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Abstract



There are two parts in this progress report. The first part is about the simulation
verification of numerical hydrodynamics. The numerical methods in the book,
“Introduction to Numerical Hydrodynamics” for solving advection equations were
implemented for practicing numerical simulation. The second part is about the Vlasov

solver. It is a fully kinetic model to calculate basic plasma phenomenon.
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Part I Numerical Hydrodynamics
Chapter 1 Practiced problems

1.1 Introduction

We would like to study the behaviors of plasma in plasma in kinetic regime
numerically. Some complex equations will be solved. These equations can be solved
numerically and different numerical schemes are studied by following the textbook,
“Introduction to Numerical Hydrodynamics” [1]. Details will be given in the following
sections.

1.2 Advection equation

The advection equations have been simulated in different numerical schemes. The

advection equation belongs to hyperbolic equation. It is used to express the advection

flow. It is written as

o _ o0

Pl e (1-1)

where p = p(x,t) is fluid density, v is velocity, x is space, and t is time. Note that both
p and v are functions of x and t. The analytical solution of this advection equation
should be p(x,t) = p(x — vt).
1.3 Discretization of advection equation

To solve the advection equation numerically, partial differentiates in Eq.(1-1) can

be written in the differentiate forms as
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Time and space also can be discretized as
t" = 8t*xn 4+t

X; = 8x * i + X;.

where 8x=_1 ,and ot = !

Imax max

. The total time we solved here is 1. As figure 1-1 shows
in below, the subscript “n” refers to the quantities in the time step t,, and the subscript
“i” refers to the discretized location x;. When we solved the equation, we had imax =
200, and tmax = 500, so that 6x = 0.005, and 6t = 0.002. To achieve the numerical

stable, Courant-Friedrichs-Levy (CFL) condition defines as gv < 1 is required. For v

=1 in examples in the next chapter, gv = 0.4, which satisfy the CFL condition.
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Fig.1-1 Simulation grids
As aresult, Eq.(1-1) can be written as Eq.(1-2).
pittpl _  pla—pi i
5t 202 (1-2)
Finally, the density in the new time step p!*"' can be calculated by the one using

at the old time step, so Eq.(1-2) can be changed as Eq.(1-3) as below.

n+1 n

5t
Pi  =Pi — Ev(pinﬂ — Pi-1)- (1-3)
The above equation can be rewritten using the flux of fluid flow. f defined as
' = f(pi") = vpil;. As aresult, Eq.(1-3) is written as Eq.(1-4).

&t
pin+1 =pi — 5% (fit1 — 1) (1-4)



L+
Furthermore, f{}, and f, are replaced by f"; and f"; where f"; =21 and
1+5 1—5 2 2

n n
i—17h

fl :
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f.rl1 =
=2

n n 5 n n
Pt = pl — = (f1 — "), (1-5)
1.4 Initial conditions (ICs)

To practice different numerical schemes, we used the following initial conditions:

_(x=0.15)2
(1) A Gaussian function with center at x = 0.15: at 0.1<x<0.2, f(x) = e 202

0=0.01.

(2) Arectangle function: at 0.3<x<0.4, f(x) = 1.

(3) A triangle function with peak at x = 0.55: at 0.5<x<0.55, f(x) = 20x - 10, and at
0.55<x<0.6, f(x) =12 - 20x.

(4) A half-ellipse function with peak at x = 0.75: at 0.7<x<0.8,
fx) = b_|1 - G079 h=1,a=0.75.

(5) Otherwise, f(x) = 0.

The initial condition is shown in figure 1-2.
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Fig.1-2 Init}i(al condition
1.5 Boundary conditions (BCs)

Periodic boundary conditions are used here. A right-advected wave shows up from
the left boundary when it vanished from the right boundary. The real boundary is set
as p(0,t) = p(Xmax ), PEmax, ©) = p(0,t), so the boundaries can be set as Pimax+1 =
Pimin+1, AN Pimin—1 = Pimax—1 numerically.

Chapter 2 Numerical results

Numerical results of the advection equations using some numerical methods are

given in this chapter. They can be categorized as linear schemes and nonlinear schemes

separately.

2.1 Linear schemes for solving advection equation
10



In this section, linear numerical schemes are used. The parameters of advection
equation were given in section 1.3, and the initial conditions and boundary conditions
were given in section 1.4 and section 1.5 respectively
2.1.1 Implicit centered scheme

The flux of implicit centered scheme in Eq.(1-5) is

1 1
fl1 =2 (vplyy +vpi) + - (VP + vpi™),
2

£3 = (vp! + vplLy) + 7 (vp[* ! + vpith).
2

The stencil diagram of implicit centered scheme is shown in figure 2-1.
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Fig.2-1 Stencil diagram of implicit centered scheme

The numerical result of implicit centered scheme is shown in figure 2-2

11
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Fig. 2-2 Numerical result of implicit centered scheme

Strong numerical oscillations are observed in the simulation result using implicit
centered scheme.
2.1.2 Backward time center space (BTCS) scheme
The flux of backward time center space in Eq.(1-5) is

n _1 n+1 n+1
7, = (vpld + vpi*),
B

n _1 n+1 n+1
£71 =~ (vp!*" + vplh).
2

The stencil diagram of BTCS scheme is shown in figure 2-3.

1F L ®
(3]
E o}
c
A | | | |
-2 -1 0 1 2
I space

Fig. 2-3 Stencil diagram of BTCS scheme



The numerical result of BTCS scheme is shown in figure 2-4.
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Fig. 2-4 Numerical result of BTCS scheme

Small zig-zag wiggles and diffusion phenomena are observed after propagating.
2.2 Nonlinear schemes for solving advection equation

In this section, nonlinear schemes are used to solve the advection equation. The
parameters of advection equation are given in section 1.3, and the initial conditions
and boundary conditions were given in section 1.4 and section 1.5 respectively.
2.2.1 Godunov-type finite volume scheme

The Godunov’s idea is a kind of discretized method to solve nonlinear partial
differential equations. It can be separated to three steps which are called

Reconstruct-Solve-Average (RSA).
13



(1) “Reconstruct” a continuous function p(x) to a discrete function p;.
(2) “Solve” for 6t.

(3) “Average p(x)” in each cell to get pi.

After using finite volume method to solve Eq.(1-5) between x,_.1 and x,_1 in
2 2

space and t**! and t® intime, Eq.(1-5) becomes the following form.

tn+1

[+t — pMdx = [, (fh: — ") dt. (2.1)
i=§ 2 2

X 1

+_

L 2(pM*1-pP)dx
=1

If we defined the average of p! in space grids, pitt — pl is —2 ,

where x. 1 — X, 1 = 6x. Then Eq.(2.1) could be changed to

2 2

tn+1

1
prri=pi— | (gt

SX tn 1+E I—E

— =h v ettt n n)ld 2.2
—Pi_gftn p xi+%’t —p xi_%,t t. (2.2)
The piecewise linear method (PLM) is used to reconstruct linear function in each
cell, which means the function p(x,t) can be approximated with 1st-order Taylor’s
expansion. The p(x) can be written as
p(x;, t") = pi’ + (x —x)8p;. (2.3)
where slope-limiter 8p;' is the average of grids which is defined as Z—z. If we put

Eq.(2.3) into the finite volume equation Eq.(2.2), and calculate the integral with

_ __ N _ __ N .
X = X1 +v(t—t") and x = X; 1 + v(t — t™) when x approximates to X1 and X; 1

respectively. Then, Eq.(2.2) can become
14



_ a8t
Pt =01 -, (fii% - fin_%)- (2.4)

where the f"1 and f” .. can be known as
2 2

1 . S5t
f12 = vIof + 3 8p'sign() (1= IvIg))

1 : 5t
firll =v[piL, + 550?_151gn(v) (1 — |v| &)].

2

1,ifx>0
The sign(v) ={ 0,ifx = 0 is setas a sign function.
—1,ifx <0

Finally, fi’ll and firll terms are substituted into the finite difference Eq.(2-4).
2 2

8 . )
o+t = pff — v [ (pF = pILy) +5 (8 — SplL)sign(¥) (1= VIS )| (25)

fi’ll and firll also can be simplified as following form by ignoring the boundary
2 2

3o : 8t
grids in space, which means |v| 5, term.

1 = vio] +38pPsign(v)],
1 E 2

i—=
2

f', = v[pl, + iﬁpi“_lsign(v)].
The advection equation can be simplified to the form.

8t 1 i
o = o7 = 2 [(of = pfLy) + 2 (807 — BplL)sign(v)]

15



2.2.2 The PLM schemes with linear slope-limiters
There are some methods with linear slope-limiter are shown in this sections.
Donor cell (Forward time backward space, FTBS) scheme:
The slope-limiter of FTBS scheme is
Sp;! = 0.
Eq.(1-5) becomes
P = pl! — S v(ER — ).

The stencil diagram of FTBS scheme is shown in figure 2-5.

n time
o
I

-2 -1 0 1 2
i space

Fig. 2-5 Stencil diagram of FTBS scheme
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The numerical result of FTBS scheme is shown in figure 2-6.

i — 1LC. |
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Fig. 2-6 Numerical result of FTBS scheme

Strong diffusion phenomena are observed after propagating.
Lax-Wendroff scheme:

The slope-limiter of Lax-Wendroff scheme is

n

8pi' = pits — PP
Eq.(1-5) becomes
+1 _ ,.n_ 0t n _ cn
p? - p? 9x V(fi_'_% fi_%)!
d

1 n t n n
fro =3 + ) — = v(fi, — ),
2

n _l n n _i n __ rn
3= 3+ 60 = 5V — L),

17



The stencil diagram of Lax-Wendroff scheme is shown in figure 2-7.

n time
o
T
®
o
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i space
Fig. 2-7 Stencil diagram of Lax-Wendroff scheme

The numerical result of Lax-Wendroff scheme is shown in figure 2-8

i — 1.C. |
i /\ — 500 time steps 1.2

p(x)

\/ ) 0
| | | . 0.2
0.4 0.6 0.8 1
X

Fig. 2-8 Numerical result of Lax-Wendroff scheme

|
0 0.2

Strong oscillations are observed after density profiles propagate.
Beam-Warming scheme:
The slope-limiter of Beam-Warming scheme is

8pi' = pi' — pily-

18



Eq.(1-5) becomes
+1 _ _ ﬁ n _ cn
piT = pf o V(fi% fi_%),
1 ot
1 ot

The stencil diagram of Beam-Warming scheme is shown in figure 2-9.

1_
()]
E ol @ P
c
-1_. . . . .
2 1 0 1 2

i space

Fig. 2-9 Stencil diagram of Beam-Warming scheme
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The numerical result of Beam-Warming scheme is shown in figure 2-10

PX)¢

— 1.C. |
/\ — 500 time steps 1.2
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|
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Fig. 2-10 Numerical result of Beam-Warming scheme

Strong oscillations are observed after propagating.

Fromm scheme:

The slope-limiter of Lax-Wendroff scheme is

Eq.(1-5) becomes

._.
|
N[

1
8pi' = 5(pin+1 — Pit1)-

n+l1 _ n __ ﬂ n _ cn

pi - pl X V(fl_l_% fi_%)'

= ' 1(Lax — Wendroff) + f 1(Beam — Warming),
2 2

= f 1(Lax — Wendroff) + f :(Beam — Warming).
2 2

20



The stencil diagram of Fromm scheme is shown in figure 2-11.

1+

n time
o
I
®
o
[

-2 -1 0 1 2
i space
Fig. 2-11 Stencil diagram of Fromm scheme
The numerical result of Fromm scheme is shown in figure 2-12

L — 1C. _
— 500 time steps 1.2

Fig. 2-12 Numerical result of Fromm scheme

The scheme is observed almost the same graph as initial state with some instable

at peaks.

21



2.2.3 PLM schemes with nonlinear slope-limiters

All slope-limiters in this section use the same stencil diagram in figure 2-13.

1_
)
£ ot @ ° ®
c
-1_. | | | .
-2 -1 0 1 2
| space

Fig. 2-13 Stencil diagram of PLM scheme

PLM scheme with Mimnod slope limiter:
Minmod slope-limiter is defined as
8p! = min(max(p! — pf,,0), max(pl; — pP, 0)) +

max(min(pi“ — pi~1, 0), min(p{y; — pif', 0))

22



The numerical result of Minmod slope-limiter is shown in figure 2-14.

R _ I5(():0 time steps| | 1.2

11
ﬁ 10.8
10.6
p(x) _‘0‘4
10.2

10
T .

0 02 04 06 08 1

Fig. 2-14 Numerical result of Minmod slope-limiter

Strong diffusion is observed at peaks.
PLM scheme with vanLeer slope-limiter:

The vanLeer slope-limiter is defined as

(Sp{l = Pit1—Pi1

Pl —pDH eI -plL ) .
2= L= if (P?+1 —p)(pf —pity) >0

0, others

23



The numerical result of vanLeer slope-limiter is shown in figure 2-15.

- | | IS dime steps| |12
: 11
: 10.8
- 10.6
p(x)‘_ _‘0‘4
E \ 102
w |
T
0 02 04 06 08 1

X
Fig. 2-15 Numerical result of vanLeer

Strong diffusion is observed at peaks, but weaker than Minmod one.
PLM scheme with Superbee slope-limiter:
The Superbee slope-limiter is defined as

6pi' = [sign(p;’ — piLy) + sign(piy; — pi)] X

. 1
min[|p = pi_q |, [piss — pi'l, s max(|pi® — pils, [pfys — p'D]-

24



The numerical result of Superbee slope-limiter is shown in figure 2-16.

B : IS(():O time steps | 12
- 11
_ \ _
) A | A 108
- 10.6
X)r i
P )— —_0.4
- 0.2
L \ ) G
B . | . | . | . | . 1-0.2
0 0.2 0.4 0.6 0.8 1

Fig. 2-16 Numerical result of Superbee slope-limiter

A little diffusion is observed at peaks, but weaker than both vanLeer and Minmod

one. Some expansions are also observed at peaks.

25



Modified PLM scheme with Superbee slope-limiter:
This method uses simplified PLM scheme equation with Superbee slope-limiter.

The numerical result of Superbee slope-limiter is shown in figure 2-17.

— 1.C.

B — I500 time steps | 1.2

- ’ : ] 1

i ﬂ ﬂ 108

- 10.6

(X)} :

PROr 10.4

- 10.2

‘ /J \ | J IR

i . | . | . | . | . __02

0 0.2 0.4 0.6 0.8 1

X
Fig. 2-17 Numerical result of Modified Superbee slope-limiter

Some expansions are observed at peaks in this scheme, but it still shows a great

simulation result.
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2.2.4 Piecewise parabolic reconstruction (PPM) method
PPM method is a finite volume method also used Godunov’s scheme but with
higher-order approximations which is a 2nd-order parabolic reconstruction. As a result,
the Eq.(2.3) can be replaced by a Taylor's expansion which is a parabolic
approximation as
pCxy t7) = pf + (x — x)8p] + (x — x)26%p]

This equation can be brought into Eq.(2.2) as above and become the form as

Eq.(2.4).
5t
Sk T (f1+ — £ ~1)- (24)
AsinEq.(2-4),the f’: and f”: of PPM are setas
2 2

n _ ﬂ _ 2V8t n

fi - Vp +2 28x (p p ) 36 P )]

n _ n _ ﬁ B 2V8t n
fi—% - Vpi—% 26x [(p P §> 3ox P )]

The parameters in the f"1 and firll are set as
2 2

g " .
Pl |12 (pf' + pite) — ' (piy2 + pf‘_l)_

-7 1 .
p. 1= E (pit: +pi') — 12 (pit1 + pin—z)_

-7 1 )
p. 3= 12 (pilz + pity) — 12 (pi' + pin—3)_
for 30y
Pi > pi% pi_%
n n 1 n n
—1 = |6Pi-1 — 2 Pi_% + Pi_%

27



The stencil diagram of PPM scheme is shown in figure 2-18.

@
E ole—eo—e o—o
[
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I space
Fig. 2-18 Stencil diagram of PPM scheme

The numerical result of PPM scheme is shown in figure 2-19.

B : g(():O time steps | 1.2
L r\V/\ _| l
]
- 10.6

PeIr 10.4
B loo
) N
- . | . | . | . | . 1-0.2
0 0.2 0.4 0.6 0.8 1

X
Fig. 2-19 Numerical result of PPM scheme

Some zigzags are observed at bottoms and peaks, but PPM scheme shows the best
simulation result in all simulation. The PLM scheme with Superbee slope-limiter is the

second best one followed by the PLM scheme with VanLeer slope-limite., The PLM
28



scheme with Minmod slope-limiter is the worst used nonlinear method. In linear

method, the Fromm scheme shows the best perform as PPM scheme, but the other

methods can’t be used because of huge oscillations or diffusions.
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Part II Vlasov solver
Chapter 3 Introduction to Vlasov solver
3.1 Basic equations of Vlasov solver

Vlasov equation is used to calculate plasma phenomena without collision in
kinetic theory. The Vlaosv solver is a numerical method to simulate plasma phenomena
by solving Vlasov equation directly. It shows high precision compared to other
methods but with huge calculation time.

One-dimensional (1-D) Vlasov-Poisson system is used. The main equations in this
system have the form.

of of of

etV o e S 0, Vlasov equation. (3-1)

ZZT(; =3 —é(ni — [ fdv), Poisson’s equation. (3-2)

In Vlasov equation as Eq.(3-1), the distribution function f(x,v,t) is generally given
as an initial condition, v is velocity and a is acceleration. ¢(x) is electric potential here
in Eq.(3-2), and q is electric quantity. n; on the right-hand side means the number
density of ions and is set as 1, and [ fdv is the number density of electrons. To

calculate the acceleration a, we need to use the Poisson’s equation as Eq.(3-2). Then

the electric potential ¢ has the relationship with acceleration a as

_ _de _
E=-—" (3-3)
eE
a=— (3-4)

30



3.2 Normalization of basic equations
To simulate the equations above easily without complex constants, we have to
normalize these equations to dimensionless equations to ensure this simulation is

correct. There are some characteristic units used to normalize equations here.

~

t = tepart.

X = XcharX-
N = Nepa,f.
V = VeparV.
f= fchar’f-

a = Achard.
® = PcharP-
E= EcharE-

The characteristic units above are set as below.

tehar = oop‘l wp, is the plasma frequency.

Xchar = Vcharlchar

Nchar = IcharVehar

2
_ qfchaerharXchar
Qchar =
€o
Qchar
Echar =
char

31



_ eEchar
me

Achar =

Equations of Vlasov solver can be normalized as below.

of

Tivdial=o, (3-5)
00 = (1 - [ T 9,b)do) (3-6)
ER®) = -20 (3-7)
A®) = -B®) (3-8)

The hat of variables means normalized variables. a is normalized acceleration, E
is normalized electric field, @ is the normalized electric potential, p is the
normalized number density, f is normalized distribution function. As a result, the
charge density should be calculated first, and the second is gotten electric potential.
Finally, we can solve the Poisson’s equation and know the electric field and

acceleration of plasma itself.
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3.3 Simulation order of Vlasov solver
The order of simulation in solving equations above in Vlasov solver is shown in

figure 3-1.

Solve Poisson’s
equation

Solve electric : :
Initial condition Solve number field and End simulation

] and output
acceleration of data

electrons

density of

f(x,vot) electrons

Solve Vlasov
equation using
splitting method

Fig.3-1 Flow chart of Vlasov solver

3.4 Numerical structure
The structure of Vlasov solver is shown as below.

Main program

* Main
— Module
— Initial
— Boundary
— Density
— Poisson
— vboundary
— Electric
— vboundary
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— for time loop

* Splitv

* Boundary
+  Splitx

* Boundary
* Density

*  Poisson

* vboundary
* Electric
* vboundary

— Output

The function of every subprogram is discussed below.
Main - main program, the time steps are set here
Module - set numerical variables
Initial - set initial distribution function
Boundary and vboundary - set boundary conditions of simulation
Density - calculate number density
Poisson - calculate Poisson’s equation
Electric - calculate electric field by using electric potential relation
Splitx - calculate divided advection equation in x
Splitv - calculate divided advection equation in v
3.5 Numerical space grids
The grid used in the Vlasov solver is a phase space grid. It has the form shows in

figure 3-2.
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Fig.3-2 Simulation range of Vlasov solver in stencil diagram

The simulation range of Vlasov solver is set between 0 to 4m in both x and v,
and grids of x and v are both divided in 512 grids. The total simulation time is 1 with
each time step is ﬁ, and the number of total time steps should be 1600.

Chapter 4 Numerical methods and simulation results

In this chapter, the numerical methods of each subprogram are explained and
benchmarked so that we can use this Vlasov solver to solve more complex problems. To
benchmark the every subprogram, only the subprogram we want to benchmark is

activated.
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4.1 Initial condition

~on _ 3‘(—21‘[)2 . i
The first initial condition is set as f(t =0) =e~~ 2 , and the graph is shown in

figure 4-1. The result in red dots is compared with the analytical one in blue line which

is calculated by Mathematica.
f{x,v)

1.0

Fig.4-1 Simulation result of initial condition

A n _@-2m? .
The second initial condition is set as f(t=0) = e 2z, and the graph is shown

in figure 4-2. The result in red dots is compared with the analytical one in blue line

which is calculated by Mathematica.
f{x,v)

1.0

4-2 Simulation result of initial condition



Both figure 4-1 and figure 4-2 shows that the initial conditions of simulation are
the same with the analytical one.

4.2 Boundary condition
The boundary condition is set as 1 in on boundary as vy,i;, = Vimax = 1. The initial

condition is set as below and shown in figure 4-3.

2

cosx + cos1.5x v
+ cos0.5x)]e” 2

1.2

f(x,v,t=0) = (14 5v?) [1+ 0.01(

2
7V2m
f(x,v)

0.25

.20

015

0.10

0.05

-4 -2 0 2 4 v

Fig.4-3 initial condition

After putting the boundary condition subprograms, the result is shown in figure

4-4,
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f(x,v)

1.0

0.6

0.2}

-4 -2 0 2 4
1

Fig.4-4 initial condition with v, = Vipax =

4.3 Split Vlasov equations

The normalized Vlasov equation can be written as Eq.(3-5) like following.

of  .of  ,of
E‘FV&-*—&%— 0. (3'5)

First, to solve this equation numerically, Vlasov equation can be split into two

advection equations as the form which make it become easier in numerical simulation.

of | ~of _
§+V£—O, (4-1)
of | ,of _
§+a£—0. (4-2)

Then the advection equation, Eq.(4-1) and Eq.(4-2) can be discretized as

fix+1_fﬁ(* f{lx_f{lx—l
\% =0 4-3
8t + 8x ’ (4-3)
T . N
4 gv_iv-i — 4.-4
S5t Sv ( )

38



Thus make Vlasov equation become two advection equations, and then these two
equations can be changed to as
Bt =B - 2o - fay), (4-5)
?i?/* o firxlz - g—;ﬁ(ﬂ% N f11\17—1)- (4-6)
where n* is a temporal time step between n and n+1 in discretization. As a result, ?i"*
term can be calculated first here, and the result is used to calculate the fi““ at last.
The split advection equations in x and in v are separated into two subprograms in this
Vlasov solver. The initial condition is set as section 4-1, and the boundary conditions
are periodic boundary condition on both side in x, reflective boundary condition on the
bottom of v and zero on the top of v. Both of these equations can be solved like any
advection equation which has been discussed in Part I, and they can be benchmarked
respectively.

4.3.1 Split advection equation in x direction

The Split advection equation in x direction is solved by using PPM scheme in

_ (x—2m)?
section 2.2.4, and velocity is set as v = 1. The initial distribution function is e 2

The simulation result of it is shown in figure 4-5 as solid line which is compared with

Mathematica as red dots. It shows the wave moves from left to right well.
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Fig.4-5 simulation result of split advection equation in X direction

4.3.2 Split advection equation in v direction
The split advection equation in x direction is also solved by using PPM scheme

in section 3.2.4, and acceleration is set as a = 1. The simulation result of it is shown in

figure 4-6 as solid line which is compared with Mathematica as red dots. It shows the

wave moves from left to right well.
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Fig.4-6 simulation result of split advection equation in v direction

4.4 Charge density
The charge density is calculated from the integration of distribution function f as

Eq.(4-7).

p=1-—[fdv. (4-7)

>

To benchmark it, we set the initial distribution function f as

o 1

ft=0)=—

The trapezoidal method is used to calculate this integration, so p can be

calculated by using

ﬁ = fVimax ?d\? = e vl [Z%Xflax_l f(Viv) + % (f(Vivmin) + f(Vivmax))- (4'8)

Vimin ivmax

41



The integration of distribution function by velocity is shown in figure 4-7 to
compare with analytical one. The red points are simulation result, and solid line is

analytical one.

3
P
[=x]

A

i 10 12

Fig.4-7 simulation result of number density

4.5 Poisson’s equation

The Poisson’s equation has the form as Eq.(3-6).

e 1 _p=1- [l (3-6)

: : , : o . 3% .
To benchmark this Poisson’s equation, we set p = sm(ﬁ), so the equation is set as

2~ PN
~2=sin(). (4-9)

dx?

For testing of this subprogram, p(x) =sin(z—i). The boundaries are set as

@(0) =0,p(4m) = 0.

The exact solution of Eq.(4-9) is
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o= g[)”msin(S) — 41‘[28i1‘1(%)].
This solution can be used in comparing with the numerical one solved in following.
To solve Poisson equation numerically, Eq.(4-9) can be discretized to the finite

difference equation from.

—Qiv_ 1 +20:0—©;
Pix—1 8:{921x Pix+1 _ Pix (4_10)

This equation can be changed the form to following form.
—Pix—1 T 2(p1X ~ Pix+1 = piXSXZ' (4'11)

Eq.(4-11) can be expanded in a matrix form in different numerical grids as

1 0 0 (00 p08X2

[2 o : I : ] |r : ]|

1 2 =~ 2 =1|| : =[ : ‘ (4.12)
SR s Sa) 5 :
0 e e 0 1 JLl@imaxd Lpj.46%2

There are three methods, (a) Jacobi’'s method, (b) Gauss-Seidel’s method, (c)
Tridiagonal method, are used to solve this matrix, where (a) and (b) are iteration
methods, and (c) is direct methods for solving matrix.
(a) Jacobi’s method
The Poisson’s equations in Eq.(4-12) are solved iteratively by using the following
form as Eq.(4-13).

Ot = 0.5(@h—1 + PREX? + @yy). (4-13)

(2) Gauss-Seidel’s method
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Like the iteration method in Jacobi’s method, the Poisson’s equations in Eq.(4-12)
are solved iteratively by using the following form as Eq.(4-14).
O = 0.5(QR5 + pi8X? + Pfiir)- (4-14)
Comparing to Jacobi’s theorem, the @L". terms are used n+1 temporal step for
ix-1 space grid, and this way makes its convergence fast.
(3) Tridiagonal method
The tridiagonal method is used to solve the tridiagonal matrix, which use the

Gaussian elimination to solve the matrix. The steps of tridiagonal method in solving

1-D Poisson’s equation are shown here.

1 0 500 006 0 O b, ¢, O 900 0 Xo
2 -1 -~ - : - a;~ by | | : :
1 2 w2 —f ¢ Ho o~ o 0 Pl
: N ~o—1 2 ; : “ | ™ Digmax=s_ Cixmax-1 :
0 o o 0 1 Pimax 0 - 0 dixmax bixmax Xixmax
PoOx2 d,
| (4-15)

pixmax((SXZ ldixmaxJ

By using Gaussian elimination, Eq.(4-15) can be changed to

by cy 0 0 X, d,
0 by - " : : :

0o - . 0 A (4-16)
: ngmax—l CL{xmaX—l : [ : J

lo - 0 0 | ixmaxd Ldigmax
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|0 by |
o -~ - 0 || : |=| : | (4-17)
: bg)’(max—l 0 | : :
lo w0 0 - iemar) L]
This matrix can be changed as the iteration form.

e (4-18)
; _ ' di—aid{_
S (19
?:ixmax—lxi i d: - Ci,Xi+1' (4'20)

All of the three methods are shown in almost the same results. The figure 4-8

shows the simulation result is compared with the analytical one.
O x)
1 1 1 1 L 1 1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 3
\ D 4 ; 10 12/

10} , #

—15¢ - ’

e e

Fig.4-8 simulation result of Poisson’s equation method

4.4 Electric field and acceleration

The relationship between electric potential and electric field is shown by Eq.(3.7).

ma:-“? (3-7)

Electric potential @ is obtained from the result of Poisson’s equation. To

benchmark this subprogram, the result above in section 4.4 and 4.5 of Poisson’s
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equation, and charged density can be used, the initial distribution function is also the
same as above. Analytical solution of electric field is
£ = — & (—msSin[3 + 4m2Si 3%
= 9( XSin[3] + 4m 1n[4n])
To solve Eq.(3-7) numerically, differential equation can be discretized by using
central difference method as the from
By = — S, (4-21)

The simulation result of Eq.(4-21) is shown in figure 4-9.

Fig.4-9 simulation result of Electric field

46



Chapter 5 Future work
5.1 Short term goal

In recent, the 1-D Vlasov solver will be used to solve the two-stream instability.

cosxX+co0s1.5x

The initial distribution function f(x,v,t =0) = 7\/2? (1+5v?) [1+0.01( =

V2
cos0.5x)]e 2[2] will be used. The result will be compared with the one simulated by

Particle-in-Cell (PIC) method, a basic model in kinetic regime plasma phenomena for
simulating.
5.2 Long term goal

After the 1-D Vlasov solver is benchmarked, the 2-D Vlasov solver with
distribution function f(x, Y, Vi, Vy, t) will be further implemented. The 2-D
Vlasov-Poisson system will be benchmarked with fluid transportation in a 2-D phase

space.
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Chapter 6 Summary

After practicing some numerical schemes to solve advection equation in numerical
hydrodynamics, the basic practicing of numerical simulation has been enough. The
most precise method amount these methods in solving advection equations is
Piecewise parabolic method. This method is also used in the Vlasov solver in Part II.
The subprograms of Vlasov solver including initial condition, boundary condition,
splitting equation of x and v, density, electric field, acceleration, and Poisson’s equation
have been benchmarked in 1-D Vlasov-Poisson system, the next step is going to

simulate two-stream instability phenomena in plasma.
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