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Computer simulation is a good way to understand the detailed mechanisms of plasma

behavior and the acquaintance with numerical methods is very important for doing this.

Numerical hydrodynamics including solving ODE, parabolic PDE and linear advection

equations were being practiced in last semeseter. Particle-in-cell (PIC) simulations will

be studied in the next half year since I am going to develop a fully kinetic PIC code for

studying the mechanisms of neutron production in Dense Plasma Focus device, which

is a pulsed-power device used as an e�cient neutron source. The results of this project

will assist the design of the DPF device as the neutron source which will be built by

the Institute of Nuclear Energy Research (INER) Atomic Energy Council through the

expected cooperation between NCKU and INER.
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1 Introduction

Plasma is the fourth state of matter, comprised of ions, electrons and neutral atoms,

usually at temperature above 104 degrees Kelvin. Plasma makes up most of the matter in

the universe. It is also the state of the matter for the magnetic and inertial con�nement

fusion. Since plasma is a very complex system, the computer simulations of plasmas

play a signi�cant role in developing plasma theory. �Simulation is almost always the only

direct experience we can have with detailed dynamics and behaviors of plasmas; almost

all other experiences (in theory and lab) are indirect,� quoted from the book �Plasma

physics via computer simulations�[1]. Computer simulations can indeed give the clear

view of every process in the complex system like plasma. There are two general areas

in simulations of plasma based on kinetic and �uid descriptions, as shown in Figure

1[1]. Fluid simulation means numerically solving the magnetohydrodynamics (MHD)

equations of plasma with the assumption of approximate transport coe�cients. Kinetic

simulations consider more detailed models of plasma. This can be attained either by

numerically solving the plasma kinetic equations, e.g. Vlasov or Fokker-Plank equations

or by particle-in-cell (PIC) simulations, which computes the motions of a collection of

charged particles interacting with each other and with external applied �elds.

Figure 1: Classi�cation of computer simulation models of plasmas.

1.1 Numerical hydrodynamics

My undergraduate research is most related to developing codes, so it is important for me

to have a strong foundation of coding skills and plasma simulation. I learned numerical

analysis through taking the class in the Aeronautic department this semester. After be-
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ing familiar with numerical simulation more, applying the numerical methods to plasma

physics is the next step. Numerical hydrodynamics is a good topic to understand the

basic skills for solving partial di�erential equations; moreover, it is like a simple model

of magnetohydrodnamics, which is one of the descriptions of plasma physics. Magneto-

hydrodynamics describes the dynamics of plasma in the �uid model. The only di�erence

between magnetohydrodynamics and hydrodynamics is that magnetohydrodynamics con-

siders the interaction of electromagnetic �elds but hydrodynamics does not. I practiced

numerical hydrodynamics following the book �Introduction to numerical hydrodynamics�

[2]. The basic numerical skills for solving PDE were learned through practicing numerical

hydrodynamics.

1.2 Dense Plasma Focus

Dense Plasma Focus is a kind of pinch discharge in which a pulsed voltage is applied

to a low-pressure gas between coaxial cylindrical electrodes, generating a short duration,

high density plasma region in the axis.[3] It was invented by Fillipov[4] and Mather[5]

independently in 1960s and is still being studied intensely around the world as low-cost

sources of neutrons, ions and x-ray as well as the potential fusion device.

Dense Plasma Focus device is a pulsed-power device comprised primarily of a coaxial

con�guration, where the inner electrode is anode and the outer is cathode. Figure 2[6]

shows the 4 phases of DPF. (1) Plasma current sheaths are formed from the high voltage

discharge making the �ashover event occur along the surface of the insulator. (2) j × B

forces provide lift-o� of the current sheaths toward the end of the anode, which is called

�lift-o�� or �run-down�. (3) As the current sheaths reach the anode tip, the plasma is

accelerated radially inward or �run-in� and forms a dense z-pinch with particle densities of

∼ 1019 n/cm3 and temperatures of ∼ 100 eV, lasting tens of nanoseconds in the majority

of devices. (4) In the pinch phase, the plasma implodes and creates a high-density

region that typically emits ion beams, high-energy electrons, x-rays, and neutrons (in the

presence of D or D-T gas). The whole process lasts a few microseconds.
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Figure 2: An illustration of the 4 phases of DPF: (1) initiation via �ashover of the
insulator; (2) plasma being accelerated to axial �run-down� phase; (3) radial implosion of
"run-in� phase and (4) formation of a z-pinched plasma on axis.

There are two di�erent kinds of DPF devices, di�ering in their electrode aspect ratio

(electrode length over inner electrode diameter): the Filipov con�guration[4], with an

aspect ratio less than 1 (typical values are 0.2), and the Mather con�guration[5], with

an aspect ratio greater than 1 (typically 5-10). Dense Plasma Focus devices have been

constructed in various sizes as neutron sources or other applications around the world in

correlation with the energy stored in the pulsed-power generator, ranging from kilojoules

to megajoules, producing average neutron pulses from 107 to 1012 neutrons per shot.

Though the mechanisms of plasma formation, neutron production and ion beam for-

mation are still not completely understood, a variety of empirical, experimental and mod-

eling information is available to optimize the design of DPF as neutron sources.[7, 3, 8]

The engineering development of DPF has resulted in a mobile DPF neutron source with

signi�cantly higher peak and average neutron output compared with conventional neu-

tron sources; for example, the work in Italy has already demonstrated a semi-mobile 6 kJ

DPF �lled with deuterium gas operating at average neutron output of 3 × 108 n/s with

a repetition rate of 1 Hz, giving a peak neutron output ∼ 1015 n/s, which has the same

or better performance compared to conventional accelerator-based neutron sources.[9]

Dense Plasma Focus devices can be used not only as neutron sources but also particle

beams and soft x-ray sources. The soft x-ray source can be applied to nanofabrication.[8]
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Further, Lawrenceville Plasma Physics, Inc. (LPP fusion), a company using DPF as the

fusion device to produce energy, announced that they achieved two of the three conditions

required to fuse hydrogen-boron and produce net energy in 2012.1 Plasma temperature

of 150 keV and su�cient con�nement time were achieved.[10] If the results claimed by

Lerner, the president of LPP fusion, are right, it means that DPF can be a feasible fusion

device. Since DPF has so many applications, it is essential to understand the detailed

mechanisms of it.

1.3 My research goal

My research topic is to use particle-in-cell (PIC) model via computing parallelly using

GPU to simulate the process of neutron production through the �nal z�pinch phase and

�nally get the neutron yield. Since Institute of Nuclear Energy Research (INER) Atomic

Energy Council (行政院原子能委員會核能研究所) is building DPF device as a neutron

source, the results of this project can be used as a potential cooperation with INER.

Furthermore, the optimization of the neutron production of the DPF device will no

longer be done by trial-and-error but by the fully understood mechanisms in future.

This report shows the work on developing codes of numerical hydrodynamics as well

as understanding the principle of PIC simulations and then the studies of paper reviews

on simulation of pinch phase in DPF device. The procedures and progress are shown in

the �nal part. The ultimate goal for me is to �nish my research topic as described above

and understand plasma physics and programming thoroughly.

1http://lppfusion.com/executive-summary/
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2 List of works

This part shows the work I did in last half year, including (1) developing codes of

numerical hydrodynamics; (2) understanding the principle of PIC simulations; (3) paper

reviews on simulaiton of pinch phase in DPF device.

2.1 Practicing developing codes of numerical hydrodynamics

2.1.1 Numerical methods for solving simple ODE

Discretization The simple ordinary di�erential equation (ODE)

dy

dx
= −a y (1)

with initial value y(t0) = y0 is of �rst order and linear with constant coe�cient a. It has

the obvious analytical solution

y(t) = y0 e
−a(t−t0). (2)

For discrete time steps

tn = ∆t n+ t0, (3)

using explicit Euler scheme (approximation of y by a piecewise linear curve) can give Eq.

(1) the most simple discretization

yn+1 = yn − a yn ∆t. (4)

Examples Figure 3 shows examples of Eq. (4) with a = 1 for ∆t = 2.20, 1.70, 0.90, 0.45, 0.01.

Too large time steps lead to con�icts with the analytical solutions. The important prop-

erties for a good numerical scheme is as follows:

Criterion for stability (discrete operator does not amplify noise): ∆t < 2/a,

Criterion for positivity (dependent variable is always positive): ∆t < 1/a.
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Figure 3: Examples of using explicit Euler scheme to solve ODE with di�erent time steps.

2.1.2 Introduction to numerical methods for solving PDE

Stencil diagram To solve PDE numerically, space and time of dependent variables

will be discretized, where the subscript stands for temporal grid and the superscript

stands for spatial grid. Stencil diagram tells that the density ρn+1
i at spatial grid i and

time step n + 1 depends on which values at spatial grid and the old time-step n, e.g.

ρni−k, ρ
n
i−k+1, . . . , ρ

n
i−1. For example, the stencil diagram in Figure 4 shows that ρn+1

i

depends on ρni−2, ρ
n
i−1, ρ

n
i , ρ

n
i+1, ρ

n
i+2.

Figure 4: Stencil diagram. (Horizontal axis is temporal grid; vertical axis is spatial grid)

Boundary conditions Boundary conditions in�uence the real-world situations of

hydrodynamic �ows. For instance, the dependent variables like the density at time step
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n physically discussed are ρn1 , ρ
n
2 ,. . . , ρ

n
10. According to the stencil diagrams for di�erent

numerical schemes, the density ρn1 and ρn10 at boundary spatial grids and time step n may

depend on the density at the spatial grids beyond physically discussed grids and time step

n− 1 (e.g. ρn−1
0 and ρn−1

11 ), so the value of density at the spatial grids beyond physically

discussed grids called �Ghost cell� will be needed, as shown in Figure 5.

Figure 5: A schematic for ghost cell and boundary grids. (Superscripts of the densities ρ
for temporal grids are ignored for convenience.)

There are three common boundary conditions. Using stencil diagram in Figure 4 for

example, so ghost cells ρ−1, ρ0, ρ11, ρ12 are needed.

1. Neumann boundary condition ( ∂ρ
∂x
|boundary = 0):

ρ−1 = ρ1, ρ0 = ρ1; ρ11 = ρ10, ρ12 = ρ10.

2. Periodic boundary condition (the values of ρ at the two sides of spatial boundary

grids are the same):

ρ−1 = ρ8, ρ0 = ρ9; ρ11 = ρ2, ρ12 = ρ3.

3. Re�ective boundary condition (the values of ρ are symmetric about the spatial

boundary grids):

ρ−1 = ρ3, ρ0 = ρ2; ρ11 = ρ9, ρ12 = ρ8.
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2.1.3 Numerical methods for solving parabolic PDE (heat equation)

Discretization The heat equation

∂ y

∂ t
= K

∂2 y

∂x2
(5)

is a parabolic PDE with constant coe�cientK and y is a function of x and t. As time goes

by, the tendency for the peaks to be eroded and the valley to be �lled will be observed

as expected. For discrete time steps and spatial grids

tn = ∆t n+ t0; x = ∆x i+ x0, (6)

the �rst-order time derivative of y and second-order space derivative of y can be expressed

discretely as

∂ y

∂ t
→ yn+1

i − yni
∆t

, (7)

∂2 y

∂x2
→

yni+1 − 2 yni + yni−1

∆x2
. (8)

Thus, it gives the explicit Euler scheme

yn+1
i = yni +

∆t

∆x2
K (yni+1 − 2 yni + yni−1). (9)

Examples for jagged initial condition Examples for jagged (1, 0, 1, 0, 1, ...) initial

condition (red dashed line) with periodic boundary condition are displayed in Figure

6.When the grid settings satisfy the criterion for stability ∆tK
∆x2 < 0.5, the numerical

results (blue line) for heat equation will be stable.
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Figure 6: Numerical results for heat equation for jagged initial condition with grid setting:
∆tK
∆x2 = 0.2, 0.4, 0.6 are shown respectively from left to right.

Examples for spike initial condition Examples for spike initial condition (red dashed

line) with periodic boundary condition are displayed in Figure 7. The spike initial con-

dition is de�ned as Gaussian, rectangle, triangle, super Gaussian(exp(-x^4)) respectively

from left to right. The criterion for stability is ∆tK
∆x2 < 0.5. The grid setting ∆tK

∆x2 > 0.5

will cause the spurious oscillation at the extremely big-gradient grids, e.g. rectangle, in

the right panel.

Figure 7: Numerical results for heat equation for spike initial conditions with grid setting:
∆tK
∆x2 = 0.5, 0.51, are shown respectively from left to right.

Examples for Gaussian initial condition Heat equation with Gaussian initial con-

dition

y(x, 0) = exp(−(
x− 0.5

0.1
)2) (10)

can be solved analytically by Fourier transform. The analytical solution of heat equation

with Gaussian initial condition at time t is
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y(x, t) =

√
1

1 + 400 t
exp(−(

x− 0.5√
0.01 + 4 t

)2). (11)

Take t = 0.01, we can get

y(x, 0.01) =

√
1

5
exp(−(

x− 0.5√
0.05

)2). (12)

The comparison of analytical results and numerical results, which is used the same

initial condition as analytical results, is displayed in Figure 8. Since there exists analytical

solution for heat equation with Gaussian initial condition, heat equation with Gaussian

initial condition can be a benchmark for checking whether the numerical methods is

viable.

Figure 8: Numerical results and analytical results for heat equation with Gaussian initial
condition are shown.

2.1.4 Numerical methods for solving linear advection equation

Discretization Linear advection equation (conservation of mass)

∂ ρ

∂ t
+ v

∂ ρ

∂ x
= 0, (13)

where ρ = ρ(x, t) and v is velocity, has analytical solution ρ(x, t) = ρ(x − v t). Using

periodic boundary condition, function ρ will keep propagating forwardly (when an object

passes through one side of the �gure, it re-appears on the opposite side with the same
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velocity). We can take t =one period (T = xmax−xmin
v

) and the solution will be same

as the initial condition, which means ρ(x, T ) = ρ(x, 0). Thus ,the resemblance between

initial condition and numerical result means this numerical scheme is suitable for this

condition.

To solve linear advection equation numerically, we discretize the equation using the

grid setting as below:

∆x =
1

itotal
=

1

200
, v = 1, ∆t = 0.002,

∆t v

∆x
= 0.4, 500 time steps (1T ).

Spike initial condition and periodic boundary condition will be used. We de�ne the

�uxes in the cells

f(ρni ) ≡ v ρni

and the �uxes at cell boundaries

fn
i+ 1

2
≡ v ρn

i+ 1
2

for simplify the linear advection equation, the equation can be rewritten in the form as

ρn+1
i = ρni −

∆t

∆x
(fn
i+ 1

2
− fn

i− 1
2
). (14)

Linear advection equation as the function of �uxes characterizes the physical meaning

that the densities in the cell will be in�uenced by the �uxes at the boundaries. Accord-

ingly, the following will show the numerical results of di�erent schemes with di�erent

de�nitions of �uxes for solving linear advection equation.

Forward time central space (FTCS) scheme Flux for FTCS scheme is de�ned as

fn
i+ 1

2
=

1

2
[f(ρni+1) + f(ρni+1)], (15)

so Eq. 14 can be updated as below

ρn+1
i = ρni −

∆t

2 ∆x
v (ρni+1 − ρni−1). (16)
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Figure 9: FTCS scheme: stencil diagram and test result (red dashed line as true solution
and blue line as numerical result).

Numerical result is shown in Figure 9. We can observe that it diverges seriously and

doesn't have any resemblance to true solution.

Forward time backward space (FTBS) scheme Flux for FTBS scheme is de�ned

as

fn
i+ 1

2
= f(ρni ), (17)

so Eq. 14 can be updated as below

ρn+1
i = ρni −

∆t

∆x
v (ρni − ρni−1). (18)

Numerical result is shown in Figure 10. We can observe that it is a stable solution

but di�uses seriously.

Figure 10: FTBS scheme: stencil diagram and test result (red dashed as true solution
and blue line as numerical result).
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Forward time forward space (FTFS) scheme Flux for FTBS scheme is de�ned as

fn
i+ 1

2
= f(ρni+1), (19)

so Eq. 14 can be updated as below

ρn+1
i = ρni −

∆t

∆x
v (ρni+1 − ρni ). (20)

Numerical result is shown in Figure 11. We can observe that it diverges seriously and

doesn't have any resemblance to true solution.

Figure 11: FTFS scheme: stencil diagram and test result (red dashed line as true solution
and blue line as numerical result).

Lax-Friedrichs scheme Flux for Lax-Friedrichs scheme is de�ned as

fn
i+ 1

2
=

1

2
[f(ρni+1) + f(ρni )]− 1

2

∆x

∆t
(ρni+1 − ρni ), (21)

so Eq. 14 can be updated as below

ρn+1
i = ρni −

∆t

2∆x
[v (ρni+1 − ρni−1)− ∆x

∆t
(ρni+1 − 2ρni + ρni−1)]. (22)

Numerical result is shown in Figure 12. We can observe that the di�usive e�ect is so

strong and there are some small-scale wiggles left.
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Figure 12: Lax-Friedrichs scheme: stencil diagram and test result (red dashed line as true
solution and blue line as numerical result).

Gudunov-type �nite-volume scheme Gudunov's idea �rst considers the evolution

equation without any approximation by integrate Eq. 14 over one time step:

ρn+1
i = ρni −

1

∆x

{∫ tn+1

tn
f(ρ(xi+ 1

2
, t)) dt−

∫ tn+1

tn
f(ρ(xi− 1

2
, t)) dt

}
. (23)

There are three procedures in Gudunov's idea: Reconstruct-Solve-Average (RSA):

[11, 12]

1. Reconstruct: reconstruct a continuous function ρ(x) from the discrete ρi.

2. Solve: form the exact right hand side time integrals and solve the exact problem

for ∆t.

3. Average: compute the cell averages for the new time level.

In the �Reconstruct� procedure, use piecewise linear method (PLM) to reconstruct a

linear continuous function :

ρ(x, t) = ρni + (x− xi)σni , (24)

where σni is the slope at ith spatial grid and nth temporal grid.

In the �Solve� procedure, use the reconstructed function to compute the right-hand

side integral:
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∫ tn+1

tn
f(ρ(xi+ 1

2
, t)) dt = ∆t fn

i+ 1
2

=

∫ tn+1

tn
f(ρ(xi+ 1

2
− v (t− tn))) dt

=

∫ tn+1

tn
v
{
ρni +

[
xi+ 1

2
− v (t− tn)− xi

]
σni

}
dt

=∆t

[
v (ρni +

∆x

2
σni −

v∆t

2
σni )

]
.

(25)

Hence, we can get the form of fn
i+ 1

2

and fn
i+ 1

2

:

fn
i+ 1

2
≡ v (ρni +

∆x

2
σni −

v∆t

2
σni ); (26)

fn
i− 1

2
≡ v (ρni−1 +

∆x

2
σni−1 −

v∆t

2
σni−1). (27)

Plug �uxes at the cell boundaries into Eq. 14 and we �nish the �Average� procedure:

ρn+1
i = ρni −

∆t

∆x
(fn
i+ 1

2
− fn

i− 1
2
)

= ρni −
∆t

∆x

[
v (ρni − ρni−1) + (

v∆x

2
− v2 ∆t

2
)(σni − σni−1)

]
.

(28)

The followings are the examples of the di�erent de�nition of slope σni ((1) ∼ (4) are

linear slope limiters and (5) ∼ (7) are high-resolution slope limiters):

(1) Forward time backward space (upwind)

The de�nition of slope is

σni = 0. (29)

The result is shown in Figure 10.

(2) Downwind slope limiter (Lax-Wendro� scheme)

The de�nition of slope is
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σni =
ρni+1 − ρni

∆x
. (30)

The result is shown in Figure 13. We can observe that it is smooth with strong

overshoot. This numerical scheme is more suitable for smooth initial condition.

Figure 13: Numerical result for Lax-Wendro� scheme (red dashed line as true solution
and blue line as numerical result).

(3) Upwind slope limiter (Lax-Warming scheme)

The de�nition of slope is

σni =
ρni − ρni−1

∆x
. (31)

The result is shown in Figure 14. We can observe that it is smooth with strong

overshoot. This numerical scheme is more suitable for smooth initial condition.
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Figure 14: Numerical result for Lax-Warming scheme (red dashed line as true solution
and blue line as numerical result).

(4) Centered slope limiter (Fromm scheme)

The de�nition of slope is

σni =
ρni+1 − ρni−1

2∆x
. (32)

The result is shown in Figure 15. We can observe that it is smooth with little overshoot

but the initial shape of spike is still recognizable.
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Figure 15: Numerical result for Lax-Warming scheme (red dashed line as true solution
and blue line as numerical result).

(5) Mimnod slope limiter

The de�nition of slope (minimum allowed 2nd order slope) is

σni =
1

∆x

[
min(max(ρni − ρni−1, 0), max(ρni+1 − ρni , 0))

]
+

1

∆x

[
max(min(ρni − ρni−1, 0), min(ρni+1 − ρni , 0))

]. (33)

The result is shown in Figure 16. We can observe that it is smooth with no overshoot

and the initial shape of spike is still recognizable.
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Figure 16: Numerical result for PLM scheme with Minmod slope limiter (red dashed line
as true solution and blue line as numerical result).

(6) VanLeer slope limiter

The de�nition of slope (harmonic mean of slope) is

σni =


1

∆x
2

( 1
ρn
i
−ρn
i−1

+ 1
ρn
i+1

−ρn
i

)
if (ρni − ρni−1) (ρni+1 − ρni ) > 0

0 elsewhere

. (34)

The result is shown in Figure 17. We can observe that it is smooth with no overshoot

and the initial shape of spike is still recognizable.
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Figure 17: Numerical result for PLM scheme with VanLeer slope limiter (red dashed line
as true solution and blue line as numerical result).

(7) Superbee slope limiter

The de�nition of slope (maximum allowed 2nd order slope) is

σni =
1

∆x

[
sign(ρni − ρni−1) + sign(ρni+1 − ρni )

]
min

(
abs(ρni − ρni−1), abs(ρni+1 − ρni ),

1

2
max(abs(ρni − ρni−1), abs(ρni+1 − ρni ))

).
(35)

The result is shown in Figure 18. We can observe that it is smooth with no overshoot

and the initial shape of spike is still recognizable.
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Figure 18: Numerical result for PLM scheme with Superbee slope limiter (red dashed
line as true solution and blue line as numerical result).

2.2 Understanding the principles of particle-in-cell simulations

The pinch phase in DPF will be modeled by particle-in-cell (PIC) simulations, which

is the �rst principle model without any physics approximations. Since PIC simulations

would need intense computations, the parallel computing via Graphics Processing Unit

(GPU) will be needed.

2.2.1 Particle-in-cell simulations

Particle-in-cell model is a �rst-principle model providing a kinetic description of a

plasma without any physics approximations by following the trajectories of a collection

of particles interacting with self-consistent electromagnetic �elds. Each computational

particle represents a certain number of real particles. The computational cycle of PIC

method is shown in �gure 19[13]. The basic description of PIC simulations is as follow-

ing: (1) Maxwell equations are numerically solved on grids using the particle sources

accumulated from the continuous particle locations to the discrete grids; (2) the particles

are advanced one time step to new momentum and positions by numerically solving the

equations of motion, using electromagnetic �eld interpolated from the discrete grid to
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continuous particle locations; (3) loss or gain of particles at the boundary are considered;

(4) if the model is collisional, Monte Carlo collisions of motion must also be considered;

(5) the computational loop repeats and repeats.

Figure 19: Basic �ow loop of PIC simulations.

The program will simulate some test problems for benchmark. For example[1]: (1)

checking the frequency of a simple harmonic motion of a pair of test electrons in a uniform

background; (2) checking the growth rate as a function of wave vector in the instability

of two opposing electron streams in a uniform background.

2.2.2 GPU accelerated particle-in-cell simulations

Particle-in-cell simulations are an important �rst-principle method to study plasma

physics, but they require intense computations. Paralleling the PIC code can accelerate

the computational process. Computing via GPU is an adequate way to do massive parallel

data processing with arithmetic intensity. Considering a signi�cant amount of particles,

∼ 108 used in PIC simulations, the intense computation is appropriate to be executed on

GPU. NVIDIA CUDA[14] has been a widely used GPU platform since its features such

as easy programing and various applications. Thus, writing PIC code accelerated by

GPU on CUDA has gradually became a new way to study the detailed kinetic behavior

of plasma physics.[15]
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2.3 Paper reviews on simulations of pinch phase in DPF devices

Signi�cant amount of empirical results and scaling laws for the processes of DPF

have been collected over 40 years, but the detailed mechanisms remain unclear nowadays

especially in the �nal pinch phase. The mechanisms of the neutron production and the

formation of high-energy ion beam are still an open and controversial question. In general,

there are two ways of neutron production that are accepted widely: thermonuclear fusion

and beam-target fusion. Thus, the neutron output can be divided into isotropic and

anisotropic neutron emissions corresponding to thermonuclear component and beam-

target component, respectively. Though the scaling laws from the experimental results for

the neutron output in relation to peak current have been proposed by various groups[3],

the detailed mechanisms are still unknown.

Magnetohydrodynamics (MHD) simulations can predict the process of coaxial run-

down phase and the early part of the radial run-in phase nicely. However, current sheath

formation and pinch phase are necessary to be simulated using kinetic model due to the

occurrence of the instabilities and non-Maxwellian distribution function of particles. Col-

lisions between neutral particles and electrons in sheath formation phase must be included

in simulations so that kinetic model in this stage is needed. In the �nal phase, strong

electric �elds, �nite Larmor radius e�ect, high-energy (MeV) ion beam formation and

beam-target fusion are present, thus kinetic model is also necessary to comprehend the

clear picture in this process. Though there are many sophisticated existing code (MHD

code: ALEGRA[16], FLASH[17], GORGON[18]; particle-in-cell (PIC) code: LSP[19],

OSIRIS[20]), they are either controlled code or not appropriate for simulating DPF. A

code suitable for the �nal pinch phase will be developed.

Highlights of the papers concerned with the numerical studies in pinch phase are as

following:

• Kueny et al. in 2009[21] simulated the process of DPF by using a 2-D MHD code

(ALEGRA) and the simulation results were validated by experimental results. First,

they exported the data of the formation of the current sheaths from fully kinetic

codes (LSP) without any assumptions of the structure of the current sheaths. ALE-
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GRA was used to carry out the simulations from the run-down phases to the �nal

pinch phase; the neutron yields and peak currents during the pinch phase was ob-

tained at the end. The results showed that the neutron yields were underestimated

as the authors expected since the MHD simulations could only predict thermonu-

clear component of neutrons. The neutrons produced by beam-target fusion were

not considered in this case. Doing 3-D modeling in pinch phase for the next steps

was concluded in this paper.

• Schmidt et al. in 2012[22] simulated the process of pinch phase in kJ DPF device

using fully kinetic code (LSP) and the results reproduced the high-energy (MeV) ion

beams and experimental neutron yields (∼ 107). The calculation was initialized by

the assumption of the structure at the end of the run-down phase. Fluid and hybrid

(kinetic ions and �uid electrons) models were also used for comparison. The results

of �uid model was not allowed for nonthermal ions and showed no neutron yields;

hybrid model underestimated the neutron yields and the energy of ions, while only

fully kinetic model reproduced the experimental results. The authors believed that

anomalous resistivity in the plasma in the pinch phase is attributed to lower hybrid

drift instability according to the frequency analysis in fully kinetic simulations.

• Schmidt et al. in 2014[23] gave the �rst fully kinetic simulations of MJ DPF de-

vices, which is much more computational expensive than that for kJ DPF devices

due to the greater spatial scales involved. The simulations began with the plasma

sheath at the insulator using 2D �uid model (ALEGRA). In run-in phase, the sim-

ulations were transferred into fully kinetic model using LSP. The results predicted

D+ energy distribution, neutron yields, anomalous resistivity and angular depen-

dence of neutron production considering kinetic e�ects, such as beam-target fusion

and ion beam formation. Moreover, neutron spectra from inside and outside of the

pinch showed that thermonuclear fusion or low-energy beam-target fusion occurred

outside of the pinch and beam-target fusion in the pinch.

• Link et al. in 2014[6] presented the hybrid �uid-to-kinetic model allowing the simu-
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lations began in �uid mode from run-down phase to early part of run-in phase, and

was transferred into fully kinetic model (LSP) in pinch phase. Simulations in the

�nal pinch phase used fs and sub-mm particle scale to capture the kinetic instabil-

ities containing anomalous resistivity, beam-target fusion and ion beam formation.

The results showed that the di�erent anode shapes would make a di�erence of the

�nal neutron yields. Neutron anisotropy, neutron yield and ion beam formation

were given in results of simulation, which were validated by empirical results.

• B. Appelbe and J. Chittenden in 2014[24] presented that they used 3D MHD model

(GORGON) in run-down phases as well as a part of run-in phase and kinetic model

in pinch phase to understand the neutron production occurring in DPF with 70 kA

and 500 kA, respectively. The reason for the transition of �uid model to kinetic

model was that strong electric �elds combined with the low-density plasma in the

�nal pinch phase. Anisotropic neutron emission, the important characteristics of

beam-target fusion, were observed in their simulation results.
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3 Future works

To do the simulation of pinch phase in DPF device, the procedures and progress of

the project can be divided into coding and physical part. They are summarized in Table

1 and described in the following.

Step Coding Part Physical Part

1st
Practicing modeling a simple project
via PIC simulations.

Increasing my background
knowledge of plasma physics.

2nd
Optimizing my code by better
numerical methods.

3rd
Developing PIC code for the �nal
pinch phase of DPF.

Studying DPF and physics of
z-pinch.

4th
Accelerating the PIC code via
computing parallelly using GPU.

5th
Building the plasma diagnostics for
�nal pinch phase.

Studying mechanisms of neutron
production via my simulation
results and empirical results
from INER

Table 1: Summary of the procedures and progress of the project

3.1 The 1st and 2nd steps

• Coding part: Since I have learned the numerical methods for solving PDE and

ODE, I can directly write a PIC code for a simple project, e.g. Landau damping

and two-stream instability, by reading Birdsall's textbook on plasma simulation[1]

and some teaching notes online. After that, the optimization of my code through

using better-performance numerical methods will be applied.

• Physical part: I only took one class related to plasma physics, space physics, which

was taught by the teacher in Institute of space and plasma physics before. Increasing

my background knowledge of plasma physics through taking classes and reading

more textbooks or papers are necessary.
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3.2 The 3rd and 4th steps

• Coding part: After writing a simple project, I can start developing PIC code for the

�nal pinch phase of DPF. The initial condition of my simulations will be imported

from the empirical condition of DPF device built by INER. If the simulation is too

computational intensive, accelerating the PIC code via parallel computing using

GPU will be needed.

• Physical part: Studying more papers about DPF and physics of z-pinch will be

needed. A notable review article of Haines on z-pinch in 2011[25] will be a good

material for understanding the physics of z-pinch.

3.3 The 5th step

• Coding part: After �nishing writing the PIC code for �nal pinch phase, I can get the

results of neutron production, electric �elds, ion densities and frequency analysis

through plasma diagnostics. My simulation results will be validated using empirical

results from INER and previous studies.

• Physical part: With the simulation results and experimental results, the mech-

anisms of the process of pinch phases e.g. neutron production, high-energy ion

beam formation, beam-target fusion and anomalous resistivity etc. will be studied.

Strong background knowledge of plasma physics related to z-pinch will be needed

at this time.
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4 Conclusion

Numerical methods for solving PDE were being practiced through developing the

codes of numerical hydrodynamics, including solving ODE, parabolic PDE and linear

advection equation. PIC simulations will be studied in this semester. As for the physical

problem, DPF device is a pulsed-power device capable of producing 108 neutrons per

shot and can be used as an e�cient neutron source. However, the detailed mechanisms of

neutron production in DPF are not fully understood. My research topic is to model the

�nal pinch phase by developing a fully kinetic particle-in-cell code via computing parallelly

using GPU from scratch and capable of predicting the neutron yields. Practicing modeling

a simple physical problem like two-stream instability will be done in this semester.
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