is

RoR;
V(r):ﬁ'(vi‘vo)'(l‘é)wo for R, >r > R, (5)

r

Taking the negative of the gradient of Eq. 5 yields

1
2

= R Ri A
E(l"): —-VV = #‘Ri ' (Vl - VO) ' r. (6)
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Let’s consider an electron passing through the center of the gap between two concentric
metal spheres, i.e., the radius of circular motions of electrons equals to (R; + R,)/2, and
reaching the detector located at the bottom of the upper hemisphere as shown in Fig. 4. The

centripetal force must equal to the electric force:

RoR;(Vi—Vjy)
(Ro—Rj)(Ro+Rj)rz (7)

m. = = [qE| = q

» 7

Figure. 4: Two concentric metallic spherical shell where R, and R; are the outer radius
and inner radius.

The relation between kinetic energy of electrons Ey to the voltage between two spheres and

the radii of two spheres is

1
Eg _z2mv® (Vi = Vo)RoR (8)




which can be treated as a selection rule of the analyzer under zeroth order approximation.
Equation 8 shows that a THEA for cubesat with R; = 44 mm,R, =45 mm,V; =
1 kVand V, = 0 V measuring the electron distribution function up to 22.2 keV is possible.
Notice that Eq. 8 is just an estimation. More sophisticated simulations given in chapter 4 for
a real THEA are needed for designing a THEA. Nevertheless, the model of zeroth order

approximation can be used to benchmark the simulations code that we developed.

3.2 Geometric factor

Geometric factor (g-factor) is the selectivity of an analyzer. G-factor represents the ratio
of the number of electrons which enter THEA to the number of electrons which are detected
at the bottom of THEA. G-factor is determined via simulations. For those electrons passing
through the bottom of the detector, the initial positions, initial energies and incidence of
angles are recorded. As shown in Fig. 5[13], particle counts on the detector in a period of
time can be expressed as

C=—[T(K Q,%)(J(K Q%) - dS)dSdadt ©9)
where K, Q, %, S are kinetic energy, the effective view in solid angle, locations of particle
entering the analyzer, and the aperture, respectively. J is the differential flux of particles

that enter the analyzer. The function

1 if detected (10)

T(K Q,X) = { 0 if not detected

12



represents the selection rule of the particle reaching the detector. An “energy geometric

factor” Gg(cm?-sr-keV) defined as

Gg = f T(K, Q%)@ - A)dS dQdK (1)

depends on the analyzer’s geometric and the energy of the particle entering the analyzer. In

order to get a characteristic selectivity independent of energy, a mean energy (k) defines as

_ [KT(K Q,%)( - f)dS dodK

k) = [ T(K,Q,%)( - A)dS dadK (12)

is introduced. As a result, an energy-independent sensitivity, g-factor, is defined as

) E
G= " (13)

S (aperture)
T=0
"4

Direction of electrons . e
dD’

analyzer

Q (field of view)

Figure. 5: lllustration of g-factor integration. A g-factor is determined by the number of
particles that can pass through on the bottom of detector[13].

Electrons with different energy can enter the analyzer from different locations with different
angles in simulations. The Eqg. 11, Eq. 12 and Eq. 13 are determined by the number and the
energy of electrons that can pass through the analyzer. The g-factor will be calculated in
section 5.3.
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CHAPTER 4 DEVELOPMENT OF THE SIMULATION CODE

The simulation code is divided into three parts: (1) calculating electric field via
solving Laplace’s equation in cylindrical coordinate using Gauss Seidel method[14]; (2)
calculating trajectories of electrons using 4"- order Runge-Kutta method; (3) calculating
the selectivity of the analyzer, i.e., geometric factor. Details of the code is given in this
chapter. The numerical methods that are used will be introduced first in 4.1. In section 4.2,
the Laplace’s equation solver for calculating electric potential in the THEA is given. In
section 4.3, the electron trajectories in the THEA calculated using 4" order Runge-Kutta
method is describes. All the developed codes were benchmarked by comparing the results

from the simulation to the analytical solution of an ideal THEA introduced in chapter 3.

4.1 Introduction of numerical methods

In this part, Finite Difference method, Gauss Seidel method, bilinear interpolation

method and Runge-Kutta method will be introduced[14][15][16][17].
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4.1.1 Finite Difference method

Finite Difference method is to write a derivative equation into differential form. A set
of grid points in the region of interest (ROI) are first defined. Take two-dimensional space

in Cartesian coordinate system (x,y) shown in Fig. 6 as an example, step sizes Ax =

Xma’;ﬂ and Ay = yma"Nﬂ where Xpin < X < Xmax a0 Vimin <V < Vimax are the
X y
ROIL. Ny and Ny are the number of grids in x and y direction, respectively. If (Xpmin, Ymin)

= (0,0), xjandy; are x; =ixAx, i =0,...,,Ny, and y; == Ay, j =0,..., Ny. x_4, y_1,

Xn,,, and YNy, are used for applying boundary conditions.

YNyH = VYmax+1

y Ny = ¥Ymax

¥j

y2

Y1

XNX XNx+1
I I

Xmax Xmax+1

Xmin = 0 =X, X4 X es Xj

Ymin = 0=Yo

Figure. 6: The diagram of gird points in Cartesian coordinate.

A differential equation can be obtained by using the Taylor expansions of the function

15



in the derivative form. For example, Laplace’s equation in 2D Cartesian coordinate is

GZV(X,y) 62V(x,y)
92 + 3y2 =0. (14)

The Taylor expansion of V(x,y) at point (x,y) in x direction is

AV(xy) %v(xy) amV(xy)

V(x+Ax,y) = V(xy) + —2—Ax + —2TAx? oo b B0 pAxn e (159)
aV(xy) 22v(xy) MV (xy)

V(x — Ax,y) = V(x,y) - —2—Ax + ";!2 Ax? — e — —OEE— AXD o - (15b)

Three methods of differential equations using Eq. 15 are commonly considered: forward,

backward, and central differences for 15 order derivative. They are:

av(xy) 1 V(x+Ax,y)-V(x,y)

Forward differential equation: maks S + 0(Ax) (from Eq. 15a) ,
Backward differential equation: av(gz,y) = V(X'Y)_XiX_AX'Y) + 0(Ax) (from Eq. 15b) ,
Central differential equation: &Y = YO+AxNVGAXY) | o (Ax2) (From Eq. 15a & 15b).

ox 2xAx

With smaller Ax, the differential equation becomes closer to derivative equation. The
physical meaning of forward, backward, and central differences are shown in Fig. 7 [18].
The distance is divided into several parts and the distance of each partis Ar. Ar is called a
step size. In Fig. 7, the derivative at the red point will be estimated by using forward or
backward or central differences. The forward difference uses the value at (r+Ar,z) and (r,z)
and their step size. The backward difference uses the value at (r-Ar,z) and (r,z) and their step

size. The central difference uses the value at (r+Ar,z) and (r-Ar,z) and their step size.

16



_ forward
e backward
central P |

-~ 0y - P oS ~
+ e N )

o, N
p
. ~a
!
!
!

Ar @ Ar

L L ® L L
V(r-2Ar,2) V(r-Ar,z) V(r,z) V(r+Ar,z) V(r+2Ar,z)

Figure. 7: The physical meaning of forward, backward, and central differences[18].

In Laplace’s equation, central differential will be used for discretizing 29 order

2
derivative in the equation. Equation 16 and Eq. 17 represent the discretization of %
2
and w, respectively.
?°V(xy) V(x+Axy) +V(E—Axy)—2V(xYy)
oxz (Ax)? ’ (16)
0?V(xy) V(xy+Ay) +V(xy — Ay) — 2V(x,y) 17

dy? (Ay)?

The derivation using the central difference is given as following.

aV(xy) 92V (x,y)
V(x + Ax,y) = V(x,y) + ‘1"‘ Ax + ";‘!2 Ax?
V(x+Axy)-V(x—Axy) 02V(x,y)
~V(xy) + =T Ax + a;‘!z Ax?

17



V(x+Axy)—V(x—AX,y) 02V Cey)
Xx+Axy)—-V(x—AX, 2
Y Y + 2 Ax?

2 2!

= V(x+Axy) -V vy) =

92 V(X 0°V(xy)

= 2V(x+ Ax,y) — 2V(x,y) — V(x + Ax,y) + V(x — AX,y) = Ax?

02 V(X 0°V(xy)

= V(x+A4Axy) —2V(x,y) + V(x — Ax,y) =~ Ax?

0°V(xy) _ V(x+Axy)-2V(xy)+V(x—Axy)

oxz Ax2
P 0?V(xy) 0*V(xy)
The derivation process of S in Eqg. 17 is similar to the derivation process for T'
Therefore, the Laplace’s equation in the differential form is
V(x+Ax,y)+V(x-Axy)-2V(xy) , Vxy+Ay)+V(x,y—-Ay)-2V(xy) _
&7 - &y =0. (18)

If Ax equals Ay in Eg. 18, Laplace’s equation in the differential form becomes

V(x + Ax,y) + V(x — Ax, y) + V(x,y + Ay) + V(x,y — Ay) — 4V(x,y) =0 . (19)

In this thesis, Laplace’s equation is solved in cylindrical coordinate. Since the geometry

2

of THEA and thus the potential in the analyzer is azimuthal symmetric, i.e., 997

=0,

EAY. 10V EAY.

itz =0 (20)

In Eq. 20, the mesh in the cylindrical coordinate is similar to the one in Fig. 6, but with
different variables. Variables “x” and “y” are replaced by “r” and “z” for t direction and Z

direction, respectively. The grid points in cylindrical coordinate system (r,z) are shown in

-r Z z
= maxTmin - g, = Zmaxmin -y <p<poand zpg, <

Fig. 8, where step sizes dr =
N, N,

Z < Zmax are the ROI. N, and N, are the number of grids in r and z directions,

respectively. r; =i=dr, i =0,...,N, , and z; = j*dz, j =0,..., N,. dr and dz are the grid
18



sizes in r and z direction and they are constants. The differential form of Eq. 20 is

h 1
Vij = or, (Vierj = Viegg) + 2 [Vie1j + Vierj + Vijo1 + Vijed] (21a)

where i and j are indexes of grids in r and z directions, respectively.

+1
ZN, = Zmax
%
Z3
Z
™ I'n +1
Imin =0 =Ty Iy L] L& " '
o= o
Zmin = U =2
I'max Fmax+1

Figure. 8: The diagram of gird points in cylindrical coordinate.
In Eq. 214, the boundary condition is reflective boundary condition if i does not equal
to zero. If i equals to zero, the boundary condition will be considered differently. The finite

difference form in Laplace’s equation on the z axis is defined as:

dr? )
_ T [VO‘]'+1 + VO,j—l] + dZ - Vl,j

Vi,j = 2 , l:O
d%+dz2

(21b)

The derivation of Eq. 21a and Eq. 21b are shown in appendix A and appendix B. The
discretized Laplace’s equation is solved using Gauss Seidel method introduced in section

19



4.1.2.
4.1.1.1 Boundary conditions

In our simulation, when i equals zero, the boundary conditions of that region are divided
into three parts representing the Gauss's law in Eq. 1. The top region, the bottom region and
the side region are given Fig. B-1 in appendix B. On the top of the cylinder, the electric field
Is a constant with g—‘: = 0. At the bottom of the cylinder, the electric field is also a constant.
On the side of the cylinder, the electric field is a constant. Following the derivation given in

appendix B, the boundary condition at i=0, i.e., is

(dr,)?[dz,V(0,j + 1) + dz,V(0,j — 1)] + 2dz,dz,(dz, + dz,)V(1,))
dZ1 (drz)z + de (drz)z + 2dZ1d22 (dZ1 + de) '

v(0,j) =
At the region of r =y, and z = z,,,, the reflective boundary condition is used.

When z = 0, we also use the reflective boundary.

Z
.01
v(0,i+h)
1.

V(0,i-)

Figure. B-1: The boundary conditions are divided into three parts representing the Gauss’s
law.
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4.1.2 Gauss Seidel method

Gauss Seidel method is used to solve a system of equations, i.e., a matrix solver. Let
the system of equations be[14]
d11Xq + dq2Xo + di2X3 + -+ Ad1pnXp = C1

do1Xq + dorXo + a32X3 + -+ donXp = Cy

dn1Xq + dp2Xo + an2X3 +2F- Bt ApnXp = Cq -

If the diagonal elements of the system of equations written in a matrix form are
not zero, i.e., a;; # 0, the Gauss Seidel method can be used to solve the system of equations.
The procedure is shown in Fig. 9.

With an initial gauss (x,°, x,°%, -+, x,9), the first x;1, x,%, .-, x,! can be updated

sequentially using the following equations where the super script represent the numbers of

iterations.
X11 = (¢, — a12X20 - a13X30 ----_a1anO) / an
le =(c; — a21X11 - a23X30 ----_aZanO) / Az,
an = (Cn — anlxll - anZXZ1 e _an,n—lxn—ll) / ann - (22)
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Initial guess x;"

Solve new x;

3

sequentially

e linear

ons

Check if the

approximated error is

less than the pre-

specified tolerance

Figure. 9: The procedure of the Gauss Seidel method.

Eq. 22 can be rewritten in a summation form:

j=i-1 n

1
k+1 _ k+1 k e
Xj = Ci — ainj — ai]'X]' ,1 = 1,2,
Aji

j=1 j=it1

(23)

where k represents the k™ time of iterations. Once you have determined x, from the first

equation, its value is then used in the second equation to obtain the new x,. Similarly, the

New Xi,X,, ..., Xj_; are used to obtain the new x; . From an initial guess of x;(®, new sets

of x; are calculated iteratively using Eq. 22 . At the end of each iteration, there are two ways

to stop the iteration.

22



(i) the approximated error for each x; is

the recently obtained value of x; —the previous value of x;

|approximation error| = Max[ * 100%].

the recently obtained value of x;+10~10

Notice that 10~1° is added to the denominator to prevent it for being zero. In general, when
the absolute value of relative approximated error for each x; is less than the pre-specified
tolerance, the iterations stops[13].

(i) Alternative way is terminate the simulation, is to insert the solution into the left hand
side of Eq. 20 .

We used the second way to terminate the iteration. The iterations will be stopped if the

number is smaller than 10~7.

4.1.3 Gauss Seidel method accelerated by using Flag method

Flag method is to identify which points in ROI are important and we only calculate the
solutions of those points to improve the efficiency of simulation for calculating electric
potentials. Shown in Fig. 10, if r is smaller than R; or bigger than R,, electric potentials
are constant and do not change during iterations. We only care about the electric potential
between R; and R,. Therefore, we mark and calculate only those points in that area. If the

area between R; and R, is much less than the whole area, the program will be speeded up
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and save a lot of time for calculating electric potential.

Z

i

t ‘4
1
R :
i R ﬁ

e
1 :

"
A

0 R; R, 0 R R

Figure. 10: Flag method is used to identify the region to be calculated.

One of the main improvements is that instead of loop over all i and j, we use another array

that stores only the "flagged™ grid, and loop over that array in each iteration. So in each

iteration, the number of loop reduces from imax*jmax to only number of points between the

outer and the inner spheres.

4.1.4 Bilinear interpolation method

Bilinear interpolation method is to estimate a number not on the mesh or grid from the

known numbers on mesh points. For example, electric potential is calculated using Gauss

Seidel method at each grid point. Electric field is then calculated by taking the negative of

gradient of the electric potential. Therefore, the electric fields are known on grid points. If

we want to know the electric field not on grid points, the bilinear interpolation can be used

to determine the electric field.
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Bilinear interpolation method is thrice of linear interpolation method. As shown in Fig. 11,
it is to estimate the value f(x,, y,), which is not on a grid point, from the given values f(x, y),
f(x+Ax,y), f(x, y+Ay) and f(x+Ax, y+Ay) located on the grids. In the initial phase, the f(X, y),
f(x+Ax,y), f(x, y+Ay) and f(x+Ax, y+Ay) are used to estimate the unknown values f(x,,y;)
and f(x,,y2) orf(xs,y3) and f(x,,y,) Vvia linear interpolation. Next, f(x4,y;) and f(x,, y2)
or f(x3,y3) and f(x,,y,) are used to estimate the value of f(x,, y,). The process for bilinear

interpolation method is shown in the following.

f(vg\y + Ay) f(X$Y2) o fxHAXY +Ay)
-
(X0, Vo) )
f(xa, Ys)ﬂgoy% ------------------ Of(X4,¥s)
& o X 1-o »
f(x,y) f(xq,y1) f(x+Ax,y)

Figure. 11: The example of linear (bilinear) interpolation method. The distance of each side

Is one. The a is the portion between x and x; and the f is the portion between x5 and X.

The unknown values f(x4,y1), f(X5,y2), f(x3,y3) and f(x,,y,) are obtained using linear

interpolation method in the initial phase:
25



f(xy, y)= a*f(x+Axy) + (1-0*(xy) |

f(xz2,y2)= a*f(x+Ax, y+Ay) + (1-0)*f(x, y+4y) ;
f(XS' YS): B *f(X, Y) + (1'B)*f(X, y+AY) )
f(X4' y4l-): B *f(X+AX' Y) + (1-6)*f(X+AX' y+AY) ’

where a = x; — X=X, — xand B = (y+Ay) — y3= (y+Ay) — ya.

Finally,
f(x0, y0)= B *f(x1,y1) + (1-B)*f(x2,¥2)
f(x0, yo)= P*[ fx+Ax,y) + (L-a)*f(x,y)]+ (1-P)*[ a*f(x+Ax, y+Ay) + (1-0)*f(x, y+Ay)]
or f(xo, y0)= (1- &)*f(x3,¥3) + 0*f(X4, ya)f(X0, Y0

=P *I[B*(xy) + (I-Py*f(x, y+Ay)]+ (1-P)*[ P *f(x+Ax,y) + (1-B)*f(x+Ax, y+Ay)].
The bilinear interpolation method is used to determine the electric field if we want to know

the electric field not on grid points.

4.1.5 Runge-Kutta method

Runge-Kutta method is a numerical technique for solving 15t -order ordinary
differential equation (ODE), e.g., the equations of motion of charged particles in electric

fields. The 15t-order and 4™"-order Runge-Kutta method will be introduced.
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The 15t-order Runge-Kutta method was originally proposed by Euler and was called
Euler's method. It is used to solve a 15t-order ODE within a given interval of the
independent variable x with a given initial condition. The general form of 15t-order ODE is
% =f(x,y) (24)
where function f is known. The interval is chopped into small subdivisions of length h.
Therefore, the independent variable x can discretized as x,, where the index n range from 0
to nmax.

The Euler’s method is to obtain the unknown point (X, 1,¥n+1) from the known point
(Xp,¥n)- As shown in Fig. 12, (x,+1,Yn+1) €an be calculated using (x,,y,) and the tangential
line through this known point[13]. From Eq. 24, the slope of the tangential line is f(x,,yy,)-
Therefore,

Xps1 = Xn + 1, 2)
Yn+1 = Yn +Ay+O(h?) where Ay =h* f(xy,yn) -
The last term O(h?) represents the truncation error of the Euler method, which is a secondary
order accuracy in h. For a given initial condition, i.e. (xq,y) 1S known, (x1,y1), (X2,y2), ="
(Xn,¥n) v (Xnmax:Ynmax) €an be calculated sequentially using Eq. 25 .

In Fig. 12, there is an error between the real solution (orange line) and numerical

solution (red line) depending on h and the order of the Runge-Kutta method. If higher order
27



Runge-Kutta method is used, the error will be smaller and the calculated solution will be

closer to the real solution.

Error

Yn+1

yll

Xn Xn+1

Figure. 12: The orange line is represented differential equation of F(x,y)=0 and the red
line is represented the numerical method (Euler's method).

Similar to the 15t-order Runge-Kutta method, 4-order Runge-Kutta method uses the
derivative of y from the known point (x,,y,) to calculate the solution of the following
unknown point (x,+1,¥n+1)[13]. The difference is how to estimate the derivative of y. For

the 4™-order Runge-Kutta method,

(ky + 2k, + 2k; + k)
6

Yn+1 =Yn T h+ O(hs) (26)
where O(h®) is the local truncation error of 4™ -order Runge-Kutta method[15]. The

derivative of y is estimated using k,, k,, k3, k, written as following and shown in Fig.

13.
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ky = f(x;,y1)
1 1
kz = f(Xi +§h,y1 +§k1h>
1 1
k3 = f(Xi + Eh,Yi +§k2h)
k4 = f(Xl + h, Vi + kgh) .
For brief speaking, k,,k,, k3, and k, are different slopes in the interval[15]. k, is the
slope at the beginning of the time step. k, is an estimation of the slope at the midpoint
which is estimated using the slope k, to step halfway forward. k5 is another estimation of
the slope at the midpoint using the slope k, to step halfway forward. At last, k, is the

estimation of the slope at the endpoint using slope ks to step all the way across h[16]. The

derivation of Runge-Kutta method is given on the appendix C.

N .
Yn K1
\\\\\é{{
\i\\
3 BN
. S~o Vi
: h : 8-
— —_ —p ~
— h E— X

Figure. 13: The 4‘"-order Runge Kutta method. In each step, the derivative is evaluated
four times: once at the initial point, twice at midpoint, and once at the endpoint[15].

Similar to the 15%-order Runge-Kutta method, (x,,y,) can be calculated sequentially from a
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given initial condition. Trajectories of electrons will be solved using the 4™-order Runge-

Kutta method.

4.2 Laplace’s equation solver for an ideal THEA

To get a precise electric field, solving Laplace’s equation
V2V =0 (27)
with given geometry and applied voltage are necessary. Since the THEA and thus the
potential in the analyzer is azimuthal symmetric, Laplace’s equation is solved in cylindrical

coordinates, i.e,
0’V 19V 0*V

— Iy = (28)
or2 rodr 0z2
The original equation from Eqg. 28 written in the finite differential form is
(h 1 )
g(VHl,j —Vi_g ) + 7 [Vicij + Vigrj + Vijor + Vijea],  i#0
= ] dr?

Vl:] T [VO,j+1 + VO,j—l] + dZZ " Vl,j )

I , i=0 (29
T + dZ2

where i and j are indexes of grids in r and z directions, respectively, and V,; are numbers on
zaxes. ry = ixdr,i=0,...,N,. ,and z; =j=*dz, j=0,..., N,. dr and dz are the grid sizes in
r and z direction and they are constants. Notice that Z—\r’ = 0 so that there is no singularity

on z axis. The boundary conditions are described in section 4.1.1 and in appendix A.
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In Fig. 14 and Fig. 15, if the distance between the grid points and outer radius or

between the grid points and inner radius is less than the distance of the grid size, Eq. 29

should be modified. This can be considered in two different points of view: (i) in numerical

point of view and (ii) in physical point of view. In numerical point of view, we want to

estimate the unknown point by using finite difference method. The finite difference method

was introduced in section 4.1.1. The 5 closest mesh points were used to calculate the

unknown point. If the distance between special point and unknown point is smaller than the

distance between the 5 closest mesh points and unknown point, the numerical result is not

accurate to describe the electric potentials in the THEA. In physical point of view, the

concentric spheres are made of metal. Charges will be accumulated on the surface of the

sphere. The charge can effect upon the distribution of electric potential on the surface of the

sphere. Therefore, we must consider the special points near the sphere. It is divided into two

parts for discussion shown in Fig. 14 and Fig. 15 and they are called special points: (1) the

distance between the grid point and inner radius is less than the distance of the grid size; (2)

the distance between the grid point and outer radius is less than the distance of the grid size.

The green points (re, z.) in Fig. 14 and Fig. 15 represent the intersections of the grids and

the inner sphere or the grids and the outer sphere. In Fig. 14, this is an example of the distance

between the grid to the inner sphere being less than the grid size. In this example, we have
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to replace dr with dr,. Similarly, anew gap dz, is used asshown inFig. 14. dr, and dz,

are defined as

drz =TI — (\/((Rl)z - (Zi)z) and

dz, =z — (V(RD? = (1)?) . (30)

(a)

(b)

Figure. 14: Definition of the special points near the inner radius. Blue curve represent the
inner radius.

Similarly, dr; and dz; for grids next to the outer sphere are
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dr; = (V(Ro)2 = (z)?%) — 17 and
dz, = (,/(RO)2 — (ri)z) -z . (31)

() 4

©
+1 % - o O
it o © ©
-1 F ® @
] 1 L : 1"\"
B i i

Figure. 15: Definition of the special points near the outer radius. Blue curve and purple
curve represent the inner radius and outer radius.

To simplify our code, we don’t assume that dr and dz are constants. As shown in Fig. 16, the
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grid sizes around each grid point are defined as dr,, dr,, dz;, dz,.

drl drz

Figure. 16: dry, dr,, dz; and dz, are defined around each grid point.

Therefore, Laplace’s equation in cylindrical coordinate is modified to Eq. 32 and solved
using Gauss-Seidel method. The derivation of Eqg. 32 is shown in appendix A. For those
points away from the sphere, not special points, dr; and dr, equal to dr while dz; and

dz, equal to dz and Eq. 32 become identical to Eq. 29. Otherwise, Eq. 30 or Eq. 31 are used.
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o e
2 2 + 2 2
dI‘l + dI'2 le + dZZ
( Vig1, Vi—l,j] )
- = d ) B )
drl +dr r [V1+1] + Vl 1, ( Iy — 1) d + dFl
Viiog
*<+—[V +V dz, — dz ”H—l’]]>, i#0
V(i,j)z ) le + dZZ ij+1 Lj—-1 ( 2 1) dz, + le
Vit — Viea
\ r(dry + dry) J
[(dr2)3(dZ1 + de) + Zdrz (le + de)ledZZ]_l (32)
L [(dr2)3(d21V0’]‘+1 + dZZVO,j—l) + 2dI‘2 (le + dZZ)dZIdZZVI,j]I 1=

4.2.1 Benchmarking the Laplace’s equation solver

In order to check if the code calculates the electric potential correctly, we first use it to

calculate the ideal THEA introduced in chapter 3. By comparing the result from our

simulation to the result from Eq. 5, we can benchmark our code. The case we calculated was

an ideal THEA consisting two concentric metal sphere with R;=2 cm, R,=9 cm. V;=6 V,

and V,=2 V. In Fig. 17, it is the calculated electric potential in the ideal THEA. The left

panel of Fig. 17 is the distribution of electric potential in the ideal THEA calculated using

analytical solution. The right panel of Fig. 17 is the distribution of electric potential in the

ideal THEA from the numerical result. In Fig. 18, the direct comparison between the

simulation result and the analytic calculation is shown. The red dashed line represents the
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analytic result, and the green solid line represents the simulation result of all the points

between R; and R,. Two lines on top of each other shows that our Laplace’s equation

solver is correct.

Voltage(v) Voltage(v)
6.0 6.0
45 45
4.0 4.0
35 35
ia‘o is.o
25 25
0.0 0.0
r r

Figure. 17: The distribution of electric potential in ideal THEA with the radii and potentials
of the inner and the outer of 2 cm, 9 cm, 6 V, 2 V, respectively. The smaller quarter circle
represents inner radius. The larger quarter circle in red represents outer radius. The right

hand side is from simulation result. The left hand side is from the analytic solution.

V1t + z2
Figure. 18: The simulation result of electric potentials is compared with the analytic result

in two concentric metal spheres where the radii and potentials of the inner and the outer are
2cm,9cm, 6V, 2V, respectively.
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4.3 Trajectories of electrons in ideal THEA

Trajectories of electrons in THEA are calculated using the 4™-order Runge-Kutta
method. Both the cases with and without Relativistic are considered. The electric field are
calculated using either the analytical solution or the simulation result from Laplace’s
equation solver. By comparing the results, the code for calculating the trajectories and the

bilinear interpolation of electric fields are benchmarked.

4.3.1 The electron trajectories without Relativistic

The equations of motion for electrons in the THEA without considering Relativistic are:

23 =v=it39), (33)
dt

d - =g T I Y
Mme —V = qE(X) = g(t,x,Vv),

-

where X, V,q = 1.6x1071° coulomb and m, = 9.1x1073! kg are the position, velocity,
charge and mass of electrons, respectively, and E is the electric field. Electrons trajectories
are calculated from Eq. 33 using 4™-order Runge-Kutta method. The simulation result of
electron trajectories in two concentric metal spheres are shown in Fig. 19 to benchmark the

simulation code. In each time step, the 4™-order Runge-Kutta method is calculated using

the equation given in Table. 3.
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ky = Atf(ty, %g) = AtV,

L; = Atg(to, Xg) = AtqE(xg)

k, = At?(to Xt V0 ) L, = Atg (tO Ml Vo + )
= AV, = AtqE(xD);
VO =V, %_\T’ﬁﬁ/z xW = %5 + Vo
=% +k;/2
Ks —Atf(t0+§,—0’+ Vo + ) Ls —Atg(t0 x0+ Vo + )
= AV, = AtqE(x@);
V@ =V, + M =V, +1,/2 x@ =% + V(l)At
= X5 +kz/2

E s At —
k, = Atf(t0 +2.% + K3, Vg + L3)
= Atm;

VG = V) + qEGx@)At =V, + L,

Ly = A6 (to + 5 %5 + kg, Vo + L

= MQE(x®);
xG =% + V@At

=Xg +Kk;

)

Table. 3: The 4" order Runge-Kutta for solving Eq. 33.

The electric field in the Table. 3 is calculated using Eg. 6, the analytic solution. The initial
position of the electron is (r,z2)=(0 cm , 5, 5 cm). In section 3.1, the maximum energy of

electron is ~ 21 keV by using the zeroth order estimation. We assumption that the electron
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motion is only in T direction. The initial velocity in T direction is 573423 (m/s) and the

initial velocity in Z direction is 0 (m/s). We use these initial conditions to benchmark the
codes. The step size has great effect upon simulation of the electron trajectories. The
trajectory of electron must be less than the step size in a time step if the simulation of the
electron trajectories will get the precise result. In our simulation, ry., and zy., represent
the boundary of interest, and the time stepis 10719 sec. In this chapter, the distance of ry.«
is 10 cm in T direction and zy.x IS 10 cm in Z direction. The boundary of interest is
divided into 1000 in each direction and the grid size is 10 * 1072/1000 m. In each time
step, the electron moves ~ 5.7 * 10~> m which is much smaller than the grid size, i.e., 10™*
m. The simulation result of electron trajectories are shown in Fig. 19. The dashed line in Fig.
19 represents the numerical calculation using Mathematica. The green solid line in Fig. 19

represents the simulation result. Those two lines are on top of each other shows that the code

for simulating electron trajectories is correct.
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r direction (m)

Z direction

Figure. 19: The simulation result of electron trajectories in two concentric metal spheres
where the radii and potentials of the inner and the outer are 2 cm, 9 cm, 6 V, 2V,
respectively. Solid green line is from simulation result which the electric field is from

Eq.6. Colorful Points are from numerical calculation using Mathematica.

4.3.1.1 Benchmarking the bilinear interpolation of simulated electron fields

In previous section, the electric fields were calculated using the analytical model.
However, there will be no analytical model in a real THEA and it needs to be calculated from
the Laplace’s equation solver. The electric field on each grid can be calculated by taking

negative of the gradient of the electric potential. The differential form of electric field is in

Eq. 34.
. V(i+1,)-V(i-1,))
E.(i]) = —%, (34)
.. V(4,j+1)-V(,j—1)
E,(i)) = —————

40



If the point is not on the grid, we will use bilinear method to calculate the electric field. The

simulation result of electron trajectories in two concentric metal spheres are shown in Fig.

20 . In Fig. 20, the initial position of the electron is (r,z)=( 0 cm , 5, 5 cm ). The initial

velocity in T direction is 573423 (m/s) and the initial velocity in Z direction is 0 (m/s). In

Fig. 20, the red dashed line represents the numerical calculation using Mathematica. In Fig.

20, the purple solid line represents the simulation result. The only differences between Fig.

19 and Fig. 20 is how the electric fields were calculated. Those two lines on top of each

others indicates that the bilinear interpolations of the simulated electric fields are correct.

0:00 0.02 0.04 0.06 0.08
r direction (m)

Figure. 20 The simulation result of electron trajectories is compared with the analytic result
in two concentric metal spheres where the radii and potentials of the inner and the outer are
2cm, 9cm, 6V, 2V, respectively. Solid purple line is from simulation result which the electric
field is from bilinear interpolation method. Colorful Points are from analytic result.
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4.3.2 The electron trajectories with relativistic effect

When the kinetic energy of electrons is high enough, the relativistic effect needs to be
considered. The velocity of electrons calculated using a given kinetic energy with and

without relativistic effect are:

/ZE
V= - with non — relativistic

¢/ E(E + 2mc?
o = S/ )

T meZ with relativistic

where E, m and c are represent the electron kinetic energy(J), rest mass and speed of light.

The difference between the velocity with and without relativistic are shown in Fig. 21.
According to Fig. 21, relativistic effect causes at least 3% difference in velocity when the
Kinetic energy is above 20 keV. In other words, relativistic effect have to be considered. If
the electron kinetic energy is even higher and higher, the difference between non-relativistic
and relativistic effect will be obvious. In Fig. 22, the brown dashed line represents the non-

relativistic effect. In Fig. 22, the blue solid line represents the relativistic effect.
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Figure. 21: The relationship for the speed of electron between relativistic effect and classical.

- B
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Figure. 22: If the electron kinetic energy is higher and higher, the difference of electron
motion with relativistic and without relativistic will be obvious.
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The equations of motion with relativistic effect for electrons in the analyzer is:

dX(t) c-PB(b)
dt Jme? - cZ + P(t)?
4P _

= 1 EX®)

calculated from the relativistic momentum shown as following:

v
= P? = (m%c? + P?) =

P dX(D
VmZcZ +Pz  dt

—
- VvV =

(35)

where X, P,q = 1.6x107° coulomb and m, = 9.1x1073! kg are the position, velocity,

charge and mass of electrons, respectively, and E is the electric field. The velocity is

where m, ¢, v;, v,, P. and P, are the rest electron mass, speed of light, speed of electron

in T direction, speed of electron in Z direction, the momentum in t direction and the

momentum in Z direction, respectively.

Also, the time step is considered in our simulation. We have to consider two situations:

(1) the speed of electron is much less than light speed; (2) the speed of electron is closed to
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light speed, e,g., 1.5 = 108 m/s. The time step is 1071° when the speed of electron is much
less than light speed. If the speed of electron is 1.5 = 108 m/s, the time step is 10713, The
region of interest rya IS 10 cm in T direction and zy,, is 10 cm in Z direction. The
region of interest is divided into 1000 in each direction and the grid size is 10*1072/1000
m. In each time step, the electron moves ~ 5.7 * 10~> m which is much smaller than grid
size when the speed of electron is much less than light speed. On the other hand, when the
speed of electron is 1.5 * 108 m/s, the electron moves ~ 1.5 * 10~> m which it is much
smaller than the grid size in each time step. The time step is carefully considered. Thus, the
Runge-Kutta method is use to solve the electron trajectories for our simulation in the

following.

4.3.2.1 Runge-Kutta method with relativistic effect

Equation 35 is rewritten as following and the 4"-order Runge-Kutta method is used.

dX(t) cP .o O o
—— =V=———=o~=f — 2 =qE(X(®)) =
T Tt (0D = aE(R0) =E6RD

Each terms in Eq. 26 are given in Table. 4.
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—
Pyc

’mzc2 + Py?

k; = Atf(ty, Xg) = At

L, = Atg(to,Xg) = AtqE(Xg)

Ly Ly
kZ_Atf(tO > 0+ +71) Lz—Atg(to > 0+ »V, 0+71)
Vm2c2 + p? 5
=4 Poc 4t
— = 0 —_—
< — E X At — RN 2
P =P0+@=PO+L1/2 /m2c2+P02
= %5 +k1/2
ks = Atf(t0 A+ ﬁ oo LZ) L; = A3 (tO A+ kz Vg + LZ)
P@ = AtqE (x@):
_ At P@)¢ ; AtqE (X )
Vm2c2 + p@?
_ ., _, ¢qE (x(1)> Al | = x@ =x7 + 2%
P@ =P, + =P, +L,/2 Vm2c2 + P

k_4_):At?(t0 EX_0)+k3,V0+L3)

PGJc

Vmzcz + p@?

Wzﬁ;+qﬁ(ﬁ)m

= At

L, =At§(tO + 5% + k3, Vg + Ly )

= Atqﬁ (ﬁ)
_ pP@¢
x®) =x7 + At
Vm2c2 + p@°?
=% +ks

Table. 4: Equation 35 is rewritten for electron motion when the electron speed is close to the

light speed.

The codes are tested in two conditions: (1) the speed of electrons much less than speed of




light. The result should coincide to the classical result; and (2) the speed of electrons is closed

to the speed of light. Both results are compared to the results calculated using Mathematica

for benchmarking.

4.3.2.2 The speed of electron is much less than speed of light

The electron trajectories calculated using Eg. 35 should be the same as Eqg. 33 when the

velocity of electron is much less than speed of light. Therefore, trajectories of an electron

with 573423 (m/s) initial velocity in T direction and 0 (m/s) in Z direction passing

through the ideal THEAwith R; =2cm, R, =9cm, V, =6V, V, = 2V was calculated.

Both Eqg. 33 and Eq. 35 were used and the results are plotted in blue and green lines,

respectively, in Fig. 23. The equations of motion with and without relativistic were also

solved using Mathematica and the results are plotted in yellow points and brown line,

respectively, in Fig. 23. In Fig. 23, simulation results of electron trajectories calculated using

our code to calculate Eg. 33 and Eq. 35 are compared with the results calculated by using

Mathematica. They coincide to each others. It shows that our code is correct in the case of

electrons with speed much less than the speed of light.
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Electron motion
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Figure. 23: The simulation result of electron trajectories is compared with the result
calculated using Mathematica in two concentric metal spheres where the radii and
potentials of the inner and the outer are 2 cm, 9 cm, 6 V, 2V, respectively. Blue and green
lines represent the numerical calculation. Yellow points and brown line represent the
simulation results.

4.3.2.3 The speed of electron is closed to the speed of light

To check if the trajectories are calculated correctly, we simulate the case where the
speed of electron is half of the speed of light. The initial position of the electron is (r,z)=( 0
cm, 5.5 cm ). The initial velocity of the electron is 1.5 * 108 m/sin £ direction and 0 m/s
in Z direction. The radius of the inner and outer sphere are 2 cm and 9 cm, respectively,

while the inner and outer voltage are now 3.05x 10° V and 2 V, respectively. The equation
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of motion with and without relativistic were also solved using Mathematica and the results
are plotted in green solid line and black dashed line, respectively, in Fig. 24. In Fig. 24,
simulation results of electron trajectories calculated using our code to calculate Eqg. 33 and
Eq. 35 are compared with the results calculated by using Mathematica. In Fig. 24, the
colorful dashed line is from simulation result with non-relativistic. The blue solid line
represents the simulation result with relativistic effect. In ideal THEA, the simulation result
of electron trajectories with Eq. 33 and Eqg. 35 is identical with analytic result. According to

Fig. 24, the simulation result for electron trajectories is correct in ideal THEA.

Electron motion

IS » )

Z direction (cm)

N

0 2 4 6 5
r direction (cm)
Figure. 24: The simulation result of electron trajectories is compared with the analytic

result in two concentric metal spheres where the radii and potentials of the inner and the

outer are 2 ¢cm, 9 cm, 3.05*10° V, 2V, respectively.
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4.3.3 Summary

The code have already been compared with relativistic effect and non-relativistic effect. As

a result, the simulation result of electron trajectories with relativistic effect in FORTRAN is

consistence with calculation by using Mathematica.

Previous results shown in section 4.2 and 4.3 used two concentric metal spheres as an

ideal spherical THEA. However, an actual THEA is consisting of two shells and two parallel

plates as the collimator on the top of the outer sphere and shown in Fig. 2. Also, the actual

THEA is only hemisphere. The actual THEA of electric potentials and electron trajectories

are given and introduced in the next section. The previous result of electric potentials are

calculated in the ideal THEA in the first quadrant. Additionally, electric potentials in the first

quadrant are mapping to the second quadrant. Then, electric fields can be calculated by

taking negative of the gradient of the calculated electric potential. So, the electric fields in

the hemisphere of actual THEA is obtained.

In this chapter, we confirmed our code is correct. In section 4.1, we introduced all the

numerical method we used. In section 4.2, we benchmarked the Laplace’s equation solver

for an ideal THEA. In section 4.3, the simulation result of trajectories of electrons were

compared with analytical solution. Also, the relativistic and non-relativistic were considered.
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CHAPTER 5 SIMULATION RESULTS OF THEA

In the previous chapter, we have shown that our codes calculate electric potentials,

electron trajectories in an ideal THEA correctly. From zeroth order approximation in chapter

3, we have shown that a THEA with R; = 44 mm,Ry; =45mm,V; =1kV,V, =0V

(capable to be fit in a cubesat) can capture the electron up to 20 keV. In this chapter, we will

further verify the approximation and calculate the selectivity of the THEA, i.e., the g-factor.

In section 5.1, the dimensions and the calculated electric potential of an actual THEA are

given. In section 5.2, electron trajectories are shown. Finally in section 5.3, a bunch of

electrons with different initial energies, incident angles, and incident positions are used to

calculate the g-factor of the THEA.

5.1 The electric potential of an actual THEA

For the actual THEA, a collimator is installed on the top of outer sphere. Therefore, the

electric potential is a little different from that calculated in the section 4.2. Collimators are

added through adding more special points described in section 4.2 in the ROI. Notice that

“Flag technique” is used to shorten the calculation time since the gap between two spheres

is only 1 mm. The area is only a small fraction of the total ROI. Figure 25 shows the cross
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section of a real THEA which is divided into several small regions, as designated as A, B, C

and the others. In Fig. 25, it represents the shape of a THEA in the simulation code.

Z s
| i s
Collimator
. R
VMRS
A / /
a B

0 R, R, r

Figure. 25: Two parallel plates as the collimator are installed on top of analyzer. d,, d,, ds
and d, represent the inner radius, the height of lower collimator, the height plus the

thickness of the lower collimator and the height of the upper collimator, respectively.

The region of A, B and C are given as following.

(1) A: Vr2 +zZ <R,

(2) B:z< d,and Vr2 +z2 <R,.

3)C:z >d,.

For the special points, it will cause big difference in our simulation. When the point is closed

to the shell of THEA, we have to consider the effect on our simulation. We compare the
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distance between points and the sphere with the grid size when the point is closed to the shell

of THEA. Therefore, Fig. 25 will be divided into several regions. The first region is at z <

d, inFig. 26.

(1) The first region for points is shown in Fig. 26.

7. Boundary of the ROI
Collimator E =
. 9
s =
s =
. o
EEEEER EEER . 3
/ <
:
. ™
/Fi rst / i g
/ . H--!
I‘?IOH T 0
: ]
0 R, R, i

Figure. 26: The special points in the first region are considered when the z < d,.

(2) The second region is shown in Fig. 27 and Fig. 28. The special points near the lower

collimator at d, <z < d; are considered.
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Figure. 27: The special points in the third region are considered when the range of zat d, <

ZSd3.

SEEEEEEEEEEENESN
]
|
B Secondary region
f
2
o

Figure. 28: Third region is zoomed in. The thickness of collimator have to consider for the

special points at d, <z < ds.

(3) The third region for points at d; < z < d; + dz is shown in Fig. 29.
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Figure. 29: The special points in the third region are considered at d; < z < d; + dz.

(4) The fourth region for points at z > d, — dz is shown in Fig. 30.
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Figure. 30: The special points in the fourth region are considered atz > d, — dz.

The electric potential in an actual THEA with the inner and outer radii and potentials of
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0.044 m, 0.045 m, 1 kV, 0V, respectively, is shown in Fig. 31. Notice that only half of the

THEA was simulated due to the symmetry.

Voltage(v)

S
=
=

0.03

0.02

z direction (m)

R;=0.044 m
0.01

V;=1 kV

0.00
-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

r direction (m)

Figure. 31: Shows the calculated electric potential of an actual THEA where the radii and
potentials of the inner and the outer are 0.044 m, 0.045 m, 1 kV, 0V, respectively.

Different from the electric potential in an ideal THEA given in section 4.2, the electric
potential is not zero at the intersection of the outer sphere and the collimator. However, we
only calculated the electric potential in first quadrant. Additionally, electric potentials in the
first quadrant are mapped to the second quadrant because the THEA is a symmetric sphere.
Electric fields can be calculated by taking negative of the gradient of the electric potential.

Therefore, the distribution of electric fields in a hemisphere of actual THEA is obtained.
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5.2 Electron trajectories

Shown in Fig. 32 are trajectories of electrons with different kinetic energy in the THEA.
The initial positions of these electrons are at (r,z)=(-0.04 m, 0.04489 m ). For a given voltage,
only electrons with particular energy can pass through the analyzer. Shown in Fig. 33 are the
zoom in view of the trajectories. Only electron with energy equals 21.708 keV can pass
through the THEA. For electron with larger energy, the electron collides with the outer

sphere while the one with lower energy collides to the inner sphere.

Electrons motion

—_ [
g 0.04
v t
: 8
L 003
N ,
<
o 0.02
= S/ : E= 18.487 keV, V = 7.85 % 107 (m/s)
N 001 | ===E=21.708keV, V=28.47+10"(m/s)
' m E= 24.656 keV, V = 8.99 x 107 (m/s)
0.00 <
-0.04 -0.02 0.00 0.02 004 Zoomin?2

r direction (m)

Figure. 32: Electron trajectories with different energies are given where the radii and
potentials of the inner and the outer are 44 mm, 45 mm, 1 kV, 0V, respectively. The initial
position of electron is ( -0.04 m, 0.0448 m ). The green line, red line blue line represent the
electron energy with 18.487 keV, 21.708 keV and 24.656 keV, respectively.

57



Zoomin1l

z direction (m)

0.02
r direction (m)

Zoomin 2
~ 0.02
g
g Inner Outer
E sphere sphere
.g 0.01
=
N
0.00 :
0.02 0.04

r direction(m)

Figure. 33: Only particular energy of electrons can pass through the analyzer.

From the zeroth order estimation, electrons with energy of 22.2 keV can pass through the

THEAwith R;, R,, V; and V, equal to 44 mm, 45 mm, 1 kV, and 0V, respectively. With

58



more accurate simulation, electrons with energy of 21.71 keV can pass through the THEA.

5.3 G-factor calculation
Geometric-factor (g-factor) is the selectivity of the detector. The formula was given in
chapter 3:
G= =L with
Gg = fT(K,Q,i)(j-ﬁ)ds dQdK,

_ [KT(K Q,%)( - 7)dS dadK

thy = [T(K Q,%)(A)dSdQdK

To calculate Gg and (k), trajectories of a bunch of electron with different initial energy
incident angles, and incident positions are simulated. The initial conditions of those electrons
that pass through the THEA are recorded and used to calculate Gg and (k) using the

following equation :

Gg = fT(K,Q,i)(j-ﬁ)deQdK

= Gg = ]T(K, 0,X)cosO 2R * dz - sin8d021tdK

Kmax /2 upper collimator
= Gg = 4112Rj ko desinecosej T(K, 0,X )dz

0 -m/2 lower collimator

— G = 4m°R dk d@ Zelectrons passing through THEA SiHGCOSGT(K, 9)
E=

Total number of simulation electrons (362)

where R is the radius of the collimator. In our simulation, the R is 4.

Similarly,
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_ [KT(K,Q,%)(-A)dSdQdK _ [KT(K,Q,%)( - f)dS dadK (36h)
~ T Q%)G-H)dSdadK Gp

<k>

=< k>

upper collimator
ower collimator

KmaX /2 .
_ 4m?R [ Kdk f_nn/z d@sinBcose [
Gg

T(K,0,X)dz

41m*R dk d6 Yejectrons passing through THEA Ksin8cos6T(K,8)
—< k>= Total number of electron

Gg

T(K, 0) represents the total number of electrons that can pass through the bottom of the
detector as a function of electron kinetic energy and incident angles. In our simulation for g-
factor, a bunch of electrons with the electron kinetic energy from 0 eV to 25 keV, the incident
angles from -5° to 5°, and the incident location z from 44.4 mm to 46 mm incident to a
THEA with the inner radius, outer radius, inner voltage and outer voltage of 44 mm, 45 mm,
1 kV and 0V, respectively. The energies, incident angles, and the locations were given using

3 different random numbers.

5.3.1 Initial conditions

In our simulation, the distribution of electron kinetic energies, incident angles and
positions in Z direction for 10* electrons are shown in Fig. 34-36, respectively. White

noise random numbers were used so that flat distributions are shown in those figures.
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Figure. 34: The distribution of electron kinetic energy for calculating g-factor in our

simulation.
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Figure. 35: The distribution of incident angle for calculating g-factor in our simulation.
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Initial z distribution

Counts

0

0.0445 0.0450 0.0455 0.0460

Initial z position(m)

Figure. 36: The distribution of position used to decide the initial position of electron in Z
direction in our simulation.

5.3.2 G-factor calculations

Simulations of different number of incident electrons are shown in Table 5. The second
column, third column, fourth column, fifth column, sixth column represent, the g-factor, how
many electrons enter the THEA, how many electrons will be detected at the bottom of the
detector, energy g-factor and mean energy, respectively. Figure. 37 shows the simulated
results of T(K,0) with different number of electrons used in the simulation. Figure. 37(a) —
37(f) corresponds to Group A-F in Table 5. The Gg and (k) were calculated using the

T(K,0) in Fig. 37 and Eq. 37a-37b .
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G = Gg/(k) | Number of | Number of Gg (k)
Groups (cm?srkeV/keV) | electronson | detected (cm?srkeV) (keV)
simulation electrons
A 2.64* 1074 10° 276580 5.78 x 1073 21.72
B 2.64* 1074 108 27733 5731073 21.73
C 258* 1074 107 2693 5.62*1073 21.72
D 2.17 x10~* 10° 253 447 x 1073 21.84
E 1.93 %1074 10° 27 419 1073 21.70
F 4,12 %107* 10 4 8.83 1073 21.40

Table. 5: The electrons with different number are considered.

As shown in Table. 5, the g-factor converged to 2.64 * 10~*(cm?-sr-keV/keV) when the
number of electrons became larger and larger. It can also be shown using the statistics error

defined as

1

v/the number of electrons is detected at the bottom of the detector

The statistics errors of different simulations are listed in Table. 6.
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Figure. 37: The different number of electrons for energy-elevation are presented. Figure. 37
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means only particular energies of electrons and angles which it is close to zero can pass
through analyzer.

Electrons are detected Error of statistics
Groups
A 276580 0.19%
B 27733 0.6%
C 2693 1.9%
D 253 6.2%
E 27 19.2%
F 4 50.0%

Table. 6: The error of statistics corresponds to each group.

As the result, the g-factor from simulations converge to 2.64 * 10~*(cm?-sr-keV/keV) with

0.19 % uncertainty.
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CHAPTER 6 CONCLUSION AND SUMMARY

In this thesis, a top hat electrostatic analyzer (THEA) that can be fitted in a cubesat for
measuring electrons was designed. Cubesat, THEA, and several numerical method were first
introduced. The zeroth order approximation showed that building a THEA for cubesats to
measure the electron distribution functions up to ~ 22.2 keV is possible. A more accurate
calculation using the code developed by ourselves showed that electron with energy of 21.71
keV can be detected using a THEAwith R;, R,, V; and V, equal to 44 mm, 45 mm, 1 kV,
and 0V, respectively. The electric potentials were simulated via solving Laplace equation

using Gauss-Seidel method in cylindrical coordinate. A “flag technique” where only points

between two spheres were calculated to speed up the simulation, was used. Trajectories of
electrons with Relativistic effect in THEA were calculated using the 4™-order Runge-Kutta
method. The code we developed were first benchmarked by using the ideal THEA consisting
of two concentric metal spheres. By comparing the simulation results to the analytical
models, we confirmed the code that calculate Laplace’s equation, the electric fields in any
locations within ROI, and the trajectories of electrons with and without relativistic effect
were correct. As a result, we showed that the g-factor of the THEA is 2.64* 10™* + 0.19%

(cm?2-sr-keV/keV).
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CHAPTER 7 FUTURE WORKS

We obtained the g-factor of the THEA that can fit in a cubesat. However, there are more

works need to be done to obtain a THEA that can really be used.

¢ Three-dimensional calculation

Electron trajectories and electric potentials have already been calculated for a THEA in 2D.
To be closed to reality, electric potentials and electron trajectories need to be calculated in
3D.
e The THEA will be optimized

The shape of the THEA will be optimized via getting the highest g-factor with physical
constrain. The commodity used THEA, it is a little difference from Fig. 32. In Fig. 32, the
offset of the shell center from the symmetric axis is zero. However, the “actual” THEA the
offset of the shell center from the symmetric axis is not zero[19][20][21] which is shown in
Fig. 38. In Fig. 38, a is the deflection angle of the energy analyzer, b is the offset of the shell
center from the symmetric axis, c is the eight of the upper collimator measured from the
topmost edge of the outer shell, and d is the thickness of the lower collimator plate[22]. An

optimized THEA needs to be obtained via more simulations.
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Figure. 38: The structure of an actual THEA are presented. The a, b, ¢ , d represent the
deflection angle of the energy analyzer, the offset of the shell center from the symmetric axis
the eight of the upper collimator measured from the topmost edge of the outer shell, and the
thickness of the lower collimator plate, respectively[13].

* Physical test

After optimization, an actual THEA will be built and tested using the optimized
parameters. Following are items that need to be tested: weight test, breakdown voltage test,
power consumption test, testing platform and UV/radiation considerations. It is important to
prevent ultraviolet (UV) photons from reaching the detector causing noise from photon
counts since multi-channel plates is sensitive to UV photons. Scattering in the analyzer will
further be considered via photon tracing simulations using Geant4[23][24][25] and tested

experimentally in the future.
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APPENDIX A

The derivation of finite difference form

2
The % is from below:

6V2(rz) @
V(r+dr,,z) =V(r,z) + V'(r,z)dr, + Z>'r - dr,* + - ®
V(r —dry,z) = V(r,z) — V'(r,z)dr; + dr,® +
©+ @
, 10V?(r,2) 2

= V(r+dry,,z) + V(r—dry,z) — 2V(r,z) — (dry, —dry)V'(r,z) = s 2 (drl +
dr22)

A G _[V(r + dry, 2) + V(r — dry,2) — 2V(r, 2)

r+dr,,z § -drp%2) Y- I,z
or2  dr,? + dry? ? .
— (dry —dry)V'(r,2)]
MOI’EOVQT, aV(r,z) _ V(r+dry,z)— V(r—dr4,z)
ar drq+dr,
6V2 (r2) ) V(r+dr,,z) + V(r—dry,z) — 2V(r,z)
-3 1 Lo dr )V(r +dr,,z) — V(r —dry,2)|.
ry’ +dry’ e dr, + dr,
The &(Z’Z) is from below:
0z
0V2(rz)
V(r,z + dz,) = V(r,z) + V'(r,z)dz, + 2% dz,” + -
d21 +

V(r,z—dz,) = V(r,z) — V'(r,z)dz, +
+@
= V(r,z+dz,) + V(r,z—dz,) — 2V(r,z) — (dz, — dz,)V'(r,z) = ;av (r,z) (d z," +
dez)
oV3(r,z) 2
= 27T [V(r,z +dz,) + V(r,z —dz;) — 2V(r,2)
— (dz; — dzy)V'(r, z)]
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ovV(rz) _ V(rz+dz;)— V(r,z—dz,)
9z dz,+dz,

Moreover,

V(r,z+dz,) + V(r,z —dz,) — 2V(r,z)
V(r,z +dz,) — V(r,z — dz,)
dz; + dz,

ov3(r,z) 2
9z2 dz,* + dz,* |—(dz, — dz,)

0V2(r,z 10V(r,z oV3(r,z
(t2) | 10V(m) | 9VA(rz) _
oar2 r or 0z2

0.

In Eq.29, the Laplace’s equation is

The previous derivation are used to Eg.29 and the finite difference form is became:
V(r+dr,,z) + V(r —dry,z) — 2V(r,z)

2
=—7|_ B V(r+dr,,z) — V(r —dry,z)
N 1V(r+dr,,z) — V(r —dry,z)

r dr; +dr,
V(r,z + dz,) + V(r,z — dz,) — 2V(r,z)
V(r,z+dz,) — V(r,z—dz;)| =0
le + de

2
+—
dZ12 + dZ22 _(dZZ i le)

4 I 4
dr,? 4+ dr,*  dz;* + dz,”

V(r+dr,,z) + V(r —dry, z)
V(r+dr,,z) — V(r —dry,z)
dry, + dr,

V(r,z + dz,) + V(r,z — dz,)
V(r,z+dz,) — V(r,z — dz,)
le + dZZ

= —V(r,2)

2
+ _—
dI‘12 + dr22 _(er T drl)

2
+—
lez + dez _(dZZ - dzl)

1V(r+dr,,z) — V(r—dry,z)
+- =0
r dry +dr,
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Here is the finite difference form which ther # 0.
-1

4 4
= V(r,z) = + *
(r.2) dr12 + drz2 dzl2 + dzz2
( 5 V(r+dr,,z) + V(r —dry,z) 3
S V(r+dr,,z) — V(r —dry,z)
2 2| _ _
) dI'1 + drz (drz drl) dI‘1 + drz
2 V(rz+dz) + V(r,z — dz,) 1V(r +dry, z) — V(r — dry, 2)
+—— V(r,z + dz,) — V(r,z —dz,) | + -
\ le + de _(dZZ - le) le + de r drl + drz )
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APPENDIX B

<> When the r=0, the derivation of finite difference form is below:

V(0,i+)
Top
R _ _V(,j+1)-V(0,j) dr,
Jaswv] =5 as= &z ) viL)
dz az
> 2
Bottom: 0
. . V Olj__
. _ _—(v(0,j) - V(0,j—1)) dr, 2
f dsVV| =—| ds= = Tt( 2)
—dz —-dz .
> — Fig. B-1
Side:
V 1, V(0,
fd§VV =— LD - w ( ]) (z)dz = (V(1,j) — V(0,j))mdz
dz dz

2
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= dz, (dr)2(V(0,j + 1) — V(0,j)) — dz,(dr;)?(V(0,j) — V(0,j — 1))
+[2d21d22(d21 + dZZ)(V(l,]) —_ V(O,]))] = 0
= (dry)?[dz;V(0,j + 1) + dz,V(0,j — 1)] + 2dz,dz,(dz; + dz,)V(1,j)
= V(O,])[dzl(drz)z + dZZ (drz)z + 2d21d22 (le + dZZ)]
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(dr,)?[dz,V(0,j + 1) + dz,V(0,j — 1)] + 2dz,dz,(dz; + dz,)V(1,j)
le (drz)z + dZZ (drz)z + 2d21d22 (le + de)

= V(0,j) =
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APPENDIX C

- PSR B 00, YY) = fxi ) +u S 2
. 9%f 9*f
= 1 PR RO,y ) = 10, ) + (U —+v —)+2'( u? - +2uv-m+v2-
20
dy?
kqy = f(x3,y1)

k, = f(x; + p1h, yi + q11k;h)
of
= f(x3,y;) + [p1h + (Q11k1h)
L 2f | 0%
+ 1 (p1h) % + 2(p;h) * (q11k;h) F@y + (q11k:h) O_yz
ks = f(x; + p2h, yi + q21k1h + q32k;h)

of of
= f(x3,y;) + [pzh& + (q21k:h + g2,k h) a_y]

1 0°f 0*f
+E P2 *hi=— 6 e 2(q21k1h+q22k2h)p2ha X 0y

+ (q2:ksh + Clzzkzh)2 a_yzl

Vit1 = Vi + (a1ky +a;k, +azks +---+apky)-h

Vi+1 = Yi + (a1ky +azky) - h

of of
- yl + alklh + azh [f(Xl,yl) + plh& + qllklha_y

of of
=yi+(a+ az)f(xi,yi)h + (azp1 P + aq11Kk;q a_y)hz

Vit1 = Yi + (a1ky +ak, +azks) -h

of of
=y; +a;k;h +azh [f(xi;Yi) + [p1h£ + (q11k4h) a_y] + %[ 1h)2 + 2(p1h) *
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(Q11k1h) ox 0y 4 (Q11k1h)2 ]l + azh |f(x;,y;) + [pzh + (q21k:h +

q22kzh) _] + ; P2 th + 2(p2h)(qz1ksh + Qszzh) axdy + (qz1k:h +

a*f
arkh)? 2| (Eq2)

2
ek B B (X, y) + [pzh + (qz1kq1h + q22k;h) ] +3 [pzzh2 % +

a%f o%f oy .
2(p2h)(q21k1h + qzzkzh) Fay + (quklh + qzzkzh)z @] I }f,fl ¢ + 'g,éaﬁfé"i )3

o

92f 9%f o0-f
= p22h2 2 + 2(pzh)(qz:1k:h + qz2k,h) axdy + (qz:k;h + Qszzh)z ay2

92f 9%f
= p22h2 2 + 2(pzh)(qz:1k;h + Qszzh)aX_ay = [(QZ1k1h)2 + ZQZ1k1QZ2k2h2 +
92f
((hzkzh)z] ay2

= p,2h? Zf 4 20,00 ke h2 2t 42 h? ZE 4 [(qp.k,h)? +
P2 o2 P2921K; % dy P24q21 9% dy q21Kq

9%f

2q21k1q22k2h2 + (Qszzh)Z] 2
2

= P2 h + 2p,qz:k,h? W + 2221 {f(Xp yi) + [p1h + (q11ksh) _] +

0% p2 0%
[( 1h)* 2 o 1 2(p1h) * ((111k1h)a oy L (q11k1h)? _} ax dy

o0-f
[(QZ1k1h)2 + ZQZ1k1QZ2k2h2 + (Qszzh)Z] ay2

92%f 9%f 9%f K
= h? (pz2 Py + 2p,q21ky %0y + 2p,Qq22k ax_ay) +h3 [(ZPZQm axay) *

(pl g_i + q11ky %)] +h* [(pz‘h1 axzafy) (p1 e T 2p1Q11k1 ox0y Ly (d11kq)? )] +

o04f
[(CIz1k1h)2 + ZQZ1k1QZ2k2h2 + (Qszzh)z] ﬁ

, 3 0%f
= h (p2 6_2 + 2p2q21k1 %0y + 2p2q22k1 %0 ) +h [(2p2q21 axay) *
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2

(p1a_ + d11kq 3 )] +h* [(pZCIz1 aiafy) (p1 %z + 2p1Q11k1 axdy + (q11ky)? )] +

of of 1 02f
[(QZ1k1h)2 + 2q21k1q22h2 {f(Xi» yi) + [p1ha + (q11ksh) a_y] + Y] [(plh)z ) +

o%f 9%f 9%f
2(p1h) * (q11keh) axdy + (qq1k;h)? ﬁ]} + (Qszzh)Z] a2

= b’ (p2 0_2 +2pazika oo oxdy 5+ 2D2dzaks 5, ox0 ) +h? [(2p2q21 aazafy) i
(s 55 vk 20) |40 [ (o 75) = (9 3+ 2paauaks 35+ (@uak)? 55)] +
h? [(QZ1k1)2 g—;; + 2q21K1 922 * £(x;,y;) g—;] +h3 [(ZQZ1k1QZ2) * (pl % +
(q11ky) g—:,) * g—;;] +h* [(qZIquZZ) * (p12 2722 + 2p1911ky ;X—Zafy + (q11kqp)? g—;;) *

2 + (@aaka? 2

= h? (p22 ZTZ'Z 2poky o 2y (%1 +qz2) + (Cl21k1) 2 + 2q21q22k12g) +

h3 [(pl % + q11kq g—;) * (2p2Q22 % + 2921k1921 g_;i)]
h* [(pl po 2p1q11k1a = ey (d11k1)? ) (pZQZla oy ~ Cl21k1QZzg 2)]

+(qaokoh)? g—;f
3 ¢ (qz2kzh)? —3?-*“

= (a2 53 {FGi, ) + [Pah 5t + (@rakah) 5| + 5[ (1h)? S5 + 2(psh) »
(@urkah) s+ (Aurks)? 3]} - {Fy) + [pah 55+ (@uaka ) 5] + 5 [(01)? 55 +
2(psh) * (raksh) - + (a1 ks )2 2]}
@’ 530 (pi52) + (@ S0 2oranks (57) (5)

02f P)
= h? {(qzzz a_z)kl } + b 5 02f of ’
+(q22 oy —) (Q11k1 ay)
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1 92f\* a2f \> 1 92f
za_zf 4( Zp14 <ﬁ) + (p1q11k1)2 <W> (CI11 1) < ay? > 1

+h*|(q )
22 ayz 0%f 9%f 9%f [ 9%f 2 1 Zazf 92f
FPrduki g gy TPk 5505 ) g Prauky) ﬁa_sz
0*f
+h? {Zk +(Cl11 1) ]CIzz }
0%f of 2 2f Of of 9%f
!pl %2 0 + P1 Q11k16 dy Ix + p1(qq1ky)? dy 26 + p1 qllkla Eye) -
0*f of 0°f of Q222 =—
ov2
|k +4p;(q11k,)? 9% aya + (q11kq)? 3 Zay J y
o°f 0*f , 0%f 0%f
! plzﬁ‘k 2p1Q11k1m+Q112k1 a_yz}(hzza_yz

P EEIR 1 R
92%f 92%f 92f
= h? (p22 Fye) + 2p2ky %0y (d21 + 922) + [(Q21k1)* + (k1q22)?] ay? +

2 04f
2921922k a_)
3 [ of of 0%f 0%f 5
+h _(p1 & + q11kq E)_y) * (2p2Q22 m + 2921k1921 a_yz + 2k1q2; W)
9%f 02f

(p1 o 2+2p1q11k16 oy Ly (CI11 1)? 3 2) (pz‘hl a0y + q21K1Q922 ay) ]|

9%f af af 2 9%f af\2
+h* +(Q222 ay? )(p1 &) (CI22 ay )2p1Q11k1 (ax) (ay) (q 22 dy —) (Q11k1 6_y)

9%t 62 62f a f a%f 9%f
2 2 z-
+p1°d22” 9y? + 2p1q11K1q2,° axayoyz T d11 K1 dzz 252 0y?

62f6f+2 20 K 0°f 6f+ ( )2 0°f of 20 K of 0%*f
g P, %2 0% P17d11 1540y dy 9x p1(q11ky ay2 ay + P1°d11 1aan2 . azf
9%f of 9%f of 2’ ay?

+4p1(q11kq)? 9x dy 6 + (q11ky)? P Zay J

_ 2 2

1 9%t . ( 0°f 9%t 9%t 9%f

n 4 -

2P1 (6){2) +(p;9;,ke) (axay) 4( 11k1) <6y2 +p,7q; K5 %2 6xay| , 02f
(a2 2

o°f 9 f 1 0°f 9°f |
3 2
+p1(q11k1) axay (a 2) (plqll 1) Ox Zay J

+h® 2)
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of of 1 a2f
= k3 = f(x;,y1) + [pzha + (g21kih + g22k;h) a_y] +5 [p22h2 PYciLs

0% a2f
2(pzh)(qz1k1h + qz2kzh) oy T (q21k1h + q22k,h)? a_yZ]

:k:g—?f-—}’/\

f(xi, yi)

+ ipzh of
P2 %

dz1k.h

[ 0%f
of 1|(p1h) 52+ 2(p1h) * (qukih) 5

[

| |

* +q22 4 f(xi, y1) + [p1h + (Q11k1h) =] 92f
Ik [ +(q11kqh)? 7

(1 2o 0%f 0*
+h 5Pz 53 pzk1a Ay (QZ1+C122)+ [(QZ1k1) +(k1CI22)] 3y

, 0%f
+ QZ1QZ2k1 dy? )
3 [(plﬁ + quk 6f> ‘ 0*f " 0%f +k 62f
3 15 szzza X dy + q21 1q216y2 1922° dy 2)

92f a%f
+h4[ (p12a 2 +2p1¢111k16 oy Ly (q11ky)? > 2) (pZQ21r0y+

a%f of %f of\ (of
QZ1k1CI22 ay? ) +3 (51222 ay pw)) (p1 ax) + (422° dy 52)P1d11Ky (ax) (a_y) +
2 92f af 82f 9%f o*f 0*f
(q22 5) (Q11k1 a_y) + p1ZQZ226 2 9y? + P1duikida2” 55 ax dy dy? a2t
9%f 9%f
‘Q11 K1 ° Q22?5 ayZ dy? ]
[ 1 Ozf of 20 K 02f af 1 ( 62f of ]
us| 2p1 %2 0% + P1°911 1529y aya 2p1 d11kq ayzay Za_Zf
1 2 of 9%f 0°*f of 1 0%t of| 122 9y?
+2p1 d11K1 o= dy 9x EW) +2p1(q11ky)? ax ayay (Chl )? 3 Zay
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[ 1, (0%\ 1 2097\ 1 NEEAN 1

| 8Pi (52) t2(Piauki) (555, ) tglauk) (52 | iy
422" 5=

1 3 9%f 9°f L1 N 2afaf}

+h® 557
Epl kl %2 axay 2 5P (q11 1) axay (ayz) (plqllkl) ) ay

+

= f(ry) +h|p, L+ apla L+ ayh 2| + 02 |y, %) DL+ (4, *
(qllkl %)] + b [ (qZZ Zi) p12 «;xf + (q22 ay) (plqll 1) axay : (q22 dy ) * (44, k 1)2 : f]
+h? <2 p22 szzc + P2k aazaf (921 + 922) +5 [(CIz1k1) + (k1922)%] ;f
+ q21922k1 g)

_ af of o’ f o’ f o’ f
+h? (p16 + q11k1 0y) (Pz‘hza 0y CI21k1CI21ay2+k1q22 dy 2)

a 62 2
- (Plz ox Z"‘ P1Q11k1 iy + (q 11k1) ) (Pz‘hl 920y + q21k1q22 P) f)
0%f of\ (9f
+h* +‘( zzza_yz (P1 ax) (Q22 ay )P1Q11 1( )(ay)
1 29%f of 1 o%f 2f 0%f 9%f a%f 82f
E(sz a_yz) (CI11k1 ay) +§P1ZCI22 57? Jyt + P1q11k1G22° 9x0y 072 2q112k1 q22° 2y2 ay2.
1 2faf . a*f of a*f of ]
S zpl %2 Ox + D1 Q11k1a X0y 9x -t P1(Q11k1) ayza Zf
1 arar i~ of , 02f of |12 5y
+ D1 qi1k15— + 2p1(q11k 1) (%1 1)3 J
21 dy dx? axayay 2 dy2? dy
2
O*f [ 0%f P\ ]
[ 8p1 <6x2) 2(]01 11k1) <axay 8( 11 1) 3y? |
+h® (422 )
2 ayz
FENRCY 3 0°f O 1 20°10°f |
l+§p q kl J0x?2 axay 2]0 (91 1) axay ayz) (plqll 1) 9x2 ayJ
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= k3 = f(xl,y) + h[pZa + 4,k

+h?

+h3

+h*

+h®

+h®

af af
k
dy Tz 6y]

1 Zazf 9%f
2p2 %2 + p2k 1520y dy (q21 + q22)

0*f 2f af 0f f af

[(CI21k1) + (k1q22)? ]6 7+ G21922k:” dy -ty dy ) *Py 5o Ox +(qy, 5) * (qllkl a_y)
af of 9%f 0% f 02 f

15 Ox + q11k1 ay) <PZQZ2 axdy + 421k1921 5 dy? + k1q5° W

(
(05) 2 )~ i) 35 (0 51
(b3
(q

1
+_
| 2
1 92 92
S\P17 5% 2+ 1716111k1a oy L (q11k1)? ) (Pz%1ax6fy q21k1G22 ayf)
1
2

2" ny) ( p1 Zj;) + (QZZZ > f)P1Q11 1( f) (a_f) + l(qzzzaz_f) ((hl 1 ay 2

+ 3y

0%*f 0°f
xdy dy?2

1 2faf % 0*f P (s 1k)? a’fof
2P1 %2 0x + D1°q11 Itk X0y Ox 7 P1 qa1ky 3yZ dy | zf

1 2 2 2 d 2 0 22 W
+2P1 q11k1 6;0 ]2C+2p1(Q11 k1)? axafya§ 2((111 )? fZaiJ
o’ f EIAY LAY
8p1 (ﬁ) ts ( P1911%1) (('bcay) 8( 11 1) ay? ]|( 62f
a2z

2
1 3 d'f af 3 0°f °F 1 20°f 0|
+§p1 q kl dx2 0x0y 2p (41, 1) E)xay( +Z(p1q11k1) ax? 6yJ

2 62f62f

]
|
|
oy? I
2 0°f 0*f
+5P1 Q22" 5325,z + P1q11K1922° 3 J

2
2(111 k1 Q22 ay2 0y2

=k, = f(x0y) + [p;h L+ (q,,k1h) gf] 1 [( h)za L+ 2(p,h) % (q,,k:h) ai;ﬁ

Con

k)2 2L f]

= Yir1 = Vi + (a1ky + azk, + azks) - h
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= Yi+1

+

+azhq f(x;,y;

+h

+h

1 262f
Epz axz

=Y + alklh

[ fGy) + P1ha_ + (q11k.h) _]

a2h| Zf
(plh)z Yol 2(p,

0°
h) * (fhlklh) f

af af af
)+h [Pz I + qukla + q22kq @]

0
Pk 5ray dy (q21 +dy) t3 2 [(q21k1) + (k145,)

L 0°f of . of

+q,,9,,k1 3y? + (922 @) *Prgot

(422 %) * (q11kq

2

2

of
@)

af of o f a°f o*f
<pla + qllkl ay> (pzqzz 0x0y q21k1q21 ayz + k1q22 W
(O, L9 (o
(qu ay) 28 £} (qua ) (P1911k

1(,0°f o°f 20°f o°f
§<p12W+2p1q11klaxa + (d11k1) EN p2q21axay+q21quzza_y2

d d
20 @l ok O iy
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0% f (

1)6x6y ) qz2

)+ (1111)

of
dy

o f

)(%1 1)2

2 0°f0°f
0x2 9y?

52
+ (q11k1h)? Zl

|
|
|

]

62f

y
20°f (N 20 JAYC/AVIE ST NN A%
t3 ( 922 Oyz) 155) T @ 3y vk (52 @ ( - ayz) 11 1ay
1 ,0°f f o°f 0°f 1 3 L0 f0°f
+2p1 A27° %2 0y2 + P14911k105,° 9xdy dy 2"'2‘7112 1 qzzza_yza_yz
1 ,0°fof ' o’f of | 1 ( )20 ‘fof ]
31 52 9x H»laxayax 1K) 525, 020 o’f
PRI ﬁazf P, (k1) f o Ly LY = o
Zpl 111 1oy ax? z T 2Pl axayay 2\ ka ayzayJ
1 (8% 2092\ 1 9 f R
8P (m) 7 (P1ank) (m) *3 (qn ) ( ) +aPy a 11 332 axay

‘ dz2 7)

~~

J



=Y

af
+h2 {a3 [pz a + q21k1

+h3

+h*/{

+h5

+h {

+h" ¢

+1

e

as

1/ of
_+ 2 (q22 ay)

[1

=Y + (al + a, + a3)k1h

of
dy

of
dy

of
+q22k1
L
P2 53 szla 3y (CI21+qu)+

2f af af
+CI21CI22k1 3y FRCI (%26 ) * Pla

92
l( 1)2_f+ 2(P1q11k1) f

af Ozf
+ q11k4 6y> P24922 55 9xdy

O f of
Pga (qzza

0*f a’f
<P1 9x 2+2P1Q11k1a 6y+ (q11k1)?

0*f of\* a*f
+5 (22 ayz) (P1ax) + (q22° 3y —5)P1q11k

1 2f62f
2P1 2q22° axza >
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1
2

+

2

azf af
2P 55 ax

1
+ p1 Q11k1a 8y0
i ) f

0x0y dy 6
a*f
q22 W

<ax]2c> (P1CI11 1)? <6 af

02f
9x dy dy

+2p,(q11k1)?

1

§P1

1 0%f
+5 p1(‘]11 1) dy?

)

af

] +a [P1 x + (q11k1)

62 )

[(Clz1k1) + (k1922)°] yf\‘
(qzz a_y) * (qllkl a_)
+ (q11k1)?

+ 421k1921 5 37 + k1 g7 3

) (p1q11 1)axay 2

+ D1q11k1q2,° oy o +

2P1(Q11 )? 3 Zay

22f\°
> (CI11 D* < y];) +

gl

of of

"

J
2

Zf]
o*f

1 af o°f

|

K
( )( [
qzza qy1k1 ay U
Zf Zf k Zf
dy? P2921 5 5= axay t 42181922 57— dy?

2 12
B doe (o)
0*f 9%*f

ZfaZf
1 Q22 6y2 ay
? of O*f7)
2P1 d11 16y6x2
ng
dy? dy

o*f

2

1

2

5> 11

i of ,

(Q11 1)?

J

1 3

, 0°f 9%f

1
+ 2 (P1911k1) EW

(qzz dy 2
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I a%f 9%f |)
2p1 d11 152 axdy
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