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摘要 

 

本論文將設計一個可放在小型的衛星(3U 立方衛星 CubeSat)中的頂帽型帶電粒

子探測儀 Top-Hat Electrostatic Analyzer (THEA)，來瞭解太空中帶電粒子的分布

函數，其中每一個 U 是立方衛星的基本單元，大小為 10x10x10 立方公分。為了能夠

更加了解外太空的科學現象，我們必須透過更多的衛星記錄在同一時間不同位置所發

生的數據資料，才能夠對在外太空發生的科學現象有更完整、客觀的描述。因為立方

衛星的成本較低，所以可以發射多顆搭載頂帽型電子探測儀的立方衛星至外太空，同

時於不同地點量測太空當中的帶電粒子的分布函數。頂帽型帶電粒子探測儀是由兩個

金屬球殼所構成，若在兩個球殼上施加不同的電壓，當帶電粒子進入時就會受到電場

的影響，使其運動方向因受力而偏折，其偏折程度取決於帶電粒子的能量、荷質比、

及兩球殼間電壓差，本論文將著重於量測電子的分布函數上。我們將開發模擬程式去

計算探測儀內部電場分佈和電子軌跡。透過利用理想的頂帽型電子探測儀，即雙同心

的金屬球殼，來估算能夠量測到的最大電子能量。當球殼內外半徑為 44mm、 45mm 且

內外球殼的電壓分別為 1kV、 0V，可量測到的電子能量為 22.2 keV。其中，頂帽型

帶電粒子探測儀裡的電場，是透過高斯-賽代爾法(Gauss-Seidel method)解拉普拉斯方

程式而得，並且為了要節省模擬的時間我們在高斯-賽代爾法中引入了〝旗幟法〞，只

針對被選定的區域進行計算；另外，使用 4階的龍格-庫塔法(Runge-Kutta method)

計算相對論效應下電子在頂帽型電子探測儀中的運動軌跡。透過模擬統計，一個內外

球殼半徑為 44 mm 和 45 mm，電壓分別為 1kV 和 0V 的頂帽型電子探測儀的幾何因

子為 2.64 * 10−4(cm2-sr-keV/keV)。  

 

關鍵字:立方衛星、頂帽型帶電粒子探測儀  
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ABSTRACT 

A top-hat electrostatic analyzer (THEA), well-developed charged particle analyzers for 

small satellites, will be adopted to cube satellites, which are made out of multiple 10x10x10 

cm3 cubic unit. Data from a single satellite can only be collected at single point at one time. 

However, to understand any events in the space thoroughly, it is essential to collect data at 

different locations in the space simultaneously to capture the whole picture. In other words, 

measurements from multiple satellites are required. Because of the much lower cost of 

building cube satellites, many cube satellites carrying THEAs can be launched and measure 

distribution functions of charged particles in different locations in space at the same time. It 

enables us to have a better understanding of distribution functions of charged particles in the 

whole space. An zeroth-order approximated using an ideal THEA consisting of two 

concentric spheres shows that a THEA for measuring electrons with energy up to 22.2 keV 

can be fit in a cube satellite. Different voltages will be given to two shells so that the 

trajectories of electrons entering the analyzer will be bent by the corresponding electric fields. 

Only electrons with the radii of their circular motions that match the average curvature of 

the shells reach the detector located at the bottom of the analyzer. In this thesis, the electric 

fields in THEA are calculated by solving the Laplace’s equation using Gauss–Seidel method. 

The Gauss-Seidel method is sped up using〝Flag technique〞where only points in THEA 

are calculated. Trajectories of electrons with relativistic effect will be simulated using 4th 

order Runge-Kutta method. Results of calculated electric fields and electron trajectories are 

shown. Simulations show that electron with energy of 21.7 keV can pass through the THEA. 

The key parameter g-factor which represents the selectivity of the THEA will also be 

simulated. The g-factor of a THEA where the radius and the potential of the inner and outer 

sphere are 44 mm, 45 mm, 1kV, and 0V, respectively, equals to 2.64 * 10−4(cm2 -sr-

keV/keV). 
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CHAPTER 1 INTRODUCTION AND MOTIVATION 

Energetic particles from the sun entering the Earth's magnetosphere have great 

influence on our lives in many ways. They are potentially hazards to space equipments such 

as communication satellites and global positioning system in consequence of their high 

energies. Besides, radiations from such charged particles also cause health hazards to aircraft 

personnel and passengers. Moreover, interactions of energetic electrons with the Earth's 

ionosphere lead to bright dancing lights in the sky, auroras. Aurora can be in many different 

colors. Variations in colors are due to the type of gaseous particles that are collided. When 

electrons strike atoms in Earth’s ionosphere, they excite atoms[1]. When atoms return to 

their ground state, they release photons in the form of light. The color of light depends on 

what kind of molecules and atoms are excited depending on the electron energy. For example, 

when the gaseous particles are composed of nitrogen, they produce blue or red aurora. The 

most common aurora color is green. It is produced by oxygen molecules. In the other hand, 

the aurora tells us the global implication of magnetosphere activity and geospace response 

to solar activity. The precipitating electron energy deposition varies with the electron energy 

as shown in Fig. 1[2][3].  

To understand how plasma waves are excited in the inner magnetosphere, it is important 

to know the distribution functions of charged particles over the space. To date, there are only 

few satellites observing events in the radiation belts, such as ERG mission[4] from Japan, 

the Van Allen Probe and the Time History of Events and Macroscale Interactions during 

Substorms (THEMIS) mission[5] from United states, etc., to study geomagnetic storms. In 

several years ago, the prototype of Aurora Electron Spectrometer (AES) was built in Taiwan 
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to observe the aurora[2]. The AES was designed to detect electron and the energy resolution 

was from the 10 eV to 20 keV. The AES had 40 ms time resolution for full energy scan with 

32 energy steps, and ability to describe where electrons are coming from[2]. However, the 

size of AES could not fit into the tiny satellite (10cm x 10cm x 10cm). But the AES gives us 

an inspiration for developing an analyzer. In order to measure the distribution functions for 

electrons and ions, we have to develop an analyzer for portable spacecraft/satellite. We are 

designing a Top Hat Electrostatic Analyzer (THEA) that can be fit in a tiny satellite so that 

more satellites that measure the distribution function at different locations simultaneously 

can be launched due to their low cost. 

 

 

 

Figure. 1: The relation between of the precipitating and the electron energy[3]. 

 

 

Satellites are expensive to be built and launched. One of the main costs for a space 

mission is for launching. It costs ~ 256,000 NTD/kg to deliver to geosynchronous transfer 
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orbit (GTO) using Falcon 9 rocket from SpaceX[6]. By reducing the weight of satellites, i.e., 

building smaller satellites, the launching expenses can be reduced. Typically, artificial 

satellites are classified according to its mass as shown in Table. 1.  

 

 Large 

satellite 

Medium-

sized 

satellite 

Mini-

satellite 

Mini-

satellite 

Nano-satellite 

or cube satellite 

The mass (kg) ≥ 1000 500-1000 100-500 10-100 1-10 

Table. 1: The definition of different size of satellites. 

Building satellites in a cheap way, i.e., an affordable way, is essential. In 1999, the 

design of smaller satellite was proposed by a research team in California Polytechnic State 

University. It was called Cube Satellite (Cubesat)[6][7]. Teams in California Polytechnic 

State University and Stanford University developed the CubeSat standards to help 

universities worldwide to study space science and exploration[8]. The concept of cube 

satellite is the evolution of the traditional satellite. 

Data from a single satellite can only be collected at single point at one time. However, 

to understand physics better, it is essential to collect data at different locations in the space 

simultaneously to capture the whole picture. To understand space events more thoroughly, 

more satellites are necessary. The advantage of using cube satellite is that they can be 

designed and built faster and cheaper. Multiple cube satellites can be launched in the same 

mission due to its low cost. Therefore, cube satellites are very attractive platform for 

exploring space science by university-scale researches. 

 

http://www.spacex.com/about/capabilities
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In this thesis, we will focus on measuring the distribution function of electrons. A 

THEA that can be fit in a cube satellite will be developed. My work is to develop codes to 

describe the electron motion in THEA. The codes include simulation of electric potentials, 

electric fields and electron trajectories. In Chapter 2, we will talk about the cube satellite and 

their subsystems. In Chapter 3, we will give a detailed introduction about THEA and 

geometric factor. In Chapter 4, we will introduce how to develop and make a careful check 

of the codes, including the simulation of electric potentials and electron trajectories. In 

Chapter 5, the simulation of electric potentials and electron trajectories will be performed 

for an actual THEA design. Geometric factor will be calculated using the simulation results. 

When electrons pass through the analyzer, each electron will be collected for calculating the 

geometric factor. In Chapter 6, we will give the conclusion for this thesis. In Chapter 7, we 

will discuss about the future works.   
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CHAPTER 2 INTRODUCTION OF CUBESAT 

Cube satellites (cubesats) are built in a variety of sizes. The standard size of a cubesat 

is a 10 cm x 10 cm x 10 cm cube called one unit(1U). Each cube is less than 1.33 kg normally. 

The size is extendable to larger sizes such as 1.5U, 2U, 3U, 6U, and even 12U. The cost for 

launching becomes less than couple millions NTD for each satellite, which is less than 0.1 

% of the budgets for FORMOSAT-1/2/3/5/7 which all costed more than billions of NTD. 

Exploring space science using cubesats enables university-scale researches and is a very 

attractive platform.  

Cubesat is a tiny satellite that contains all the essential subsystems like other big 

satellites. It includes six subsystems: structure system, power supply system, solar panel 

system, attitude determination and control system, command and data handing system and 

science payload[9]. The structure system of cubesat is to keep cubesat electronic components 

together and prevent any potential hazard, also to fortify side panels which hold the solar 

panels. In common, the structure of cubesat which it is made out of aluminum have to resist 

the high vibration and temperature. On orbit the power supply system of cubesat will be 

powered by solar panels that placed on the side of the cubesat. The power supply system 

harvests, stores and distributes energy. The power supply system has to accommodate a 

variety of power needs. For the success of the mission, energy collection must be as efficient 

and as reliable as possible. The solar panels are used to collect energy from the sun. Solar 

panels cover each side of cubesat and send energy through the main circuit board to be 

delivered to various components on the satellite. The attitude determination and control 

system includes sun sensors, magnetometers and gyroscopes in cubesat. The altitude of 
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cubesat in respect to Earth, Earth's magnetic field and the rotational speed of the cubesat can 

be obtained. That informations can be used to control the cubesat using the magneto-torquers. 

The command and data handing system is basically an on-board computer that controls the 

operation of the cubesat during normal conditions. The data from all subsystems are stored 

and prepared for transmission by using command and data handling system[10]. 

Solar panels in the power system providing ~ 2.5 W per cubesat unit [6] are the only 

energy source. Any other subsystems use energy, occupy space in the satellite and contribute 

to the total weight. Physical constrains of the science payload including the power 

consumption, the size and the weight can be estimated. To estimate the availability of space, 

mass and power consumption for the science payload in a cubesat, informations for each 

subsystem are listed in Table. 2. The power consumption of the science payload needs to be 

less than the number of subtracting the total power consumption of all subsystems besides 

the science payload from the total power provided by solar panels. The volume and the 

weight of the science payload also need to be less than the number of subtracting the total 

volume and the total weight of all subsystems besides the science payload from the total size 

and the acceptable weight of the whole cubesat, respectively. As shown in Table. 2, in order 

to get feasible space, mass, we will use a 3U cubesat in which available power consumption, 

the weight, and the size for science payload is ~ 4 W, ~ 1.5 kg, and ~ 103 cm3, respectively. 

In other words, it occupies and weights a full cubesat unit and used half of the power from 

the solar panels and all other systems occupy the rest of the volume (2U) and use the other 

half of the power. Cubesat is a complex system and cooperations between many groups are 

necessary even it can be built in the university-scale laboratories.  
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Table. 2: The limited conditions correspond to the 1U, 2U, 3U cubesat[11][12]. 
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CHAPTER 3 INTRODUCTION OF TOP HAT ELECTROSTATIC ANALYZERS 

(THEA) 

A THEA consists of two shells and two parallel plates as the collimator on the top as 

shown in Fig. 2[13]. The opening at the top of the shells allows charged particles to enter the 

analyzer. Different voltages are given to two shells so that trajectories of charged particles 

entering the analyzer are bent by the corresponding electric fields. Only particles with the 

particular energies corresponding to the given voltages can go through the shells. Therefore, 

the distribution functions of electrons can be measured by counting the number of charged 

particles arriving the detector as a function of the supplied voltages. 

 

 

Figure. 2: Cross section of a THEA. The red line represents the trajectory of an electrons 

in the shells, while the blue and green regions represent the micro-channel plates (MCPs) 

and the MCP assembly[13]. 
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3.1 Zeroth order estimation 

Our goal is to fit a THEA into a cubesat. In other words, the THEA needs to be smaller 

than 103 cm3. To estimate the feasibility, we would like to use zeroth order estimation. An 

ideal THEA consisting of two concentric metal spheres shown in Fig. 3 were used. 

 

Figure. 3: Two concentric metallic spherical shells where 𝑅𝑖, 𝑅0, 𝑉𝑖, 𝑉𝑜 are the radii and 

electric potentials of the inner and the outer sphere of concentric metal spheres, respectively. 

 

 

According to Gauss' law, the electric field between two concentric metal spheres in the ideal 

spherical THEA is shown below.  

 ∮ E⃗⃗ 
s

∙ dS⃗ =
Q

ϵ0
 . (1) 
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Therefore, the electric field is  

 E⃗⃗ =
Q

4πϵ0r2
r̂  (2) 

where Q is the total charge in the spherical gauss surface and r is the distance to the center 

of the sphere. The charge distribution is uniform on each conducting sphere in the ideal 

THEA due to the symmetry. Therefore, the electric field and thus the electric potential only 

depend on r. The potential is set to zero at r = ∞. Thus, 

(1) For  r  >  R0, the electric potential  

(3) 

(2) For  R0  > r  >  Ri, the electric potential  

 

 

(4) 

With the boundary conditions V(R0) =V0 and V(Ri) =Vi, the potential between  R0  and 

 Ri  is  

 V(r) =
R0Ri

R0−Ri
∙ (Vi − V0) ∙ (

1

r
−

1

R0
) + V0 for  R0  > r  >  Ri.  (5) 

Taking the negative of the gradient of Eq. 5 yields 

 E⃗⃗ (r)= −∇V =
R0Ri

R0−Ri
∙ (Vi − V0) ∙

1

r2
 r̂. (6) 

 

V(r) = − ∫ E⃗⃗ ∙ dr 
r

∞
= −∫

Qr >  R0

4πϵ0r2

r

∞
r̂ ∙ (−r̂)dr = ∫

Q

4πϵ0r2
dr

r

∞
=

Qr >  R0

4πϵ0r
 . 

 

V(r) = −∫ E⃗⃗ ∙ (−r̂)dr
r

 R0
+ V( R0) 

=
Q R0  >  r  >  Ri

4πϵ0
∫

1

r2
dr + V( R0)

r

 R0

 

=
Q R0  >  r  >  Ri

4πϵ0
(

1

 R0
−

1

r
) +

Qr >  R0

4πϵ0 R0
 . 
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Let’s consider an electron passing through the center of the gap between two concentric 

metal spheres, i.e., the radius of circular motions of electrons equals to (Ri + Ro) 2⁄ , and 

reaching the detector located at the bottom of the upper hemisphere as shown in Fig. 4. The 

centripetal force must equal to the electric force: 

          

 

Figure. 4: Two concentric metallic spherical shell where 𝑅0 and 𝑅𝑖 are the outer radius 

and inner radius. 

 

The relation between kinetic energy of electrons EK to the voltage between two spheres and 

the radii of two spheres is  

 EK

q
=

1
2mv2

q
= −

(Vi − Vo)R0Ri

Ro
2 − Ri

2  , (8) 

 me
v2

r
= |qE⃗⃗ | = q

R0Ri(Vi−V0)

(R0−Ri)(R0+Ri)r
2 .  (7) 
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which can be treated as a selection rule of the analyzer under zeroth order approximation. 

Equation 8 shows that a THEA for cubesat with Ri = 44 mm, R0 = 45 mm, Vi =

1 kV and V0 = 0 V measuring the electron distribution function up to 22.2 keV is possible. 

Notice that Eq. 8 is just an estimation. More sophisticated simulations given in chapter 4 for 

a real THEA are needed for designing a THEA. Nevertheless, the model of zeroth order 

approximation can be used to benchmark the simulations code that we developed.  

 

3.2 Geometric factor 

Geometric factor (g-factor) is the selectivity of an analyzer. G-factor represents the ratio 

of the number of electrons which enter THEA to the number of electrons which are detected 

at the bottom of THEA. G-factor is determined via simulations. For those electrons passing 

through the bottom of the detector, the initial positions, initial energies and incidence of 

angles are recorded. As shown in Fig. 5[13], particle counts on the detector in a period of 

time can be expressed as 

 C= −∫T(K, Ω, x⃗  )(J (K,Ω, x⃗  ) ∙ dS⃗ )dSdΩdt (9) 

where K, Ω, x⃗ , S⃗  are kinetic energy, the effective view in solid angle, locations of particle 

entering the analyzer, and the aperture, respectively. J  is the differential flux of particles 

that enter the analyzer. The function  

 
T(K, Ω, x⃗  ) = { 

0
0  if not detected

 
(10) 

 

1  if detected 
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represents the selection rule of the particle reaching the detector. An “energy geometric 

factor” GE(cm2-sr-keV) defined as  

 
GE ≡ ∫T(K, Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK 

(11) 

depends on the analyzer’s geometric and the energy of the particle entering the analyzer. In 

order to get a characteristic selectivity independent of energy, a mean energy 〈k〉 defines as  

 
〈k〉 ≡

∫KT(K, Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK

∫T(K,Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK
 

 

(12) 

is introduced. As a result, an energy-independent sensitivity, g-factor, is defined as  

 
G ≡

GE

〈k〉
 . (13) 

 

Figure. 5: Illustration of g-factor integration. A g-factor is determined by the number of 

particles that can pass through on the bottom of detector[13]. 

Electrons with different energy can enter the analyzer from different locations with different 

angles in simulations. The Eq. 11, Eq. 12 and Eq. 13 are determined by the number and the 

energy of electrons that can pass through the analyzer. The g-factor will be calculated in 

section 5.3. 
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CHAPTER 4 DEVELOPMENT OF THE SIMULATION CODE 

 The simulation code is divided into three parts: (1) calculating electric field via 

solving Laplace’s equation in cylindrical coordinate using Gauss Seidel method[14]; (2) 

calculating trajectories of electrons using 4th- order Runge-Kutta method; (3) calculating 

the selectivity of the analyzer, i.e., geometric factor. Details of the code is given in this 

chapter. The numerical methods that are used will be introduced first in 4.1. In section 4.2, 

the Laplace’s equation solver for calculating electric potential in the THEA is given. In 

section 4.3, the electron trajectories in the THEA calculated using 4th order Runge-Kutta 

method is describes. All the developed codes were benchmarked by comparing the results 

from the simulation to the analytical solution of an ideal THEA introduced in chapter 3. 

 

4.1 Introduction of numerical methods 

In this part, Finite Difference method, Gauss Seidel method, bilinear interpolation 

method and Runge-Kutta method will be introduced[14][15][16][17]. 
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4.1.1 Finite Difference method 

Finite Difference method is to write a derivative equation into differential form. A set 

of grid points in the region of interest (ROI) are first defined. Take two-dimensional space 

in Cartesian coordinate system (x,y) shown in Fig. 6 as an example, step sizes ∆x ≡

xmax−xmin

Nx
 and ∆y ≡

ymax−ymin

Ny
 where xmin ≤ x ≤ xmax  and ymin ≤ y ≤ ymax  are the 

ROI. Nx and Ny are the number of grids in x and y direction, respectively. If (xmin, ymin) 

≡ (0,0), xi and yj  are xi = i ∗ ∆x, i =0,…,Nx , and yj = j ∗ ∆y, j =0,…, Ny . x−1 , y−1 , 

xNx+1
 and yNy+1

are used for applying boundary conditions.  

 

 

 

 

 

 

 

 

A differential equation can be obtained by using the Taylor expansions of the function 

 

Figure. 6: The diagram of gird points in Cartesian coordinate. 
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in the derivative form. For example, Laplace’s equation in 2D Cartesian coordinate is  

 
∂2V(x, y)

∂x2
+

∂2V(x, y)

∂y2
= 0 . (14) 

The Taylor expansion of V(x,y) at point (x,y) in x direction is   

 V(x + ∆x, y) = V(x, y) +
∂V(x,y)

∂x

1!
∆x +

∂2V(x,y)

∂x2

2!
∆x2 + ⋯+

∂𝑛V(x,y)

∂x𝑛

n!
∆xn + ⋯ 

V(x − ∆x, y) = V(x, y) −
∂V(x,y)

∂x

1!
∆x +

∂2V(x,y)

∂x2

2!
∆x2 − ⋯−

∂𝑛V(x,y)

∂x𝑛

n!
∆xn + ⋯  

, (15a) 

. (15b) 

Three methods of differential equations using Eq. 15 are commonly considered: forward, 

backward, and central differences for 1st order derivative. They are: 

Forward differential equation: 
∂V(x,y)

∂x
≡

V(x+Δx,y)−V(x,y)

Δx
+ O(∆x)  (from Eq. 15a) , 

Backward differential equation: 
∂V(x,y)

∂x
≡

V(x,y)−V(x−Δx,y)

Δx
+ O(∆x)  (from Eq. 15b) , 

Central differential equation: 
∂V(x,y)

∂x
≡

V(x+Δx,y)−V(x−Δx,y)

2∗Δx
+ O(∆x2) (From Eq. 15a & 15b).  

With smaller ∆x , the differential equation becomes closer to derivative equation. The 

physical meaning of forward, backward, and central differences are shown in Fig. 7 [18]. 

The distance is divided into several parts and the distance of each part is ∆r. ∆r is called a 

step size. In Fig. 7, the derivative at the red point will be estimated by using forward or 

backward or central differences. The forward difference uses the value at (r+∆r,z) and (r,z) 

and their step size. The backward difference uses the value at (r-∆r,z) and (r,z) and their step 

size. The central difference uses the value at (r+∆r,z) and (r-∆r,z) and their step size.  
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Figure. 7: The physical meaning of forward, backward, and central differences[18]. 

 

 In Laplace’s equation, central differential will be used for discretizing 2nd  order 

derivative in the equation. Equation 16 and Eq. 17 represent the discretization of 
∂2V(x,y)

∂x2  

and 
∂2V(x,y)

∂y2 , respectively.  

 
∂2V(x, y)

∂x2
=

V(x + Δx, y) + V(x − Δx, y) − 2V(x, y)

(∆x)2
 , (16) 

   

 
∂2V(x, y)

∂y2
=

V(x, y + Δy) + V(x, y − Δy) − 2V(x, y)

(∆y)2
 . 

 

(17) 

The derivation using the central difference is given as following. 

V(x + ∆x, y) ≈ V(x, y) +
∂V(x,y)

∂x

1!
∆x +

∂2V(x,y)

∂x2

2!
∆x2  

                        ≈ V(x, y) +
V(x+Δx,y)−V(x−Δx,y)

2∗Δx

1!
∆x +

∂2V(x,y)

∂x2

2!
∆x2  
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V(x + Δx, y) + V(x − Δx, y) + V(x, y + Δy) + V(x, y − Δy) − 4V(x, y) = 0  

⟹  V(x + ∆x, y) − V(x, y) ≈
V(x+Δx,y)−V(x−Δx,y)

2
+

∂2V(x,y)

∂x2

2!
∆x2  

⟹  2V(x + ∆x, y) − 2V(x, y) − V(x + Δx, y) + V(x − Δx, y) ≈
∂2V(x,y)

∂x2
∆x2  

⟹  V(x + ∆x, y) − 2V(x, y) + V(x − Δx, y)  ≈
∂2V(x,y)

∂x2
∆x2  

⟹
∂2V(x,y)

∂x2
 ≡

V(x+∆x,y)−2V(x,y)+V(x−Δx,y)

∆x2
 .                                        

The derivation process of 
∂2V(x,y)

∂y2
 in Eq. 17 is similar to the derivation process for 

∂2V(x,y)

∂x2
. 

Therefore, the Laplace’s equation in the differential form is 

 
V(x+Δx,y)+V(x−Δx,y)−2V(x,y)

(∆x)2
+

V(x,y+Δy)+V(x,y−Δy)−2V(x,y)

(∆y)2
= 0 .   (18) 

If ∆x equals ∆y in Eq. 18, Laplace’s equation in the differential form becomes  

      .   (19) 

In this thesis, Laplace’s equation is solved in cylindrical coordinate. Since the geometry 

of THEA and thus the potential in the analyzer is azimuthal symmetric, i.e., 
∂2V

∂φ2 = 0 ,  

 
∂2V

∂r2
+

1

r

∂V

∂r
+

∂2V

∂z2 = 0 .  (20) 

In Eq. 20, the mesh in the cylindrical coordinate is similar to the one in Fig. 6, but with 

different variables. Variables “x” and “y” are replaced by “r” and “z” for r̂ direction and ẑ 

direction, respectively. The grid points in cylindrical coordinate system (r,z) are shown in 

Fig. 8, where step sizes dr ≡
𝑟max−𝑟min

N𝑟
, dz ≡

𝑧max−𝑧min

N𝑧 
 . rmin ≤ r ≤ 𝑟max  and 𝑧min ≤

z ≤ 𝑧max  are the ROI. N𝑟  and N𝑧  are the number of grids in r and z directions, 

respectively. ri = i ∗ dr, i =0,…,Nr , and zj = j ∗ dz, j =0,…, Nz. dr and dz are the grid 
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sizes in r and z direction and they are constants. The differential form of Eq. 20 is 

 Vi,j =
h

8ri
(Vi+1,j − Vi−1,j) +

1

4
[Vi−1,j + Vi+1,j + Vi,j−1 + Vi,j+1] (21a) 

where i and j are indexes of grids in r and z directions, respectively.  

In Eq. 21a, the boundary condition is reflective boundary condition if i does not equal 

to zero. If i equals to zero, the boundary condition will be considered differently. The finite 

difference form in Laplace’s equation on the z axis is defined as: 

 
Vi,j =

dr2

4 [V0,j+1 + V0,j−1] + dz2 ∙ V1,j

dr2

2 + dz2

,                        i = 0 
(21b) 

The derivation of Eq. 21a and Eq. 21b are shown in appendix A and appendix B. The 

discretized Laplace’s equation is solved using Gauss Seidel method introduced in section 

 

Figure. 8: The diagram of gird points in cylindrical coordinate. 
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4.1.2. 

4.1.1.1 Boundary conditions 

In our simulation, when i equals zero, the boundary conditions of that region are divided 

into three parts representing the Gauss's law in Eq. 1 . The top region, the bottom region and 

the side region are given Fig. B-1 in appendix B. On the top of the cylinder, the electric field 

is a constant with 
∂V

∂r
= 0. At the bottom of the cylinder, the electric field is also a constant. 

On the side of the cylinder, the electric field is a constant. Following the derivation given in 

appendix B, the boundary condition at i=0, i.e., is  

V(0, j) =
(dr2)

2[dz1V(0, j + 1) + dz2V(0, j − 1)] + 2dz1dz2(dz1 + dz2)V(1, j)

dz1(dr2)2 + dz2(dr2)2 + 2dz1dz2(dz1 + dz2)
. 

At the region of r = rmax and z = 𝑧max, the reflective boundary condition is used. 

When z = 0, we also use the reflective boundary.  

 

Figure. B-1: The boundary conditions are divided into three parts representing the Gauss’s 

law. 
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4.1.2 Gauss Seidel method  

Gauss Seidel method is used to solve a system of equations, i.e., a matrix solver. Let 

the system of equations be[14]  

 If the diagonal elements of the system of equations written in a matrix form are 

not zero, i.e., aii ≠ 0 , the Gauss Seidel method can be used to solve the system of equations. 

The procedure is shown in Fig. 9. 

With an initial gauss (x1
0, x2

0, ⋯ , xn
0), the first x1

1, x2
1, ⋯ , xn

1 can be updated 

sequentially using the following equations where the super script represent the numbers of 

iterations. 

 

 

 

                  (22) 

a11x1 + a12x2 + a12x3 + ⋯+ a1nxn = c1 

a21x1 + a22x2 + a32x3 + ⋯+ a2nxn = c2 

⋮ 

an1x1 + an2x2 + an2x3 + ⋯+ annxn = cn . 

 

x1
𝟏 = (c1 − a12x2

0 − a13x3
0 … .−a1nx𝑛

0)  a11⁄  

x2
1 = (c2 − a21x1

𝟏 − a23x3
0 … .−a2nx𝑛

0)  a22⁄ , 

⋮ 

xn
𝟏 = (cn − an1x1

𝟏 − an2x2
𝟏 … .−an,n−1xn−1

𝟏)  ann⁄  . 

 



 

22 
 

 

Figure. 9: The procedure of the Gauss Seidel method. 

Eq. 22 can be rewritten in a summation form: 

                  (23) 

 

where k represents the kth time of iterations. Once you have determined x1 from the first 

equation, its value is then used in the second equation to obtain the new x2. Similarly, the 

new x1, x2, …, xi−1 are used to obtain the new xi . From an initial guess of xi
(0), new sets 

of xi are calculated iteratively using Eq. 22 . At the end of each iteration, there are two ways 

to stop the iteration.  

xi
k+1 =

1

aii
(ci − ∑  aijxj

k+1

j=i−1

j=1

− ∑  aijxj
k

n

j=i+1

) , i = 1,2, … , n 
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(i) the approximated error for each  xi is  

                   

Notice that 10−10 is added to the denominator to prevent it for being zero. In general, when 

the absolute value of relative approximated error for each xi is less than the pre-specified 

tolerance, the iterations stops[13].  

(ii) Alternative way is terminate the simulation, is to insert the solution into the left hand 

side of Eq. 20 .  

We used the second way to terminate the iteration. The iterations will be stopped if the 

number is smaller than 10−7. 

 

4.1.3 Gauss Seidel method accelerated by using Flag method  

 Flag method is to identify which points in ROI are important and we only calculate the 

solutions of those points to improve the efficiency of simulation for calculating electric 

potentials. Shown in Fig. 10 , if r is smaller than Ri or bigger than Ro, electric potentials 

are constant and do not change during iterations. We only care about the electric potential 

between Ri and Ro. Therefore, we mark and calculate only those points in that area. If the 

area between Ri and Ro is much less than the whole area, the program will be speeded up 

|approximation error| = Max [|
the recently obtained value of xi −the previous value of xi

the recently obtained value of xi+10−10 | ∗ 100%]. 
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and save a lot of time for calculating electric potential. 

 

 

 

 

 

One of the main improvements is that instead of loop over all i and j, we use another array 

that stores only the "flagged" grid, and loop over that array in each iteration. So in each 

iteration, the number of loop reduces from imax*jmax to only number of points between the 

outer and the inner spheres. 

4.1.4 Bilinear interpolation method  

Bilinear interpolation method is to estimate a number not on the mesh or grid from the 

known numbers on mesh points. For example, electric potential is calculated using Gauss 

Seidel method at each grid point. Electric field is then calculated by taking the negative of 

gradient of the electric potential. Therefore, the electric fields are known on grid points. If 

we want to know the electric field not on grid points, the bilinear interpolation can be used 

to determine the electric field.  

 

Figure. 10: Flag method is used to identify the region to be calculated. 
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Bilinear interpolation method is thrice of linear interpolation method. As shown in Fig. 11, 

it is to estimate the value f(x0, y0), which is not on a grid point, from the given values f(x, y), 

f(x+∆x, y), f(x, y+∆y) and f(x+∆x, y+∆y) located on the grids. In the initial phase, the f(x, y), 

f(x+∆x, y), f(x, y+∆y) and f(x+∆x, y+∆y) are used to estimate the unknown values f(x1, y1) 

and f(x2, y2) or f(x3, y3) and f(x4, y4) via linear interpolation. Next, f(x1, y1) and f(x2, y2) 

or f(x3, y3) and f(x4, y4) are used to estimate the value of f(x0, y0). The process for bilinear 

interpolation method is shown in the following. 

 

 

The unknown values f(x1, y1), f(x2, y2), f(x3, y3) and f(x4, y4) are obtained using linear 

interpolation method in the initial phase: 

 

Figure. 11: The example of linear (bilinear) interpolation method. The distance of each side 

is one. The α is the portion between x and x1 and the β is the portion between x3 and x. 
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                  f(𝑥1, 𝑦1)= α*f(x+∆x, y) + (1-α)*f(x, y) , 

   f(x2, y2)=  α*f(x+∆x, y+∆y) + (1-α)*f(x, y+∆y) ; 

  f(x3, y3)= β *f(x, y) + (1-β)*f(x, y+∆y) , 

                  f(x4, y4)= β *f(x+∆x, y) + (1-β)*f(x+∆x, y+∆y) , 

where α ≡ x1 − x =x2 − x and β ≡ (y+∆y) − y3= (y+∆y) − y4. 

 

Finally, 

f(x0, y0)= β *f(x1, y1) + (1-β)*f(x2, y2) 

f(x0, y0)= β*[ f(x+∆x, y) + (1-α)*f(x, y)]+ (1-β)*[ α*f(x+∆x, y+∆y) + (1-α)*f(x, y+∆y)] 

or f(x0, y0)= (1- α)*f(x3, y3) + α*f(x4, y4)f(x0, y0 

  

The bilinear interpolation method is used to determine the electric field if we want to know 

the electric field not on grid points. 

 

4.1.5 Runge-Kutta method 

Runge-Kutta method is a numerical technique for solving 1st -order ordinary 

differential equation (ODE), e.g., the equations of motion of charged particles in electric 

fields. The 1st-order and 4th-order Runge-Kutta method will be introduced. 

f(x0, y0)= β *[ β *f(x, y) + (1-β)*f(x, y+∆y)]+ (1-β)*[ β *f(x+∆x, y) + (1-β)*f(x+∆x, y+∆y)].  
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 The 1st-order Runge-Kutta method was originally proposed by Euler and was called 

Euler's method. It is used to solve a 1st -order ODE within a given interval of the 

independent variable x with a given initial condition. The general form of 1st-order ODE is 

(24) 

where function f is known. The interval is chopped into small subdivisions of length h. 

Therefore, the independent variable x can discretized as xn where the index n range from 0 

to nmax.  

The Euler’s method is to obtain the unknown point (xn+1,yn+1) from the known point 

(xn,yn). As shown in Fig. 12 , (xn+1,yn+1) can be calculated using (xn,yn) and the tangential 

line through this known point[13]. From Eq. 24, the slope of the tangential line is f(xn,yn). 

Therefore, 

 xn+1 = xn + h , 

yn+1 = yn + Δy + O(h2) where ∆y = h ∗ f(xn,yn) . 

(25) 

 

The last term O(h2) represents the truncation error of the Euler method, which is a secondary 

order accuracy in h. For a given initial condition, i.e. (x0,y0) is known, (x1,y1), (x2,y2), ⋯, 

(xn,yn), ⋯,  (xnmax,ynmax) can be calculated sequentially using Eq. 25 . 

In Fig. 12, there is an error between the real solution (orange line) and numerical 

solution (red line) depending on h and the order of the Runge-Kutta method. If higher order 

dy

dx
= f(x, y) 
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Runge-Kutta method is used, the error will be smaller and the calculated solution will be 

closer to the real solution. 

 

 

 

 

 

 

 

 

Similar to the 1st-order Runge-Kutta method, 4th-order Runge-Kutta method uses the 

derivative of y from the known point (xn ,yn) to calculate the solution of the following 

unknown point (xn+1,yn+1)[13]. The difference is how to estimate the derivative of y. For 

the 4th-order Runge-Kutta method,  

(26) 

where O(h5)  is the local truncation error of 4th -order Runge-Kutta method[15]. The 

derivative of y is estimated using k1, k2, k3, k4 written as following and shown in Fig. 

13 . 

yn+1 = y𝑛 +
(k1 + 2k2 + 2k3 + k4)

6
h + O(h5) 

 

 

Figure. 12: The orange line is represented differential equation of F(x,y)=0 and the red 

line is represented the numerical method (Euler's method). 

  F(x,y) 
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                                                        k1 = f(xi, yi)  

k2 = f (xi +
1

2
h, yi +

1

2
k1h)  

k3 = f (xi +
1

2
h, yi +

1

2
k2h)  

                                                        k4 = f(xi + h, yi + k3h) .  

For brief speaking, k1, k2, k3, and k4 are different slopes in the interval[15]. k1 is the 

slope at the beginning of the time step. k2 is an estimation of the slope at the midpoint 

which is estimated using the slope k1 to step halfway forward. k3 is another estimation of 

the slope at the midpoint using the slope k2 to step halfway forward. At last, k4 is the 

estimation of the slope at the endpoint using slope k3 to step all the way across h[16]. The 

derivation of Runge-Kutta method is given on the appendix C. 

 

 

 

 

 

 

 

Similar to the 1st-order Runge-Kutta method, (xn,yn) can be calculated sequentially from a 

 

Figure. 13: The 4𝑡ℎ-order Runge Kutta method. In each step, the derivative is evaluated 

four times: once at the initial point, twice at midpoint, and once at the endpoint[15]. 
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given initial condition. Trajectories of electrons will be solved using the 4th-order Runge-

Kutta method. 

 

4.2 Laplace’s equation solver for an ideal THEA 

To get a precise electric field, solving Laplace’s equation 

                       (27) 

with given geometry and applied voltage are necessary. Since the THEA and thus the 

potential in the analyzer is azimuthal symmetric, Laplace’s equation is solved in cylindrical 

coordinates, i.e,  

(28) 

 

The original equation from Eq. 28 written in the finite differential form is   

 

 

                  (29) 

where i and j are indexes of grids in r and z directions, respectively, and V0,j are numbers on 

z axes. ri = i ∗ dr, i =0,…,Nr , and zj = j ∗ dz, j =0,…, Nz. dr and dz are the grid sizes in 

r and z direction and they are constants. Notice that 
∂V

∂r
≡ 0 so that there is no singularity 

on z axis. The boundary conditions are described in section 4.1.1 and in appendix A.  

∂2V

∂r2
+

1

r

∂V

∂r
+

∂2V

∂z2
= 0 . 

 

Vi,j =

{
 
 

 
 

h

8r
(Vi+1,j − Vi−1,j) +

1

4
[Vi−1,j + Vi+1,j + Vi,j−1 + Vi,j+1] , i ≠ 0 

dr2

4 [V0,j+1 + V0,j−1] + dz2 ∙ V1,j

dr2

2 + dz2

,                                                  i = 0

 

 

∇2V = 0 
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In Fig. 14 and Fig. 15, if the distance between the grid points and outer radius or 

between the grid points and inner radius is less than the distance of the grid size, Eq. 29 

should be modified. This can be considered in two different points of view: (i) in numerical 

point of view and (ii) in physical point of view. In numerical point of view, we want to 

estimate the unknown point by using finite difference method. The finite difference method 

was introduced in section 4.1.1. The 5 closest mesh points were used to calculate the 

unknown point. If the distance between special point and unknown point is smaller than the 

distance between the 5 closest mesh points and unknown point, the numerical result is not 

accurate to describe the electric potentials in the THEA. In physical point of view, the 

concentric spheres are made of metal. Charges will be accumulated on the surface of the 

sphere. The charge can effect upon the distribution of electric potential on the surface of the 

sphere. Therefore, we must consider the special points near the sphere. It is divided into two 

parts for discussion shown in Fig. 14 and Fig. 15 and they are called special points: (1) the 

distance between the grid point and inner radius is less than the distance of the grid size; (2) 

the distance between the grid point and outer radius is less than the distance of the grid size. 

The green points (re, ze) in Fig. 14 and Fig. 15 represent the intersections of the grids and 

the inner sphere or the grids and the outer sphere. In Fig. 14, this is an example of the distance 

between the grid to the inner sphere being less than the grid size. In this example, we have 
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to replace dr with dr2. Similarly, a new gap dz2 is used as shown in Fig. 14. dr2 and dz2 

are defined as 

dr2  ≡ ri − (√((Ri)2 − (zi)2) and 

 dz2  ≡ zi − (√((Ri)2 − (ri)2) .   (30) 

 

 

 

 

 

 

Similarly, dr1 and dz1 for grids next to the outer sphere are 

 

Figure. 14: Definition of the special points near the inner radius. Blue curve represent the 

inner radius. 

 

 

(a) 

(b) 



 

33 
 

dr1 ≡ (√(Ro)2 − (zi)2) − ri and 

(31) 

 

 

To simplify our code, we don’t assume that dr and dz are constants. As shown in Fig. 16, the 

 

Figure. 15: Definition of the special points near the outer radius. Blue curve and purple 

curve represent the inner radius and outer radius. 

 

 

 

 

dz1 ≡ (√(Ro)2 − (ri)2) − zi . 

 
(a) 

(b) 
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grid sizes around each grid point are defined as dr1, dr2, dz1, dz2.  

 

Figure. 16: 𝑑𝑟1, 𝑑𝑟2, 𝑑𝑧1 and 𝑑𝑧2 are defined around each grid point. 

 

Therefore, Laplace’s equation in cylindrical coordinate is modified to Eq. 32 and solved 

using Gauss-Seidel method. The derivation of Eq. 32 is shown in appendix A. For those 

points away from the sphere, not special points, dr1 and dr2 equal to dr while dz1 and 

dz2 equal to dz and Eq. 32 become identical to Eq. 29. Otherwise, Eq. 30 or Eq. 31 are used. 
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  (32) 

 

4.2.1 Benchmarking the Laplace’s equation solver  

In order to check if the code calculates the electric potential correctly, we first use it to 

calculate the ideal THEA introduced in chapter 3. By comparing the result from our 

simulation to the result from Eq. 5, we can benchmark our code. The case we calculated was 

an ideal THEA consisting two concentric metal sphere with Ri=2 cm, Ro=9 cm. Vi=6 V, 

and Vo=2 V. In Fig. 17, it is the calculated electric potential in the ideal THEA. The left 

panel of Fig. 17 is the distribution of electric potential in the ideal THEA calculated using 

analytical solution. The right panel of Fig. 17 is the distribution of electric potential in the 

ideal THEA from the numerical result. In Fig. 18, the direct comparison between the 

simulation result and the analytic calculation is shown. The red dashed line represents the 

V(i,j)=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 [

4

dr1
2+dr2

2 +
4

dz1
2+dz2

2]
−1

{
 
 

 
 

2

dr1
2+dr2

2 [Vi+1,j + Vi−1,j − (dr2 − dr1)
Vi+1,j−Vi−1,j

dr2+dr1
]

+
2

dz1
2+dz2

2 [Vi,j+1 + Vi,j−1 − (dz2 − dz1)
Vi,j+1−Vi,j−1

dz2+dz1
]

+
Vi+1,j−Vi−1,j

r(dr2+dr1) }
 
 

 
 

,   i ≠ 0

[(dr2)
3(dz1 + dz2) + 2dr2(dz1 + dz2)dz1dz2]

−1

[(dr2)
3(dz1V0,j+1 + dz2V0,j−1) + 2dr2(dz1 + dz2)dz1dz2V1,j],   i = 0.

 

 

 
4

dr1
2 + dr2

2 +
4

dz1
2 + dz2

2 

−1

 

∗

{
  
 

  
 

2

dr1
2 + dr2

2  Vi+1,j + Vi−1,j − (dr2 − dr1)
Vi+1,j − Vi−1,j

dr2 + dr1
 

+
2

dz1
2 + dz2

2  Vi,j+1 + Vi,j−1 − (dz2 − dz1)
Vi,j+1 − Vi,j−1

dz2 + dz1
 

+
Vi+1,j − Vi−1,j

r(dr2 + dr1) }
  
 

  
 

,   i ≠ 0 

[(dr2)
3(dz1 + dz2) + 2dr2(dz1 + dz2)dz1dz2]

−1 

[(dr2)
3(dz1V0,j+1 + dz2V0,j−1) + 2dr2(dz1 + dz2)dz1dz2V1,j],   i = 0. 
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analytic result, and the green solid line represents the simulation result of all the points 

between Ri and Ro. Two lines on top of each other shows that our Laplace’s equation 

solver is correct. 

 

Figure. 17: The distribution of electric potential in ideal THEA with the radii and potentials 

of the inner and the outer of 2 cm, 9 cm, 6 V, 2 V, respectively. The smaller quarter circle 

represents inner radius. The larger quarter circle in red represents outer radius. The right 

hand side is from simulation result. The left hand side is from the analytic solution. 

 

 

  

 

 

Figure. 18: The simulation result of electric potentials is compared with the analytic result 

in two concentric metal spheres where the radii and potentials of the inner and the outer are 

2 cm, 9 cm, 6 V, 2 V, respectively. 

√𝒓𝟐 + 𝒛𝟐 

𝐕
(𝐫

,𝐳
) 
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4.3 Trajectories of electrons in ideal THEA 

Trajectories of electrons in THEA are calculated using the 4th -order Runge-Kutta 

method. Both the cases with and without Relativistic are considered. The electric field are 

calculated using either the analytical solution or the simulation result from Laplace’s 

equation solver. By comparing the results, the code for calculating the trajectories and the 

bilinear interpolation of electric fields are benchmarked. 

4.3.1 The electron trajectories without Relativistic  

The equations of motion for electrons in the THEA without considering Relativistic are: 

d

dt
x⃗ = v⃗ ≡ f (t, x⃗ , v⃗ ),  

      me
d

dt
v⃗ = qE⃗⃗ (x⃗ ) ≡ g⃗ (t, x⃗ , v⃗ ), 

where x⃗ , v⃗ , q = 1.6x10−19 coulomb and me = 9.1x10−31 kg are the position, velocity, 

charge and mass of electrons, respectively, and E⃗⃗  is the electric field. Electrons trajectories 

are calculated from Eq. 33 using 4th-order Runge-Kutta method. The simulation result of 

electron trajectories in two concentric metal spheres are shown in Fig. 19 to benchmark the 

simulation code. In each time step, the 4th-order Runge-Kutta method is calculated using 

the equation given in Table. 3. 

(33) 
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k1
⃗⃗⃗⃗ = ∆tf (t0, 𝑥0⃗⃗⃗⃗ ) = ∆tV0

⃗⃗⃗⃗  L1
⃗⃗⃗⃗ = ∆tg⃗ (t0, 𝑥0⃗⃗⃗⃗ ) = ∆tqE⃗⃗ (𝑥0⃗⃗⃗⃗ ) 

k2
⃗⃗⃗⃗ = ∆tf (t0 +

∆t

2
, 𝑥0⃗⃗⃗⃗ +

k1
⃗⃗ ⃗⃗  

2
, V0
⃗⃗⃗⃗ +

L1⃗⃗ ⃗⃗  

2
) 

      = ∆tV(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗; 

V(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = V0
⃗⃗⃗⃗ +

qE⃗⃗ (𝑥0⃗⃗⃗⃗ )∆t

2
= V0

⃗⃗⃗⃗ + L1
⃗⃗⃗⃗ /2 

L2
⃗⃗⃗⃗ = ∆tg⃗ (t0 +

∆t

2
, 𝑥0⃗⃗⃗⃗ +

k1
⃗⃗ ⃗⃗  

2
, V0
⃗⃗⃗⃗ +

L1⃗⃗ ⃗⃗  

2
) 

      = ∆tqE⃗⃗ (x(1)⃗⃗⃗⃗⃗⃗  ⃗); 

x(1)⃗⃗⃗⃗⃗⃗  ⃗ = 𝑥0⃗⃗⃗⃗ + V0
⃗⃗⃗⃗ ∆t

2
 

        = 𝑥0⃗⃗⃗⃗ + k2
⃗⃗⃗⃗ /2  

k3
⃗⃗⃗⃗ = ∆tf (t0 +

∆t

2
, 𝑥0⃗⃗⃗⃗ +

k2
⃗⃗ ⃗⃗  

2
, V0
⃗⃗⃗⃗ +

L2⃗⃗ ⃗⃗  

2
) 

      = ∆tV(2)⃗⃗ ⃗⃗ ⃗⃗  ⃗; 

V(2)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = V0
⃗⃗⃗⃗ +

qE⃗⃗ (x(1)⃗⃗⃗⃗⃗⃗  ⃗)∆t

2
= V0

⃗⃗⃗⃗ + L2
⃗⃗⃗⃗ /2 

L3
⃗⃗⃗⃗ = ∆tg⃗ (t0 +

∆t

2
, 𝑥0⃗⃗⃗⃗ +

k2
⃗⃗ ⃗⃗  

2
, V0
⃗⃗⃗⃗ +

L2⃗⃗ ⃗⃗  

2
) 

      = ∆tqE⃗⃗ (x(2)⃗⃗⃗⃗⃗⃗  ⃗); 

x(2)⃗⃗⃗⃗⃗⃗  ⃗ = 𝑥0⃗⃗⃗⃗ + V(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗∆t

2
 

         = 𝑥0⃗⃗⃗⃗ + k2
⃗⃗⃗⃗ /2 

k4
⃗⃗⃗⃗ = ∆tf (t0 +

∆t

2
, 𝑥0⃗⃗⃗⃗ + k3

⃗⃗⃗⃗ , V0
⃗⃗⃗⃗ + L3

⃗⃗⃗⃗ ) 

      = ∆tV(3)⃗⃗ ⃗⃗ ⃗⃗  ⃗; 

V(3)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = V0
⃗⃗⃗⃗ + qE⃗⃗ (x(2)⃗⃗⃗⃗⃗⃗  ⃗)∆t = V0

⃗⃗⃗⃗ + L3
⃗⃗⃗⃗  

 

L4
⃗⃗⃗⃗ = ∆tg⃗ (t0 +

∆t

2
, 𝑥0⃗⃗⃗⃗ + k3

⃗⃗⃗⃗ , V0
⃗⃗⃗⃗ + L3

⃗⃗⃗⃗ ) 

      = ∆tqE⃗⃗ (x(3)⃗⃗⃗⃗⃗⃗  ⃗); 

x(3)⃗⃗⃗⃗⃗⃗  ⃗ = 𝑥0⃗⃗⃗⃗ + V(2)⃗⃗ ⃗⃗ ⃗⃗  ⃗∆t 

      = 𝑥0⃗⃗⃗⃗ + k3
⃗⃗⃗⃗  

Table. 3: The 4𝑡ℎ order Runge-Kutta for solving Eq. 33. 

 

The electric field in the Table. 3 is calculated using Eq. 6, the analytic solution. The initial 

position of the electron is (r,z)=(0 cm , 5 , 5 cm). In section 3.1, the maximum energy of 

electron is ~ 21 keV by using the zeroth order estimation. We assumption that the electron 
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motion is only in r̂ direction. The initial velocity in r̂ direction is 573423 (m/s) and the 

initial velocity in ẑ direction is 0 (m/s). We use these initial conditions to benchmark the 

codes. The step size has great effect upon simulation of the electron trajectories. The 

trajectory of electron must be less than the step size in a time step if the simulation of the 

electron trajectories will get the precise result. In our simulation, rMax and zMax represent 

the boundary of interest, and the time step is 10−10 sec. In this chapter, the distance of rMax 

is 10 cm in r̂ direction and zMax is 10 cm in ẑ direction. The boundary of interest is 

divided into 1000 in each direction and the grid size is 10 ∗ 10−2/1000 m. In each time 

step, the electron moves ~ 5.7 ∗ 10−5 m which is much smaller than the grid size, i.e., 10−4 

m. The simulation result of electron trajectories are shown in Fig. 19. The dashed line in Fig. 

19 represents the numerical calculation using Mathematica. The green solid line in Fig. 19 

represents the simulation result. Those two lines are on top of each other shows that the code 

for simulating electron trajectories is correct.  
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4.3.1.1 Benchmarking the bilinear interpolation of simulated electron fields 

In previous section, the electric fields were calculated using the analytical model. 

However, there will be no analytical model in a real THEA and it needs to be calculated from 

the Laplace’s equation solver. The electric field on each grid can be calculated by taking 

negative of the gradient of the electric potential. The differential form of electric field is in 

Eq. 34.  

 Er(i,j) = −
V(i+1,j)−V(i−1,j)

2dr
 , 

Ez(i,j) = −
V(i,j+1)−V(i,j−1)

2dz
 . 

(34) 

 

 

Figure. 19: The simulation result of electron trajectories in two concentric metal spheres 

where the radii and potentials of the inner and the outer are 2 cm, 9 cm, 6 V, 2 V, 

respectively. Solid green line is from simulation result which the electric field is from 

Eq.6. Colorful Points are from numerical calculation using Mathematica. 

 

 

 

. 
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If the point is not on the grid, we will use bilinear method to calculate the electric field. The 

simulation result of electron trajectories in two concentric metal spheres are shown in Fig. 

20 . In Fig. 20, the initial position of the electron is (r,z)=( 0 cm , 5 , 5 cm ). The initial 

velocity in r̂ direction is 573423 (m/s) and the initial velocity in ẑ direction is 0 (m/s). In 

Fig. 20 , the red dashed line represents the numerical calculation using Mathematica. In Fig. 

20, the purple solid line represents the simulation result. The only differences between Fig. 

19 and Fig. 20 is how the electric fields were calculated. Those two lines on top of each 

others indicates that the bilinear interpolations of the simulated electric fields are correct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 20 The simulation result of electron trajectories is compared with the analytic result 

in two concentric metal spheres where the radii and potentials of the inner and the outer are 

2cm, 9cm, 6V, 2V, respectively. Solid purple line is from simulation result which the electric 

field is from bilinear interpolation method. Colorful Points are from analytic result. 
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4.3.2 The electron trajectories with relativistic effect  

When the kinetic energy of electrons is high enough, the relativistic effect needs to be 

considered. The velocity of electrons calculated using a given kinetic energy with and 

without relativistic effect are: 

V = √
2E

m
 with non − relativistic  

       V =
c√E(E + 2mc2)

E + mc2
with relativistic  

where E, m and c are represent the electron kinetic energy(J), rest mass and speed of light.   

The difference between the velocity with and without relativistic are shown in Fig. 21. 

According to Fig. 21, relativistic effect causes at least 3% difference in velocity when the 

kinetic energy is above 20 keV. In other words, relativistic effect have to be considered. If 

the electron kinetic energy is even higher and higher, the difference between non-relativistic 

and relativistic effect will be obvious. In Fig. 22, the brown dashed line represents the non-

relativistic effect. In Fig. 22, the blue solid line represents the relativistic effect.  
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Figure. 21: The relationship for the speed of electron between relativistic effect and classical. 

 

 

 

Figure. 22: If the electron kinetic energy is higher and higher, the difference of electron 

motion with relativistic and without relativistic will be obvious. 
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The equations of motion with relativistic effect for electrons in the analyzer is: 

   

      (35) 

 

where X⃗⃗ , P⃗⃗ , q = 1.6x10−19 coulomb and me = 9.1x10−31 kg are the position, velocity, 

charge and mass of electrons, respectively, and E⃗⃗  is the electric field. The velocity is 

calculated from the relativistic momentum shown as following: 

P⃗⃗ =
mv⃗ 

√1 −
v2

c2

= √Pr
2 + Pz

2 , 

                                  ⟹  P2 = Pr
2 + Pz

2 =
m2(vr

2 + vz
2)

1 −
v2

c2

=
m2v2

1 −
v2

c2

 

                                                         ⟹  P2 −
P2v2

c2
= m2v2 

                                                         ⟹  P2 = (m2c2 + P2) 
v2

c2
 

                                                         ⟹  v⃗ =
cP⃗⃗ 

√m2c2 + P2
=

dX⃗⃗ (t)

dt
 

where m, c, vr, vz, Pr and Pz are the rest electron mass, speed of light, speed of electron 

in r̂ direction, speed of electron in ẑ direction, the momentum in r̂ direction and the 

momentum in ẑ direction, respectively. 

Also, the time step is considered in our simulation. We have to consider two situations: 

(1) the speed of electron is much less than light speed; (2) the speed of electron is closed to 

            
dX⃗⃗ (t)

dt
=

c ∙ P⃗⃗ (t)

√m0
2 ∙ c2 + P(t)2

dP⃗⃗ (t)

dt
= q ∙ E⃗⃗ (X⃗⃗ (t))
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light speed, e,g., 1.5 ∗ 108 m/s. The time step is 10−10 when the speed of electron is much 

less than light speed. If the speed of electron is 1.5 ∗ 108 m/s, the time step is 10−13. The 

region of interest rMax is 10 cm in r̂ direction and zMax is 10 cm in ẑ direction. The 

region of interest is divided into 1000 in each direction and the grid size is 10*10−2/1000 

m. In each time step, the electron moves ~ 5.7 ∗ 10−5 m which is much smaller than grid 

size when the speed of electron is much less than light speed. On the other hand, when the 

speed of electron is 1.5 ∗ 108 m/s, the electron moves ~ 1.5 ∗ 10−5 m which it is much 

smaller than the grid size in each time step. The time step is carefully considered. Thus, the 

Runge-Kutta method is use to solve the electron trajectories for our simulation in the 

following.  

4.3.2.1 Runge-Kutta method with relativistic effect 

Equation 35 is rewritten as following and the 4th-order Runge-Kutta method is used. 

dX⃗⃗ (t)

dt
= v =

cP⃗⃗ 

√m2c2 + P2
≡ f (t, x⃗ , v⃗ ),

dP⃗⃗ (t)

dt
= qE⃗⃗ (X⃗⃗ (t)) ≡ g⃗ (t, x⃗ , v⃗ ) 

Each terms in Eq. 26 are given in Table. 4. 
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k1
⃗⃗⃗⃗ = ∆tf (t0, x0⃗⃗  ⃗) = ∆t

P0
⃗⃗  ⃗c

√m2c2 + P0
2

 L1
⃗⃗⃗⃗ = ∆tg⃗ (t0, x0⃗⃗  ⃗) = ∆tqE⃗⃗ (x0⃗⃗  ⃗) 

k2
⃗⃗⃗⃗ = ∆tf (t0 +

∆t

2
, x0⃗⃗  ⃗ +

k1
⃗⃗ ⃗⃗  

2
, v0⃗⃗  ⃗ +

L1⃗⃗ ⃗⃗  

2
) 

      = ∆t
P(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗c

√m2c2 + P(1)2
; 

P(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = P0
⃗⃗  ⃗ +

qE⃗⃗ (x0⃗⃗  ⃗)∆t

2
= P0

⃗⃗  ⃗ + L1
⃗⃗⃗⃗ /2 

L2
⃗⃗⃗⃗ = ∆tg⃗ (t0 +

∆t

2
, x0⃗⃗  ⃗ +

k1
⃗⃗ ⃗⃗  

2
, v0⃗⃗  ⃗ +

L1⃗⃗ ⃗⃗  

2
) 

      = ∆tqE⃗⃗ (x(1)⃗⃗⃗⃗⃗⃗  ⃗); 

x(1)⃗⃗⃗⃗⃗⃗  ⃗ = x0⃗⃗  ⃗ +
P0
⃗⃗  ⃗c

√m2c2 + P0
2

∆t

2
 

        = x0⃗⃗  ⃗ + k1
⃗⃗⃗⃗ /2  

k3
⃗⃗⃗⃗ = ∆tf (t0 +

∆t

2
, x0⃗⃗  ⃗ +

k2
⃗⃗ ⃗⃗  

2
, v0⃗⃗  ⃗ +

L2⃗⃗ ⃗⃗  

2
) 

= ∆t
P(2)⃗⃗ ⃗⃗ ⃗⃗  ⃗c

√m2c2 + P(2)2
; 

P(2)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = P0
⃗⃗  ⃗ +

qE⃗⃗ (x(1)⃗⃗⃗⃗⃗⃗  ⃗) ∆t

2
= P0

⃗⃗  ⃗ + L2
⃗⃗⃗⃗ /2 

L3
⃗⃗⃗⃗ = ∆tg⃗ (t0 +

∆t

2
, x0⃗⃗  ⃗ +

k2
⃗⃗ ⃗⃗  

2
, v0⃗⃗  ⃗ +

L2⃗⃗ ⃗⃗  

2
) 

      = ∆tqE⃗⃗ (x(2)⃗⃗⃗⃗⃗⃗  ⃗); 

x(2)⃗⃗⃗⃗⃗⃗  ⃗ = x0⃗⃗  ⃗ +
P(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗c

√m2c2 + P(1)2

∆t

2
 

         = x0⃗⃗  ⃗ + k2
⃗⃗⃗⃗ /2 

k4
⃗⃗⃗⃗ = ∆tf (t0 +

∆t

2
, x0⃗⃗  ⃗ + k3

⃗⃗⃗⃗ , v0⃗⃗  ⃗ + L3
⃗⃗⃗⃗ ) 

      = ∆t
P(3)⃗⃗ ⃗⃗ ⃗⃗  ⃗c

√m2c2 + P(2)2
; 

P(3)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = P0
⃗⃗  ⃗ + qE⃗⃗ (x(2)⃗⃗⃗⃗⃗⃗  ⃗) ∆t 

         = P0
⃗⃗  ⃗ + L3

⃗⃗⃗⃗  

L4
⃗⃗⃗⃗ = ∆tg⃗ (t0 +

∆t

2
, x0⃗⃗  ⃗ + k3

⃗⃗⃗⃗ , v0⃗⃗  ⃗ + L3
⃗⃗⃗⃗ ) 

      = ∆tqE⃗⃗ (x(3)⃗⃗⃗⃗⃗⃗  ⃗); 

x(3)⃗⃗⃗⃗⃗⃗  ⃗ = x0⃗⃗  ⃗ +
P(2)c

√m2c2 + P(2)2
∆t 

        = x0⃗⃗  ⃗ + k3
⃗⃗⃗⃗  

Table. 4: Equation 35 is rewritten for electron motion when the electron speed is close to the 

light speed. 

The codes are tested in two conditions: (1) the speed of electrons much less than speed of 
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light. The result should coincide to the classical result; and (2) the speed of electrons is closed 

to the speed of light. Both results are compared to the results calculated using Mathematica 

for benchmarking. 

4.3.2.2 The speed of electron is much less than speed of light 

The electron trajectories calculated using Eq. 35 should be the same as Eq. 33 when the 

velocity of electron is much less than speed of light. Therefore, trajectories of an electron 

with 573423 (m/s) initial velocity in r̂  direction and 0 (m/s) in 𝑧̂  direction passing 

through the ideal THEA with Ri = 2 cm, Ro = 9 cm, Vi = 6 V, Vo = 2 V was calculated. 

Both Eq. 33 and Eq. 35 were used and the results are plotted in blue and green lines, 

respectively, in Fig. 23. The equations of motion with and without relativistic were also 

solved using Mathematica and the results are plotted in yellow points and brown line, 

respectively, in Fig. 23. In Fig. 23, simulation results of electron trajectories calculated using 

our code to calculate Eq. 33 and Eq. 35 are compared with the results calculated by using 

Mathematica. They coincide to each others. It shows that our code is correct in the case of 

electrons with speed much less than the speed of light.   
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4.3.2.3 The speed of electron is closed to the speed of light 

To check if the trajectories are calculated correctly, we simulate the case where the 

speed of electron is half of the speed of light. The initial position of the electron is (r,z)=( 0 

cm , 5.5 cm ). The initial velocity of the electron is 1.5 ∗ 108 m/s in r̂ direction and 0 m/s 

in 𝑧̂ direction. The radius of the inner and outer sphere are 2 cm and 9 cm, respectively, 

while the inner and outer voltage are now 3.05∗ 105 V and 2 V, respectively. The equation 

 

Figure. 23: The simulation result of electron trajectories is compared with the result 

calculated using Mathematica in two concentric metal spheres where the radii and 

potentials of the inner and the outer are 2 cm, 9 cm, 6 V, 2 V, respectively. Blue and green 

lines represent the numerical calculation. Yellow points and brown line represent the 

simulation results. 
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of motion with and without relativistic were also solved using Mathematica and the results 

are plotted in green solid line and black dashed line, respectively, in Fig. 24. In Fig. 24, 

simulation results of electron trajectories calculated using our code to calculate Eq. 33 and 

Eq. 35 are compared with the results calculated by using Mathematica. In Fig. 24, the 

colorful dashed line is from simulation result with non-relativistic. The blue solid line 

represents the simulation result with relativistic effect. In ideal THEA, the simulation result 

of electron trajectories with Eq. 33 and Eq. 35 is identical with analytic result. According to 

Fig. 24, the simulation result for electron trajectories is correct in ideal THEA. 

 

 

Figure. 24: The simulation result of electron trajectories is compared with the analytic 

result in two concentric metal spheres where the radii and potentials of the inner and the 

outer are 2 cm, 9 cm, 3.05*105 V, 2 V, respectively. 
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4.3.3 Summary 

The code have already been compared with relativistic effect and non-relativistic effect. As 

a result, the simulation result of electron trajectories with relativistic effect in FORTRAN is 

consistence with calculation by using Mathematica.   

Previous results shown in section 4.2 and 4.3 used two concentric metal spheres as an 

ideal spherical THEA. However, an actual THEA is consisting of two shells and two parallel 

plates as the collimator on the top of the outer sphere and shown in Fig. 2. Also, the actual 

THEA is only hemisphere. The actual THEA of electric potentials and electron trajectories 

are given and introduced in the next section. The previous result of electric potentials are 

calculated in the ideal THEA in the first quadrant. Additionally, electric potentials in the first 

quadrant are mapping to the second quadrant. Then, electric fields can be calculated by 

taking negative of the gradient of the calculated electric potential. So, the electric fields in 

the hemisphere of actual THEA is obtained. 

In this chapter, we confirmed our code is correct. In section 4.1, we introduced all the 

numerical method we used. In section 4.2, we benchmarked the Laplace’s equation solver 

for an ideal THEA. In section 4.3, the simulation result of trajectories of electrons were 

compared with analytical solution. Also, the relativistic and non-relativistic were considered.  
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CHAPTER 5 SIMULATION RESULTS OF THEA 

In the previous chapter, we have shown that our codes calculate electric potentials, 

electron trajectories in an ideal THEA correctly. From zeroth order approximation in chapter 

3, we have shown that a THEA with Ri = 44 mm, R0 = 45 mm, Vi = 1 kV, V0 = 0 V 

(capable to be fit in a cubesat) can capture the electron up to 20 keV. In this chapter, we will 

further verify the approximation and calculate the selectivity of the THEA, i.e., the g-factor. 

In section 5.1, the dimensions and the calculated electric potential of an actual THEA are 

given. In section 5.2, electron trajectories are shown. Finally in section 5.3, a bunch of 

electrons with different initial energies, incident angles, and incident positions are used to 

calculate the g-factor of the THEA.  

 

5.1 The electric potential of an actual THEA 

For the actual THEA, a collimator is installed on the top of outer sphere. Therefore, the 

electric potential is a little different from that calculated in the section 4.2. Collimators are 

added through adding more special points described in section 4.2 in the ROI. Notice that 

“Flag technique” is used to shorten the calculation time since the gap between two spheres 

is only 1 mm. The area is only a small fraction of the total ROI. Figure 25 shows the cross 
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section of a real THEA which is divided into several small regions, as designated as A, B, C 

and the others. In Fig. 25, it represents the shape of a THEA in the simulation code.   

 

Figure. 25: Two parallel plates as the collimator are installed on top of analyzer. 𝑑1, 𝑑2, 𝑑3 

and 𝑑4  represent the inner radius, the height of lower collimator, the height plus the 

thickness of the lower collimator and the height of the upper collimator, respectively. 

 

The region of A, B and C are given as following. 

(1) A : √r2 + z2 ≤ Ri. 

(2) B : z < d2and √r2 + z2 ≤ Ro. 

(3) C : z > d4. 

For the special points, it will cause big difference in our simulation. When the point is closed 

to the shell of THEA, we have to consider the effect on our simulation. We compare the 
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distance between points and the sphere with the grid size when the point is closed to the shell 

of THEA. Therefore, Fig. 25 will be divided into several regions. The first region is at z <

d2 in Fig. 26.  

(1) The first region for points is shown in Fig. 26. 

 

Figure. 26: The special points in the first region are considered when the z < d2. 

 

(2) The second region is shown in Fig. 27 and Fig. 28. The special points near the lower 

collimator at d2 ≤ z ≤ d3 are considered. 
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Figure. 27: The special points in the third region are considered when the range of z at d2 ≤

z ≤ d3. 

 

 

Figure. 28: Third region is zoomed in. The thickness of collimator have to consider for the 

special points at d2 ≤ z ≤ d3. 

. 

 

(3) The third region for points at d3 < z ≤ d3 + dz is shown in Fig. 29. 
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Figure. 29: The special points in the third region are considered at 𝑑3 < 𝑧 ≤ 𝑑3 + 𝑑𝑧. 

(4) The fourth region for points at z ≥ d4 − dz is shown in Fig. 30. 

 

Figure. 30: The special points in the fourth region are considered at z ≥ 𝑑4 − 𝑑𝑧. 

The electric potential in an actual THEA with the inner and outer radii and potentials of 
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0.044 m, 0.045 m, 1 kV, 0 V, respectively, is shown in Fig. 31. Notice that only half of the 

THEA was simulated due to the symmetry.  

 

Figure. 31: Shows the calculated electric potential of an actual THEA where the radii and 

potentials of the inner and the outer are 0.044 m, 0.045 m, 1 kV, 0 V, respectively. 

Different from the electric potential in an ideal THEA given in section 4.2, the electric 

potential is not zero at the intersection of the outer sphere and the collimator. However, we 

only calculated the electric potential in first quadrant. Additionally, electric potentials in the 

first quadrant are mapped to the second quadrant because the THEA is a symmetric sphere. 

Electric fields can be calculated by taking negative of the gradient of the electric potential. 

Therefore, the distribution of electric fields in a hemisphere of actual THEA is obtained. 
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5.2 Electron trajectories  

Shown in Fig. 32 are trajectories of electrons with different kinetic energy in the THEA. 

The initial positions of these electrons are at (r,z)=(-0.04 m , 0.04489 m ). For a given voltage, 

only electrons with particular energy can pass through the analyzer. Shown in Fig. 33 are the 

zoom in view of the trajectories. Only electron with energy equals 21.708 keV can pass 

through the THEA. For electron with larger energy, the electron collides with the outer 

sphere while the one with lower energy collides to the inner sphere. 

 

 

Figure. 32: Electron trajectories with different energies are given where the radii and 

potentials of the inner and the outer are 44 mm, 45 mm, 1 kV, 0 V, respectively. The initial 

position of electron is ( -0.04 m, 0.0448 m ). The green line, red line blue line represent the 

electron energy with 18.487 keV, 21.708 keV and 24.656 keV, respectively. 

 

Electrons motion 
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Zoom in 1 

 

 

Zoom in 2 

 

Figure. 33: Only particular energy of electrons can pass through the analyzer. 

 

From the zeroth order estimation, electrons with energy of 22.2 keV can pass through the 

THEA with RI, Ro, VI and Vo equal to 44 mm, 45 mm, 1 kV, and 0 V, respectively. With 
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more accurate simulation, electrons with energy of 21.71 keV can pass through the THEA. 

5.3 G-factor calculation  

Geometric-factor (g-factor) is the selectivity of the detector. The formula was given in 

chapter 3: 

G=
GE

<k>
 with  

GE ≡ ∫T(K,Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK , 

〈k〉 ≡
∫KT(K,Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK

∫T(K,Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK
 . 

To calculate GE and 〈k〉, trajectories of a bunch of electron with different initial energy 

incident angles, and incident positions are simulated. The initial conditions of those electrons 

that pass through the THEA are recorded and used to calculate GE  and 〈k〉 using the 

following equation : 

 

 

 

 

 

 

 

 (36a) 

 

where R is the radius of the collimator. In our simulation, the R is 4.  

Similarly,   

 

 

GE ≡ ∫T(K,Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK 

⟹ GE = ∫T(K, θ, x⃗  )cosθ 2πR ∙ dz ∙ sinθdθ2πdK 

⟹ GE = 4π2R∫ dk
Kmax

0

∫ dθsinθcosθ∫ T(K, θ, x⃗  )dz
upper collimator

lower collimator

π 2⁄

−π 2⁄

 

⟹ GE =
4π2R dk dθ∑ sinθcosθT(K, θ)electrons passing through THEA

Total number of simulation electrons
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< k >≡

∫KT(K,Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK

∫T(K, Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK
≡

∫KT(K,Ω, x⃗  )(ĵ ∙ n̂)dS dΩdK

GE
 

⟹< k >

=
4π2R∫ Kdk

Kmax

0
∫ dθsinθcosθ∫ T(K, θ, x⃗  )dz 

upper collimator

lower collimator

π 2⁄

−π 2⁄

GE
 

⟹< k >=

4π2R dk dθ∑ KsinθcosθT(K,θ)electrons passing through THEA

Total number of electron

GE
 

(36b) 

T(K, θ) represents the total number of electrons that can pass through the bottom of the 

detector as a function of electron kinetic energy and incident angles. In our simulation for g-

factor, a bunch of electrons with the electron kinetic energy from 0 eV to 25 keV, the incident 

angles from -5° to 5°, and the incident location z from 44.4 mm to 46 mm incident to a 

THEA with the inner radius, outer radius, inner voltage and outer voltage of 44 mm, 45 mm, 

1 kV and 0 V, respectively. The energies, incident angles, and the locations were given using 

3 different random numbers. 

5.3.1 Initial conditions 

In our simulation, the distribution of electron kinetic energies, incident angles and 

positions in ẑ direction for 104  electrons are shown in Fig. 34-36, respectively. White 

noise random numbers were used so that flat distributions are shown in those figures. 
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Figure. 34: The distribution of electron kinetic energy for calculating g-factor in our 

simulation. 

 

Figure. 35: The distribution of incident angle for calculating g-factor in our simulation. 
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Figure. 36: The distribution of position used to decide the initial position of electron in 𝑧̂ 

direction in our simulation. 

5.3.2 G-factor calculations 

Simulations of different number of incident electrons are shown in Table 5. The second 

column, third column, fourth column, fifth column, sixth column represent, the g-factor, how 

many electrons enter the THEA, how many electrons will be detected at the bottom of the 

detector, energy g-factor and mean energy, respectively. Figure. 37 shows the simulated 

results of T(K,θ) with different number of electrons used in the simulation. Figure. 37(a) – 

37(f) corresponds to Group A-F in Table 5. The GE  and 〈k〉 were calculated using the 

T(K,θ) in Fig. 37 and Eq. 37a-37b . 
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As shown in Table. 5 , the g-factor converged to 2.64 * 10−4(cm2-sr-keV/keV) when the 

number of electrons became larger and larger. It can also be shown using the statistics error 

defined as 

1

√the number of electrons is detected at the bottom of the detector
. 

 

The statistics errors of different simulations are listed in Table. 6.  

 

 

 

 

 

 G ≡ 𝑮𝑬/〈𝒌〉 

(𝐜𝐦𝟐𝐬𝐫𝐤𝐞𝐕/𝐤𝐞𝐕) 

Number of 

electrons on 

simulation 

Number of 

detected 

electrons  

𝑮𝑬 

(𝐜𝐦𝟐𝐬𝐫𝐤𝐞𝐕) 

〈𝒌〉 

(𝐤𝐞𝐕) 

A 2.64 * 10−4 109 276580 5.78 ∗ 10−3 21.72 

B 2.64 * 10−4 108 27733 5.73 ∗ 10−3 21.73 

C 2.58 * 10−4 107 2693 5.62 *10−3 21.72 

D 2.17 ∗ 10−4 106 253 4.47 ∗ 10−3 21.84 

E 1.93 ∗ 10−4 105 27 4.19 ∗ 10−3 21.70 

F 4.12 ∗ 10−4 104 4 8.83 ∗ 10−3 21.40 

Table. 5: The electrons with different number are considered. 

 

Groups 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure. 37: The different number of electrons for energy-elevation are presented. Figure. 37 
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means only particular energies of electrons and angles which it is close to zero can pass 

through analyzer. 

 

 Electrons are detected Error of statistics 

A 276580 0.19% 

B 27733 0.6% 

C 2693 1.9% 

D 253 6.2% 

E 27 19.2% 

F 4 50.0% 

Table. 6: The error of statistics corresponds to each group. 

As the result, the g-factor from simulations converge to 2.64 * 10−4(cm2-sr-keV/keV) with 

0.19 % uncertainty. 

 

 

 

 

 

Groups 
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CHAPTER 6 CONCLUSION AND SUMMARY 

 

In this thesis, a top hat electrostatic analyzer (THEA) that can be fitted in a cubesat for 

measuring electrons was designed. Cubesat, THEA, and several numerical method were first 

introduced. The zeroth order approximation showed that building a THEA for cubesats to 

measure the electron distribution functions up to ~ 22.2 keV is possible. A more accurate 

calculation using the code developed by ourselves showed that electron with energy of 21.71 

keV can be detected using a THEA with RI, Ro, VI and Vo equal to 44 mm, 45 mm, 1 kV, 

and 0 V, respectively. The electric potentials were simulated via solving Laplace equation 

using Gauss-Seidel method in cylindrical coordinate. A 〝flag technique〞 where only points 

between two spheres were calculated to speed up the simulation, was used. Trajectories of 

electrons with Relativistic effect in THEA were calculated using the 4th-order Runge-Kutta 

method. The code we developed were first benchmarked by using the ideal THEA consisting 

of two concentric metal spheres. By comparing the simulation results to the analytical 

models, we confirmed the code that calculate Laplace’s equation, the electric fields in any 

locations within ROI, and the trajectories of electrons with and without relativistic effect 

were correct. As a result, we showed that the g-factor of the THEA is 2.64 * 10−4 ± 0.19% 

(cm2-sr-keV/keV). 
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CHAPTER 7 FUTURE WORKS 

We obtained the g-factor of the THEA that can fit in a cubesat. However, there are more 

works need to be done to obtain a THEA that can really be used. 

 

 Three-dimensional calculation 

Electron trajectories and electric potentials have already been calculated for a THEA in 2D. 

To be closed to reality, electric potentials and electron trajectories need to be calculated in 

3D.  

 The THEA will be optimized 

The shape of the THEA will be optimized via getting the highest g-factor with physical 

constrain. The commodity used THEA, it is a little difference from Fig. 32. In Fig. 32, the 

offset of the shell center from the symmetric axis is zero. However, the “actual” THEA the 

offset of the shell center from the symmetric axis is not zero[19][20][21] which is shown in 

Fig. 38. In Fig. 38, a is the deflection angle of the energy analyzer, b is the offset of the shell 

center from the symmetric axis, c is the eight of the upper collimator measured from the 

topmost edge of the outer shell, and d is the thickness of the lower collimator plate[22]. An 

optimized THEA needs to be obtained via more simulations. 
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Figure. 38: The structure of an actual THEA are presented. The a, b, c , d represent the 

deflection angle of the energy analyzer, the offset of the shell center from the symmetric axis 

the eight of the upper collimator measured from the topmost edge of the outer shell, and the 

thickness of the lower collimator plate, respectively[13].  

 

  

 Physical test 

After optimization, an actual THEA will be built and tested using the optimized 

parameters. Following are items that need to be tested: weight test, breakdown voltage test, 

power consumption test, testing platform and UV/radiation considerations. It is important to 

prevent ultraviolet (UV) photons from reaching the detector causing noise from photon 

counts since multi-channel plates is sensitive to UV photons. Scattering in the analyzer will 

further be considered via photon tracing simulations using Geant4[23][24][25] and tested 

experimentally in the future. 
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APPENDIX A 

 

The derivation of finite difference form 

The 
∂V2(r,z)

∂r2
 is from below: 

①  

②  

① + ② 

⟹ V(r + dr2, z) + V(r − dr1, z) − 2V(r, z) − (dr2 − dr1)V
′(r, z) =

1

2

∂V2(r,z)

∂r2
(dr1

2 +

dr2
2) 

⟹
∂V2(r, z)

∂r2
=

2

dr1
2 + dr2

2
[V(r + dr2, z) +  V(r − dr1, z) − 2V(r, z)

− (dr2 − dr1)V
′(r, z)] 

Moreover, 
∂V(r,z)

∂r
=

V(r+dr2,z)− V(r−dr1,z)

dr1+dr2
 

⟹
∂V2(r, z)

∂r2
=

2

dr1
2 + dr2

2 [

V(r + dr2, z) +  V(r − dr1, z) − 2V(r, z)

−(dr2 − dr1)
V(r + dr2, z) −  V(r − dr1, z)

dr1 + dr2

].  

The 
∂V2(r,z)

∂z2  is from below: 

③  

④  

③+④ 

⟹ V(r, z + dz2) + V(r, z−dz1) − 2V(r, z) − (dz2 − dz1)V
′(r, z) =

1

2

∂V2(r,z)

∂z2
(dz1

2 +

dz2
2) 

⟹
∂V2(r, z)

∂z2
=

2

dz1
2 + dz2

2
[V(r, z + dz2) +  V(r, z − dz1) − 2V(r, z)

− (dz2 − dz1)V
′(r, z)] 

V(r + dr2, z) = V(r, z) + V′(r, z)dr2 +
∂V2(r,z)

∂r2

2!
dr2

2 + ⋯ 

 V(r − dr1, z) = V(r, z) − V′(r, z)dr1 +
∂V2(r,z)

∂r2

2!
dr1

2 + ⋯ 

 

V(r, z + dz2) = V(r, z) + V′(r, z)dz2 +
∂V2(r,z)

∂z2

2!
dz2

2 + ⋯ 

 V(r, z−dz1) = V(r, z) − V′(r, z)dz1 +
∂V2(r,z)

∂z2

2!
dz1

2 + ⋯ 
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Moreover, 
∂V(r,z)

∂z
=

V(r,z+dz2)− V(r,z−dz1)

dz1+dz2
 

⟹
∂V2(r, z)

∂z2
=

2

dz1
2 + dz2

2 [

V(r, z + dz2) +  V(r, z − dz1) − 2V(r, z)

−(dz2 − dz1)
V(r, z + dz2) −  V(r, z − dz1)

dz1 + dz2

] 

In Eq.29, the Laplace’s equation is 
∂V2(r,z)

∂r2
+

1

r

∂V(r,z)

∂r
+

∂V2(r,z)

∂z2
= 0. 

The previous derivation are used to Eq.29 and the finite difference form is became: 

⟹
2

dr1
2 + dr2

2 [

V(r + dr2, z) +  V(r − dr1, z) − 2V(r, z)

−(dr2 − dr1)
V(r + dr2, z) −  V(r − dr1, z)

dr1 + dr2

]

+
1

r

V(r + dr2, z) −  V(r − dr1, z)

dr1 + dr2
 

      +
2

dz1
2 + dz2

2 [

V(r, z + dz2) +  V(r, z − dz1) − 2V(r, z)

−(dz2 − dz1)
V(r, z + dz2) −  V(r, z − dz1)

dz1 + dz2

] = 0 

⟹ −V(r, z)  
4

dr1
2 + dr2

2 +
4

dz1
2 + dz2

2  

      +
2

dr1
2 + dr2

2 [

V(r + dr2, z) +  V(r − dr1, z)

−(dr2 − dr1)
V(r + dr2, z) −  V(r − dr1, z)

dr1 + dr2

] 

      +
2

dz1
2 + dz2

2 [

V(r, z + dz2) +  V(r, z − dz1)

−(dz2 − dz1)
V(r, z + dz2) −  V(r, z − dz1)

dz1 + dz2

] 

      +
1

r

V(r + dr2, z) −  V(r − dr1, z)

dr1 + dr2
= 0 
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Here is the finite difference form which the r ≠ 0. 

⟹  V(r, z) =  
4

dr1
2 + dr2

2 +
4

dz1
2 + dz2

2 

−1

∗ 

{
  
 

  
 2

dr1
2 + dr2

2 [

V(r + dr2, z) +  V(r − dr1, z)

−(dr2 − dr1)
V(r + dr2, z) −  V(r − dr1, z)

dr1 + dr2

]

+
2

dz1
2 + dz2

2 [

V(r, z + dz2) +  V(r, z − dz1)

−(dz2 − dz1)
V(r, z + dz2) −  V(r, z − dz1)

dz1 + dz2

] +
1

r

V(r + dr2, z) −  V(r − dr1, z)

dr1 + dr2 }
  
 

  
 

 



 

75 
 

APPENDIX B 

 

 When the r=0, the derivation of finite difference form is below: 

 

Top: 

∫ds ∇V      =
∂V

∂z
    ds =

V(0, j + 1) − V(0, j)

dz
π(

dr

2
)2 

 

Bottom: 

∫ds ∇V       =
∂V

∂z
    ds =

−(V(0, j) − V(0, j − 1))

dz
π(

dr

2
)2 

 

Side: 

∫ds ∇V       =
∂V

∂r
    ds =

V(1, j) − V(0, j)

dr
2π (

dr

2
) dz = (V(1, j) − V(0, j))πdz 

 

Top+Bottom+Side 

⟹                                               

⑤ 

 

⟹ V(0, j) =

dr2

4
[V(0, j + 1) + V(0, j − 1)] + dz2[V(1, j) − V(0, j)]

dr2

2 + dz2

 

 

 

In Eq.⑤, if the dz2 not equal dz1, the dz have to divide into dz1 and dz2. 

⟹
V(0, j + 1) − V(0, j)

dz2
π (

dr2
2

)
2

−
V(0, j) − V(0, j − 1)

dz1
π (

dr2
2

)
2

 

       +(V(1, j) − V(0, j))π(
dz2 + dz1

2
) = 0 

⟹ dz1(dr2)
2(V(0, j + 1) − V(0, j)) − dz2(dr2)

2(V(0, j) − V(0, j − 1)) 

       +[2dz1dz2(dz1 + dz2)(V(1, j) − V(0, j))] = 0 

⟹ (dr2)
2[dz1V(0, j + 1) + dz2V(0, j − 1)] + 2dz1dz2(dz1 + dz2)V(1, j) 

       = V(0, j)[dz1(dr2)
2 + dz2(dr2)

2 + 2dz1dz2(dz1 + dz2)] 

V(
1

2
,j) 

V(0,j-
1

2
) 

V(0,j+
1

2
) 

𝑑𝑧

2
 𝑑𝑧

2
 

−𝑑𝑧

2
 

−𝑑𝑧

2
 

𝑑𝑧

2
 

𝑑𝑧

2
 

V(0, j + 1) − V(0, j)

dz
π (

dr

2
)
2

−
V(0, j) − V(0, j − 1)

dz
π (

dr

2
)
2

+ (V(1, j) − V(0, j))πdz

= 0 

𝐳̂ 

Fig. B-1  
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⟹ V(0, j) =
(dr2)

2[dz1V(0, j + 1) + dz2V(0, j − 1)] + 2dz1dz2(dz1 + dz2)V(1, j)

dz1(dr2)2 + dz2(dr2)2 + 2dz1dz2(dz1 + dz2)
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APPENDIX C 

一階泰勒展開: f( x+u, y+v ) = f(xi, yi) + u ∙
∂f

∂x
+v ∙

∂f

∂y
 

二階泰勒展開: f( x+u, y+v ) = f(xi, yi) + (u ∙
∂f

∂x
+v ∙

∂f

∂y
) +

1

2!
(u2 ∙

∂2f

∂x2 + 2uv ∙
∂2f

∂x ∂y
+ v2 ∙

∂2 ∂

∂y2) 

k1 = f(xi, yi) 

k2 = f(xi + p1h,  yi + q11k1h) 

      = f(xi, yi) +  p1h
∂f

∂x
+ (q11k1h)

∂f

∂y
 

+
1

2!
 (p1h)

2
∂2f

∂x2
+  2(p1h) ∗ (q11k1h)

∂2f

∂x ∂y
+ (q11k1h)

2
∂2f

∂y2
  

 

k3 = f(xi + p2h,  yi + q21k1h + q22k2h) 

      = f(xi, yi) +  p2h
∂f

∂x
+ (q21k1h + q22k2h)

∂f

∂y
 

+
1

2!
 p2

2h2
∂2f

∂x2
+  2(q21k1h + q22k2h)p2h

∂2f

∂x ∂y

+ (q21k1h + q22k2h)
2
∂2f

∂y2
  

 

yi+1 = yi + (a1k1 + a2k2 + a3k3 + ⋯+ ankn) ∙ h 

 

 

the Second order Runge-Kutta Methods 

yi+1 = yi + (a1k1 + a2k2) ∙ h 

 ⟹ yi + a1k1h + a2h [f(xi,yi) + p1h
∂f

∂x
+ q11k1h

∂f

∂y
] 

 ⟹ yi + (a1 + a2)f(xi,yi)h + (a2p1
∂f

∂x
+ a2q11k1

∂f

∂y
)h2    

 

yi+1 = yi + (a1k1 + a2k2 + a3k3) ∙ h 

 ⟹ yi + a1k1h + a2h  f(xi, yi) + [p1h
∂f

∂x
+ (q11k1h)

∂f

∂y
] +

1

2!
[(p1h)

2 ∂2f

∂x2
+  2(p1h) ∗
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               (q11k1h)
∂2f

∂x ∂y
+ (q11k1h)

2 ∂2f

∂y2] + a3h  f(xi, yi) + [p2h
∂f

∂x
+ (q21k1h +

q22k2h)
∂f

∂y
] +              

1

2!
[p2

2h2 ∂2f

∂x2 +  2(p2h)(q21k1h + q22k2h)
∂2f

∂x ∂y
+ (q21k1h +

q22k2h)
2 ∂2f

∂y2]      (Eq.2)  

 

針對這k3項展開: 𝐟(𝐱𝐢, 𝐲𝐢) + [𝐩𝟐𝐡
𝛛𝐟

𝛛𝐱
+ (𝐪𝟐𝟏𝐤𝟏𝐡 + 𝐪𝟐𝟐𝐤𝟐𝐡)

𝛛𝐟

𝛛𝐲
] +

𝟏

𝟐!
[𝐩𝟐

𝟐𝐡𝟐 𝛛𝟐𝐟

𝛛𝐱𝟐 +

 𝟐(𝐩𝟐𝐡)(𝐪𝟐𝟏𝐤𝟏𝐡 + 𝐪𝟐𝟐𝐤𝟐𝐡)
𝛛𝟐𝐟

𝛛𝐱𝛛𝐲
+ (𝐪𝟐𝟏𝐤𝟏𝐡 + 𝐪𝟐𝟐𝐤𝟐𝐡)𝟐

𝛛𝟐𝐟

𝛛𝐲𝟐
]，並對紅色字體項去整

理。 

 ⟹ p2
2h2 ∂2f

∂x2 +  2(p2h)(q21k1h + q22k2h)
∂2f

∂x ∂y
+ (q21k1h + q22k2h)

2 ∂2f

∂y2 

 ⟹ p2
2h2 ∂2f

∂x2 +  2(p2h)(q21k1h + q22k2h)
∂2f

∂x ∂y
+ [(q21k1h)

2 + 2q21k1q22k2h
2 +

(q22k2h)
2] 

∂2f

∂y2 

 ⟹ p2
2h2 ∂2f

∂x2 + 2p2q21k1h
2 ∂2f

∂x ∂y
+2p2q21𝐤𝟐h

2 ∂2f

∂x∂y
+ [(q21k1h)

2 +

2q21k1q22k2h
2 + (q22k2h)

2] 
∂2f

∂y2 

 ⟹ p2
2h2 ∂2f

∂x2 + 2p2q21k1h
2 ∂2f

∂x ∂y
 + 2p2q21 {f(xi, yi) + [p1h

∂f

∂x
+ (q11k1h)

∂f

∂y
] +

1

2!
[(p1h)

2 ∂2f

∂x2 + 2(p1h) ∗ (q11k1h)
∂2f

∂x ∂y
+ (q11k1h)

2 ∂2f

∂y2]} h2 ∂2f

∂x∂y
+

[(q21k1h)
2 + 2q21k1q22k2h

2 + (q22k2h)
2] 

∂2f

∂y2
                    

 ⟹ h2 (p2
2 ∂2f

∂x2
+ 2p2q21k1

∂2f

∂x∂y
+ 2p2q22k1

∂2f

∂x ∂y
)  + h3 [(2p2q21

∂2f

∂x ∂y
) ∗

(p1
∂f

∂x
+ q11k1

∂f

∂y
)]+h4 [(p2q21

∂2f

∂x ∂y
) ∗ (p1

2 ∂2f

∂x2
+ 2p1q11k1

∂2f

∂x ∂y
+ (q11k1)

2 ∂2f

∂y2
)] +

[(q21k1h)
2 + 2q21k1q22𝐤𝟐h

2 + (q22k2h)
2] 

∂2f

∂y2
 

 ⟹ h2 (p2
2 ∂2f

∂x2
+ 2p2q21k1

∂2f

∂x∂y
+ 2p2q22k1

∂2f

∂x ∂y
)  + h3 [(2p2q21

∂2f

∂x ∂y
) ∗
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(p1
∂f

∂x
+ q11k1

∂f

∂y
)]+h4 [(p2q21

∂2f

∂x ∂y
) ∗ (p1

2 ∂2f

∂x2 + 2p1q11k1
∂2f

∂x ∂y
+ (q11k1)

2 ∂2f

∂y2)] +

 [(q21k1h)
2 + 2q21k1q22h

2 {f(xi, yi) + [p1h
∂f

∂x
+ (q11k1h)

∂f

∂y
] +

1

2!
[(p1h)

2 ∂2f

∂x2 +

 2(p1h) ∗ (q11k1h)
∂2f

∂x∂y
+ (q11k1h)

2 ∂2f

∂y2]} + (q22k2h)
2]

∂2f

∂y2 

 ⟹ h2 (p2
2 ∂2f

∂x2 + 2p2q21k1
∂2f

∂x∂y
+ 2p2q22k1

∂2f

∂x ∂y
)  + h3 [(2p2q21

∂2f

∂x ∂y
) ∗

(p1
∂f

∂x
+ q11k1

∂f

∂y
)]+h4 [(p2q21

∂2f

∂x ∂y
) ∗ (p2

1

∂2f

∂x2 + 2p1q11k1
∂2f

∂x ∂y
+ (q11k1)

2 ∂2f

∂y2)] +

𝐡𝟐 [(𝐪𝟐𝟏𝐤𝟏)
𝟐 𝛛𝟐𝐟

𝛛𝐲𝟐
+ 𝟐𝐪𝟐𝟏𝐤𝟏𝐪𝟐𝟐 ∗ 𝐟(𝐱𝐢, 𝐲𝐢)

𝛛𝟐𝐟

𝛛𝐲𝟐
] + 𝐡𝟑 [(𝟐𝐪𝟐𝟏𝐤𝟏𝐪𝟐𝟐) ∗ (𝐩𝟏

𝛛𝐟

𝛛𝐱
+

(𝐪𝟏𝟏𝐤𝟏)
𝛛𝐟

𝛛𝐲
) ∗

𝛛𝟐𝐟

𝛛𝐲𝟐
] + 𝐡𝟒 [(𝐪𝟐𝟏𝐤𝟏𝐪𝟐𝟐) ∗ (𝐩𝟏

𝟐 𝛛𝟐𝐟

𝛛𝐱𝟐
+ 𝟐𝐩𝟏𝐪𝟏𝟏𝐤𝟏

𝛛𝟐𝐟

𝛛𝐱𝛛𝐲
+   (𝐪𝟏𝟏𝐤𝟏)

𝟐 𝛛𝟐𝐟

𝛛𝐲𝟐
) ∗

𝛛𝟐𝐟

𝛛𝐲𝟐] + (q22k2h)
2 ∂2f

∂y2 

 ⟹ h2 (p2
2 ∂2f

∂x2 + 2p2k1
∂2f

∂x ∂y
(q21 + q22) + (q21k1)

2 ∂2f

∂y2 + 2q21q22k1
2 ∂2f

∂y2) +

h3 [(p1
∂f

∂x
+ q11k1

∂f

∂y
) ∗ (2p2q22

∂2f

∂x ∂y
+ 2q21k1q21

∂2f

∂y2)] 

               h4 [(p1
2 ∂2f

∂x2 + 2p1q11k1
∂2f

∂x ∂y
+   (q11k1)

2 ∂2f

∂y2) ∗ (p2q21
∂2f

∂x∂y
+ q21k1q22

∂2f

∂y2)] 

+(q22k2h)
2 ∂2f

∂y2 

其中(q22k2h)
2 ∂2f

∂y2 等於  

 ⟹ (q22h)
2 ∂2f

∂y2
∙ {f(xi, yi) + [p1h

∂f

∂x
+ (q11k1h)

∂f

∂y
] +

1

2!
[(p1h)

2 ∂2f

∂x2
+  2(p1h) ∗

(q11k1h)
∂2f

∂x∂y
+ (q11k1h)

2 ∂2f

∂y2
]} ∙ {f(xi, yi) + [p1h

∂f

∂x
+ (q11k1h)

∂f

∂y
] +

1

2!
[(p1h)

2 ∂2f

∂x2
+

 2(p1h) ∗ (q11k1h)
∂2f

∂x∂y
+ (q11k1h)

2 ∂2f

∂y2
]} 

 ⟹ h2 {(q22
2 ∂2f

∂y2
)k1

2} + h4 {
(q22

2 ∂2f

∂y2) (p1
∂f

∂x
)
2

+ (q22
2 ∂2f

∂y2)2p1q11k1 (
∂f

∂x
) (

∂f

∂y
)

+(q22
2 ∂2f

∂y2) (q11k1
∂f

∂y
)
2 } 
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           +h6  (q22
2 ∂2f

∂y2
) 

{
 
 

 
 1

4
p1

4 (
∂2f

∂x2
)

2

+ (p1q11k1)
2 (

∂2f

∂x ∂y
)

2

+
1

4
(q11k1)

4 (
∂2f

∂y2
)

2

+p1
3q11k1

∂2f

∂x2

∂2f

∂x ∂y
+ p1(q11k1)

3
∂2f

∂x ∂y
(
∂2f

∂y2
)

2

+
1

2
(p1q11k1)

2
∂2f

∂x2

∂2f

∂y2}
 
 

 
 

 

           +h3 {2k1  p1

∂f

∂x
+ (q11k1)

∂f

∂y
 q22

2
∂2f

∂y2
} 

           +h5

{
 
 

 
 p1

3
∂2f

∂x2

∂f

∂x
+ 2p1

2q11k1

∂2f

∂x ∂y

∂f

∂x
+ p1(q11k1)

2
∂2f

∂y2

∂f

∂y
+ p1

2q11k1

∂f

∂y

∂2f

∂x2

+4p1(q11k1)
2

∂2f

∂x ∂y

∂f

∂y
+ (q11k1)

3
∂2f

∂y2

∂f

∂y
}
 
 

 
 

q22
2
∂2f

∂y2
    

           +h4 {p1
2
∂2f

∂x2
+  2p1q11k1

∂2f

∂x ∂y
+ q11

2k1
3 ∂2f

∂y2
} q22

2
∂2f

∂y2
 

 

則整理後等於: 

 ⟹ h2 (p2
2 ∂2f

∂x2 + 2p2k1
∂2f

∂x ∂y
(q21 + q22) + [(q21k1)

2 + (k1q22)
2]

∂2f

∂y2 +

2q21q22k1
2 ∂2f

∂y2) 

             +h3  (p1

∂f

∂x
+ q11k1

∂f

∂y
) ∗ (2p2q22

∂2f

∂x ∂y
+ 2q21k1q21

∂2f

∂y2
+ 2k1q22

2
∂2f

∂y2
)  

             +h4

[
 
 
 
 
 (p1

2 ∂2f

∂x2 + 2p1q11k1
∂2f

∂x ∂y
+   (q11k1)

2 ∂2f

∂y2) ∗ (p2q21
∂2f

∂x∂y
+ q21k1q22

∂2f

∂y2)

+(q22
2 ∂2f

∂y2) (p1
∂f

∂x
)
2

+ (q22
2 ∂2f

∂y2)2p1q11k1 (
∂f

∂x
) (

∂f

∂y
) + (q22

2 ∂2f

∂y2) (q11k1
∂f

∂y
)
2

+p1
2q22

2 ∂2f

∂x2

∂2f

∂y2 + 2p1q11k1q22
2 ∂2f

∂x∂y

∂2f

∂y2 + q11
2k1

3q22
2 ∂2f

∂y2

∂2f

∂y2 ]
 
 
 
 
 

  

 

+h5

[
 
 
 
 p1

3
∂2f

∂x2

∂f

∂x
+ 2p1

2q11k1

∂2f

∂x ∂y

∂f

∂x
+ p1(q11k1)

2
∂2f

∂y2

∂f

∂y
+ p1

2q11k1

∂f

∂y

∂2f

∂x2

+4p1(q11k1)
2

∂2f

∂x ∂y

∂f

∂y
+ (q11k1)

3
∂2f

∂y2

∂f

∂y ]
 
 
 
 

q22
2
∂2f

∂y2
 

+h6

[
 
 
 
 
 1

4
p1

4 (
∂2f

∂x2
)

2

+ (p1q11k1)
2
(

∂2f

∂x∂y
)

2

+
1

4
(q11k1)

4
(
∂2f

∂y2
)

2

+ p1
3q

11
k1

∂2f

∂x2

∂2f

∂x∂y

+p1(q11k1)
3 ∂2f

∂x∂y
(
∂2f

∂y2
)

2

+
1

2
(p1q11k1)

2 ∂2f

∂x2

∂2f

∂y2 ]
 
 
 
 
 

(q22
2 ∂2f

∂y2
) 
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 ⟹ k3 =  f(xi, yi) + [p2h
∂f

∂x
+ (q21k1h + q22𝐤𝟐h)

∂f

∂y
] +

𝟏

𝟐!
[𝐩𝟐

𝟐𝐡𝟐 𝛛𝟐𝐟

𝛛𝐱𝟐 +

 𝟐(𝐩𝟐𝐡)(𝐪𝟐𝟏𝐤𝟏𝐡 + 𝐪𝟐𝟐𝐤𝟐𝐡)
𝛛𝟐𝐟

𝛛𝐱𝛛𝐲
+ (𝐪𝟐𝟏𝐤𝟏𝐡 + 𝐪𝟐𝟐𝐤𝟐𝐡)𝟐

𝛛𝟐𝐟

𝛛𝐲𝟐] 

⟹ k3等於 

 

 f(xi, yi)

+

[
 
 
 
 
 

p2h
∂f

∂x

+

(

  
 

q21k1h

+q22

{
 
 

 
 

f(xi, yi) +  p1h
∂f

∂x
+ (q11k1h)

∂f

∂y
 +

1

2!

[
 
 
 
 (p1h)

2
∂2f

∂x2
+  2(p1h) ∗ (q11k1h)

∂2f

∂x ∂y

+(q11k1h)
2
∂2f

∂y2 ]
 
 
 
 

}
 
 

 
 

h

)

  
 ∂f

∂y

]
 
 
 
 
 

 

             +h2 (
1

2
p2

2 ∂2f

∂x2
+ p2k1

∂2f

∂x ∂y
(q21 + q22) +

1

2
[(q21k1)

2 + (k1q22)
2]

∂2f

∂y2

+ q21q22k1
2 ∂2f

∂y2
) 

             +h3  (p1

∂f

∂x
+ q11k1

∂f

∂y
) ∗ (p2q22

∂2f

∂x ∂y
+ q21k1q21

∂2f

∂y2
+ k1q22

2
∂2f

∂y2
)  

             +h4  
1

2
(p1

2 ∂2f

∂x2 + 2p1q11k1
∂2f

∂x∂y
+   (q11k1)

2 ∂2f

∂y2) ∗ (p2q21
∂2f

∂x∂y
+

q21k1q22
∂2f

∂y2) +
1

2
(q22

2 ∂2f

∂y2) (p1
∂f

∂x
)
2

+ (q22
2 ∂2f

∂y2)p1q11k1 (
∂f

∂x
) (

∂f

∂y
) +

1

2
(q22

2 ∂2f

∂y2) (q11k1
∂f

∂y
)
2

+
1

2
p1

2q22
2 ∂2f

∂x2

∂2f

∂y2 + p1q11k1q22
2 ∂2f

∂x∂y

∂2f

∂y2 +

1

2
q11

2k1
3q22

2 ∂2f

∂y2

∂2f

∂y2
   

+h5

[
 
 
 
 

1

2
p1

3
∂2f

∂x2

∂f

∂x
+ p1

2q11k1

∂2f

∂x ∂y

∂f

∂x
+

1

2
p1(q11k1)

2
∂2f

∂y2

∂f

∂y

+
1

2
p1

2

q11k1

∂f

∂y

∂2f

∂x2
+ 2p1(q11k1)

2
∂2f

∂x ∂y

∂f

∂y
+

1

2
(q11k1)

3
∂2f

∂y2

∂f

∂y]
 
 
 
 

q22
2
∂2f

∂y2
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+h6

[
 
 
 
 
 1

8
p1

4 (
∂2f

∂x2
)

2

+
1

2
(p1q11k1)

2

(
∂2f

∂x∂y
)

2

+
1

8
(q11k1)

4
(
∂2f

∂y2
)

2

+
1

2
p1

3

q
11

k1

∂2f

∂x2

∂2f

∂x∂y
+

1

2
p

1
(q11k1)

3 ∂2f

∂x∂y
(
∂2f

∂y2
)

2

+
1

4
(p1q11k1)

2 ∂2f

∂x2

∂2f

∂y2]
 
 
 
 
 

(q22
2 ∂2f

∂y2
) 

 

 

 

 ⟹  𝑓(𝑥𝑖, 𝑦𝑖
) + ℎ [𝑝

2

𝜕𝑓

𝜕𝑥
+ 𝑞

21
𝑘1

𝜕𝑓

𝜕𝑦
+ 𝑞

22
𝑘1

𝜕𝑓

𝜕𝑦
] + ℎ2 [(𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝

1

𝜕𝑓

𝜕𝑥
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗

(𝑞
11

𝑘
1

𝜕𝑓

𝜕𝑦
)] +  ℎ3 [

1

2
(𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝

1
2 𝜕2𝑓

𝜕𝑥2
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ (𝑝

1
𝑞
11

𝑘1)
𝜕2𝑓

𝜕𝑥𝜕𝑦
+

1

2
(𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ (𝑞

11
𝑘1)

2 ∂2𝑓

𝜕𝑦2
] 

             +ℎ2 (
1

2
𝑝2

2 𝜕2𝑓

𝜕𝑥2
+ 𝑝2𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦
(𝑞21 + 𝑞22) +

1

2
[(𝑞21𝑘1)

2 + (𝑘1𝑞22)
2]

𝜕2𝑓

𝜕𝑦2

+ 𝑞21𝑞22𝑘1
2 𝜕2𝑓

𝜕𝑦2
) 

+ℎ3  (𝑝1

𝜕𝑓

𝜕𝑥
+ 𝑞11𝑘1

𝜕𝑓

𝜕𝑦
) ∗ (𝑝2𝑞22

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞21

𝜕2𝑓

𝜕𝑦2
+ 𝑘1𝑞22

2
𝜕2𝑓

𝜕𝑦2
)  

+ℎ4

[
 
 
 
 
 

1

2
(𝑝1

2 𝜕2𝑓

𝜕𝑥2 + 2𝑝1𝑞11𝑘1
𝜕2𝑓

𝜕𝑥𝜕𝑦
+   (𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑦2) ∗ (𝑝2𝑞21
𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞22

𝜕2𝑓

𝜕𝑦2)

+
1

2
(𝑞22

2 𝜕2𝑓

𝜕𝑦2) (𝑝1
𝜕𝑓

𝜕𝑥
)
2

+ (𝑞22
2 𝜕2𝑓

𝜕𝑦2)𝑝1𝑞11𝑘1 (
𝜕𝑓

𝜕𝑥
) (

𝜕𝑓

𝜕𝑦
)

+ 
1

2
(𝑞22

2 𝜕2𝑓

𝜕𝑦2) (𝑞11𝑘1
𝜕𝑓

𝜕𝑦
)
2

+
1

2
𝑝1

2𝑞22
2 𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2 + 𝑝1𝑞11𝑘1𝑞22
2 𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2 +
1

2
𝑞11

2𝑘1
3𝑞22

2 𝜕2𝑓

𝜕𝑦2

𝜕2𝑓

𝜕𝑦2]
 
 
 
 
 

  

+ℎ5

[
 
 
 
 

1

2
𝑝1

3
𝜕2𝑓

𝜕𝑥2

𝜕𝑓

𝜕𝑥
+ 𝑝1

2𝑞11𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑥
+

1

2
𝑝1(𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑦

+
1

2
𝑝1

2

𝑞11𝑘1

𝜕𝑓

𝜕𝑦

𝜕2𝑓

𝜕𝑥2
+ 2𝑝1(𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑦
+

1

2
(𝑞11𝑘1)

3
𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑦]
 
 
 
 

𝑞22
2
𝜕2𝑓

𝜕𝑦2
 

+ℎ6

[
 
 
 
 
 1

8
𝑝1

4 (
𝜕2𝑓

𝜕𝑥2
)

2

+
1

2
(𝑝1𝑞11𝑘1)

2

(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)

2

+
1

8
(𝑞11𝑘1)

4
(
𝜕2𝑓

𝜕𝑦2
)

2

+
1

2
𝑝1

3

𝑞
11

𝑘1

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦
+

1

2
𝑝

1
(𝑞11𝑘1)

3 𝜕2𝑓

𝜕𝑥𝜕𝑦
(
𝜕2𝑓

𝜕𝑦2
)

2

+
1

4
(𝑝1𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2]
 
 
 
 
 

(𝑞22
2 𝜕2𝑓

𝜕𝑦2
) 
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⟹ 𝒌𝟑 =  𝑓(𝑥𝑖, 𝑦𝑖
) + ℎ  𝑝

2

𝜕𝑓

𝜕𝑥
+ 𝑞

21
𝑘1

𝜕𝑓

𝜕𝑦
+ 𝑞

22
𝑘1

𝜕𝑓

𝜕𝑦
  

+ℎ2

(

 
 

1

2
𝑝2

2 𝜕2𝑓

𝜕𝑥2
+ 𝑝2𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦
(𝑞21 + 𝑞22)

+
1

2
[(𝑞21𝑘1)

2 + (𝑘1𝑞22)
2]

𝜕2𝑓

𝜕𝑦2
+ 𝑞21𝑞22𝑘1

2 𝜕2𝑓

𝜕𝑦2
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝

1

𝜕𝑓

𝜕𝑥
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ (𝑞

11
𝑘
1

𝜕𝑓

𝜕𝑦
)
)

 
 

 

+ℎ3

[
 
 
 
 (𝑝1

𝜕𝑓

𝜕𝑥
+ 𝑞11𝑘1

𝜕𝑓

𝜕𝑦
) ∗ (𝑝2𝑞22

𝜕2𝑓

∂𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞21

𝜕2𝑓

𝜕𝑦2
+ 𝑘1𝑞22

2
𝜕2𝑓

𝜕𝑦2
)

+
1

2
(𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝

1
2
𝜕2𝑓

𝜕𝑥2
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ (𝑝

1
𝑞
11

𝑘1)
𝜕2𝑓

𝜕𝑥𝜕𝑦
+

1

2
(𝑞

22

𝜕𝑓

𝜕𝑦
) (𝑞

11
𝑘1)

2 𝜕2𝑓

𝜕𝑦2]
 
 
 
 

 

+ℎ4

[
 
 
 
 
 

1

2
(𝑝1

2 𝜕2𝑓

𝜕𝑥2
+ 2𝑝1𝑞11𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦
+   (𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑦2
) ∗ (𝑝2𝑞21

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞22

𝜕2𝑓

𝜕y2
)

+
1

2
(𝑞22

2 𝜕2𝑓

𝜕𝑦2) (𝑝1
𝜕𝑓

𝜕𝑥
)
2

+ (𝑞22
2 𝜕2𝑓

𝜕𝑦2)𝑝1𝑞11𝑘1 (
𝜕𝑓

𝜕𝑥
) (

𝜕𝑓

𝜕𝑦
) +

1

2
(𝑞22

2 𝜕2𝑓

𝜕𝑦2) (𝑞11𝑘1
𝜕𝑓

𝜕𝑦
)
2

+
1

2
𝑝1

2𝑞22
2 𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2 + 𝑝1𝑞11𝑘1𝑞22
2 𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2 +
1

2
𝑞11

2𝑘1
3𝑞22

2 𝜕2𝑓

𝜕𝑦2

𝜕2𝑓

𝜕𝑦2 ]
 
 
 
 
 

  

+ℎ5

[
 
 
 
 

1

2
𝑝1

3
𝜕2𝑓

𝜕𝑥2

𝜕𝑓

𝜕𝑥
+ 𝑝1

2𝑞11𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑥
+

1

2
𝑝1(𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑦

+
1

2
𝑝1

2

𝑞11𝑘1

𝜕𝑓

𝜕𝑦

𝜕2𝑓

𝜕𝑥2
+ 2𝑝1(𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑦
+

1

2
(𝑞11𝑘1)

3
𝜕2𝑓

𝜕 2

𝜕𝑓

𝜕𝑦]
 
 
 
 

𝑞22
2
𝜕2𝑓

𝜕𝑦2
 

+ℎ6

[
 
 
 
 
 1

8
𝑝1

4 (
𝜕2𝑓

𝜕𝑥2
)

2

+
1

2
(𝑝1𝑞11𝑘1)

2

(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)

2

+
1

8
(𝑞11𝑘1)

4
(
𝜕2𝑓

𝜕𝑦2
)

2

+
1

2
𝑝1

3

𝑞
11

k1

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦
+

1

2
𝑝

1
(𝑞11𝑘1)

3 𝜕2𝑓

𝜕𝑥𝜕𝑦
(
𝜕2𝑓

𝜕𝑦2
)

2

+
1

4
(𝑝1𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2]
 
 
 
 
 

(𝑞22
2 𝜕2𝑓

𝜕𝑦2
) 

 

  

 

 

⟹且𝒌𝟐 = 𝑓(𝑥𝑖, 𝑦𝑖) + [𝑝1ℎ
𝜕𝑓

𝜕𝑥
+ (𝑞11𝑘1ℎ)

𝜕𝑓

𝜕𝑦
] +

1

2!
 (𝑝1ℎ)

2 𝜕2𝑓

𝜕𝑥2 +  2(𝑝1ℎ) ∗ (𝑞11𝑘1ℎ)
𝜕2𝑓

𝜕𝑥𝜕𝑦
+

(𝑞11𝑘1ℎ)
2 𝜕2𝑓

𝜕𝑦2  

 

        ⟹ 𝑦𝑖+1 = 𝑦𝑖 + (𝑎1𝑘1 + 𝑎2𝑘2 + 𝑎3𝑘3) ∙ ℎ 
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⟹ 𝑦𝑖+1 = 𝑦𝑖 + 𝑎1𝑘1ℎ

+ 𝑎2ℎ

[
 
 
 
 𝑓(𝑥𝑖, 𝑦𝑖) +  𝑝1ℎ

𝜕𝑓

𝜕𝑥
+ (𝑞11𝑘1ℎ)

𝜕𝑓

𝜕𝑦
 

+
1

2!
 (𝑝1ℎ)

2
𝜕2𝑓

𝜕𝑥2
+  2(𝑝1ℎ) ∗ (𝑞11𝑘1ℎ)

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ (𝑞11𝑘1ℎ)

2
𝜕2𝑓

𝜕𝑦2
 
]
 
 
 
 

 

     +𝑎3ℎ

{
 
 
 

 
 
 

𝑓(𝑥𝑖 , 𝑦𝑖) + ℎ  𝑝2

𝜕𝑓

𝜕𝑥
+ 𝑞21𝑘1

𝜕𝑓

𝜕𝑦
+ 𝑞22𝑘1

𝜕𝑓

𝜕𝑦
 

+ ℎ2

(

 
 

1

2
𝑝

2

2 𝜕2𝑓

𝜕𝑥2
+ 𝑝2𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦
(𝑞21 + 𝑞22) +

1

2
[(𝑞21𝑘1)

2
+ (𝑘1𝑞22)

2
]
𝜕2𝑓

𝜕𝑦2

+𝑞21𝑞22𝑘1
2 𝜕2𝑓

𝜕𝑦2
+ (𝑞22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝1

𝜕𝑓

𝜕𝑥
+ (𝑞22

𝜕𝑓

𝜕𝑦
) ∗ (𝑞11𝑘1

𝜕𝑓

𝜕𝑦
)

)

 
 

+ ℎ3

[
 
 
 
 (𝑝1

𝜕𝑓

𝜕𝑥
+ 𝑞11𝑘1

𝜕𝑓

𝜕𝑦
) ∗ (𝑝2𝑞22

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞21

𝜕2𝑓

𝜕𝑦2
+ 𝑘1𝑞22

2
𝜕2𝑓

𝜕𝑦2
)

+
1

2
(𝑞22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝1

2
𝜕2𝑓

𝜕𝑥2
+ (𝑞22

𝜕𝑓

𝜕𝑦
) ∗ (𝑝1𝑞11𝑘1)

𝜕2𝑓

𝜕𝑥𝜕𝑦
+

1

2
(𝑞22

𝜕𝑓

𝜕𝑦
) (𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑦2]
 
 
 
 

+ ℎ4

[
 
 
 
 
 
 
 1

2
(𝑝1

2
𝜕2𝑓

𝜕𝑥2
+ 2𝑝1𝑞11𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦
+   (𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑦2
) ∗ (𝑝2𝑞21

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞22

𝜕2𝑓

𝜕𝑦2
)

+
1

2
(𝑞

22
2 𝜕2𝑓

𝜕𝑦2
)(𝑝1

𝜕𝑓

𝜕𝑥
)

2

+ (𝑞
22

2 𝜕2𝑓

𝜕𝑦2
)𝑝1𝑞11𝑘1 (

𝜕𝑓

𝜕𝑥
)(

𝜕𝑓

𝜕𝑦
) +  

1

2
(𝑞

22

2 𝜕2𝑓

𝜕𝑦2
)(𝑞11𝑘1

𝜕𝑓

𝜕𝑦
)

2

+
1

2
𝑝1

2𝑞22
2
𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2
+ 𝑝1𝑞11𝑘1𝑞22

2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2
+

1

2
𝑞11

2𝑘1
3𝑞22

2
𝜕2𝑓

𝜕𝑦2

𝜕2𝑓

𝜕𝑦2 ]
 
 
 
 
 
 
 

+ ℎ5

[
 
 
 
 1

2
𝑝1

3
𝜕2𝑓

𝜕𝑥2

𝜕𝑓

𝜕𝑥
+ 𝑝1

2𝑞11𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑥
+

1

2
𝑝

1
(𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑦

+
1

2
𝑝

1

2

𝑞11𝑘1

𝜕𝑓

𝜕𝑦

𝜕2𝑓

𝜕𝑥2
+ 2𝑝1(𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑦
+

1

2
(𝑞11𝑘1)

3 𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑦]
 
 
 
 

𝑞22
2
𝜕2𝑓

𝜕𝑦2

+ ℎ6

[
 
 
 
 
 1

8
𝑝1

4 (
𝜕2𝑓

𝜕𝑥2
)

2

+
1

2
(𝑝1𝑞11𝑘1)

2

(
𝜕2𝑓

𝜕𝑥𝜕𝑦
)

2

+
1

8
(𝑞11𝑘1)

4
(
𝜕2𝑓

𝜕𝑦2
)

2

+
1

2
𝑝1

3

𝑞
11

𝑘1

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦

+
1

2
𝑝

1
(𝑞11𝑘1)

3 𝜕2𝑓

𝜕𝑥𝜕𝑦
(
𝜕2𝑓

𝜕𝑦2
)

2

+
1

4
(𝑝1𝑞11𝑘1)

2 𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2 ]
 
 
 
 
 

(𝑞22
2 𝜕2𝑓

𝜕𝑦2
)

}
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+𝒉𝟐 {𝑎3  𝑝
2

𝜕𝑓

𝜕𝑥
+ 𝑞

21
𝑘1

𝜕𝑓

𝜕𝑦
+ 𝑞

22
𝑘1

𝜕𝑓

𝜕𝑦
 + 𝑎2  𝑝1

𝜕𝑓

𝜕𝑥
+ (𝑞11𝑘1)

𝜕𝑓

𝜕𝑦
  } 

+𝒉𝟑

{
 
 
 

 
 
 

𝑎3

(

 
 

1

2
𝑝2

2 𝜕2𝑓

𝜕𝑥2
+ 𝑝2𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦
(𝑞21 + 𝑞22) +

1

2
[(𝑞21𝑘1)

2 + (𝑘1𝑞22)
2]

𝜕2𝑓

𝜕𝑦2

+𝑞21𝑞22𝑘1
2 𝜕2𝑓

𝜕𝑦2
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝

1

𝜕𝑓

𝜕𝑥
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ (𝑞

11
𝑘
1

𝜕𝑓

𝜕𝑦
)

)

 
 

+
𝑎2

2!
 (𝑝1)

2
𝜕2𝑓

𝜕𝑥2
+  2(𝑝1𝑞11𝑘1)

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ (𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑦2
 

}
 
 
 

 
 
 

 

+𝒉𝟒

{
 
 

 
 

𝑎3

[
 
 
 
 (𝑝1

𝜕𝑓

𝜕𝑥
+ 𝑞11𝑘1

𝜕𝑓

𝜕𝑦
) ∗ (𝑝2𝑞22

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞21

𝜕2𝑓

𝜕𝑦2
+ 𝑘1𝑞22

2
𝜕2𝑓

𝜕𝑦2
)

+
1

2
(𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ 𝑝

1
2
𝜕2𝑓

𝜕𝑥2
+ (𝑞

22

𝜕𝑓

𝜕𝑦
) ∗ (𝑝

1
𝑞
11

𝑘1)
𝜕2𝑓

𝜕𝑥𝜕𝑦
+

1

2
(𝑞

22

𝜕𝑓

𝜕𝑦
) (𝑞

11
𝑘1)

2 𝜕2𝑓

𝜕𝑦2]
 
 
 
 

}
 
 

 
 

 

+𝒉𝟓

{
  
 

  
 

𝑎3

[
 
 
 
 
 
 

1

2
(𝑝1

2
𝜕2𝑓

𝜕𝑥2
+ 2𝑝1𝑞11𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦
+   (𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑦2
) ∗ (𝑝2𝑞21

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑞21𝑘1𝑞22

𝜕2𝑓

𝜕𝑦2
)

+
1

2
(𝑞22

2 𝜕2𝑓

𝜕𝑦2
) (𝑝1

𝜕𝑓

𝜕𝑥
)
2

+ (𝑞22
2 𝜕2𝑓

∂𝑦2
)𝑝1𝑞11𝑘1 (

𝜕𝑓

𝜕𝑥
) (

𝜕𝑓

𝜕𝑦
) +   

1

2
(𝑞22

2 𝜕2𝑓

𝜕𝑦2
) (𝑞11𝑘1

𝜕𝑓

𝜕𝑦
)
2

+
1

2
𝑝1

2𝑞22
2
𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2
+ 𝑝1𝑞11𝑘1𝑞22

2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2
+

1

2
𝑞11

2𝑘1
3𝑞22

2
𝜕2𝑓

𝜕𝑦2

𝜕2𝑓

𝜕𝑦2 ]
 
 
 
 
 
 

}
  
 

  
 

 

+𝒉𝟔

{
  
 

  
 

𝑎3

[
 
 
 
 
1

2
𝑝1

3
𝜕2𝑓

𝜕𝑥2

𝜕𝑓

𝜕𝑥
+ 𝑝1

2𝑞11𝑘1

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑥
+

1

2
𝑝1(𝑞11𝑘1)

2
𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑦
+

1

2
𝑝1

2

𝑞11𝑘1

𝜕𝑓

𝜕𝑦

𝜕2𝑓

𝜕𝑥2

+2𝑝1(𝑞11𝑘1)
2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑓

𝜕𝑦
+

1

2
(𝑞11𝑘1)

3
𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑦 ]
 
 
 
 

𝑞22
2
𝜕2𝑓

𝜕𝑦2 }
  
 

  
 

 

+𝒉𝟕

{
 
 
 

 
 
 

𝑎3

[
 
 
 
 1

8
𝑝1

4 (
𝜕2𝑓

𝜕𝑥2
)

2

+
1

2
(𝑝1𝑞11𝑘1)

2 (
𝜕2𝑓

𝜕𝑥𝜕𝑦
)

2

+
1

8
(𝑞11𝑘1)

4 (
𝜕2𝑓

𝜕𝑦2
)

2

+
1

2
p1

3

q11k1

∂2f

∂x2

∂2f

∂x ∂y

+
1

2
p1(q11k1)

3
∂2f

∂x ∂y
(
∂2f

∂y2
)

2

+
1

4
(p1q11k1)

2
∂2f

∂x2

∂2f

∂y2 ]
 
 
 
 

(q
22

2 ∂2f

∂y2
)

}
 
 
 

 
 
 

 

 

 

 


