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摘要 

這份報告分為兩個部分：第一個部分是討論關於數值流體力學的模擬，

在”Introduction to Numerical Hydrodynamics”這本書中一些用來解移流方程式的數值

方法將會被驗證；第二個部分是在討論用來解釋無碰撞電漿時使用的伏拉索夫方程式

(Vlasov equation)的數值方法，並被用來在模擬動力學理論下的電漿現象。 
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There are two parts in this progress report. The first part is about the simulation 

verification of numerical hydrodynamics. The numerical methods in the book, 

“Introduction to Numerical Hydrodynamics” for solving advection equations were 

implemented for practicing numerical simulation. The second part is about the Vlasov 

solver. It is a fully kinetic model to calculate basic plasma phenomenon. 
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Part I Numerical Hydrodynamics 

Chapter 1 Practiced problems 

1.1 Introduction 

We would like to study the behaviors of plasma in plasma in kinetic regime 

numerically. Some complex equations will be solved. These equations can be solved 

numerically and different numerical schemes are studied by following the textbook, 

“Introduction to Numerical Hydrodynamics” [1]. Details will be given in the following 

sections. 

1.2 Advection equation 

The advection equations have been simulated in different numerical schemes. The 

advection equation belongs to hyperbolic equation. It is used to express the advection 

flow. It is written as 

       
∂ρ

∂t
= v

∂ρ

∂x
.         (1-1) 

where ρ = ρ(x, t) is fluid density, v is velocity, x is space, and t is time. Note that both 

ρ and v are functions of x and t. The analytical solution of this advection equation 

should be ρ(x, t) = ρ(x − vt). 

1.3 Discretization of advection equation 

To solve the advection equation numerically, partial differentiates in Eq.(1-1) can 

be written in the differentiate forms as 
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∂ρ

∂t
→

ρi
n+1−ρi

n

δt
, 

v
∂ρ

∂x
→ v

ρi+1
n −ρi−1

n

2δx
. 

Time and space also can be discretized as 

tn = δt ∗ n + t0, 

xi = δx ∗ i + x0. 

where δx =
1

imax
, and δt =

1

tmax
. The total time we solved here is 1. As figure 1-1 shows 

in below, the subscript “n” refers to the quantities in the time step tn, and the subscript 

“i” refers to the discretized location xi. When we solved the equation, we had imax = 

200, and tmax = 500, so that δx = 0.005, and δt = 0.002. To achieve the numerical 

stable, Courant-Friedrichs-Levy (CFL) condition defines as 
δt

δx
v < 1 is required. For v 

= 1 in examples in the next chapter, 
δt

δx
v = 0.4, which satisfy the CFL condition. 
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As a result, Eq.(1-1) can be written as Eq.(1-2). 

       
ρi

n+1−ρi
n

δt
= v

ρi+1
n −ρi−1

n

2δx
.       (1-2) 

Finally, the density in the new time step ρi
n+1 can be calculated by the one using 

at the old time step, so Eq.(1-2) can be changed as Eq.(1-3) as below. 

      ρi
n+1 = ρi

n −
δt

2δx
v(ρi+1

n − ρi−1
n ).      (1-3) 

The above equation can be rewritten using the flux of fluid flow. fi
n defined as 

fi
n = f(ρi

n) = vρi+1
n . As a result, Eq.(1-3) is written as Eq.(1-4). 

      ρi
n+1 = ρi

n −
δt

2δx
(fi+1

n − fi−1
n ).      (1-4) 

Fig.1-1 Simulation grids 



  

9 

  

Furthermore, fi+1
n  and fi−1

n  are replaced by f
i+

1

2

n  and f
i−

1

2

n  where f
i+

1

2

n =
fi+1
n +fi

n

2
 and 

f
i−

1

2

n =
fi−1
n +fi

n

2
 leading to 

      ρi
n+1 = ρi

n −
δt

δx
(f

i+
1

2

n − f
i−

1

2

n ).      (1-5) 

1.4 Initial conditions (ICs) 

To practice different numerical schemes, we used the following initial conditions: 

(1)  A Gaussian function with center at x = 0.15: at 0.1<x<0.2, f(x) = e
−

(x−0.15)2

2σ2 , 

σ=0.01. 

(2)  A rectangle function: at 0.3<x<0.4, f(x) = 1. 

(3)  A triangle function with peak at x = 0.55: at 0.5<x<0.55, f(x) = 20x - 10, and at 

0.55<x<0.6, f(x) = 12 - 20x. 

(4)  A half-ellipse function with peak at x = 0.75: at 0.7<x<0.8, 

f(x) = b√1 −
(x−0.75)2

a2
, b=1, a=0.75. 

(5)  Otherwise, f(x) = 0. 

The initial condition is shown in figure 1-2. 
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1.5 Boundary conditions (BCs) 

Periodic boundary conditions are used here. A right-advected wave shows up from 

the left boundary when it vanished from the right boundary. The real boundary is set 

as ρ(0, t) = ρ(xmax, t), ρ(xmax, t) = ρ(0, t), so the boundaries can be set as ρimax+1 =

ρimin+1, and ρimin−1 = ρimax−1 numerically. 

Chapter 2 Numerical results 

Numerical results of the advection equations using some numerical methods are 

given in this chapter. They can be categorized as linear schemes and nonlinear schemes 

separately. 

2.1 Linear schemes for solving advection equation 

Fig.1-2 Initial condition 
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In this section, linear numerical schemes are used. The parameters of advection 

equation were given in section 1.3, and the initial conditions and boundary conditions 

were given in section 1.4 and section 1.5 respectively 

2.1.1 Implicit centered scheme 

The flux of implicit centered scheme in Eq.(1-5) is 

f
i+

1

2

n =
1

4
(vρi+1

n + vρi
n) +

1

4
(vρi+1

n+1 + vρi
n+1), 

f
i−

1

2

n =
1

4
(vρi

n + vρi−1
n ) +

1

4
(vρi

n+1 + vρi−1
n+1). 

The stencil diagram of implicit centered scheme is shown in figure 2-1. 

 

 

 

 

 

 

The numerical result of implicit centered scheme is shown in figure 2-2 

 

 

 

 

Fig.2-1 Stencil diagram of implicit centered scheme 
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Fig. 2-2 Numerical result of implicit centered scheme 

 

 

 

 

 

 

 

 

Strong numerical oscillations are observed in the simulation result using implicit 

centered scheme. 

2.1.2 Backward time center space (BTCS) scheme 

The flux of backward time center space in Eq.(1-5) is 

f
i+

1

2

n =
1

2
(vρi+1

n+1 + vρi
n+1), 

f
i−

1

2

n =
1

2
(vρi

n+1 + vρi−1
n+1). 

The stencil diagram of BTCS scheme is shown in figure 2-3. 

 

 

 

 

Fig. 2-3 Stencil diagram of BTCS scheme 



  

13 

  

Fig. 2-4 Numerical result of BTCS scheme 

 

The numerical result of BTCS scheme is shown in figure 2-4. 

 

 

 

 

 

 

 

 

Small zig-zag wiggles and diffusion phenomena are observed after propagating. 

2.2 Nonlinear schemes for solving advection equation 

In this section, nonlinear schemes are used to solve the advection equation. The 

parameters of advection equation are given in section 1.3, and the initial conditions 

and boundary conditions were given in section 1.4 and section 1.5 respectively. 

2.2.1 Godunov-type finite volume scheme 

The Godunov’s idea is a kind of discretized method to solve nonlinear partial 

differential equations. It can be separated to three steps which are called 

Reconstruct-Solve-Average (RSA). 
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(1) “Reconstruct” a continuous function ρ(x) to a discrete function ρi. 

(2) “Solve” for δt. 

(3) “Average ρ(x)” in each cell to get ρi. 

After using finite volume method to solve Eq.(1-5) between x
i+

1

2

 and x
i−

1

2

 in 

space and tn+1 and tn in time , Eq.(1-5) becomes the following form. 

    ∫ (ρi
n+1 − ρi

n)dx
x
i+

1
2

x
i=

1
2

= ∫ (f
i+

1

2

n − f
i−

1

2

n )
tn+1

tn
dt.     (2.1) 

If we defined the average of ρi
n  in space grids, 𝜌̅i

n+1 − 𝜌̅i
n  is 

∫ (ρi
n+1−ρi

n)dx

x
i+

1
2

x
i=

1
2

x
i+

1
2
−x

i−
1
2

, 

where x
i+

1

2

− x
i−

1

2

= δx. Then Eq.(2.1) could be changed to 

ρ̅i
n+1 = ρ̅i

n −
1

δx
∫ (f

i+
1
2

n − f
i−

1
2

n )
tn+1

tn
dt 

      = ρ̅i
n −

v

δx
∫ (ρ (𝑥

𝑖+
1

2

, 𝑡𝑛) − ρ (𝑥
𝑖−

1

2

, 𝑡𝑛)) dt
tn+1

tn
.  (2.2) 

The piecewise linear method (PLM) is used to reconstruct linear function in each 

cell, which means the function ρ(x, t) can be approximated with 1st-order Taylor’s 

expansion. The ρ(x) can be written as 

       ρ(𝑥𝑖 , 𝑡
𝑛) = ρi

n + (x − xi)δρi
n.      (2.3) 

where slope-limiter δρi
n is the average of grids which is defined as 

𝑑𝜌

𝑑𝑥
. If we put 

Eq.(2.3) into the finite volume equation Eq.(2.2), and calculate the integral with 

x = x
i+

1

2

+ 𝑣(𝑡 − 𝑡𝑛) and x = x
i−

1

2

+ 𝑣(𝑡 − 𝑡𝑛) when x approximates to x
i+

1

2

 and x
i−

1

2

  

respectively. Then, Eq.(2.2) can become 
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      ρ̅i
n+1 = ρ̅i

n −
δt

δx
(f

i+
1

2

n − f
i−

1

2

n ).       (2.4) 

where the f
i+

1

2

n  and f
i−

1

2

n . can be known as 

f
i+

1

2

n = v[ρi
n +

1

2
δρi

nsign(v) (1 − |v|
δt

δx
)], 

f
i−

1

2

n = v[ρi−1
n +

1

2
δρi−1

n sign(v) (1 − |v|
δt

δx
)]. 

The sign(v) = {
   1, if x > 0
   0, if x = 0
−1, if x < 0

 is set as a sign function. 

Finally, f
i+

1

2

n  and f
i−

1

2

n  terms are substituted into the finite difference Eq.(2-4). 

  ρi
n+1 = ρi

n −
δt

δx
v [(ρi

n − ρi−1
n ) +

1

2
(δρi

n − δρi−1
n )sign(v) (1 − |v|

δt

δx
)].  (2.5) 

f
i+

1

2

n  and f
i−

1

2

n  also can be simplified as following form by ignoring the boundary 

grids in space, which means |v|
δt

δx
 term. 

f
i+

1

2

n = v[ρi
n +

1

2
δρi

nsign(v)], 

f
i−

1

2

n = v[ρi−1
n +

1

2
δρi−1

n sign(v)]. 

The advection equation can be simplified to the form. 

ρi
n+1 = ρi

n −
δt

δx
v [(ρi

n − ρi−1
n ) +

1

2
(δρi

n − δρi−1
n )sign(v)]. 
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2.2.2 The PLM schemes with linear slope-limiters 

There are some methods with linear slope-limiter are shown in this sections. 

Donor cell (Forward time backward space, FTBS) scheme: 

The slope-limiter of FTBS scheme is 

δρi
n = 0. 

Eq.(1-5) becomes 

ρi
n+1 = ρi

n −
∂t

∂x
v(fi

n − fi−1
n ). 

The stencil diagram of FTBS scheme is shown in figure 2-5. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-5 Stencil diagram of FTBS scheme 
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Fig. 2-6 Numerical result of FTBS scheme 

The numerical result of FTBS scheme is shown in figure 2-6. 

 

 

 

 

 

 

 

 

Strong diffusion phenomena are observed after propagating. 

Lax-Wendroff scheme: 

The slope-limiter of Lax-Wendroff scheme is 

δρi
n = ρi+1

n − ρi
n. 

Eq.(1-5) becomes 

ρi
n+1 = ρi

n −
∂t

∂x
v(f

i+
1

2

n − f
i−

1

2

n ), 

f
i+

1

2

n =
1

2
(fi+1

n + fi
n) −

∂t

2∂x
v(fi+1

n − fi
n), 

f
i−

1

2

n =
1

2
(fi

n + fi−1
n ) −

∂t

2∂x
v(fi

n − fi−1
n ). 
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Fig. 2-8 Numerical result of Lax-Wendroff scheme 

The stencil diagram of Lax-Wendroff scheme is shown in figure 2-7. 

 

 

 

 

 

 

The numerical result of Lax-Wendroff scheme is shown in figure 2-8 

 

 

 

 

 

 

 

 

 

 

Strong oscillations are observed after density profiles propagate. 

Beam-Warming scheme: 

The slope-limiter of Beam-Warming scheme is 

δρi
n = ρi

n − ρi−1
n . 

Fig. 2-7 Stencil diagram of Lax-Wendroff scheme 
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Eq.(1-5) becomes 

ρi
n+1 = ρi

n −
∂t

∂x
v(f

i+
1

2

n − f
i−

1

2

n ), 

f
i+

1

2

n =
1

2
(3fi

n − fi−1
n ) −

∂t

2∂x
v(fi

n − fi−1
n ), 

f
i−

1

2

n =
1

2
(3fi−1

n − fi−2
n ) −

∂t

2∂x
v(fi−1

n − fi−2
n ). 

The stencil diagram of Beam-Warming scheme is shown in figure 2-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-9 Stencil diagram of Beam-Warming scheme 
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Fig. 2-10 Numerical result of Beam-Warming scheme 

The numerical result of Beam-Warming scheme is shown in figure 2-10 

 

 

 

 

 

 

 

 

Strong oscillations are observed after propagating. 

Fromm scheme: 

The slope-limiter of Lax-Wendroff scheme is 

δρi
n =

1

2
(ρi+1

n − ρi−1
n ). 

Eq.(1-5) becomes 

ρi
n+1 = ρi

n −
∂t

∂x
v(f

i+
1

2

n − f
i−

1

2

n ), 

f
i+

1

2

n = f
i+

1

2

n (Lax − Wendroff) + f
i+

1

2

n (Beam − Warming), 

f
i−

1

2

n = f
i−

1

2

n (Lax − Wendroff) + f
i−

1

2

n (Beam − Warming). 
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Fig. 2-11 Stencil diagram of Fromm scheme 

Fig. 2-12 Numerical result of Fromm scheme 

The stencil diagram of Fromm scheme is shown in figure 2-11. 

 

 

 

 

 

The numerical result of Fromm scheme is shown in figure 2-12 

 

 

 

 

 

 

 

 

The scheme is observed almost the same graph as initial state with some instable 

at peaks. 
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Fig. 2-13 Stencil diagram of PLM scheme 

2.2.3 PLM schemes with nonlinear slope-limiters 

All slope-limiters in this section use the same stencil diagram in figure 2-13. 

 

 

 

 

 

 

PLM scheme with Mimnod slope limiter: 

Minmod slope-limiter is defined as 

δρi
n = min(max(ρi

n − ρi−1
n , 0), max(ρi+1

n − ρi
n, 0)) + 

max(min(ρi
n − ρi−1

n , 0), min(ρi+1
n − ρi

n, 0)). 
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Fig. 2-14 Numerical result of Minmod slope-limiter 

The numerical result of Minmod slope-limiter is shown in figure 2-14. 

 

 

 

 

 

 

 

 

Strong diffusion is observed at peaks. 

PLM scheme with vanLeer slope-limiter: 

The vanLeer slope-limiter is defined as 

δρi
n = {

2
(ρi+1

n −ρi
n)(ρi

n−ρi−1
n )

ρi+1
n −ρi−1

n , if (ρi+1
n − ρi

n)(ρi
n − ρi−1

n ) > 0

0, others
. 
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Fig. 2-15 Numerical result of vanLeer 

slope-limiter 

The numerical result of vanLeer slope-limiter is shown in figure 2-15. 

 

 

 

 

 

 

 

Strong diffusion is observed at peaks, but weaker than Minmod one. 

PLM scheme with Superbee slope-limiter: 

The Superbee slope-limiter is defined as 

δρi
n = [sign(ρi

n − ρi−1
n ) + sign(ρi+1

n − ρi
n)] × 

min[ |ρi
n − ρi−1

n |, |ρi+1
n − ρi

n|,
1

2
max(|ρi

n − ρi−1
n |, |ρi+1

n − ρi
n|)]. 
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Fig. 2-16 Numerical result of Superbee slope-limiter 

The numerical result of Superbee slope-limiter is shown in figure 2-16. 

 

 

 

 

 

 

 

 

A little diffusion is observed at peaks, but weaker than both vanLeer and Minmod 

one. Some expansions are also observed at peaks. 
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Modified PLM scheme with Superbee slope-limiter: 

This method uses simplified PLM scheme equation with Superbee slope-limiter. 

The numerical result of Superbee slope-limiter is shown in figure 2-17. 

 

 

 

 

 

 

 

 

 

Some expansions are observed at peaks in this scheme, but it still shows a great 

simulation result. 

 

 

 

 

 

Fig. 2-17 Numerical result of Modified Superbee slope-limiter 
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2.2.4 Piecewise parabolic reconstruction (PPM) method 

PPM method is a finite volume method also used Godunov’s scheme but with 

higher-order approximations which is a 2nd-order parabolic reconstruction. As a result, 

the Eq.(2.3) can be replaced by a Taylor’s expansion which is a parabolic 

approximation as 

ρ(𝑥𝑖 , 𝑡
𝑛) = ρi

n + (x − xi)δρi
n + (x − xi)

2δ2ρi
n 

This equation can be brought into Eq.(2.2) as above and become the form as 

Eq.(2.4). 

      ρ̅i
n+1 = ρ̅i

n −
δt

δx
(f

i+
1

2

n − f
i−

1

2

n ).       (2.4) 

 As in Eq.(2-4), the  f
i+

1

2

n  and f
i−

1

2

n  of PPM are set as 

f
i+

1

2

n = vρ
i+

1

2

n −
v2δt

2δx
[(ρ

i+
1

2

n − ρ
i−

1

2

n ) − (1 −
2vδt

3δx
ρi

n)], 

f
i−

1

2

n = vρ
i−

1

2

n −
v2δt

2δx
[(ρ

i−
1

2

n − ρ
i−

3

2

n ) − (1 −
2vδt

3δx
ρi−1

n )]. 

The parameters in the f
i+

1

2

n  and f
i−

1

2

n  are set as 

ρ
i+

1
2

n = [
7

12
(ρi

n + ρi+1
n ) −

1

12
(ρi+2

n + ρi−1
n )] 

ρ
i−

1
2

n = [
7

12
(ρi−1

n + ρi
n) −

1

12
(ρi+1

n + ρi−2
n )] 

ρ
i−

3
2

n = [
7

12
(ρi−2

n + ρi−1
n ) −

1

12
(ρi

n + ρi−3
n )] 

ρi
n = [6ρi

n −
1

2
(ρ

i+
1
2

n + ρ
i−

1
2

n )] 

ρi−1
n = [6ρi−1

n −
1

2
(ρ

i−
1
2

n + ρ
i−

3
2

n )] 
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Fig. 2-19 Numerical result of PPM scheme 

The stencil diagram of PPM scheme is shown in figure 2-18. 

 

 

 

 

 

 

The numerical result of PPM scheme is shown in figure 2-19. 

 

 

 

 

 

 

 

 

Some zigzags are observed at bottoms and peaks, but PPM scheme shows the best 

simulation result in all simulation. The PLM scheme with Superbee slope-limiter is the 

second best one followed by the PLM scheme with VanLeer slope-limite., The PLM 

Fig. 2-18 Stencil diagram of PPM scheme 
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scheme with Minmod slope-limiter is the worst used nonlinear method. In linear 

method, the Fromm scheme shows the best perform as PPM scheme, but the other 

methods can’t be used because of huge oscillations or diffusions. 
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Part II Vlasov solver 

Chapter 3 Introduction to Vlasov solver 

3.1 Basic equations of Vlasov solver 

Vlasov equation is used to calculate plasma phenomena without collision in 

kinetic theory. The Vlaosv solver is a numerical method to simulate plasma phenomena 

by solving Vlasov equation directly. It shows high precision compared to other 

methods but with huge calculation time. 

One-dimensional (1-D) Vlasov-Poisson system is used. The main equations in this 

system have the form. 

    
∂f

∂t
+ v

∂f

∂x
+ a

∂f

∂v
= 0, Vlasov equation.     (3-1) 

     
∂2φ

∂x2
= −

𝑒

𝜖0
(𝑛𝑖 − ∫ fdv), Poisson’s equation.    (3-2) 

In Vlasov equation as Eq.(3-1), the distribution function f(x,v,t) is generally given 

as an initial condition, v is velocity and a is acceleration. φ(x) is electric potential here 

in Eq.(3-2), and q is electric quantity. 𝑛𝑖  on the right-hand side means the number 

density of ions and is set as 1, and ∫ fdv is the number density of electrons. To 

calculate the acceleration a, we need to use the Poisson’s equation as Eq.(3-2). Then 

the electric potential φ has the relationship with acceleration a as 

       E = −
dφ

dx
.         (3-3) 

       a = −
eE

𝑚𝑒
         (3-4) 



  

31 

  

3.2 Normalization of basic equations 

To simulate the equations above easily without complex constants, we have to 

normalize these equations to dimensionless equations to ensure this simulation is 

correct. There are some characteristic units used to normalize equations here. 

t = tchart̂. 

x = xcharx̂. 

n = ncharn̂. 

v = vcharv̂. 

f = fcharf̂. 

a = acharâ. 

𝜑 = 𝜑char𝜑̂. 

E = EcharÊ. 

The characteristic units above are set as below. 

tchar = ωp
−1 ωp is the plasma frequency. 

xchar = vchartchar 

nchar = fcharvchar 

φchar =
qfcharvcharxchar

2

ε0

 

Echar =
φchar

xchar
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achar =
𝑒Echar

𝑚𝑒

 

 Equations of Vlasov solver can be normalized as below. 

       
∂f̂

∂t̂
+ v

∂f̂

∂x̂
+ a

∂f̂

∂v̂
= 0.       (3-5) 

     
d2φ̂ (x̂)

dx̂2
= −(1 − ∫ f̂(x̂, v̂, t̂)dv̂

∞

−∞
)      (3-6) 

       Ê (x̂) = −
dφ̂ (x̂)

dx̂
        (3-7) 

       â(x̂) = −Ê(x̂)        (3-8) 

The hat of variables means normalized variables. â is normalized acceleration, Ê 

is normalized electric field, φ̂  is the normalized electric potential, ρ̂  is the 

normalized number density, f̂ is normalized distribution function. As a result, the 

charge density should be calculated first, and the second is gotten electric potential. 

Finally, we can solve the Poisson’s equation and know the electric field and 

acceleration of plasma itself. 
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3.3 Simulation order of Vlasov solver 

The order of simulation in solving equations above in Vlasov solver is shown in 

figure 3-1. 

 

 

 

 

 

 

 

 

3.4 Numerical structure 

The structure of Vlasov solver is shown as below. 

Main program 

• Main 
– Module 

– Initial 

– Boundary 

– Density 

– Poisson 

– vboundary 

– Electric 

– vboundary 

Fig.3-1 Flow chart of Vlasov solver 
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– for time loop 

• Splitv 

• Boundary  

• Splitx 

• Boundary 

• Density 

• Poisson 

• vboundary 

• Electric 

• vboundary 

– Output 

The function of every subprogram is discussed below. 

Main – main program, the time steps are set here 

Module – set numerical variables 

Initial – set initial distribution function 

Boundary and vboundary – set boundary conditions of simulation 

Density – calculate number density 

Poisson – calculate Poisson’s equation 

Electric – calculate electric field by using electric potential relation 

Splitx – calculate divided advection equation in x 

Splitv - calculate divided advection equation in v 

3.5 Numerical space grids 

The grid used in the Vlasov solver is a phase space grid. It has the form shows in 

figure 3-2. 
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The simulation range of Vlasov solver is set between 0 to 4π in both x and v, 

and grids of x and v are both divided in 512 grids. The total simulation time is 1 with 

each time step is 
1

1600
, and the number of total time steps should be 1600. 

Chapter 4 Numerical methods and simulation results 

In this chapter, the numerical methods of each subprogram are explained and 

benchmarked so that we can use this Vlasov solver to solve more complex problems. To 

benchmark the every subprogram, only the subprogram we want to benchmark is 

activated. 

Fig.3-2 Simulation range of Vlasov solver in stencil diagram 
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4-2 Simulation result of initial condition 

4.1 Initial condition 

The first initial condition is set as f̂(t̂ = 0) = e− 
(x̂−2π)2

2 , and the graph is shown in 

figure 4-1. The result in red dots is compared with the analytical one in blue line which 

is calculated by Mathematica. 

 

 

 

 

 

 

 

The second initial condition is set as f̂(t̂ = 0) = e− 
(v̂−2π)2

2 , and the graph is shown 

in figure 4-2. The result in red dots is compared with the analytical one in blue line 

which is calculated by Mathematica. 

 

 

 

 

 

Fig.4-1 Simulation result of initial condition 
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Both figure 4-1 and figure 4-2 shows that the initial conditions of simulation are 

the same with the analytical one. 

4.2 Boundary condition 

The boundary condition is set as 1 in on boundary as vmin = vmax = 1. The initial 

condition is set as below and shown in figure 4-3. 

f(x, v, t = 0) =
2

7√2π
(1 + 5v2) [1 + 0.01(

cosx + cos1.5x

1.2
+ cos0.5x)]e−

v2

2  

 

 

 

 

 

 

 

 

After putting the boundary condition subprograms, the result is shown in figure 

4-4. 

 

 

 

Fig.4-3 initial condition 
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4.3 Split Vlasov equations 

The normalized Vlasov equation can be written as Eq.(3-5) like following. 

        
∂f̂

∂t̂
+ v̂

∂f̂

∂x̂
+ â

∂f̂

∂v̂
= 0.      (3-5) 

First, to solve this equation numerically, Vlasov equation can be split into two 

advection equations as the form which make it become easier in numerical simulation. 

        
∂f̂

∂t̂
+ v̂

∂f̂

∂x̂
= 0,        (4-1) 

        
∂f̂

∂t̂
+ â

∂f̂

∂v̂
= 0.        (4-2) 

Then the advection equation, Eq.(4-1) and Eq.(4-2) can be discretized as 

       
fix
n+1−fix

𝑛∗

δt
+ v

fix
n −fix−1

n

δx
= 0,       (4-3) 

       
fiv
𝑛∗

−fiv
n

δt
+ a

fiv
n −fiv−1

n

δv
= 0.        (4-4) 

Fig.4-4 initial condition with vmin = vmax = 1 
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Thus make Vlasov equation become two advection equations, and then these two 

equations can be changed to as 

      f̂ix
n+1 = f̂ix

𝑛∗
−

δt̂

δx̂
v̂(f̂ix

n − f̂ix−1
n ),      (4-5) 

      f̂iv
𝑛∗

= f̂iv
n −

δt̂

δv̂
â(f̂iv

n − f̂iv−1
n ).      (4-6) 

where 𝑛∗ is a temporal time step between n and n+1 in discretization. As a result, f̂i
𝑛∗

  

term can be calculated first here, and the result is used to calculate the f̂i
n+1 at last. 

The split advection equations in x and in v are separated into two subprograms in this 

Vlasov solver. The initial condition is set as section 4-1, and the boundary conditions 

are periodic boundary condition on both side in x, reflective boundary condition on the 

bottom of v and zero on the top of v. Both of these equations can be solved like any 

advection equation which has been discussed in Part I, and they can be benchmarked 

respectively. 

4.3.1 Split advection equation in x direction 

The Split advection equation in x direction is solved by using PPM scheme in 

section 2.2.4, and velocity is set as v = 1. The initial distribution function is 𝑒− 
(𝑥−2𝜋)2

2 . 

The simulation result of it is shown in figure 4-5 as solid line which is compared with 

Mathematica as red dots. It shows the wave moves from left to right well. 
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4.3.2 Split advection equation in v direction 

The split advection equation in x direction is also solved by using PPM scheme 

in section 3.2.4, and acceleration is set as a = 1. The simulation result of it is shown in 

figure 4-6 as solid line which is compared with Mathematica as red dots. It shows the 

wave moves from left to right well. 

 

 

 

 

 

Fig.4-5 simulation result of split advection equation in x direction 
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Fig.4-6 simulation result of split advection equation in v direction 

 

 

 

 

 

 

 

 

4.4 Charge density 

The charge density is calculated from the integration of distribution function f̂ as 

Eq.(4-7). 

        ρ̂ = 1 − ∫ f̂dv̂.       (4-7) 

To benchmark it, we set the initial distribution function f̂ as 

f̂(t̂ = 0) =
1

1+v̂2
. 

The trapezoidal method is used to calculate this integration, so ρ̂  can be 

calculated by using 

 ρ̂ = ∫ f̂dv̂
vimax

vimin
=

vivmax−vivmin

ivmax
[∑ f(viv)

ivmax−1
iv=1 +

1

2
(f(vivmin) + f(vivmax)). (4-8) 
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The integration of distribution function by velocity is shown in figure 4-7 to 

compare with analytical one. The red points are simulation result, and solid line is 

analytical one. 

 

 

 

 

 

 

 

 

4.5 Poisson’s equation 

The Poisson’s equation has the form as Eq.(3-6). 

       −
𝑑2φ̂

𝑑𝑥2
= 1 − ρ̂ = 1 − ∫ f̂dv̂.     (3-6) 

To benchmark this Poisson’s equation, we set ρ̂ = sin(
3x̂

4π
), so the equation is set as 

        
𝑑2φ̂

𝑑𝑥2
= sin(

3x̂

4π
).       (4-9) 

For testing of this subprogram, ρ(x) = sin(
3x

4π
) . The boundaries are set as 

φ(0) = 0,φ(4π) = 0. 

The exact solution of Eq.(4-9) is 

Fig.4-7 simulation result of number density 
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φ̂ =
4

9
[x̂πsin(3) − 4π2sin(

3x̂

4π
)]. 

This solution can be used in comparing with the numerical one solved in following. 

To solve Poisson equation numerically, Eq.(4-9) can be discretized to the finite 

difference equation from. 

       
−φix−1+2φix−φix+1

δx2
= ρix      (4-10) 

This equation can be changed the form to following form. 

      −φix−1 + 2φix − φix+1 = ρixδx2.    (4-11) 

Eq.(4-11) can be expanded in a matrix form in different numerical grids as 

[
 
 
 
 

1 0 ⋯ ⋯ 0
2 −1 ⋱ ⋱ ⋮

−1 2 ⋱ 2 −1
⋮ ⋱ ⋱ −1 2
0 ⋯ ⋯ 0 1 ]

 
 
 
 

[
 
 
 
 

φ0

⋮
⋮
⋮

φimax]
 
 
 
 

=

[
 
 
 
 

ρ0δx2

⋮
⋮
⋮

ρimaxδx2]
 
 
 
 

.       (4.12) 

There are three methods, (a) Jacobi’s method, (b) Gauss-Seidel’s method, (c) 

Tridiagonal method, are used to solve this matrix, where (a) and (b) are iteration 

methods, and (c) is direct methods for solving matrix. 

(a) Jacobi’s method 

The Poisson’s equations in Eq.(4-12) are solved iteratively by using the following 

form as Eq.(4-13). 

     φix
n+1 = 0.5(φix−1

n + ρix
n δx2 + φix+1

n ).    (4-13) 

 (2) Gauss-Seidel’s method 
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Like the iteration method in Jacobi’s method, the Poisson’s equations in Eq.(4-12) 

are solved iteratively by using the following form as Eq.(4-14). 

      φix
n+1 = 0.5(φix−1

n+1 + ρix
n δx2 + φix+1

n ).   (4-14) 

Comparing to Jacobi’s theorem, the φix−1
n+1  terms are used n+1 temporal step for 

ix-1 space grid, and this way makes its convergence fast. 

 (3) Tridiagonal method 

The tridiagonal method is used to solve the tridiagonal matrix, which use the 

Gaussian elimination to solve the matrix. The steps of tridiagonal method in solving 

1-D Poisson’s equation are shown here. 

[
 
 
 
 

1 0 ⋯ ⋯ 0
2 −1 ⋱ ⋱ ⋮

−1 2 ⋱ 2 −1
⋮ ⋱ ⋱ −1 2
0 ⋯ ⋯ 0 1 ]

 
 
 
 

[
 
 
 
 

φ0

⋮
⋮
⋮

φimax]
 
 
 
 

=

[
 
 
 
 
b0 c0 0 ⋯ 0
a1 b1 ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ bixmax−1 cixmax−1

0 ⋯ 0 aixmax bixmax ]
 
 
 
 

[
 
 
 
 

x0

⋮
⋮
⋮

xixmax]
 
 
 
 

=

[
 
 
 
 

ρ0δx2

⋮
⋮
⋮

ρixmaxδx2]
 
 
 
 

=

[
 
 
 
 

d0

⋮
⋮
⋮

dixmax]
 
 
 
 

.             (4-15) 

By using Gaussian elimination, Eq.(4-15) can be changed to      

   

[
 
 
 
 
b0

′ c0
′ 0 ⋯ 0

0 b1
′ ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ b𝑖xmax−1

′ c𝑖xmax−1
′

0 ⋯ 0 0 b𝑖xmax
′ ]

 
 
 
 

[
 
 
 
 

x0

⋮
⋮
⋮

xixmax]
 
 
 
 

=

[
 
 
 
 

d0

⋮
⋮
⋮

dixmax]
 
 
 
 

.    (4-16) 
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Fig.4-8 simulation result of Poisson’s equation method 

   

[
 
 
 
 
b0

′′ 0 0 ⋯ 0

0 b1
′′ ⋱ ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ b𝑖xmax−1

′′ 0

0 ⋯ 0 0 b𝑖xmax
′′ ]

 
 
 
 

[
 
 
 
 

x0

⋮
⋮
⋮

xixmax]
 
 
 
 

=

[
 
 
 
 

𝑑0
′

⋮
⋮
⋮

𝑑𝑖𝑥𝑚𝑎𝑥
′ ]

 
 
 
 

.    (4-17) 

This matrix can be changed as the iteration form. 

      ∑ 𝑐𝑖
′ixmax

i=1 =
ci

bi−ai𝑐𝑖−1
′ .       (4-18) 

      ∑ 𝑑𝑖
′ixmax−1

i=1 =
di−ai𝑑𝑖−1

′

bi−ai𝑐𝑖−1
′ .      (4-19) 

      ∑ xi
0
i=ixmax−1 = 𝑑𝑖

′ − 𝑐𝑖
′xi+1.     (4-20) 

All of the three methods are shown in almost the same results. The figure 4-8 

shows the simulation result is compared with the analytical one. 

 

 

 

 

 

4.4 Electric field and acceleration 

The relationship between electric potential and electric field is shown by Eq.(3.7). 

       Ê (x̂) = −
dφ̂ (x̂)

dx̂
        (3-7) 

Electric potential φ̂  is obtained from the result of Poisson’s equation. To 

benchmark this subprogram, the result above in section 4.4 and 4.5 of Poisson’s 
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equation, and charged density can be used, the initial distribution function is also the 

same as above. Analytical solution of electric field is 

Ê = −
4

9
(−πx̂Sin[3] + 4π2Sin[

3x̂

4π
]) 

 To solve Eq.(3-7) numerically, differential equation can be discretized by using 

central difference method as the from 

       Eix = −
φix+1−φix−1

2δx
.      (4-21) 

The simulation result of Eq.(4-21) is shown in figure 4-9. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4-9 simulation result of Electric field 
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Chapter 5 Future work 

5.1 Short term goal 

In recent, the 1-D Vlasov solver will be used to solve the two-stream instability. 

The initial distribution function f(x, v, t = 0) =
2

7√2π
(1 + 5v2) [1 + 0.01(

cosx+cos1.5x

1.2
+

cos0.5x)]e−
v2

2 [2] will be used. The result will be compared with the one simulated by 

Particle-in-Cell (PIC) method, a basic model in kinetic regime plasma phenomena for 

simulating. 

5.2 Long term goal 

After the 1-D Vlasov solver is benchmarked, the 2-D Vlasov solver with 

distribution function f(x, y, vx, vy, t)  will be further implemented. The 2-D 

Vlasov-Poisson system will be benchmarked with fluid transportation in a 2-D phase 

space. 
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Chapter 6 Summary 

After practicing some numerical schemes to solve advection equation in numerical 

hydrodynamics, the basic practicing of numerical simulation has been enough. The 

most precise method amount these methods in solving advection equations is 

Piecewise parabolic method. This method is also used in the Vlasov solver in Part II. 

The subprograms of Vlasov solver including initial condition, boundary condition, 

splitting equation of x and v, density, electric field, acceleration, and Poisson’s equation 

have been benchmarked in 1-D Vlasov-Poisson system, the next step is going to 

simulate two-stream instability phenomena in plasma. 
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